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Abstract. Let f : Mn → R
n+1 be an immersed umbilic-free hypersurface in an

(n + 1)-dimensional Euclidean space R
n+1 with standard metric I = df · df . Let I I be

the second fundamental form of the hypersurface f . One can define the Möbius metric g =
n

n−1 (‖I I‖2 − n|trI I |2)I on f which is invariant under the conformal transformations (or the

Möbius transformations) of Rn+1. The sectional curvature, Ricci curvature with respect to the
Möbius metric g is called Möbius sectional curvature, Möbius Ricci curvature, respectively.
The purpose of this paper is to classify hypersurfaces with constant Möbius Ricci curvature.

1. Introduction. Let f : Mn → R
n+1 be an immersed hypersurface without umbil-

ics. Given the induced metric I = df ·df as well as a local orthonormal basis {ei} and the dual
basis {θi}, we denote II = ∑

ij hij θi ⊗ θj the second fundamental form and H = 1
n

∑
i hii

the mean curvature. The so-called Möbius metric

g = ρ2df · df = n

n − 1
(‖II‖2 − nH 2)df · df

is an invariant under the conformal (or Möbius) transformations of Rn+1 [11]. Together with
the Möbius second fundamental form (for definition, see Section 2) they form a complete sys-
tem of invariants for hypersurfaces (dim ≥ 3) in Möbius geometry [11]. Note that the con-
formal compactification space Sn+1 unifies the space forms Sn+1,Rn+1,Hn+1 by the Möbius
diffeomorphism σ : Rn+1 → S

n+1\{(−1, 0, . . . , 0)}, τ : Hn+1 → S
n+1+ ⊂ S

n+1 defined by

σ(u) =
(

1 − |u|2
1 + |u|2 ,

2u

1 + |u|2
)

,

τ (y) =
(

1

y0
,

ȳ

y0

)

, y = (y0, y1, . . . , yn+1) := (y0, ȳ) ∈ Hn+1 ,

where S
n+1+ = {(x1, . . . , xn+2) ∈ S

n+1|x1 > 0} ⊂ S
n+1 is the upper hemisphere. And the

formula above defining the Möbius metric g is the same for any of them.
Recent years the study of hypersurfaces (and various submanifolds) based on these

Möbius invariants becomes quite active (see [1, 2, 4, 5]). A notable class of hypersurfaces
are those with constant Möbius curvature, i.e., constant sectional curvature with respect to the
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Möbius metric g . In a point of view of Möbius geometry, one of the basic questions in the
differential geometry of hypersurfaces is to classify these hypersurfaces in R

n+1. In [3], the
authors have classified them up to Möbius transformations when dimension of hypersurfaces
n ≥ 4.

THEOREM 1.1 ([3]). Let f : Mn → R
n+1 (n ≥ 4) be a hypersurface with constant

Möbius curvature. Then locally f is Möbius equivalent to one of the following examples:
(i) S1 × R

n−1;
(ii) a cylinder over a logarithmic spiral in a Euclidean 2-plane R2;

(iii) a cone over a curvature-spiral in a 2-sphere S2;
(iv) a rotation hypersurface over a curvature-spiral in a hyperbolic 2-planeR2+(upper

half-space model).

For the definition of the so-called curvature-spiral in Theorem 1.1, see [3]. The hypothe-
sis of constant Möbius curvature implies that the hypersurface is conformally flat. A classical
result says that when the dimension n ≥ 4 this happens if and only if a principle curvature
has multiplicity at least n − 1 everywhere. On the other hand, a 3-dimensional hypersurface
f : M3 → R

4 with constant Möbius sectional curvature may have three distinct principal
curvatures. In [6], the authors have classified three dimensional hypersurfaces with constant
Möbius curvature and three distinct principal curvatures.

THEOREM 1.2 ([6]). Let f : M3 → R
4 be an immersed hypersurface with three

distinct principal curvatures. If f is of constant Möbius curvature c, Then f is Möbius equiv-
alent to a cone over a flat torus x : S1(r) × S

1(
√

1 − r2) → S
3, which Möbius curvature

c = 0.

Here we need to point out that Theorem 1.1 is valid for three dimensional hypersurfaces
so long as the hypersurfaces has only two distinct principal curvatures. Combining Theorem
1.1, the hypersurfaces (dim ≥ 3) with constant Möbius curvature were classified completely.
For surfaces of constant Möbius curvature there are already many results, see [8, 9, 12].

Another notable class of hypersurfaces are those with constant Möbius Ricci curva-
ture, i.e., constant Ricci curvature with respect to g . Clearly the hypersurfaces with constant
Möbius sectional curvature are of constant Möbius Ricci curvature, but the converse may not
true when the dimension of the hypersurfaces n ≥ 4. In this paper, our purpose is to classify
these hypersurfaces of dimension n ≥ 4. We note that some of such examples come from
cones, cylinders, or rotational hypersurfaces over (λ, n, ε)-surfaces in 3-sphere S3, Euclidean
space R

3 and hyperbolic space R
3+ (upper half-space model), respectively.

DEFINITION 1.3. Let u : M2 → N3(−ε) be an umbilic free surface in 3-dimensional
space form N3(−ε), and Hu,Ku the mean curvature, Gauss curvature, respectively.
For positive integer n ≥ 4, let

μ = 1
√

4H 2
u − 2n

n−1 (Ku + ε)

, ν = με − μ(ε + Ku)

n − 2
.
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A surface u is called a (λ, n, ε)-surface for some λ=constant, if

Hess(μ)(ei, ej ) = νIu(ei, ej ) , ei , ej ∈ T M2 ,

|∇μ|2 = μ2ε − μ2(Ku + ε)

(n − 1)(n − 2)
− λ

n − 1
.

Here Hess and ∇ are the Hessian operator and the gradient with respect to the induced metric
Iu.

Our main results is given as follows:

THEOREM 1.4. Let f : Mn → R
n+1(n ≥ 3) be an immersed hypersurface in R

n+1

without umbilics. If f is of constant Möbius Ricci curvature λ, Then locally f is Möbius
equivalent to one of the following examples:

(1) f is of constant Möbius curvature;

(2) the image of σ−1 of the torus Sk(

√
k−1
n−2 )×S

n−k(

√
n−k−1
n−2 ) ⊂ S

n+1, 1 < k < n−1;

(3) a cylinder over a (λ, n, 0)-surface in a Euclidean 3-plane R3, (n ≥ 4);
(4) a cone over a (λ, n, 1)-surface in a 3-sphere S3, (n ≥ 4);
(5) a rotation hypersurface over a (λ, n,−1)-surface in a hyperbolic 3-planeR3+, (n ≥

4).

