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  Abstract—For the classification of hyperspectral images (HSIs), this paper 

presents a novel framework to effectively utilize the spectral-spatial information 

of superpixels via multiple kernels, termed as superpixel-based classification via 

multiple kernels (SC-MK). In HSI, each superpixel can be regarded as a 

shape-adaptive region which consists of a number of spatial-neighboring pixels 

with very similar spectral characteristics. Firstly, the proposed SC-MK method 

adopts an over-segmentation algorithm to cluster the HSI into many superpixels. 

Then, three kernels are separately employed for the utilization of the spectral 

information as well as spatial information within and among superpixels. Finally, 

the three kernels are combined together and incorporated into a support vector 

machines classifier. Experimental results on three widely used real HSIs indicate 

that the proposed SC-MK approach outperforms several well-known 

classification methods.  

 

  Index Terms—Hyperspectral image, Superpixel, Multiple kernels, 

Spectral-spatial image classification, Support Vector Machines. 

I.  INTRODUCTION 

Hyperspectral imaging has been widely used in the remote sensing which can acquire 

images from hundreds of narrow contiguous bands, spanning the visible-to-infrared 

spectrum. In the hyperspectral image (HSI), each pixel is a high-dimensional vector 

and its entries represent the spectral responses of different spectral bands. The highly 
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informative spectral information of the HSI pixels has many applications, such as 

classification [1], target detection [2], anomaly detection [3], spectral unmixing [4], 

and others [5]. 

  In the last decades, HSI classification has been a very active research topic in the 

remote sensing. Given a representative training set for each class, the objective of the 

classification is to assign each pixel to one of the classes based on its spectral 

characteristics. To achieve this, many discriminative approaches have been developed. 

Among these, the support vector machine (SVM) [6, 7] and multinomial logistic 

regression (MLR) [8-10] have demonstrated to be very powerful. Dynamic or random 

subspace [11, 12], which are new version of random forest and exploit the inherent 

subspace structure of hyperspectral, have proved to be an effective way for analyzing 

and classifying HSIs. The sparse representation [13-15], which can sparsely 

decompose the input pixel on an over-complete dictionary, is another widely used 

classifier. Recently, metric learning [16] has also been successfully explored in 

hyperspectral image processing, which has formulated a novel and adaptive metric 

learning method for classification and object recognition. In addition, some other 

classification approaches have focused on the design of effective feature extraction or 

reduction techniques, such as the principle component analysis [17], clonal selection 

feature-selection [18], kernel discriminative analysis [19], and semisupervised 

discriminative locally enhanced alignment [20]. Note that, kernel [21] has been 

widely used in the aforementioned approaches, since it can improve the class 

separability [22]. 



  Although the above approaches can effectively utilize the spectral information, 

their classification results often appear very noisy. This is mainly due to the two facts 

that the number of reference training samples is often very limited and the spectral 

information of pixels from one class may be easily mixed with that of pixels from 

other classes. To further improve the classification performance, some recent works 

attempt to use both the spectral information and spatial information of the HSI, which 

is based on the assumption that pixels from a local spatial region should have very 

similar spectral characteristics and thus correspond to the same materials. In [23, 24], 

the extended morphological profiles (EMP) is used to exploit the spatial information, 

which can effectively improve the estimation. In [25], the spatial dependence of pixels 

within a local region is exploited by a postprocessing procedure on each individual 

pixel label. In [13], the spatial information is incorporated into the sparse 

representation technique by a joint sparse norm on pixels within a local region. In [26], 

multiple kernels are utilized for the exploration of the spatial information, which is 

modeled as the mean and variance of pixels within a local region. Though the above 

works [13, 25, 26] can provide promising classification accuracies, the size and shape 

of the adopted spatial region is fixed and thus the spatial context in HSI may not be 

sufficiently exploited. That is, the shape of the regions should be changed according 

to different spatial structures of the HSI. For example, large region sizes should be 

selected for the smooth area while heterogeneous spatial area requires small region 

sizes.  



  In computer vision field, superpixel has been extensively investigated to facilitate 

the visual recognition [27-29]. Each superpixel is a local region, whose size and shape 

can be adaptively adjusted according to local structures. In this paper, we introduce 

the superpixel for the HSI classification and propose to effectively exploit both the 

spectral and spatial information of the superpixel via multiple kernels, which is 

denoted as the superpixel-based classification via multiple kernels (SC-MK). Firstly, 

the SC-MK adopts an efficient over-segmentation algorithm [29] to cluster the HSI 

into many superpixles. Then, mean filtering and weighted average filtering are 

utilized to extract the spatial features within and among superpixels. Subsequently, 

three kernels are separately computed on the pixels extracted from the original 

spectral feature as well as the spatial features within and among superpixels. Finally, 

the three kernels are combined together and incorporated into the support vector 

machines classifier. Note that, in some very recent works [30, 31], the HSI is also 

classified based on the superpixel. These works [30, 31] use histogram descriptors or 

K-means clustering for the classification, and do not consider the correlations among 

superpixels. In addition, some works have recently applied the multiple kernels for 

HSI classification [32, 33]. In [32], the multiple kernels have been incorporated into a 

domain adaptation framework to reduce the bias between source and target domains. 

