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Abstract: Duplex stainless steels present excellent mechanical and corrosion resistance properties.

However, when heat treated at temperatures above 600 ◦C, the undesirable tertiary sigma phase

is formed. This phase presents high hardness, around 900 HV, and it is rich in chromium, the

material toughness being compromised when the amount of this phase is not less than 4%. This

work aimed to develop a solution for the detection of this phase in duplex stainless steels through

the computational classification of induced magnetic field signals. The proposed solution is based on

an Optimum Path Forest classifier, which was revealed to be more robust and effective than Bayes,

Artificial Neural Network and Support Vector Machine based classifiers. The induced magnetic

field was produced by the interaction between an applied external field and the microstructure.

Samples of the 2205 duplex stainless steel were thermal aged in order to obtain different amounts of

sigma phases (up to 18% in content). The obtained classification results were compared against the

ones obtained by Charpy impact energy test, amount of sigma phase, and analysis of the fracture

surface by scanning electron microscopy and X-ray diffraction. The proposed solution achieved a

classification accuracy superior to 95% and was revealed to be robust to signal noise, being therefore

a valid testing tool to be used in this domain.

Keywords: microstructural characterization; signal classification; Optimum Path Forest; Bayes;

Artificial Neural Network; Support Vector Machine

1. Introduction

Duplex stainless steels (DSS) present excellent mechanical and corrosion resistance properties

when the steel microstructures are only composed by austenite (γ) and ferrite (α) in approximately

equal amounts [1,2]. These materials have been widely used in marine and petrochemical industries,

desalination services and paper mills, just to cite a few examples [3–5]. However, undesirable

tertiary phases such as sigma (σ) and Chi (χ) may precipitate in these steels during hot forming
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or welding operations [6–8]. Sigma phase appears after holding times under temperatures between

600 and 950 ºC and after cooling from high temperatures, which typically occurs, for example, in

the heat-affected zone during welding operations. Good toughness properties can be achieved by

applying proper annealing temperatures and cooling rates, which generally leads to satisfactory

toughness properties in DSS [9,10].

Sigma phase presents high hardness, with values around 900 HV, and is rich in

chromium [11–14]. Therefore, an amount of 4% of this phase compromises the material

toughness [4,7,15]. However, a low content of the sigma phase promotes considerable decreasing of

toughness without notable influence on the hardness. For instance, the precipitation of 1.3% of sigma

phase decreases the impact toughness around 7% from the solute treated condition relative to the

aged one at 800 ◦C for 10 min [4,7,16].

Austenite and ferrite phases form duplex stainless steels, but when heat treated, only ferrite

phase suffers decomposition. Ferrite phase is ferromagnetic, while austenite and sigma phases

are paramagnetic. Two phases are responsible for the embrittlement of a duplex stainless steel,

sigma phase and alpha-line phase, known as σ’, which is a ferrite phase rich in chromium. Sigma

phase is formed above 550 ◦C, and alpha-line phase below this temperature. Therefore, the ferrite

decomposition leads to changes in the magnetic properties of the material and so magnetic-based

inspection methods seem to be adequate for testing these steels [7,17–21]. Moreover, it is also

known that the magnetic properties like coercivity and remanence are affected by microstructural

modifications, and that the remanence measurement of the magnetic hysteresis loop is able to follow

the formation of sigma phase even when presented in a low volume fraction [17,18].

The presence of paramagnetic phases in heat treated duplex stainless steels changes the material

magnetic permeability and therefore also the magnetic susceptibility. Hence, magnetic susceptibility

based tests have been applied to DSS samples with different amounts of these phases, and decreased

susceptibility has been found when the thermal aging times are high due to the formation of sigma

phase. These tests have been used not only to detect sigma phase, but also to identify alpha-line

phase being the same trend observed [19,20]. Additionally, the magnetic permeability assessed

based on the interaction between a direct current (DC) magnetic field and the microstructure was

used in [22] to follow the ferrite decomposition into alpha-line phase in a duplex stainless steel. The

authors showed that, although alpha-line phase had nanostructure, the presence of this phase could

be successfully detected.