For the purpose of making the procedure of the proof of our main Theorem clear, We
organize the paper as follows. In Section 2, we review the basic invariants and equations in
Möbius geometry for hypersurfaces in R

n+1. In Section 3 we give some special examples of
hypersurfaces and compute the Ricci curvature. In Section 4, we prove our main Theorem
1.4. In Section 5, we prove a special case of Theorem 1.4, since the proof of the case is very
long.

2. Möbius invariants for hypersurfaces in R
n+1. In this section we briefly review

the theory of hypersurfaces in Möbius geometry. For details we refer to [11], [7].
Let Rn+3

1 be the Lorentz space, i.e., Rn+3 with inner product 〈·, ·〉 defined by

〈x, y〉 = −x0y0 + x1y1 + · · · + xn+2yn+2 ,

for x = (x0, x1, . . . , xn+2), y = (y0, y1, . . . , yn+2) ∈ R
n+3.

Let f : Mn → R
n+1 be an immersed hypersurface without umbilics and assume that

{ei} is an orthonormal basis with respect to the induced metric I = df · df with {θi} the dual
basis. Let II = ∑

ij hij θiθj and H = ∑
i

hii

n
be the second fundamental form and the mean

curvature of f , respectively. We define the Möbius position vector Y : Mn → R
n+3
1 of f by

Y = ρ

(
1 + |f |2

2
,

1 − |f |2
2

, f

)

, ρ2 = n

n − 1
(|II |2 − nH 2) .

THEOREM 2.1 ([11]). Two hypersurfaces f, f̄ : Mn → R
n+1 are Möbius equivalent

if and only if there exists T in the Lorentz group O(n + 2, 1) in R
n+3
1 such that Ȳ = YT .
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It follows immediately from Theorem 2.1 that

g = 〈dY, dY 〉 = ρ2df · df

is a Möbius invariant, called the Möbius metric of f .
Let 	 be the Laplacian with respect to g . Define

N = − 1

n
	Y − 1

2n2 〈	Y,	Y 〉Y ,

which satisfies 〈Y, Y 〉 = 0 = 〈N,N〉, 〈N,Y 〉 = 1 .

Let ξ be the mean curvature sphere of f written as

ξ =
(

1 + |f |2
2

H + f · en+1,
1 − |f |2

2
H − f · en+1,Hf + en+1

)

,

where en+1 is the unit normal vector field of f in R
n+1.

Let {E1, . . . , En} be a local orthonormal basis for (Mn, g) with dual basis {ω1, . . . , ωn}.
Write Yi = Ei(Y ). Then {Y,N, Y1, . . . , Yn, ξ} forms a moving frame in R

n+3
1 along Mn. We

will use the following range of indices in this section: 1 ≤ i, j, k ≤ n. We can write the
structure equations as following:

dY =
∑

i

Yiωi ,

dN =
∑

ij

AijωiYj +
∑

i

Ciωiξ ,

dYi = −
∑

j

AijωjY − ωiN +
∑

j

ωij Yj +
∑

j

Bij ωj ξ ,

dξ = −
∑

i

CiωiY −
∑

ij

ωiBij Yj ,

where ωij is the connection form of the Möbius metric g and ωij + ωji = 0. The tensors

A =
∑

ij

Aijωi ⊗ ωj , B =
∑

ij

Bijωi ⊗ ωj , C =
∑

i

Ciωi

are called the Blaschke tensor, the Möbius second fundamental form and the Möbius form of
f , respectively. The covariant derivative of Ci,Aij , Bij are defined by

∑

j

Ci,jωj = dCi +
∑

j

Cjωji ,

∑

k

Aij,kωk = dAij +
∑

k

Aikωkj +
∑

k

Akjωki ,

∑

k

Bij,kωk = dBij +
∑

k

Bikωkj +
∑

k

Bkjωki .

The integrability conditions for the structure equations are given by

Aij,k − Aik,j = BikCj − Bij Ck ,(2.1)
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Ci,j − Cj,i =
∑

k

(BikAkj − BjkAki) ,(2.2)

Bij,k − Bik,j = δijCk − δikCj ,(2.3)

Rijkl = BikBjl − BilBjk + δikAjl + δjlAik − δilAjk − δjkAil ,(2.4)

Rij :=
∑

k

Rikjk = −
∑

k

BikBkj + (trA)δij + (n − 2)Aij ,(2.5)

∑

i

Bii = 0 ,
∑

ij

(Bij )2 = n − 1

n
, trA =

∑

i

Aii = 1

2n
(1 + n2κ) ,(2.6)

where Rijkl denote the curvature tensor of g , κ = 1
n(n−1)

∑
ij Rijij is its normalized Möbius

scalar curvature. We know that all coefficients in the structure equations are determined by
{g, B} and we have

THEOREM 2.2 ([11]). Two hypersurfaces f : Mn → R
n+1 and f̄ : Mn → R

n+1(n ≥
3) are Möbius equivalent if and only if there exists a diffeomorphism ϕ : Mn → Mn which
preserves the Möbius metric and the Möbius second fundamental form.

The second covariant derivative of Bij are defined by

dBij,k +
∑

m

Bmj,kωmi +
∑

m

Bim,kωmj +
∑

m

Bij,mωmk =
∑

m

Bij,kmωm .

We have the following Ricci identities

Bij,kl − Bij,lk =
∑

m

BmjRmikl +
∑

m

BimRmjkl .

Coefficients of Möbius invariants and Euclidean invariants are related by [7]

Bij =ρ−1(hij − Hδij ) ,

Ci = − ρ−2[ei(H) +
∑

j

(hij − Hδij )ej (log ρ)] ,

Aij = − ρ−2[Hessij (log ρ) − ei(log ρ)ej (log ρ) − Hhij ]
− 1

2
ρ−2[|∇(log ρ)|2 + H 2]δij ,

(2.7)

where Hessij and ∇ are the Hessian matrix and the gradient with respect to I = df · df .
Then

A = ρ2
∑

ij

Aij θi ⊗ θj , B = ρ2
∑

ij

Bij θi ⊗ θj , C = ρ
∑

i

Ciθi .

We call eigenvalues of (Bij ) as Möbius principal curvatures of f . Clearly the number of
distinct Möbius principal curvatures is the same as that of its distinct Euclidean principal
curvatures.
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Let k1, . . . , kn be the principal curvatures of f , and {b1, . . . , bn} the corresponding
Möbius principal curvatures, then the curvature sphere of principal curvature ki is

ξi = biY + ξ =
(

1 + |f |2
2

ki + f · en+1,
1 − |f |2

2
ki − f · en+1, kif + en+1

)

.

Note that ki = 0 if, and only if,

〈ξi , (1,−1, 0, . . . , 0)〉 = 0 .

This means that the curvature sphere of principal curvature ki = 0 is a hyperplane in R
n+1.