The work in [33] employed a learning algorithm to adaptively select multiple 

representative kernels for classification. In contrast, the proposed SC-MK method 

adopts the multiple kernels to effectively capture spectral-spatial information within 



and among superpixels, which is different from the above superpixel-based and 

multiple kernels based works [30-33].  

  The rest of the paper is organized as follows. In Section II, the support vector 

machines with multiple kernels for HSI classification are briefly reviewed. Section III 

introduces the proposed SC-MK method. Experimental results on three well-known 

HSI data are presented in Section IV. Section V concludes this paper and suggests 

future works. 

II. SUPPORT VECTOR MACHINES (SVM) WITH MULTIPLE KERNELS 

  SVM is a supervised learning models and its objective in HSI classification 

problem is to find a decision rule which can determine the class label for each test 

pixel [6, 7]. Since the real HSI pixel is linearly non-separable, the SVM usually 

adopts a kernel function to map pixels into the high-dimensional feature spaces. To be 

specific, let  1,...,
M

N y y  denote the training pixels and  1,..., Nc c represent the 

corresponding class labels. The SVM aims to solve the following problem:  
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where w and b define the classifier in the feature space, i  are the slack variables 

for the nonseparability of data, and T is a regularization parameter that controls the 

generalization ability of the classifier.     is a mapping function, which transforms 

the input pixel 1

My   into a higher dimensional feature space   *M

i
 y 

 *
M M . Since the mapping     in the SVM learning is represented by the inner 

function, a kernel function K can be defined by,     
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Then, we can construct a non-linear SVM by the kernel function, without considering 

the mapping     explicitly. The most widely used kernel is the radial basis function 

(RBF) kernel, which is computed as  
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Then, by incorporating (2) into (1), we solve a dual Lagrangian problem and obtain 

the decision rule for any test pixels:  
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where i  are the Lagrange multipliers in (1), which can be estimated by quadratic 

programming (QP) methods [34].  

  If the RBF kernel is created from the original spectral pixels  1 ,...,Spec Spec

N
y y , the 

corresponding kernel is denoted as the spectral kernel  ,Spe

Spec

c Spec

i j
K y y . In [26], to 

further exploit the spatial information of the HSI, one spatial region (of fixed size) is 

defined for each pixel in HSI and the mean or variance is computed for pixels within 

each region as the spatial feature. Then, a new RBF kernel can be computed on the 

pixels  1 ,...,Spat at

N

Spy y  from the spatial feature and it is called as the spatial kernel 

 ,Spat Spat

S at i jp
K y y . Finally, a composite kernel can be effectively computed by a 

weighted average of these two kernels:  

     , ,, ,Spec S Spat Sp pat
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where Spec
  and Spat

  are the weights for the spatial kernel  ,Spe

Spec

c Spec

i j
K y y  and 

spectral kernel  ,Spat Spat

S at i jp
K y y , respectively, and 1

Spec Spat
   . The composite 

kernel  ,
CW i j

K y y  can be directly incorporated into (4) to create a new decision 



rule for classification. Compared to the single spectral kernel, the composite kernel 

considers the spatial information and thus can enhance the HSI classification 

performance. However, since the size of the adopted spatial region is fixed, the spatial 

information still may not be sufficiently exploited. For example, if the region-size for 

the test pixel is selected too large in the detailed region (see blue region in Fig. 1(a)), 

some pixels uncorrelated to the test pixel might be included, thus deteriorating the 

classification accuracy. In contrast, if the region-size is chosen too small for the pixel 

in the smooth region (see green region in Fig. 1(a)), the spatial information cannot be 

sufficiently exploited for the classification.    

         
                     (a)                       (b) 

Fig. 1. Spatial region selection by (a) fixed-size rectangles; and (b) adaptive-size 

superpixels.  

III. SUPERPIXEL BASED CLASSIFICATION VIA MULTIPLE KERNELS (SC-MK) 

  In computer vision field, the superpixel has been studied for an efficient 

representation, which can facilitate visual recognition [27-29]. Each superpixel is a 

perceptually meaningful region, whose shape and size can be adaptively changed 

according to different spatial structures (see an example in Fig.1(b)) [28]. In this 

paper, the proposed SC-MK algorithm extends the superpixel for HSI classification 

and adopts the multiple kernels to effectively exploit spectral-spatial information 



within and among each superpixel. In general, the proposed SC-MK algorithm 

consists of the two parts: a) Creation of superpixels in HSI, and b) Exploration of 

spectral-spatial information of superpixel via multiple kernels, which will be 

described in the following two subsections.  

