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ABSTRACT: The fundamental results of A. Connes which determine a complete set

of isomorphism classes for most injectlve factors are discussed in detail. After

some introductory remarks which lay the foundation for the subsequent discussion,

an historical survey of some of the principal lines of the investigation in the

classification of factors is presented, culminating in the Connes-Takesakl structure

theory of type III factors. After a discussion of inJectlvity for finite factors,

the main result of the paper, the uniqueness of the injectlve II1 factor, is

deduced, and the structure of II. and type III injectlve factors is then obtained

as corollaries of the main result.
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I. INTRODUCTION.

From the beginning, one of the central problems of the theory of von Neumann

algebras has been their classification according to isomorphism type. The attack

on the problem was initiated by the" founding fathers Murray and von Neumann

([I], [2], [3], [4]), who introduced the fundamental notion of types (I, IIi, II,

and III), and who claimed early victories with the characterization of the hyperflnlte
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III factor and a complete classification of the factors of type I. As the years

passed, there was vigorous development of the theory, but no results appeared that

were as definitive as these early advances. However, in 1973 a new era dawned with

the publication of the thesis [5] of Alain Connes. Basing his work on earlier

results of Tomita and Takesaki [6], Connes initiated a program for the classifica-

tion of factors that can be termed as nothing short of revolutionary. In [5],

[7], [8], and [9], he obtained a classification of factors of type III and auto-

morphisms of certain factors of type III and II which culminated in the remarkable

work of [I0], in which appear the first major advances beyond the classical theory

in the classification of factors for the non-type I case. The purpose of these

notes is to give a rather detailed discussion of the most important of these results.

We assume the reader has a familiarity with the theory of von Neumann algebras

on the level of [II], say. We recall some basic facts that play an important

role in the sequel. A factor is a von Neumann algebra with a trivial center, i.e.,

the only elements of the algebra which commute with every element are scalar

multiples of the identity. We will be concerned primarily with von Neumann algebras

of finite type, and we will use the tracial characterization of this (see [12],

Section 111-8). Recall that a trace on the factor N is a positive linear

functional of norm I, i.e., a state on N which satisfies

(ab) (ba) V a b N (i.l)

A factor is said to be finite if it has a trace. The trace on a finite factor is

uniquely determined among the states by (i.I), and it is automatically faithful

and ultraweakly continuous (Theorem 2.4.6 of [13]). These facts will be used

frequently.

We will also employ the standard representation of a finite factor N Let

be the (canonical) trace on N Then the representation in the Gelfand-

Naimark-Segal construction ,H,} corresponding to is faithful and

ultraweakly continuous, and the cyclic vector is separating for (N) (i.e.,

is cyclic for (N)’ where denotes the commutant). We denote H by

L2(N,) and the L2-nQrm of x N is by definition llxll 2 (x*x) 1/2
is
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called the standard representation of N and when we identify N with its image

,T(N) in H L2(N,T), we will say that N acts @ta.ndardly in H Tensor

products of C*-algebras and yon Neumann algebras w..ll play an important role in

what follows. Let Ai,i=l,2 be C*-algebras, which for convenience we will assume

act on Hilbert spaces Hi,i=1,2 Form the algebraic tensor product A
1
@ A2

which can be viewed in a natural way as a *-subalgebra of B(H 1
(R) H2) the algebra