3. Some examples of Hypersurfaces in R
n+1 with constant Möbius Ricci curva-

ture. In this section we give some examples of special hypersurfaces in R
n+1, and compute

the Möbius Ricci curvature. Some other properties of these hypersurfaces were studied in
[4, 5]

EXAMPLE 3.1. Let x : Sk(a) × S
n−k(

√
1 − a2) → S

n+1 be the isoparametric torus
defined by

x = (ax1,
√

1 − a2x2) , 0 < a < 1 ,

where x1 : Sk → R
k+1, x2 : Sn−k → R

n−k+1 are unit spheres. We define the hypersurface in
R

n+1

f = σ−1 ◦ x : Sk(a) × S
n−k(

√
1 − a2) → R

n+1 .

PROPOSITION 3.2. If f = σ−1 ◦ x : Sk(a) × S
n−k(

√
1 − a2) → R

n+1 is of constant
Möbius Ricci curvature, then

a2 = k − 1

n − 2
, Rij = (n − k − 1)(n − 1)(k − 1)

k(n − k)(n − 2)
δij , 1 < k < n − 1 .

PROOF. Using the relations (2.7), by direct computation, f has two distinct Möbius
principle curvatures

b1 = −1

n

√
(n − 1)(n − k)

k
, b2 = 1

n

√
(n − 1)k

n − k

with multiplicity k and n − k. We take a local orthonormal basis {E1, . . . , En} such that

(Bij ) = diag{b1, . . . , b1, b2, . . . , b2} .

Under such basis using relations (2.7) we have

Aij = n − 1

2k(n − k)n2
{k(2n − k) − n2a2}δij , 1 ≤ i, j ≤ k ,

Aij = n − 1

2k(n − k)n2 {n2a2 − k2}δij , k + 1 ≤ i, j ≤ n ,

Aij = 0 , 1 ≤ i ≤ k , k + 1 ≤ j ≤ n .
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Thus the sectional curvature with respect to g are given by

Rijij = n − 1

k(n − k)
(1 − a2) , 1 ≤ i , j ≤ k ,

Rijij = n − 1

k(n − k)
a2 , k + 1 ≤ i , j ≤ n ,

Rijij = 0 , 1 ≤ i ≤ k , k + 1 ≤ j ≤ n .

(3.8)

From (3.8) we finish the proof. �

PROPOSITION 3.3. Let f : Sk(1) × R
n−k → Rn+1 be the standard cylinder in R

n+1.
If f : Sk(1) × R

n−k → R
n+1 is of constant Möbius Ricci curvature, then k = 1, and f is of

constant Möbius curvature λ = 0.

The proof is similar to the proof of Proposition 3.2. For detailed computation of Möbius
invariants of the hypersurface f we refer to [5].

EXAMPLE 3.4. Let x : Sk(r) × H
n−k(

√
1 + r2) → H

n+1 be the standard embedding
given by

x = (
√

1 + r2v, ru,
√

1 + r2w) ∈ R+ × R
k+1 × R

n−k ,

where −v2 + w · w = −1, u · u = 1. We define the hypersurface in R
n+1:

f = σ−1 ◦ τ ◦ x : Sk(r) × H
n−k(

√
1 + r2) → R

n+1 .

PROPOSITION 3.5. The hypersurface f = σ−1 ◦ τ ◦ x : Sk(r) × H
n−k(

√
1 + r2) →

R
n+1 can not be of constant Möbius Ricci curvature.

The proof is also similar to the proof of Proposition 3.2. For detailed computation of
Möbius invariants of the hypersurface f we refer to [5].

EXAMPLE 3.6 ([4]). Let f : Sp(a)×S
q(b)×R+×R

n−p−q−1 → R
n+1 be the warped

product embedding given by

f = (tu1, tu2, u3) , u1 ∈ S
p(a) , u2 ∈ S

q (b) , t ∈ R+ , u3 ∈ R
n−p−q−1 , a2 + b2 = 1 .

By direct computation (or see [4]), we have the following results:

PROPOSITION 3.7. If f : Sp(a) × S
q(b) × R+ × R

n−p−q−1 → R
n+1 is of constant

Möbius Ricci curvature, then p = q = 1, n = 3, and f is of constant Möbius curvature
λ = 0.

The Möbius second fundamental form of the hypersurfaces given by the standard cylin-
der in Rn+1, Example 3.1, Example 3.4, and Example 3.6 are parallel. In fact these hypersur-
faces exhaust the hypersurfaces with parallel Möbius second fundamental form B (see [4]).

EXAMPLE 3.8. Let u : M2 → R
3 be an immersed surface. We define the cylinder

over u in R
n+1 as

f = (u, id) : M2 × R
n−2 → R

3 × R
n−2 = R

n+1 , f (x, y) = (u(x), y) ,
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where id : Rn−2 → R
n−2 is the identity map.

Let η be the unit normal vector of the surface u. Then en+1 = (η, �0) ∈ R
n+1 is the unit

normal vector of the hypersurface f . The first fundamental form I and the second fundamen-
tal form II of the hypersurface f are given by

I = Iu + IRn−2 , II = IIu ,(3.9)

where Iu, IIu are the first and second fundamental forms of u, respectively, and IRn−2 denotes
the standard metric of Rn−2. Let k1, k2 be principal curvatures of the surface u. The principal
curvatures of the hypersurface f are obviously

k1, k2, 0, . . . , 0 .

The Möbius metric g of the hypersurface f is

g = ρ2I = n

n − 1
(|II |2 − nH 2)I =

(

4H 2
u − 2n

n − 1
Ku

)

(Iu + I
Rn−2) ,(3.10)

where Hu,Ku are the mean curvature and Gauss curvature of u, respectively.

EXAMPLE 3.9. Let u : M2 → S
3 ⊂ R

4 be an immersed surface. We define the cone
over u in R

n+1 as

f : M2 × R+ × R
n−3 → R

n+1 , f (x, t, y) = (tu(x), y) .

The first and second fundamental forms of the hypersurface f are, respectively,

I = t2Iu + I
Rn−2 , II = t I Iu ,

where Iu, IIu, I
Rn−2 are understood as before. Let k1, k2 be principal curvatures of the surface

u. The principal curvatures of the hypersurface f are

1

t
k1,

1

t
k2, 0, . . . , 0 .

Thus the Möbius metric g of the hypersurface f is

g = ρ2I = 1

t2

[

4H 2
u − 2n

n − 1
(Ku − 1)

]

(t2Iu + I
Rn−2)

=
[

4H 2
u − 2n

n − 1
(Ku − 1)

]

(Iu + IHn−2) ,

(3.11)

where Hu,Ku are the mean curvature and Gauss curvature of u, respectively, IHn−2 is the
standard hyperbolic of Rn−2+ = R+ × R

n−3.