A. Creation of Superpixels in HSI 

Unlike the single-band gray or three-band color image, the HSI usually has 

hundreds of spectral bands. To improve the computational efficiency, principle 

component analysis (PCA) [35] is firstly used to reduce the spectral bands of the HSI. 

Since the important information of the HSI is existed in the principle components 

(e.g., first three principle components), they are used as the base images.  

Secondly, the superpixel number L is selected based on the complexness of the 

structural texture in HSI. Specifically, the Sobel filter [36] which is a simple texture 

detector is first applied on the base images. Then, the number of non-zero elements in 

the filtered images is compared with the total number of pixels in the base images to 

create a texture ratio textureR , which reflects the complexness of texture in HSI. Finally, 

the superpixel number L is selected by the texture ratio textureR  and a predefined base 

superpixel number baseL , 

 base texture.L L R                         (6) 

Note that, other advanced texture detectors might be used to enhance the performance, 

but will create more computational cost.  

  Thirdly, given the superpixel number L, an over-segmentation algorithm called 

entropy rate superpixel (ERS) [29] is applied on the base images to generate a 2-D 

superpixel map. Specifically, the ERS is graph-based clustering algorithm, which first 

constructs a graph  ,G V E  on the base images. V is the vertex set corresponding 



to pixels of the base images and E  is the edge set representing the pair-wise 

similarities between adjacent pixels. Then, the ERS segments the graph into L 

connected subgraphs (each corresponds to a superpixel) by selecting a subset of edges 

A E . To form the compact, homogeneous and balanced superpixels, an entropy rate 

term  H   and a balancing term  B   are incorporated into the objective function 

of the superpixel segmentation:  

    max H B subject to
A

A A E               (7) 

where 0  is the weight for controlling the contribution of the entropy rate term and 

balancing term. The problem (7) can be efficiently solved by a greedy algorithm 

introduced in [37].  

  Finally, for the 2-D superpixel map, the position indexes of pixels within each 

superpixel can be obtained. Then, the position indexes for L superpixels in the 2-D 

map can be applied on the original HSI to extract the corresponding L 

non-overlapping 3-D superpixels. The procedure for the creation of the superpixels in 

HSI is illustrated in Fig. 2. 

 
Fig. 2. The procedure for the creation of superpixels in HSI. 

B. Exploration of Spectral-Spatial Information of Superpixel via Multiple Kernels   



  In this subsection, we will first introduce how to utilize the superpixels to create 

three feature images which separately reflects the spectral information and spatial 

information within and among superpixels. Then, three kernels are computed on the 

pixels from the feature images to exploit the spectral-spatial information of 

superpixel.  

  Each superpixel is a group of neighboring spectral pixels , 1,..., Zz

i
z y , which can 

be transformed into a matrix 
SP

i
Y . As described in the Section II, spectral pixels 

representing the spectral information of superpixels in HSI can be directly used as the 

spectral feature. All the spectral pixels in HSI constitute the spectral feature image

SpecI . 

  To exploit the spatial information within each superpixel, a mean operation is first 

applied on the spectral pixels 
1[ ,..., ]Z

i i
y y  within each superpixel 

SP

i
Y  and then the 

mean pixel 
Mean

iy  is assigned to all pixels in each superpixel. Here, the 
SP

iY  is still 

the superpixel, which consists of a number of spectral pixels. This operation is the 

same as the mean filtering (which is also adopted in the work [38]) and can reduce the 

interferences (e.g., noise) in each superpixel. All the filtered superpixels can constitute 

a mean feature image 
MeanI . Note that, adopting other more powerful filtering 

approaches (e.g., Laplacian filtering and guided filtering [39]) might enhance the 

performance, but increase the computational cost.  



 

Fig. 3. An example showing the current processed superpixel 
SP

iY  and its 

neighboring superpixels 
SP SP

,1 ,8,....,
i i

Y Y . 

  To exploit the spatial information among superpixels, a weighted average operation 

is conducted on the neighboring superpixels 
SP

, , 1,...,J
i j

j Y  of the current processed 

superpixels 
SP

iY  (see an example in Fig. 3), where J is the number of neighboring 

superpixels. Since the mean pixel is the representative feature of each superpixel, the 

weighted average operation can also be applied on the mean pixels 
Mean

, , 1,...,J
i j

j y  of 

neighboring superpixels and a weighted average pixel can be obtained by: 

J
WA Mean

, ,

1

i i j i j

j

w


 y y                         (8) 

where ,i j
w  is the weight, which is estimated as [40], 
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In (9), Norm is defined as  2
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, 2
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  y y  and h  is a predefined 

scalar. Then, the 
WA

iy  is assigned to all pixels in each superpixel 
SP

iY  and all the 

superpixels constitute a weighted average feature image 
WeighI .  