Electromagnetic techniques [23], such as the Eddy Current Technique (ECT) and the Saturated

Low-Frequency Eddy Current (SLOFEC) technique, have been used to characterize DSS samples.

The SLOFEC technique uses an external DC magnetic field that reaches the magnetic saturation of

the material sample under study. Both techniques have been able to evaluate sigma phase presence

and estimate ferrite content. The advantages of using ECT in materials characterization have been

studied by several authors [24–26]. However, neither the potentiality of this technique to characterize

low amounts of sigma phase in duplex stainless steels or the correlation of the electromagnetic results

with the ferrite content have been addressed. In addition, few material samples have been tested,

which leaves some uncertainty about the reliability of the findings.

Another traditional method that has been adopted to characterize microstructures is an

ultrasound [27–31], which has been particularly used to detect sigma phase [21–27]. Normando et al.,

in [6,7], analyzed the capability of the sound velocity to follow-up σ-phase formation at temperatures

of 800 and 900 ◦C for times up to 2 h. The sound velocity is influenced by the density and the elastic

moduli of the material [32], and so the variations observed in the sound velocity indicated changes in

terms of the material properties due to sigma phase formed from ferrite phase. Their measurements

were revealed to be more accurate for aging times above 30 min [6,7]. Silva et al. [28,29] also applied

an ultrasound in microstructure characterization. They studied ferrite decomposition at temperatures

of 425 and 475 ◦C and found that the changes of the sound speed are directly proportional to the

variation of the material’s hardness, which indicates sensitivity to transformation phases. Thus,
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the sound speed is an important nondestructive parameter for following-up the hardening kinetics

of DSS.

The use of techniques of digital signal processing and machine learning has been quite common

in engineering to tackle numerous and diverse applications [33–37]. In line with such applications,

this work aimed to develop a solution for the automated detection of sigma phase in duplex stainless

steels based on the processing and classification of signals from induced magnetic fields. With this

goal, Optimum Path Forest (OPF), Bayes, Artificial Neural Network and Support Vector Machine

based classifiers were studied and compared.

The proposed solution uses induced magnetic field signals, which are produced by DC by the

interaction between an applied external field and the microstructure, and are classified by OPF

classifier. The experiments conducted, which are described in the next section, confirmed that

the developed solution is promising for following the decomposition of small ferrite particles at

temperatures below 550 ◦C in the SAF 2205 (aka UNS S31803) duplex stainless steel (Sandvik,

Sandviken, Sweden) as in [22], and also to successfully tracking sigma phase in the same steel.

2. Experimental Procedures

Samples of a SAF 2205 duplex stainless steel were thermally aged in an electric resistance furnace

at 800 ◦C for times of 0.25, 1, and 2 h, and at 900 ◦C for 2 h, in order to obtain different amounts of

sigma phase that were quantified through optical microscopy (FX 35XD NIKON Optic Microscopy,

Nikon, Tokyo, Japan). The samples were prepared by mechanical polishing and electrolytic etch in

a 10% KOH solution, being the voltage and time applied equal to 3 V and 15 s, respectively. The

electrolytic etching with 10% KOH solution reveals mainly sigma phase. The amount (% volumetric

fraction) of sigma phase presented in each sample was determined using a computational tool, which

is based on techniques of image processing and analysis and on an artificial neural network, that has

been used to characterize microstructures in previous studies [38–43]. Forty images were acquired

from each material sample and the volume fraction was determined adopting a confidence interval of

95%. Five samples were subjected to each treatment under study, and a sample in the as-received state

was also analyzed; all samples had dimensions equal to 5 mm × 10 mm × 55 mm. A Charpy impact

test was performed on the samples subjected to the same thermal treatment, and the microstructures

of the fracture surfaces were analyzed through scanning electron microscopy (SUPERSCAN SSX-550

SEM, Shimadzu Corporation, Kyoto, Japan).