EXAMPLE 3.10. Let R3+ = {(x1, x2, x3) ∈ R
3|x3 > 0} be the upper half-space en-

dowed with the standard hyperbolic metric

ds2 = 1

x2
3

[dx2
1 + dx2

2 + dx2
3 ] .
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Let u = (x1, x2, x3) : M2 → R
3+ be an immersed surface. We define rotational hypersurface

over u in R
n+1 as

f : M2 × S
n−2 → R

n+1 , f (x1, x2, x3, φ) = (x1, x2, x3φ) ,

where φ : Sn−2 → R
n−1 is the standard sphere.

Let R4
1 be the Lorentz space with inner product

〈y, y〉 = −y2
1 + y2

2 + y2
3 + y2

4 , y = (y1, y2, y3, y4) .

Let H3 = {y ∈ R
4
1|〈y, y〉 = −1, y1 > 0} be the hyperbolic space. Introduce isometry

τ : R3+ → H
3 as below:

τ (x1, x2, x3) =
(

1 + x2
1 + x2

2 + x2
3

2x3
,

1 − x2
1 − x2

2 − x2
3

2x3
,
x1

x3
,
x2

x3

)

.

The inverse τ−1 : H3 → R
3+ is τ−1(y1, y2, y3, y4) = (

y3
y1+y2

,
y4

y1+y2
, 1

y1+y2
).

Let η be the unit normal vector of the surface u in R
3+. Write η = (η1, η2, η3). Then the

unit normal vector of the hypersurface f in R
n+1 is

ξ = 1

x3
(η1, η2, η3φ) .

The first fundamental form and the second fundamental form of u is, respectively,

Iu = 1

x2
3

(dx1 · dx1 + dx2 · dx2 + dx3 · dx3) ,

IIu = −〈τ∗(du), τ∗(dη)〉 = 1

x2
3

(dx1 · dη1 + dx2 · dη2 + dx3 · dη3) − η3

x3
Iu .

Now we can write out the first and the second fundamental forms of f :

I = dx · dx = x2
3(Iu + I

Sn−2) , II = x3IIu − η3Iu − η3ISn−2 ,

where ISn−2 is the standard metric of S
n−2. Let k1, k2 be principal curvatures of u. Then

principal curvatures of the hypersurface f are

k1

x3
− η3

x2
3

,
k2

x3
− η3

x2
3

,
−η3

x2
3

, . . . ,
−η3

x2
3

.

Thus

ρ2 = n

n − 1
(|II |2 − nH 2) = 1

x2
3

[

4H 2
u − 2n

n − 1
(Ku + 1)

]

,

where Hu,Ku are the mean curvature and Gauss curvature of u, respectively. So the Möbius
metric of the hypersurface f is

g = ρ2I =
[

4H 2
u − 2n

n − 1
(Ku + 1)

]

(Iu + ISn−2) .(3.12)

From Examples 3.8, 3.9, or 3.10, we have

f : M2 × Nn−2(ε) → R
n+1 ,
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when f is a cylinder over a surface u(M2) ⊂ R
3, ε = 0 and Nn−2(ε) = R

n−2; a cone
over a surface u(M2) ⊂ S

3, ε = −1 and Nn−2(ε) = R+ × R
n−3 = H

n−2; and a rotation
hypersurface over a surface u(M2) ⊂ R

3+, ε = 1 and Nn−2(ε) = S
n−2.

Let the induced metric, Gauss curvature, and mean curvature of the surface u, be denoted
by Iu, Ku, and Hu, respectively. From (3.10), (3.11) and (3.12), the Möbius metric of the
hypersurface f is

(3.13) g =
[

4H 2
u − 2n

n − 1
(Ku + ε)

]

(Iu + INn−2(ε)) := φ2(Iu + INn−2(ε)) ,

where INn−2(ε) is the Riemannian metric of an (n − 2)-dimensional space form of constant
curvature ε.

PROPOSITION 3.11. Let f : Mn → R
n+1(n ≥ 4) be a cylinder, or a cone, or a ro-

tation hypersurface over an umbilic-free surface u : M2 → N3(−ε), which was constructed
as Examples 3.8, 3.9, or 3.10. If the hypersurface f is of constant Möbius Ricci curvature λ,
then u is a (λ, n, ε)-surface in N3(−ε).

PROOF. Now we take the local orthonormal basis {e1, e2} on T M2 with respect to Iu,
consisting of principal vectors. Let {e3, . . . , en} be a local orthonormal basis on T Nn−2(ε),
then {e1, e2, e3, . . . , en} is a orthonormal basis on T (M2 × Nn−2(ε)) with respect to the
product metric Iu + INn−2(ε).

Let R̃ijkl denote the curvature tensor for Iu + INn−2(ε), and Rijkl the curvature tensor for

the Möbius metric g . Setting μ = 1
φ

= 1√
4H 2

u − 2n
n−1 (Ku+ε)

, then by direct computation (also

see [13]), we have

Rijij = μ2R̃ij ij + μμii + μμjj − |∇μ|2 , i �= j ,

Rijik = μ2R̃ij ik + μμjk , when {i, j, k} are distinct ,
(3.14)

where μij and ∇μ are the Hessian matrix and the gradient of μ with respect to the metric
Iu + INn−2(ε).

Next we assume that f is of constant Möbius Ricci curvature λ. Note the metric Iu +
INn−2(ε) is a Riemannian product metric, from (3.14), we have

λ = μ2(n − 3)ε + μ	μ − (n − 1)|∇μ|2 ,

λ = μ2Ku + μ	μ + (n − 2)μμ11 − (n − 1)|∇μ|2 ,

λ = μ2Ku + μ	μ + (n − 2)μμ22 − (n − 1)|∇μ|2 .

(3.15)

Note that 	μ = μ11 + μ22, from (3.15) we get

	μ = 2μ

n − 2
[(n − 3)ε − Ku] = 2μ11 = 2μ22 ,

|∇μ|2 = μ2
1 + μ2

2 = μ2[n(n − 3)ε − 2Ku]
(n − 1)(n − 2)

− λ

n − 1
.

(3.16)

From (3.14), we also have μ12 = 0. �
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4. Proof of Theorem 1.4. Let f : Mn → R
n+1(n ≥ 4) be an immersed hyper-

surface without umbilical points, which is of constant Möbius Ricci curvature. Since three
dimensional Einstein manifolds are of constant sectional curvature, in this section we assume
n ≥ 4. Because of the local nature of our results, we can assume that the multiplicities of all
principal curvatures are locally constant. In fact there always exists an open dense subset U

of Mn on which the multiplicities of the principal curvatures are locally constant (see [10]).
We assume that the hypersurface has (s + t) distinct principal curvatures. Since the mul-

tiplicities of all principal curvatures are locally constant, we can choose a local orthonormal
basis {E1, . . . , En}, such that

(4.17) (Bij ) = diag{b1, b2, . . . , bs, bs+1, . . . , bs+1, . . . , bs+t , . . . , bs+t } .