  In the training stage, firstly, a set of spectral pixels  1 ,...,
N

y y are randomly (or 

manually) selected from the original HSI. Then, the position indexes for these 

selected pixels are used to extract pixels from the spectral feature image 
SpecI , mean 



feature image 
MeanI , and weighted average feature image 

WeighI , respectively. The 

extracted pixels can separately constitute the corresponding spectral feature training 

data  , ,

1 , ...,Spec Train Spec Train

N
y y , mean feature training data  , ,

1 , ...,Mean Train Mean Train

N
y y , 

and weighted average feature training data  , ,

1 , ...,Weigh Train Weigh Train

N
y y . Subsequently, 

the RBF kernel function in (3) can be applied on the three kinds of training data to 

compute a spectral kernel  , ,,Spec TrainTra Spec Train

i j

in

Spec
K y y , an intra-superpixel spatial 

kernel  , ,Train

i

Train IntraS

IntraS
K y ,IntraS Train

j
y , and an inter-superpixel spatial kernel 

 , ,,TraTrain InterS InterS
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iS j
K y y , as follows.  
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Then, the above three kernels are combined by weighted average, 
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where Spec , IntraS
 , and InterS

  are the weights for the three different kernels, 

respectively, and 1Spec IntraS InterS     . The composite kernel  ,Train

CompSup i j
K y y  

can be incorporated into (4) to create a decision rule.  

  In the testing stage, for the classification of one pixel in HSI, as indicated in (4), the 

kernel transformation (same as the above training stage) requires to be first applied 

and then the decision rule can determine the class label for this pixel. The outline for 

utilizing spectral-spatial information of superpixel via multiple kernels is illustrated in 

Fig. 4. 



 

Fig. 4. Outline for utilizing spectral-spatial information of superpixel via multiple 

kernels. 

IV. EXPERIMENTAL RESULTS 

  To verify the effectiveness of the proposed SC-MK algorithm, it is tested on three 

real hyperspectral datasets1: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

Indian Pines image, AVIRIS Salinas image, and Reflective Optics System Imaging 

Spectrometer (ROSIS-03) University of Pavia image. The performance of the 

proposed SC-MK algorithm is compared with those of seven competing classification 

algorithms: SVM [7], EMP [23], support vector machines-composite kernel 

(SVM-CK) [26], logistic regression via variable splitting and augmented 

Lagrangian-multilevel logistic (LORSAL-MLL) [41], sparse representation based 

classification (SRC) [13], multinomial logistic regression-generalized composite 

kernel (MLR-GCK) [24], and IntraSC-MK. The IntraSC-MK is a simplified version 

of the proposed SC-MK method which only exploits the spectral-spatial information 

within each superpixel for the HSI classification. The SVM classifier does not 

                                                        
1Datasets can be downloaded at: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. 



consider the spatial information, which was implemented with spectral-only Gaussian 

kernel and functions in the LIBSVM library [42]. For EMP and LORSAL-MLL, the 

spatial context of HSI was utilized by the extended morphological profile and the 

multilevel logistic prior based segmentation technique, respectively. For SRC and 

SVM-CK, the spatial information within a fixed-size local region is utilized by the 

joint sparse regularization and composite kernel, respectively. In the MLR-GCK, the 

spatial context of HSI was exploited by the extended multiattribute profile [43] and 

the generalized composite kernel.      

A. Data Set Description 

  The Indian Pines image which captures the agricultural Indian Pines test site of 

North-Western Indiana was acquired by the AVIRIS sensor. The image is of size 145

×145×220, which has a spatial resolution of 20 m per pixel and a spectral coverage 

ranging from 0.2 to 2.4 μm. Before the classification, 20 water absorption bands [44] 

are discarded. Fig. 5 (a) and (b) show the color composite of the Indian Pines image 

and the corresponding reference data, which contains sixteen reference classes from 

different types of crops (e.g., corns, soybeans and wheat). 

  The Salinas image was also captured by AVIRIS sensor over the area of the Salinas 

Valley, California. The image is of size 512×217×224, which has a spatial 

resolution of 3.7 m per pixel. Same as in Indian Pines image, 20 water absorption 

spectral bands are removed. Fig. 6 (a) and (b) show the color composite of the Salinas 

image and the corresponding reference data, which contains sixteen different classes. 



  The University of Pavia image was acquired with the ROSIS-03 sensor over the 

campus at the University of Pavia, Italy. The image is of size 610×340×120, with a 

spatial resolution of 1.3 m per pixel and a spectral coverage ranging from 0.43 to 0.86 

μm [45]. Before the classification, 12 spectral bands were removed due to the high 

noise. Fig. 7 (a) and (b) show the color composite of the University of Pavia image 

and the corresponding reference data, which considers nine classes of interest.  