To study the formation of sigma phase, an X-ray diffraction (XRD) test was performed using

an X-ray Diffractometer from Shimadzu Corporation (Kyoto, Japan), model XRD-6000 vertical type,

with Cu κ-α radiation. The scanning angle adopted varied from 41◦ to 53◦ with steps of 0.02◦.

2.1. Induced Magnetic Fields

For the application of the induced magnetic fields and acquisition of their values, the

experimental setup shown in Figure 1 was used. In this setup, a solenoid is responsible for

generating the external magnetic fields. The generated magnetic flux density is determined by a

Hall Effect sensor (SS495A model, Honeywell S&C, Morris Plains, NJ, USA). An external magnetic

field of 211.5 A/m was applied in the experiments.

No permanent magnetization was observed in the material. In order to assure statistical

significance, fifty measurements of five hundred signals each were acquired from each material

sample under study, resulting in a total of 25,000 points for analysis. The samples had a size

of 5 mm × 10 mm × 15 mm, and the measurements were performed on the 10 × 15 surface and 1 mm

far from the edge, in order to avoid edge effects due to air interference.
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Figure 1. Experimental setup: (1) power supply; (2) solenoid; (3) Hall sensor; (4) sample; (5) data

acquisition board; (6) computer; (7) bench test and (8) potentiometer.

2.2. Machine Learning

In this work, we carried out a systematic study to address the problem of microstructural

characterization based on the classification of induced magnetic field signals. Several computer

classifiers have been used to tackle similar problems, but a recent and powerful one has

gained particular attention: OPF [44–46]. This classifier has shown some advantages over more

traditional ones: (i) it is free of hard-to-calibrate control parameters; (ii) it does not assume any

shape/separability of the feature space; (iii) it has much faster training phases; (iv) it can reach

decisions based on global criteria, and, finally; (v) it provides excellent performance on small datasets.

Moreover, OPF does not interpret the classification task as a hyperplane optimization problem,

but as the computation of optimum paths from some key patterns (known as aka prototypes) to

the remaining nodes. By this means, each prototype becomes a root from its optimum path tree,

and then each node is identified according to its strongly connected prototype. This step defines

a discrete optimal partition (known as influence region) of the feature space. Thus, due to its

high efficiency and accuracy, together with its parameter independence and robustness to highly

non-linear datasets, OPF seemed to be a very suitable solution to perform the automated classification

of induced magnetic field signals in microstructural characterization.

More detailed descriptions about the supervised OPF algorithm and some of its recent

applications can be found, for example, in [36]—classification of ultrasonic signals, [47]—land

cover classification, [48,49]—electroencephalogram (EEG) and electrocardiogram (ECG) signal

identification and recognition, [50]—characterization of graphite particles in metallographic

images, [51,52]—learning-time constrained applications, [53]—segmentation and classification of

human intestinal parasites, and in [54]—intrusion detection in computer networks.

To confirm and compare the suitability of OPF for this classification problem, Support Vector

Machine configured with radial basis function kernel (SVM–RBF) [55,56], Multilayer Perceptron

Neural Network (MLP) [57–59], K-Nearest Neighbors [58] and Bayesian [60] based classifiers

were tested.
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Performance Evaluation Metrics

In order to analyze the performance of the computer classifiers under comparison, a statistical

metric was used: accuracy (Acc), which is defined as the ratio between the number of feature classes

correctly classified and the number of total feature classes of the problem:

Accuracy =

#Patterns correctly classified

# Patterns
(1)

This metric was then used to evaluate the performance of the classifiers under comparison with

high reliability.

3. Results

In this section, we present the results obtained by the computer classifiers under comparison

when applied in the classification of induced magnetic field signals in order to identify sigma phase

in a duplex stainless steel.