Here the Möbius principal curvatures b1, . . . , bs are simple, the multiplicities of the Möbius
principal curvatures bs+1, . . . , bs+t are great than one. From (2.5), we have

Rij = λδij = −
∑

k

BikBkj + tr(A)δij + (n − 2)Aij ,

(Aij ) = diag{a1, . . . , an} , ai = 1

n − 2
(λ + b2

i − tr(A)) , 1 ≤ i ≤ n .

(4.18)

Since f is of constant Möbius Ricci curvature, λ and tr(A) are constant.
By covariant derivative for the first equation of (4.18), we get that

(4.19) Aij,k = 1

n − 2

(∑

m

Bim,kBmj +
∑

m

BimBmj,k

)

.

Using (4.17) and (4.19), we have

(4.20) (bi + bj )Bij,k = (n − 2)Aij,k .

LEMMA 4.1. Under the basis {E1, . . . , En}, set [i] = {m|bm = bi}. The Möbius
invariants of f have the following relations:

Ci = 0 ; Bij,k = 0 , i, j > s , i �= j ; 1 ≤ k ≤ n ,

Bij,k = 0 , i �= j , j �= k , k �= i ,

Bjj,i = bi + (n − 1)bj

bi − bj

Ci , Bij,j = nbj

bi − bj

Ci , [i] �= [j ] ,

ωij = Bij,i

bi − bj

ωi + Bij,j

bi − bj

ωj = nbjCi

(bi − bj )2 ωj − nbiCj

(bi − bj )2 ωi , [i] �= [j ] .

(4.21)

PROOF. Using dBij +∑
k Bkj ωki +∑

k Bikωkj = ∑
k Bij,kωk , setting [i] = [j ], i �= j ,

so bi = bj , we get

Bij,k = 0 , [i] = [j ] , i �= j , 1 ≤ k ≤ n .(4.22)

Particularly, Bij,j = 0. Using (2.1) and (2.3)

Aij,j − Ajj,i = bjCi , Bij,j − Bjj,i = −Ci ,
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and (4.20), we obtain
n

n − 2
bjCi = 0 .

If bj �= 0, then Ci = 0. If for all bj = 0, j > s then Ei(bj ) = Bjj,i = 0, and Ci = 0. Thus

Ci = 0 , i > s .

When i �= j, j �= k, i �= k, then Bij,k = Bik,j , Aij,k = Aik,j . Moreover if bi �= bj or bi �=
bk , using (4.20) we get

Bij,k = Aij,k = 0 , i �= j , j �= k , i �= k .(4.23)

Combining (4.22) and (4.23), we obtain

Bij,k = 0 , i, j > s , i �= j ; 1 ≤ k ≤ n .

If [i] �= [j ], using (2.1), (2.3) and (4.20), we obtain that

Aij,j − Ajj,i = bjCi = bi + bj

n − 2
Bij,j − 2bj

n − 2
Bjj,i = bi + bj

n − 2
Bij,j − 2bj

n − 2
(Bij,j + Ci) ,

and

Bjj,i = bi + (n − 1)bj

bi − bj

Ci , Bij,j = nbj

bi − bj

Ci .

Using dBij + ∑
k Bkjωki + ∑

k Bikωkj = ∑
k Bij,kωk , we have

(bi − bj )ωij =
∑

k

Bij,kωk .

Since bi �= bj , we have

ωij = Bij,i

bi − bj

ωi + Bij,j

bi − bj

ωj = nbjCi

(bi − bj )2 ωj − nbiCj

(bi − bj )2 ωi .

We complete the proof of Lemma 4.1. �

PROPOSITION 4.2. Let f : Mn → R
n+1 be an umbilic free hypersurface with con-

stant Möbius Ricci curvature. If the Möbius form C = 0, then locally f is Möbius equivalent
to one of the following examples:

(1) cylinder f : S1 × R
n−1 → R

n+1;

(2) the image of σ−1 of the torus Sk(

√
k−1
n−2 )×S

n−k(

√
n−k−1
n−2 ) ⊂ S

n+1, 1 < k < n−1.
Particularly, f has only two distinct principal curvatures.

PROOF. Since C = 0, i.e., Ci = 0, from Lemma 4.1, we know that Bjj,i = 0, i �= j .
Since tr(B) = 0, we have

∑
m Bmm,i = 0 and Bii,i = 0. Thus Bij,k = 0(1 ≤ i, j, k ≤ n)

is constant. So the Möbius second fundamental form of f is parallel. From reference [4] and
Proposition 3.2, Proposition 3.3, Proposition 3.5 and Proposition 3.7, we finish the proof. �

THEOREM 4.3. Let f : Mn → R
n+1 (n ≥ 4) be an immersed hypersurface without

umbilical points. If f is of constant Möbius Ricci curvature, then f has three distinct principal
curvatures at most.
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PROOF. We assume that s + t ≥ 4. Next we prove that there exists a contradiction.
Now we fix the indices i, j, k such that [i] �= [j ], [j ] �= [k], [k] �= [i], then

Bij,k = 0 , i ∈ [i] , j ∈ [j ] , k ∈ [k] .

Noting Ek(bi) = Bii,k , and Using definition of Ci,j and Lemma 4.1, we can obtain

Bij,jk = Ek(Bij,j ) + Bkj,j ωki(Ek)

= n
bk + (n − 1)bj

(bi − bj )(bk − bj )
CiCk + nbj

bi − bj

Ci,k .

Similarly we have

Bij,kj = n2bj

(bi − bj )(bk − bj )
CiCk .

From Ricci identity Bij,jk − Bij,kj = (bi − bj )Rjijk = 0 we get

CiCk + bjCi,k = 0 .(4.24)

Since s + t ≥ 4, there is [l] such that [l] �= [i], [j ], [k]. Similarly we have CiCk +blCi,k = 0,
from (4.24) we get

(bj − bl)Ci,k = 0 , CiCk = 0 .

This implies that there are at least n − 1 zero elements in {C1, . . . , Cn}, and we assume that

C2 = · · · = Cn = 0 .

If the multiplicity of b1 is greater than one, then from Lemma 4.1 we have

C1 = 0 , Bij,k = 0 , 1 ≤ i, j, k ≤ n ,(4.25)

thus B is parallel. From ([4]) we know that Mn has at most three distinct Möbius principal
curvature. This is a contradiction.

Now we assume that the multiplicity of b1 is one. Since s + t ≥ 4, we take i, j, k > 1.
Noting [i] �= [j ], [j ] �= [k], [k] �= [i], so we have

Ci = Cj = Ck = 0 , ωij = 0 , ωik = 0 , ωjk = 0 ,

ω1i = nbiC1

(b1 − bi)2 ωi , ω1j = nbjC1

(b1 − bj )2 ωj , ω1k = nbkC1

(b1 − bk)2 ωk .