B. Classification Results  

  In the experiments, the parameters for the proposed SC-MK and IntraSC-MK 

methods are empirically selected and kept unchanged for the three test images. The 

base superpixel number baseL  for the proposed SC-MK and IntraSC-MK methods are 

chosen to 800. The parameter h in (9) is set 500. Setting larger h will give more power 

for the neighboring superpixels, which improves the proposed method in large 

homogeneous regions while decreasing the classification accuracies in the 

heteregeous regions. When the h is vaired from 100 to 1000, the performance of the 

proposed method changes very little in the three test images. The   in (10) is set to 

1. As indicated in [26], spatial kernel should be assigned with slightly larger weight, 

compared with the spectral kernel. Therefore, for the IntraSC-MK method, the 

spectral kernel weight Spec  is set to 0.4, while the intra-superpixel kernel weight 

IntraS
  is chosen to 0.6. For the SC-MK method, the spectral kernel weight Spec , 

intra-superpixel kernel weight IntraS
 , and inter-superpixel kernel weight InterS

  are 

selected to 0.2, 0.4, 0.4, respectively. In the following subsection, the influences of the 

base superpixel number baseL , and kernel weights to the performances of the proposed 



SC-MK approach will be further analyzed. For the SVM method, the parameters C 

and   are obtained by five-fold cross-validation. For the EMP, MLR-GCK and 

LORSAL-MLL methods, their parameters are set to the default values as in [23, 24, 

41]. The parameters for the SRC and SVM-CK methods are tuned to reach their best 

results in the experiments. 

  The first experiment was performed on the Indian Pines image. In this experiment, 

training samples are randomly selected account for about 10% of the labeled reference 

data (see the second column of the Table I). The visual classification results from 

different classifiers are shown in Fig. 5. As can be observed, the SVM classifier that 

only considers the spectral information exhibits very noisy estimations in its 

classification map. By utilizing the spatial context of the HSI, the EMP, 

LORSAL-MLL, SRC, SVM-CK, and MLR-GCK methods can deliver a smoother 

appearance in their classification results. However, these approaches cannot 

accurately classify pixels in the detailed and near-edge regions (e.g., ellipse regions in 

Fig. 5). By contrast, the proposed superpixel based IntraSC-MK and SC-MK 

approaches not only provide a smoother appearance, but also achieve more accurate 

estimations in the detailed area (e.g., ellipse regions in Fig. 5). For the quantitative 

comparison, our experiments adopt the overall accuracy (OA), average accuracy (AA), 

and Kappa coefficient as the metrics to evaluate the classification results. Quantitative 

results for various classifiers on the Indian Pines image are tabulated in Table I. Note 

that, the classification accuracies reported in the Table I are the average results over 

ten experiments with different randomly selected training data. As can be seen, the 



proposed IntraSC-MK and SC-MK methods perform better than the other compared 

methods in terms of OA, AA, and the Kappa coefficient. In addition, we can observe 

that the SC-MK method outperforms the IntraSC-MK method that only considers the 

correlations within each superpixel. This demonstrates, that in addition to the 

spectral-spatial information within each superpixel, further utilizing the spatial 

information among superpixels in the SC-MK method can enhance the classification 

performance.  

  The second and third experiments are conducted on Salinas and University of Pavia 

images, respectively. In the experiment on the Salinas image, only 1% of the labeled 

reference data were randomly selected as the training samples and the remaining 99% 

of data as the test set (see the second column of Table II). In the experiment on the 

University of Pavia image, as in some recent papers [46-48], a fixed number (200) of 

training samples for each class were randomly selected as the training samples and the 

rest as the test samples (see the second column of Table III). The selected training 

samples account for about 4% of the whole labeled reference data, which provides a 

challenging test set. The visual classification maps and quantitative results (averaged 

over then experiments) obtained by various classifiers on the Salinas and University 

of Pavia images are shown in Fig. 6 and 7, and Table II and III. As can be observed, 

the proposed superpixel based SC-MK and IntraSC-MK classification methods 

deliver better performances than the other compared classifiers, in terms of visual 

quality and objective metrics. In addition, compared with the IntraSC-MK method 

that only uses the information within each superpixels, the SC-MK method that 



considers the correlations within and among superpixels, can further eliminate the 

disturbances and improve the estimations (see the ellipse regions in Fig. 6 (i, j) and 

Fig. 7 (i, j)) 

  In the above experiments, all the programs are operated on a laptop computer with 

an Intel (R) Corei7-3720 CPU 2.60 GHz and 16 GB of RAM. Table IV reports the the 

computational time of each step for the proposed SC-MK method on the Indian Pines, 

Salinas, University of Pavia images, respectively. As can be observed, the main 

computational cost is occupied by the SVM training process. The step for creating the 

superpixels does not consume much computational cost (0.09 second, 0.85 second, 

and 1.35 second for the Indian Pines, Salinas, and University of Pavia, respectively). 