3.1. Materials Characterization

Figure 2 shows the variations of the induced magnetic field and of the impact energy in function

of the content of sigma phase. The absorbed energy decreases rapidly and tends to a plateau as

the material becomes brittle. Low content of the sigma phase promotes considerable decreasing of

toughness; for example, 3% of content causes a reduction of 78% in the absorption of impact energy.

The correlation between this phase and impact energy has been reported [7,61,62]. As already stated,

sigma phase presents high hardness (around 900 HV) [12–14], which can compromise the material

toughness [4,7,15]. According to Fargas et al. [61], as the precipitation of sigma phase increases, cracks

occur preferentially in the contours of sigma phase particles oriented in the rolling direction. Thermal

agings at 800 and 900 ◦C for 0.25 h lead to a loss in toughness of 31.3% and 54.5%, respectively. In

order to monitor duplex stainless steel structures, it is important to collect data below 0.5 h, which

corresponds to 2.84% of sigma phase. Normando et al. in [6], applied eddy current to follow sigma

phase formation and showed that the impedance versus heat treatment at 800 and 900 ◦C decreases

for times up to 2 h. They noted a sharp decreasing of impedance in the first 15 min, which they

did not associate to sigma phase precipitation. Instead, the authors associated it to some second

austenite phase precipitation, and also to a very sharp softening phase detected in the same interval.

The authors only considered the effect of sigma phase over the impedance measurement for aging

after 15 min.

Figure 2 also provides evidence that the induced magnetic field follows the formation of sigma

phase and that a critical value can be associated to the brittle condition of the studied material.

Induced magnetic fields can be useful to monitor structures in service since they can allow the

detection of small sigma phase content. This phase is paramagnetic and its formation reduced the

permeability of the material and thus the induced magnetic field. Figure 2b shows the reduction in the

induced magnetic field due to the amount of sigma phase formed. From this figure, one can confirm

that the proposed technique was able to follow the presence of this phase even in content below 4%.

Also from this figure, it can be noted that the content of sigma phase of 2.24% leads to a reduction

of 31.3% in impact energy and of 2.84% to 78.5%, respectively. Therefore, techniques to monitor the

embrittlement of stainless steels need to be precise in this range of the sigma phase content. However,

as previously mentioned, other non-destructive testing techniques, like eddy current and ultrasound,

are not so effective in this range [6,27].
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(a) (b)

Figure 2. (a) Induced magnetic field and absorbed energy in terms of sigma phase percentage;

(b) induced magnetic field reduction due to sigma phase in function of absorbed energy.

The precipitation of sigma phase, which is a paramagnetic phase, reduces the magnetic

permeability of the steel as ferrite phase is ferromagnetic and decomposes into it. Magnetic

susceptibility measurement has been used to study the decomposition of ferrite phase in duplex

stainless steels at temperatures ranging between 350 and 900 ◦C [19,20]. It was noticed that the

magnetic susceptibility drops rapidly at the beginning and then levels off. For temperatures up

to 550 ◦C, ferrite decomposes via spinodal decomposition, and from 600 to 900 ◦C, the magnetic

susceptibility decreases because of the presence of sigma phase. The present magnetic technique

was already applied to follow ferrite decomposition along aging temperatures above 550 ◦C and the

results were similar [22].