of bounded operators on HI
(R) H

2
A seminorm p on AI A2 is called a

C*’-subcross seminorm if

2
(i) p(x*x) p(x) x A1 A2,

(ll) p(a I
(R) a2) _< llalll lla211 a

i
A
i

i 1,2

is a C*-crossnorm if p is a norm satisfying (1), and (li) with -< replaced

by If we take the supremum of all C*-subcross seminorms defined on A
1
8 A2

we will obtain a C*-crossnorm v which by definition will be the lrgest C*-cross-

norm definable on A1 8 A
2 Another crossnorm can be defined on A1 0 A2 by

recalling that AI e A2 acts on HI
(R) H

2
and so each element of A I

@ A
2 has a

norm considered as a ohn-d ogerator o[ H I
(R) H

2
It can be shown that

the operator norm is the smallest C*-crossnorm definable on A 1 A2

Completing A1 8 A2 in the v-norm and the -norm will yield C*-algebras

which we denote respectively by A
1

(R) A
2

and AI
(R) A2 the so-called

maX mill

maximal an__d minimal C*-tensor products o__f AI and A2 These algebras will in

general be distinct. If we further assume that AI and A2 are von Neumann

algebras, we may also take the closure of A
1 A

2
relative to the weak operator

topology on B(H I
(R) H2) and thus obtain a yon Neumann subalgebra of B(H1

(R) H2)
the (spatial) W*-tensor product A

1
(R) A

2 of A
1 an__d A2 An excellent source of

information about tensor products is [14].

Suppose M. and N. are finite factors, i 1,2, and M
i

N
i

i 1,2
1 1

(’- denotes isomorphism). We claim that M (R) M2"-= N
1

(R) N
2

Let i:Mi Ni be

isomorphisms, and let Ti,i denote the canonical traces on M. and N
1 i

respectively. By uniqueness of the trace,

i o T i 1,2 (I 2)
i i
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Now I (R) 2 is an isomorphism of M1
@ M

2
onto N

1
(R) N

2
and by (1.2),

(I 0"2 o (I (R) 2 i (R) 2 Since i (R) 2 and I (R) 2 are the canonical

traces on N
1

(R) N
2

and M1
(R) M2 respectively, they are faithful and normal.

Thus by [15], Lemma I, (see Lemma 9.2 infra) I (R) 2 extends to an isomorphism

of M
1

(R) M
2

onto N I
(R) N

2

Finally, we define the infinite tensor product of von Neumann algebras. Let

M
n

} be a sequence of von Neumann algebras, let n be a normal state on Mn
n

denote the infinite tensor product state on the infiniteand let n
C*-tensor product (R) M of the M’s ([13], Section 1.23). Let denote the

n n n

elfand-Naimark-Segal representation of M determined by Then the yon
n n

Neumann algebra (n Mn)" is called the (W*-) tensor product of M
n

}

relative to

2. AN HISTORICAL PERSPECTIVE ON CONNES’ WORK

We will preface our discussion of [I0] by a rather brief overview of the main

lines of work which led up to it. Because of the limitations of space and time,

we have concentrated on emphasizing only work which deals directly with the

classification of factors, and have reluctantly suppressed discussion of many other

interesting and important developments in the structure theory of von Neumann

algebras.

Our story begins, as all stories about yon Neumann algebras do, with the work

of Murray and von Neumann [I], [2], [3], and [4]. The classification of factors was

the motivating problem for this work, and all other progress on the problem was

based on this pioneering effort. In [I], Murray and von Neumann introduced the

fundamental notion of types (I, II I, II, and III), and in [i] and [2], they

obtained a complete classification of the factors of. type I: if M is a factor of

type I, then there exists a Hilbert space H such that M is isomorphic to B(H)

the algebra of all bounded operators on H For our purposes, however, the most

important advance that Murray and von Neumann made was their famous characterization

of the hyperfinite II factor. Since this result will play a key role in the

sequel, we will describe it in detail.
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Let M be a yon Neumann algebra acting on a separable Hilbert space (from

now 0mtil the end of this section, all von Neumann algebras will be assumed acting

on a separable Hilbert space without explicit mention). M is said to be h_-

finite if there is a sequence {Mn} of flnite-dimensional yon Neumann subalgebras

of M totally ordered by inclusion, whose union is dense in M relative to the

weak operator topology. If M is a finite factor, hyperfiniteness of M is

equivalent to the following condition (condition C of Murray-von Neumann): for

each finite subset {Xl,...,xn} of M and >0 there is a finite-dlmenslonal

subfactor C of M and Vl,...,vn E C such that llxi -vill2 < , i l,...,n

The following theorem will be used in a crucial way in our later discussion:

2. I. THEOREM. ([4], Theorem XIV). Let MI and be fa,ztors of type

II I. If MI and both satisfy condition C then M and M2 are isomorphic.