This is because the PCA greatly reduces dimension of the HSI and the adopted 

over-segmentation algorithm in [49] is very efficient. In addition, the main processes 

for exploiting the information within and among superpixels (e.g., mean feature 

within each superpixel, weighted average feature among superpixels, and multiple 

kernels computations) also do not create much computational complexity. Note that, 

since the SVM training process consumes too much computational cost, one of our 

future works is to adopt the general-purpose graphics processing unit (GPU) to greatly 

accelerate the training process.  



 
Fig. 5. Indian Pines image (a) Three-band color composite image. (b) Reference 

image, and the classification results (OA in %) obtained by the (c) SVM [7], (d) EMP 

[23], (e) SVM-CK [26], (f) LORSAL-MLL [41], (g) SRC [13], (h) MLR-GCK [41], (i) 

IntraSC-MK, (j) SC-MK methods.  

 

TABLE I 

CLASSIFICATION ACCURACIES OF INDIAN PINES IMAGE OBTAINED BY THE SVM [7], 

EMP [23], SVM-CK [26], LORSAL-MLL [41], SRC [13], MLR-GCK [41], 

IntraSC-MK, AND SC-MK METHODS. CLASS-SPECIFIC ACCURACIES ARE IN 

PERCENTAGE. 

Class Training/Test SVM EMP SVM-CK
LORSAL-

MLL 
SRC MLR-GCK IntraSC-MK SC-MK

Alfalfa 10/36 68.80 97.50 91.66 83.88 96.03 95.67 99.25 100 

Corn-no till 143/1285  71.26 92.18 88.81 92.12 94.47 93.22 96.12 97.11 

Corn-min till 83/747 73.91 88.47 86.66 89.05 92.35 95.92 97.08 97.65 

Corn 24/213 62.28 79.24 83.38 95.58 92.55 94.00 96.93 97.82 

Grass/Pasture 48/435 88.30 94.57 93.56 90.85 93.33 94.78 95.24 96.38 

Grass/Trees 73/657 86.44 98.04 99.08 99.72 94.87 99.81 99.98 100 

Grass/Pasture-mowed 10/18 88.07 61.24 93.33 92.22 88.88 98.14 97.24 100 

Hay-windrowed 48/430 90.89 100 98.27 99.90 99.55 100 100 100 

Oats 10/10 77.77 82.54 100 98.00 80.71 100 100 100 

Soybeans-no till 97/875 74.42 92.57 86.66 91.86 91.93 91.17 93.69 93.35 

Soybeans-min till 246/2209 78.79 92.58 92.10 95.89 96.36 97.91 98.48 99.02 

Soybean-clean 59/534 69.31 88.76 83.80 97.15 90.61 95.13 95.88 97.80 

Wheat 21/184 91.84 100 98.58 99.56 89.13 99.45 99.52 99.60 

Woods 127/1138 92.60 99.24 97.82 97.66 98.21 99.39 99.70 99.98 

Building-Grass-Trees-Drives 39/347 68.84 98.50 85.53 93.14 94.23 96.02 96.84 97.56 

Stone-steel Towers 10/83 99.05 99.13 98.31 82.41 81.23 82.59 98.79 97.15 

OA (Mean in %) 79.53 93.56 91.51 94.73 94.66 96.29 97.53 98.06 

AA (Mean in %) 80.01 91.54 92.35 93.69 92.15 95.83 97.80 98.34 

Kappa 0.77 0.93 0.90 0.94 0.94 0.96 0.97 0.98 



 

Fig. 6. Salinas image (a) Three-band color composite image. (b) Reference image, and 

the classification results (OA in %) obtained by the (c) SVM [7], (d) EMP [23], (e) 

SVM-CK [26], (f) LORSAL-MLL [41], (g) SRC [13], (h) MLR-GCK [41], (i) 

IntraSC-MK, (j) SC-MK methods.  

 



TABLE II 

CLASSIFICATION ACCURACIES OF SALINAS IMAGE OBTAINED BY THE SVM [7], EMP 

[23], SVM-CK [26], LORSAL-MLL [41], SRC [13], MLR-GCK [41], IntraSC-MK, 

AND SC-MK METHODS. CLASS-SPECIFIC ACCURACIES ARE IN PERCENTAGE. 