Figure 3 shows the microstructures of the samples with different amounts of sigma phase

(Figure 2) and their X-ray diffraction patterns. In the microstructures shown, sigma phase formed

from ferrite sigma phase can be observed as well as the presence of sigma plus austenite phase

reaction. It can be noted that, even with the random distribution of sigma phase in the material,

the induced magnetic field allows the detection of this phase. In addition, a small percentage

of chi phase also precipitated in duplex and super duplex steels from ferrite phase for aging

temperatures between 700 and 900 ◦C [7,12]. Figure 4 depicts the fracture surfaces analyzed from

SEM of the samples with different amounts of sigma phase. In this figure, a change in the fracture

mechanism from ductile to brittle can be observed. The sample with 2.24% of sigma phase revealed

predominantly a ductile fracture mode, with a large number of deep dimples easily observed as well

as the existence of some cracks. As the content of the phase reached a value of 2.84%, transgranular

and intergranular regions appeared. Delamination effects were also observed due to the easy

crack propagation along the bands of ferrite and austenite. The content of 2.84% of sigma phase,

which corresponds to the aging treatment at 800 ◦C for 0.25 h, initiated a reduction of toughness

around 78% in relation to the as-received material sample, which is in line with results that have

been reported [15,61]. Above 2.84% of sigma phase, the material revealed to be brittle with increased

number of delaminations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Microstructures of the studied samples with different contents of sigma phase and related

X-ray diffractions, respectively: (a) 2.24%; (b) 2.24% (X-ray); (c) 2.84%; (d) 2.84% (X-ray); (e) 7.5%;

(f) 7.5% (X-ray); (g) 18%; (h) 18% (X-ray). (σ - sigma phase, γ2 - austenite formed together with

sigma phase.)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Fracture surface microstructures of the samples with different contents of sigma phase:

(a) 2.24%; predominantly ductile fracture; (b) 2.24%, existence of some cracks; (c) 2.84%, presence of

cracks; (d) 2.84%, transgranular and intergranular regions; (e) 7.5%, brittle surface with delamination;

(f) 7.5%, detail of the delamination; (g) 18%, brittle with increased delamination; and (h) 18%, detail

of the delamination.

3.2. Computer Classification

The classification experiments were carried out using computer classifiers in order to identify

sigma phase in a duplex stainless steel from the raw data obtained from the magnetic induced field.

The magnetic sensor used was built to provide low noisy data. However, the signal acquired can
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always be corrupted by noise. Therefore, the robustness of each classifier against noise was also

investigated using Gaussian noise. Each signal to be classified had 500 attributes and three main

components, which were determined by Principal Component Analysis (PCA), Figure 5.

(a) (b)

(c) (d)

Figure 5. Distribution of the three main components of the induced magnetic field data for 0%, 2.24%,

2.84%, 7.7% and 19% of sigma (σ) phase: (a) raw data, and after the addition of (b) 5%; (c) 15%; and

(d) 25% of Gaussian noise.

The computer classifiers under comparison are: kNN (k-Nearest Neighbour), Bayes, ANN

(Artificial Neuronal Network), SVM with RBF kernel, and OPF with Canberra, Manhattan, Euclidean,

square chi-square and Gaussian distances, which were tested using a notebook with an Intel Core i5

1.4 GHz processor, Santa Clara, CA, USA), 4 GB of RAM and running MAC OS X 10.10.5, Cupertino,

CA, USA). Figures 6–8 show the results obtained based on the Holdolt method. According to this

method, part of the samples are used to train and the remaining ones to test, i.e., to validate, the

classifiers. Therefore, the training percentage used in the experiments varied from 10% to 90% with

increments of 10%, being the remaining samples used to test. Hence, for example, when 20% of the

samples were used for training, 80% were used for testing.

Figure 6a shows the accuracy obtained by each of the classifiers under comparison from the

raw data signals, while Figure 6b–d shows the results obtained from the signals corrupted with the

addition of 5%, 15%, and 25% of Gaussian noise. It can be noted from Figure 6a, that the OPF classifier

obtained very good classification results (superior to 90% in terms of accuracy) independently of the

percentage of the used training data and of the distance adopted. Also in terms of accuracy, SVM

and Bayes based classifiers obtained results superior to 95% and 90%, respectively. Additionally,

it is worthwhile to note that OPF classifiers using Canberra, Gaussian and Euclidian distances had

accuracies superior to 95%.