We will denote by R the hyperfinite II
1 factor, unique up to isomorphism by

Theorem 2. I.

Another important technique contained in the Murray-yon Neumann papers is the

so-called group-measure space construction of factors. This technique was used to

give the first examples of type II
1

and II(R) factors in [2], and the first

example of a factor of type III in [3]. We will not go into the details of this

construction right now: it will emerge later as a special case of the Connes-

Takesaki crossed product construction.

The next major advance in the structure theory of von Neumann algebras

occured in 1949 with the publication of von Neumann’s reduction theory [16].

This paper introduced and used the concept of direct integral of Hilbert spaces

to decompose an arbitrary separably acting yon Nemann algebra into a direct

integral of factors, and thereby reduced the study of yon Neumann algebras, at

least in principle, to the study of factors.

This then was essentially the state of the art in the classification of von

Neumann algebras at the start of the 1950’s. Most of the work in the area

consisted in a refining and strengthening of the tools bequeathed by Murray and
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von Neumann. The theory at that time suffered from a dearth of examples of

nonlsoorphic factors, and consequently one of the sin lines of work was the

construction of such examples. Von Neumann had constructed one example of a type

III factor in 3 ], but did not give another nonlsomorphic one. In 1956, Pukansky

[17] constructed a pair of nonisomorphic type III factors using refinements of the

group-measure space construction, and there the matter lay until 1963 when J.T.

Schwartz [18] found a new invariant, his well-known Property _P: a yon Neumann

algebra M acting on H has Property P, if for each T B(H) the weakly

closed convex hull of {U T U*: U a unitary operator in M} has a nonempty inter-

section with M’ Schwartz used this property to distinguish two nonlsorphlc,

hyperfinite II
1 factors, and also to construct another type III factor different

from Pukansky’s examples [19]. He showed that all hyperflnlte factors have

property P and conjectured the converse. This converse was one of the many

things established by Connes in [i0].

Since it had been a fairly difficult task to obtain such a small number of

examples of nonisomorphic factors, there gradually emerged a hope that a somewhat

complete classification of all factors just might be possible. In 1967, that

hope began to fade when R.T. Powers [20] constructed the first uncountable family

of nonisoorphic factors. Let [0,I] and let M2 denote the 2 x 2 complex

matrices. Let % denote the state defined on defined by

+-- +

The Powers factor RX is defined as the infinite tensor product of countably

many copies of M
2

relative to the product state (R) n where each is Xn n

We note that R
1

is the hyperfinite II
1

factor. R is a hyperflnite factor

of type III for each X (0,I) and Powers showed that RX is not isoorphlc to
I

RX if I and 2 are distinct elements of (0, I). We will see this class of
2

factors again.

After Powers’ examples appeared, the flood gates opened, and nonisomorphlc
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factors soon poured out. In 1969, McDuff [21] exhibited an uncountable family

of II factors, and in 1970, Sakai [22], [23] found uncountable families of II
and nonhyperfinite type III factors. This work dashed forever the hope of a complete

classi=fication of all factors. Attention began to focus on particular classes of

factors for which there did seem to be a possibility of a satisfactory classification

with results that were to shortly revolutionize the theory.

Let {M be a sequence of finite factors, with M of type I m <
n n m

n
for each n Assume that M acts on H and let x be a fixed unit vector

n n n

in H Then the functional defined on M by 00 T CTXn, Xn)n x n x
n n

T M is a state on M Form the infinite tensor product (R) M relative to
n n n n

the product state (R) 00 The resulting factor is an example of what Araki and
n x

n
Woods [24] dubbed an ITPFI factor (for "infinite tensor product of finite type I’s").