Class Training/Test SVM EMP SVM-CK
LORSAL-

MLL 
SRC MLR-GCK IntraSC-MK SC-MK

Weeds_1 20/1989 99.74 99.84 99.09 99.44 100 98.75 100 100 

Weeds_2 37/3689 99.01 99.76 99.37 99.95 99.98 99.35 100 100 

Fallow 20/1956 91.05 93.15 98.69 99.78 97.61 97.54 99.92 100 

Fallow plow 14/1380 97.04 98.49 99.00 98.34 83.24 98.84 98.44 98.62 

Fallow smooth 27/2651 98.07 99.16 98.04 98.78 97.10 97.92 98.80 98.74 

Stubble 40/3919 99.98 99.98 99.81 99.83 97.63 99.49 99.76 99.74 

Celery 36/3543 98.89 99.92 99.34 99.66 99.57 99.51 99.92 99.92 

Grapes 113/11158 75.96 92.96 89.86 90.76 88.61 92.21 99.32 99.81 

Soil 62/6141 98.87 99.25 99.23 99.97 99.97 99.94 99.89 99.95 

Corn 33/3245 88.86 93.37 95.00 94.15 96.11 96.46 96.49 97.65 

Lettuce 4wk 11/1057 91.77 98.80 95.19 95.34 97.37 93.55 94.78 95.77 

Lettuce 5wk 19/1908 95.75 96.53 99.84 99.99 95.52 99.88 98.59 100 

Lettuce 6wk 9/907 94.78 98.01 99.12 97.83 95.08 98.38 98.11 98.15 

Lettuce 7wk 11/1059 96.47 97.30 94.89 95.95 94.64 93.90 91.87 91.31 

Vinyard untrained 73/7195 72.35 91.74 84.94 73.55 84.07 91.30 97.19 99.78 

Vinyard trellis 18/1789 98.64 98.30 94.97 98.92 99.33 95.04 100 100 

OA (Mean in %) 89.33 96.23 94.78 93.75 93.96 96.16 98.79 99.38 

AA (Mean in %) 93.58 97.29 96.65 96.39 95.36 97.01 98.32 98.72 

Kappa 0.88 0.95 0.94 0.93 0.93 0.96 0.99 0.99 

 

C. Effect of the Number of Superpixels and Kernel Weights   

  In this section, the effect of the base superpixel number and kernel weights on the 

performance of the proposed SC-MK method will be analyzed. In this analysis, the 

numbers of training and test samples are selected to the same as in the above 

experiments on the Indian Pines, Salinas, and University of Pavia images. Note that, 

the reported accuracies for this analysis experiment are also the average results over 

ten runs with randomly selected samples.  

 



 

Fig. 7. University of Pavia image (a) Three-band color composite image. (b) 

Reference image, and the classification results (OA in %) obtained by the (c) SVM [7], 

(d) EMP [23], (e) SVM-CK [26], (f) LORSAL-MLL [41], (g) SRC [13], (h) 

MLR-GCK [41], (i) IntraSC-MK, (j) SC-MK methods.  

 

 

 

 

 

 

 



TABLE III 

CLASSIFICATION ACCURACIES OF UNIVERSITY OF PAVIA IMAGE OBTAINED BY THE 

SVM [7], EMP [23], SVM-CK [26], LORSAL-MLL [41], SRC [13], MLR-GCK [41], 

IntraSC-MK, AND SC-MK METHODS. CLASS-SPECIFIC ACCURACIES ARE IN 

PERCENTAGE. 

Class Training/Test SVM EMP SVM-CK
LORSAL-

MLL 
SRC MLR-GCK IntraSC-MK SC-MK

Asphalt 200/6431 96.82 98.69 94.61 92.02 81.49 98.50 98.37 98.84 

Meadows 200/18449 97.50 98.96 97.25 97.72 97.16 97.53 98.83 99.14 

Gravel 200/1899 77.18 94.72 90.51 87.60 99.21 99.05 97.45 99.70 

Trees 200/2864 87.90 96.05 98.08 97.31 88.30 98.62 98.12 98.19 

Metal sheets 200/1145 97.38 98.47 99.98 99.68 97.29 99.43 100 100 

Bare soil 200/4829 77.75 84.52 97.64 95.84 99.33 97.91 99.54 99.59 

Bitumen 200/1130 64.57 87.97 97.58 96.65 98.93 98.51 99.96 99.96 

Bricks 200/3482 85.91 98.29 93.23 91.48 97.32 98.98 99.56 99.66 

Shadows 200/747 99.91 99.90 99.89 99.96 83.53 99.71 100 99.98 

OA (Mean in %) 90.57 96.16 96.43 95.64 94.25 98.11 98.88 99.22 

AA (Mean in %) 87.22 95.29 96.53 95.36 93.62 98.69 99.09 99.46 

Kappa 0.88 0.95 0.95 0.94 0.92 0.97 0.98 0.99 

 

TABLE IV 

THE RUN TIME (SECOND) FOR EACH STEP OF THE PROPOSED SC-MK METHOD ON THE 

INDIAN PINES, SALINAS, AND UNIVERSITY OF PAVIA IMAGES. 