From Figure 6b–d, it can be observed that the classification accuracy decreased for of all

classifiers with the addition of Gaussian noise. On average, the Bayes classifier lowered the accuracy

rate from 94.12% obtained with the “uncorrupted” data, to 71.11% with the data 5% noise corrupted,

and to 66.55% with the data 15% corrupted, and to 66.88% with the data 25% corrupted, respectively.

On the other hand, SVM with RBF kernel classifier reduced on average the accuracy rate from 95%

obtained with the original raw data, to 77.33% with the data corrupted with 5%, to 74.88% with
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the data corrupted with 15%, and to 70.44% with the data corrupted with 25% of Gaussian noise,

respectively. As for the OPF classifier, it also reduced the classification accuracy from 95% to 92%,

76% and 73% with the data corrupted with 5%, 15%, and 25% of Gaussian noise, respectively. It is

noteworthy that OPF classifiers with Euclidian and Gaussian distances had excellent performances

in all the tests, while the same classifiers with the remaining distances had alternating results.

(a)

(b)

(c)

(d)

Figure 6. Accuracy obtained by the computer classifiers varying the used training data from 10% to

90% when applied on the original data and on the same data corrupted with the addition of Gaussian

noise: (a) 0% (raw data); (b) 5%; (c) 15%; and (d) 25%.

Figures 7 and 8 show the training and testing time required by the computer classifiers under

comparison from the raw and signals corrupted with the addition of 5%, 15%, and 25% of Gaussian
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noise. From these figures, it can be observed that OPF classifier using Canberra, Gaussian and

Euclidian distances, had training times always less than 1 ms and test times inferior to 1 µs. The

Bayes based classifier had training times about 2 ms and test times around 100 µs. It can also be

verified that SVM classifier had increased training time with the increasing of the used training data

percentage: for example, 92 ms with 10% and 5217 ms with 90%, respectively. The classifier that had

similar times to the OPF classifier was an ANN based classifier with test times of around 10 µs, but

with higher training times (in the order of seconds) and lower accuracy rates. Taking into account

the performance measure values, it can be realized that OPFs with Canberra distance had the best

classification results.

(a)

(b)

(c)

(d)

Figure 7. Training time required by the computer classifiers varying the percentage of the used

training data from 10 to 90% when applied on the original data and on the same data corrupted

with the addition of Gaussian noise: (a) 0% (raw data); (b) 5%; (c) 15%; and (d) 25%.
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(a)

(b)

(c)

(d)

Figure 8. Testing time required by the computer classifiers varying the percentage of the used training

data from 10 to 90% when applied on the original data and on the same data corrupted with the

addition of Gaussian noise: (a) 0% (raw data); (b) 5%; (c) 15%; and (d) 25%.

OPF classifier merits, like reduced training and testing times, observed in the classification

results obtained from the original raw data, continued to be evident in the tests performed using the

same data corrupted with Gaussian noise. In addition, it was clear that OPF classifiers were able to get

very good accuracy rates, training and test times, independently of the used training data percentage.
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4. Conclusions

In this work, a solution for the automated detection of sigma phase in duplex stainless steels

based on induced magnetic field signals and computer classification was proposed and evaluated.

Taking into account the conducted experiments, the following conclusions can be pointed out:

OPF classifiers were more robust than the other studied classifiers since they obtained the best results,

not only from the original raw data, but also from the noisy data. They also appeared to be more

effective in terms of training, obtaining good classification results even when just 10% of the available

data was used to train the classifiers, which did not happen with the other classifiers. Another

observed advantage is that the training and test times of OPF classifiers did not vary notably with

the used training data percentage, since they had similar training speeds when 10% and 90% of the

training data were used.

Therefore, the proposed solution for the automatic identification of sigma phase in duplex steels

is very promising, as it achieved accuracy rates superior to 95%, and proved to be able to achieve

good performance even when the signal data is corrupted with noise.
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