Using dωij − ∑
l ωil ∧ ωlj = − 1

2

∑
kl Rijklωk ∧ ωl, we get

Rijij = bibj + ai + aj = −n2bibj

(b1 − bi)2(b1 − bj )2 C2
1 ,

Rikik = bibk + ai + ak = −n2bibk

(b1 − bi)2(b1 − bk)2 C2
1 ,

(4.26)

where i ∈ [i], j ∈ [j ], k ∈ [k].
The first formula of (4.26) minus the second formula of (4.26) we get

bi(bj − bk) + (aj − ak) = n2biC
2
1 (bj − bk)(bjbk − b2

1)

(b1 − bi)2(b1 − bk)2(b1 − bj )2 .(4.27)
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From (4.18), we have aj − ak = b2
j −b2

k

n−2 . Combining (4.27) we get

(n − 2)bi + bj + bk

n − 2
= n2biC

2
1 (bjbk − b2

1)

(b1 − bi)2(b1 − bk)2(b1 − bj )2 .(4.28)

Similarly

(n − 2)bj + bi + bk

n − 2
= n2bjC

2
1 (bibk − b2

1)

(b1 − bj )2(b1 − bk)2(b1 − bi)2 .(4.29)

Using (4.28)–(4.30), we have

n2C2
1b2

1

(b1 − bj )2(b1 − bk)2(b1 − bi)2
= −n − 3

n − 2
,

which is equivalent to

n2C2
1b2

1

(b1 − bj )2(b1 − bk)2(b1 − bi)2 + n − 3

n − 2
= 0 .(4.30)

Clearly the equation (4.30) does not hold, which is a contradiction. Thus we complete the
proof of Theorem 4.3. �

THEOREM 4.4. Let f : Mn → R
n+1(n ≥ 4) be an immersed hypersurface with three

distinct principal curvatures. If f has constant Möbius Ricci curvature λ, then locally f is
Möbius equivalent to one of the following examples:

(1) a cylinder over a (λ, n, 0)-surface in a Euclidean 3-plane R3;
(2) a cone over a (λ, n, 1)-surface in a 3-sphere S3;
(3) a rotation hypersurface over a (λ, n,−1)-surface in a hyperbolic 3-plane R3+.

Since the proof is long, we will give the proof at the end of this paper.
Next we consider that f has only two distinct principle curvatures. Let b1, b2 denote the

two Möbius principal curvatures with multiplicity k and n − k, respectively. Using (2.6) we
get

b1 = − 1

n

√
(n − 1)(n − k)

k
, b2 = 1

n

√
(n − 1)k

(n − k)k
.(4.31)

When the multiplicity k and n − k are greater than 1. We take a local orthonormal
{E1, . . . , En} such that

(Bij ) = diag{b1, . . . , b1︸ ︷︷ ︸
k

, b2, . . . , b2︸ ︷︷ ︸
n−k

} .

Using
∑

m Bij,mωm = dBij + ∑
m Bimωmj + ∑

m Bmjωmi and b1, b2 are constant, we get

Bij,m = 0 , 1 ≤ i , j ≤ k , 1 ≤ m ≤ n;
Bij,m = 0 , k + 1 ≤ i , j ≤ n , 1 ≤ m ≤ n .

(4.32)

When 1 ≤ i, j ≤ k, i �= j , using (2.3) we have

Cj = Bii,j − Bij,i = 0 .
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Similarly when k + 1 ≤ i ≤ n we can get Ci = 0. Thus C = 0. From Proposition 4.2, we
know that f is Möbius equivalent to the image of σ−1 of the torus

S
k

(√
k − 1

n − 2

)

× S
n−k

(√
n − k − 1

n − 2

)

⊂ S
n+1 , 1 < k < n − 1 .

When k = 1. It is a well-known fact that an n-dimensional hypersurface in space form
is conformally flat if and only if it has a principle curvature of multiplicity at least n − 1
everywhere. Thus f is conformally flat, Since f is of constant Möbius Ricci curvature, so f

is of constant Möbius sectional curvature.
Sum together we complete the proof of our main Theorem 1.4.

5. Appendix: Details of proof to Theorem 4.4. In the section, we prove Theorem
4.4. We assume that f has three distinct principal curvatures. From Lemma 4.1, Proposition
4.2 and n ≥ 4, we need to consider the following two cases:

Case1 {b1, . . . , bn} = {b1, μ, . . . , μ, ν, . . . , ν}, Case2 {b1, . . . , bn} = {b1, b2, ν, . . . , ν}.
In the following two propositions, we show that Case 1 can not appear, and Case 2 is

Möbius equivalent to a cone, a cylinder, or rotational hypersurface over a (λ, n, ε)-surface.

PROPOSITION 5.1. Let f : Mn → R
n+1(n ≥ 4) be an umbilic free hypersurface. If

f has three distinct principal curvatures and one of the principal curvatures is simple, i.e.,

{b1, . . . , bn} = {b1, μ, . . . , μ
︸ ︷︷ ︸

s

, ν, . . . , ν
︸ ︷︷ ︸

t

} , 1 + s + t = n , s, t ≥ 2 .

Then the Möbius Ricci curvature of f can not be constant.

PROOF. We assume that f is of constant Möbius Ricci curvature. From Lemma 4.1,
setting i ∈ {m|bm = μ}, j ∈ {m|bm = ν}, we have

C2 = · · · = Cn = 0 ,

B1i,i = nμ

b1 − μ
C1 , B1j,j = nν

b1 − ν
C1 ,

ω1i = B1i,i

b1 − μ
ωi , ω1j = B1j,j

b1 − ν
ωj , ωij = 0 .

(5.33)

Since Bjj,1 = B1j,j + C1, from (5.33), we obtain

Bii,1 = b1 + (n − 1)μ

b1 − μ
C1 , Bjj,1 = b1 + (n − 1)ν

b1 − ν
C1 .(5.34)

Since tr(B) = 0, �E1 tr(B) = tr(�E1B) = 0, i.e.,
∑

m Bmm,1 = 0. Combining b1 + sμ+ tν =
0 and b2

1 + sμ2 + tν2 = n−1
n

, we obtain

B11,1 = −sBii,1 − tBjj,1 = nb2
1 − n−1

n

(b1 − μ)(b1 − ν)
C1 .(5.35)
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Using dωij − ∑
l ωil ∧ ωlj = − 1

2

∑
kl Rijklωk ∧ ωl, we obtain

Rijij = −n2μν

(b1 − μ)2(b1 − ν)2 C2
1 .(5.36)

Using the definition of Bij,kl and Lemma 4.1, we obtain

B1i,i1 = b1Bii,1 − μB11,1

(b1 − μ)2
nC1 + nμ

b1 − μ
C1,1 , B1i,1i = (B11,1 − Bii,1 − B1i,i )

nμC1

(b1 − μ)2
,

B1j,j1 = b1Bjj,1 − νB11,1

(b1 − ν)2 nC1 + nν

b1 − ν
C1,1 , B1j,1j = (B11,1 − Bjj,1 − B1j,j )

nνC1

(b1 − ν)2 .