 Indian Pines Salinas University of Pavia 

Superpixel Creation 0.09 0.85 1.35 

Mean Feature 0.08 0.41 0.44 

Weighted Average Feature 0.15 1.89 2.02 

SVM Training including kernels computation 149.05 36.86 128.65 

SVM Test including kernels computation 9.83 9.91 42.31 

Total 159.34 49.92 174.77 

 

  The base superpixel number was selected from 500 to 1600. Fig. 8 illustrates the 

overall accuracies of the proposed SC-MK method under different base superpixel 

numbers on the three test images. We can observe that, as the base superpixel number 

varies from 500 to 1600, the overall accuracies of the proposed SC-MK method 

generally show very good performances (overall accuracies are over 97.5%) on the 

three test images. When the base superpixel number increases from 800 to 1600, the 

overall accuracies of the proposed SC-MK method will slightly decrease on the three 

images. This is mainly due to the reason that if the superpixel number increases, the 



size of each superpixel will become small, and so the spatial information (e.g., in 

large homogenous regions of Salinas image) will not be sufficiently exploited for 

classification. 

 

Fig. 8. Effect of the base superpixel number on the proposed SC-MK algorithm over 

three HSI images. 

 

  To examine the influences of the kernel weights to the performance of the proposed 

SC-MK method, the spectral kernel weight is first varied from 0 to 1, while the 

intra-superpixel and inter-superpixel kernel weights are selected to the corresponding 

equal values, as shown in the Fig. 9(a). If the spectral kernel weight is set to 1 or 0 

(which means that only spectral information or spatial information of the superpixel is 

utilized), the proposed SC-MK method does not show very good performances on the 

three test images. This indicates that both the spectral information and the spatial 

information of the superpixels should be utilized for the HSI classification. In addition, 

when the spectral kernel weight goes from 0.2 to 0.9, the performances of the 

proposed SC-MK method generally degrade on the three test images. This 

demonstrates that comparatively large weight value should be assigned to the two 

spatial kernels of the superpixels. Therefore, in the Fig. 9 (b), the spectral kernel 



weight is fixed to 0.2, while the intra-superpixel and inter-superpixel kernel weights 

are selected to the corresponding different values. As can be observed, if the 

intra-superpixel kernel weight is set from 0.2 to 0.6, the performances of the proposed 

SC-MK method are excellent and kept comparatively stable on the three test images. 

This shows that the spectral information and spatial information within and among 

superpixels should be all considered for the classification.      

       
                               (a) 

       
                               (b) 

Fig. 9. Effect of the kernel weights on the proposed SC-MK algorithm on the three 

HSI images. (a) Effect of the spectral kernel weight; (b) Effect of the intra-superpixel 

and inter-superpixel kernel weights.  

 

D. Effect of Different Number of Training Samples 



  In this subsection, the effect of the number of training samples on several classifiers 

will be examined on the Indian Pines, Salinas, and University of Pavia images. The 

parameters for all the classifiers are kept the same as that in the Section IV. B. For the 

Indian Pines and Salinas images, different percentages (from 2.5% to 30% for Indian 

Pines and from 0.25% to 3% for Salinas) of the labeled data were randomly selected 

as the training samples. For the University of Pavia image, various numbers (from 50 

to 600 pixels for each class) of pixels were randomly chosen as the training set. 

  Fig. 10 illustrates the the overall classification accuracies (averaged over ten runs) 

for each classifier under different number of training samples. We can observe that, 

the performances for all the classifiers generally improve as the number of training 

samples increase. Furthermore, the proposed SC-MK method consistently provides 

superior performances over the other compared methods for all the test numbers of 

training samples.  

   

 
Fig. 10. Effect of the number of training samples on SC-MK, MLR-GCK, EMP, 

SVM-CK, and SVM for the (a) Indian Pines Image, (b) Salinas Image, (c) University 

of Pavia Image. 



V.  CONCLUSIONS 

  In this paper, we present a superpixel-based classification via multiple kernels 

(SC-MK) method for HSI classification. Instead of using fixed-size region as some 

previous works, the SC-MK adopts the superpixel, whose size and shape can be 

adaptively adjusted according to the spatial structures of the HSI. Then, the SC-MK 

uses the multiple kernels to effectively exploit the spectral-spatial information within 

and among superpixels. The experimental results on three real HSI images 

demonstrate the superiority of the proposed SC-MK over several well-known 

classifiers in terms of both visual quality on the classification map and quantitative 

metrics.  

  In the experiments, the kernel weights were empirically selected to fixed values and 

not optimized for each test image. Therefore, we will systematically research on how 

to adaptively select the optimal kernel weights (e.g., based on the distributions of the 

materials in local regions of the test image) for different images. In addition, our 

future work will apply the superpixel based kernel model to other hyperspectral 

applications (e.g., denoising, unmixing and object recognition).      
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