Using Ricci identity B1i,i1 − B1i,1i = (μ − b1)R1i1i and Lemma 4.1, we get

(b1 − μ)2R1i1i = nC1

b1 − μ
[2μB11,1 − (b1 + μ)Bii,1 − μB1i,i ] − nμC1,1 ,

(b1 − ν)2R1j1j = nC1

b1 − ν
[2νB11,1 − (b1 + ν)Bjj,1 − νB1j,j ] − nνC1,1 .

(5.37)

From (5.37), (5.33) and (5.35), we can get

(b1 − μ)2νR1i1i − (b1 − ν)2μR1j1j = n(μ − ν)C2
1

(b1 − μ)2(b1 − ν)2 χ ,

χ � b2
1[μ2 + ν2 + b2

1 − 2b1(μ + ν) − 4(n − 1)μν] + (3n − 2)b1μν(μ + ν)

+ (2n2 − 2n + 1)μ2ν2 .

Combining (5.36), we have

(b1 − μ)2νR1i1i − (b1 − ν)2μR1j1j + μ − ν

nμν
χRijij = 0 .(5.38)

Using (2.4), (5.38) and b1 + sμ + tν = 0, b2
1 + sμ2 + tν2 = n−1

n
, we know that b1, μ, and ν

are constant.
Therefore b1, μ, ν are constant, then from Lemma 4.1 we get C1 = 0. Therefore C = 0.

Using Proposition 4.2, we know that f has only two distinct principal curvatures, which is a
contradiction. we finish the proof. �

PROPOSITION 5.2. Let f : Mn → R
n+1(n ≥ 4) be an immersed hypersurface. As-

sume we can diagonize the Möbius second fundamental form under an orthonormal frame
{E1, . . . , En} with respect to the Möbius metric g such that

(Bij ) = diag{b1, b2, μ, . . . , μ} , b1 �= b2, b1 �= μ , b2 �= μ .

If Bpq,α = 0, Cα = 0, 1 ≤ p, q ≤ 2, 3 ≤ α ≤ n.

Then f is Möbius equivalent to a cone, a cylinder, or rotational hypersurface over a surface
in sphere S

3, Euclidean space R
3, and hyperbolic space R

3+ constructed by the examples
(3.8), (3.9) and (3.10).
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PROOF. Let {Y,N, Y1, . . . , Yn, ξ} be a moving frame in R
n+3
1 (see Section 2). In the

proof below we adopt the convention on the range of indices as below:

1 ≤ p, q ≤ 2 , 3 ≤ α, β, γ ≤ n , 1 ≤ i, j, k, l ≤ n .

Without loss of generality we make a new choice of frame vectors such that

(5.39) Aαβ = aαδαβ .

Applying dBij + ∑
k Bkjωki + ∑

k Bikωkj = ∑
k Bij,kωk for off-diagonal element Bαβ (α �=

β) and using the fact Bαα = Bββ = μ,Bαβ = 0 we get

(5.40) Bαβ,k = 0 = Bkα,β , ∀ α �= β , 1 ≤ k ≤ n .

The second equality is by the integrability equation. Since n − 2 ≥ 2, we can always choose
indices α �= β. Then by integrability equation and the assumption Cβ = 0 one has

(5.41) Eβ(μ) = Bαα,β = Bαβ,α + δααCβ − δαβCα = Cβ = 0 , ∀β .

Here Bαβ,α = 0 due to (5.40). Similarly we have Bpα,q = Bpq,α + δpαCq − δpqCα = Bpq,α

and Bpα,α = Bαα,p − Cp = Ep(μ) − Cp. Together with the assumption Bpq,α = 0 we
summarize that

(5.42) Bpq,α = Bpα,q = 0 , Bpα,α = Ep(μ) − Cp , ∀ p, q, α .

Now with the help of (5.40) and (5.42) we compute the covariant derivatives of off-diagonal
components Bpα and find

(5.43) ωpα = Bpα,α

bp − μ
ωα , ∀ p, α .

Differentiating once more we obtain the curvature tensor. Compare the coefficient of the
component ωp ∧ ωq for any given p �= q . We find that

Rpαpq = 0 .

From the integrability equation (2.4) we get

(5.44) Aqα = 0 , 1 ≤ q ≤ 2 , 3 ≤ α ≤ n .

Similarly by comparing the component ωp ∧ ωα we observe that Rpαpα is independent of α

(here we use (5.42)). Equation (2.4) yields Rpαpα = bpμ + App + Aαα and

(5.45) Aαα = a , ∀ α .

Next we compute the covariant derivatives of tensor A and C. By the condition Cα = 0
and the integrability equation (2.1) Aij,k − Aik,j = BikCj − Bij Ck ,

(5.46) Eα(a) = Eα(Aββ) = Aββ,α = Aαβ,β = 0 , ∀ α �= β .

As a consequence of (5.43) and dCi + ∑
k Ckωki = ∑

k Ci,kωk we get that

(5.47) Eα(Cp) = Cp,α = Cα,p = 0 , ∀ p, α .
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Let’s look at the geometric meaning of these results. From the formula in (5.43) we know
that distributions

D1 � Span{E1, E2} , D2 � Span{Eα|3 ≤ α ≤ n}
are integrable. Any integral submanifold of distribution D1 is an m-dimensional submanifold.
On the other hand, along any integral submanifold of D2 the hypersurface Y is tangent to

(5.48) F � μY + ξ ,

the principal curvature sphere of multiplicity n− 2. Using (5.41), Ep(μ) = Bαα,p = Bpα,α +
Cp and the structure equation it is easy to get that

(5.49) Eα(F) = 0 , Ep(F ) = Bpα,αY + (μ − bp)Yp .

Then principal curvature sphere F induces a 2-dimensional submanifold in the de-Sitter space
Sn+2

1
F : M̃2 = Mn/L → S

n+2
1 ,

where fibers L are integral submanifolds of distribution D2. In other words, F form a 2-
parameter family of n-spheres enveloped by the hypersurface Y .

The next crucial observation is that F is located in a fixed 4-dimensional linear subspace
of Rn+3

1 . To show that we compute the repeated derivatives of F , which contains all infor-
mation of the envelope Y . Straightforward yet tedious computation shows that the frames
of

(5.50) V1 � Span{F,E1(F ),E2(F ), P }

where P � AααY − N +
2∑

p=1

Bpα,α

(μ − bp)2 Ep(F) + μF

satisfy a linear first order PDE system. Hence these vectors, including F itself, are contained
in a fixed 4-dimensional subspace V1 endowed with degenerate, Lorentzian, or positive defi-
nite inner product. This agrees with the geometry of cylinders, cones, and rotational hypersur-
faces (see Examples 3.4, 3.5, 3.6), where the principal curvature sphere F is orthogonal to an
(n−1)-parameter family of hyperplanes/hyperspheres. Moreover, the orthogonal complement
V ⊥

1 of dim = n − 1 contains all Yα, 3 ≤ α ≤ n.
The final fact above inspires us to proceed in an alternative and easier way. Differentiate

any given Yα and modulo components in the subspace Span{Yγ , 3 ≤ γ ≤ n}. By (5.39),
(5.44), (5.43) one finds

Ei(Yα) = −AαiY − δαiN +
∑

j ωαj (Ei)Yj + Bαiξ

=
{−T (mod Yγ , when i = α ;

0 (mod Yγ ) , otherwise ,
(5.51)

where

(5.52) T � AααY + N +
2∑

p=1

Bpα,α

bp − μ
Yp − μξ
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is independent of α by (5.42), (5.45). Then we assert that the subspace

(5.53) V2 � Span{T , Yγ |3 ≤ γ ≤ n}
is parallel along M . According to our previous computation, Ei(Yα) = 0 (mod V2), ∀α . So
we need only to consider Ei(T ). Fix i and choose α �= i. (Such α exists by the assumption
n − 2 ≥ 2, which is the third and final time that we use it. Recall that this condition has been
used to derive (5.41), (5.46), i.e., Eα(μ) = 0 = Eα(a).) Rewrite the first equality of (5.51) as

(5.54) T = −Eα(Yα) +
∑

γ (· · · )Yγ .

By this clever choice of index α we may prove in a unified way that

Ei(T ) = −Ei(Eα(Yα)) +
∑

γ (· · · )Ei(Yγ ) (mod Yγ )

= −Eα(Ei(Yα)) + [Eα,Ei ](Yα) +
∑

γ (· · · )Ei(Yγ ) (mod Yγ )

= −Eα

(∑
β(· · · )Yβ)

)
+ [Eα,Ei ](Yα) +

∑
γ (· · · )Ei(Yγ ) (mod Yγ )

= 0 (mod V2) .

This verifies our previous assertion. More precisely, we have

(5.55) Ep(T ) = Bpα,α

bp − μ
T , Eα(T ) = QYα , ∀ p, α

where

Q � 〈T , T 〉 = 2Aαα + μ2 +
2∑

p=1

B2
pα,α

(bp − μ)2

satisfies

(5.56) Ep(Q) = 2Bpα,α

bp − μ
Q, Eα(Q) = 0 .

One could verify (5.55) directly. But the easy way is using 〈T , Yα〉 = 0 and (5.51) to get

(5.57) 〈Ei(T ), Yα〉 = −〈T ,Ei(Yα)〉 =
{

Q , when i = α ;
0 , otherwise .

This implies Ep(T ) ‖ T for any 1 ≤ p ≤ 2. Then Ep(T ) as in (5.55) is derived by differ-
entiating (5.52) and comparing the ξ component with T . The formula for Ep(Q) in (5.56)
follows directly. On the other hand, we know

〈Eα(T ), T 〉 = 1

2
Eα(Q) = 0 ,

where we used (5.42) and its consequence [Ep,Eα] ∈ D2 together with (5.41), (5.46), (5.47).
Combined with (5.57) we have Eα(T ) = QYα .

Regarding (5.56) as a linear first-order ODE for Q we see that Q ≡ 0 or Q �= 0 on the
connected manifold Mn. Thus there are three possibilities for the induced metric on the fixed
subspace V2 ⊂ R

n+3
1 .

CASE 1. Q = 0 on Mn; V2 is endowed with a degenerate inner product.
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In this case, 〈T , T 〉 = 0. By (5.55), Ep(T ) ‖ T , so T determines a fixed light-like
direction in R

n+3
1 , which we may take to be

[T ] = [1,−1, 0, . . . , 0] ∈ R
n+3
1 .

This corresponds to ∞, the point at infinity ofRn+1. Choose space-like vectors X3, . . . , Xn so
that V2 = Span{T ,X3, . . . , Xn}. We interpret the geometry of hypersurface f : Mn → R

n+1

as below:
1) Any Xα determines a hyperplane in R

n+1 because 〈T ,Xα〉 = 0;
2) Span{Xα, (3 ≤ α ≤ n)} corresponds to an (n − 2)-dimensional plane Σ in R

n+1.
3) F is a 2-parameter family of hyperplanes orthogonal to the fixed plane Σ .
f (M), as the envelope of this family of hyperplanes F , is clearly a cylinder over a

hypersurface M̃ ⊂ R
3.

CASE 2. Q < 0 on Mn; V2 is a Lorentz subspace in R
n+3
1 .

Fix a basis {P0, P∞,X4, . . . , Xn} of the (n − 1)-dimensional V2 so that P0, P∞ are
light-like. Without loss of generality we may assume

P0 = (1, 1, 0, . . . , 0) , P∞ = (1,−1, 0, . . . , 0) .

Using the stereographic projection σ they correspond to the origin O and the point at infinity
∞ of the flat Rn+1, respectively. We interpret F and V2 in terms of the geometry of Rn+1:

1) Span{Xα|4 ≤ α ≤ n} corresponds to a coordinate plane Rn−3 ⊂ R
n+1, because Xα

must be space-like and orthogonal to P0, P∞.
2) F is an m-parameter family of hyperplanes (passing O and ∞) and orthogonal to

this fixed R
n−3.

Based on the fact 1), f (M), the envelope of F , is a cylinder over a 3-dimensional hyper-
surface in R

4 (the orthogonal complement of the previous Rn−3); moreover, the fact 2) means
that f (M) is a cone (with vertex O) over a 2-dimensional hypersurface in S3.

CASE 3. Q > 0 on Mn; V2 is a space-like subspace.
Without loss of generality we assume that P∞ = (1,−1, 0, . . . , 0) is contained in the

orthogonal complement of V2. As before we make the following interpretation:
1) V2 corresponds to a 2-dimensional plane R2 ⊂ R

n+1.
2) F is an (n− 2)-parameter family of hyper-spheres orthogonal to this fixed plane R2

with centers locating on it. Thus F envelops a rotational hypersurface f (M) (over
a hypersurface in half-space R3+).

Sum together we complete the proof to the proposition. �

THE PROOF OF THEOREM 4.4. Since the Case 1 can not appear. In Case 2, from Lemma
4.1, we have Bpq,α = 0, Cα = 0(1), 1 ≤ p, q ≤ 2, 3 ≤ α ≤ n. From Proposition 3.11 and
Proposition 5.2, we finish the proof of Theorem 4.4.
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