In this paper, which appeared in 1968 and was motivated in part by Powers’ work,

these authors introduced an important new invariant for the ITPFI factors, the

asymtotic ratio set, and succeeded in obtaining an almost complete classification

of this class of factors. Both for its historical importance and for its fore-

shadowing of even bigger things to come, we will briefly describe the asymptotic

ratio set and the Araki-Woods classification.

Let M be a factor. The asymptotic rat___i_0_o se___t r(M) o__f M is the subset

of [0, (R)) defined as follows:

r(M) {x [0, i]: M is isomorphic to M (R) R
x

U {x (i,): M is isomorphic to M (R) R
/
x

where RX is the Powers factor defined previously. This is not the definition

of r(M) first given by Araki and Woods for the ITPFI factors. The first

definition ([24], Definition 3.2) was expressed in terms of a complicated limiting

procedure involving the ratios of the eigen-values of the density matrices of the

states occurring in the infinite tensor product decomposition of the ITPFI factors,

and Araki and Woods later showed that the definition given above was equivalent

to the original one ([24], proof of Theorem 5.9). If M is an ITPFI factor,

they deduced that r=(M) must have one of the following forms:
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so o}

S {1}

n
S {0,x n 0,+I,_+2 } x (0 i)
X

So1 {0,1}

s(R) [0,)

Araki and Woods showed that S corresponds to only one isomorphism class of

ITPFI factors, and it is of type III. We will denote this factor by R The

invariants S x [0, I] were also shown to come from only one isomorphism
X

class, the one determined by the Powers factor R Thus all isomorphism classes
X

of ITPFI factors, with the exception of those in the S01 class, were completely

determined. The Araki-Woods classification scheme was the first significant

advance in the classification of factors beyond the initial results of Murray and

von Neumann, and it was to have a great influence on the young Alain Connes.

The second major development which Connes would put to good use came from

Japan. A problem of interest at the time concerned the commutant of a tensor

product of von Neumann algebras: if M and M
2

are von Neumann algebras, does

(M (R) M2)* equal i (R) M_? In 1967, M. romita [25],[26] answered this question

affirmatively by a new and original analysis of the spatial relationship between

avon Neumann algebra and its commutant. The exposition of [25] and [26] was

somewhat obscure, however, and in 1970, M. Takesaki published his seminal monograph

[6] which explained and extended Tomita’s earlier work. Let M be a von Neumann

algebra with a vector which is both cyclic and separating for M. Takesaki associated

a closed, densely defined, self-adjoint operator A with M, the modular oer,

which has two very useful properties The first is that {A it t (-,(R))}

forms a one-parameter unitary group for which A-itMit M the modular

@utomorphism roup of M and the second is that A induces a conjugate-linear,

involutive isometry J of the underlying Hilbert space for which JMJ M .
This shows in particular that M and M are anti-isomorphic, and is the key to

Tomita’s proof of the commutation theorem for tensor products. In actuality, the

existence of a cyclic and separating vector is not necessary for the definition
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of the modular operator, and in fact if is any faithful, normal, positive

linear functional on M then the modular operator A and the modular auto-

morphism group {At} corresponding to can be constructed in H relative to

(M) where {n,H} is the representation of M arising from the GNS

construction induced by The construction of the modular operator and the

verification of its main properties are quite technical, and for that reason we

will not go into the details. We instead refer the reader to Rieffel and van Daele’s

excellent development of the Tomita-Takesaki theory [27], and, of course, also to

the original memoir [6].

The stage was now set, and in 1973 Connes’ thesis [5] appeared. This work

contained a classification scheme for factors of type III which was to have a

profound influence on all subsequent work in this area. Taking his cue from the

Araki-Woods classification scheme and the Tomita-Takesaki theory, Connes introduced

the modular spectrum as an isomorphism invariant for type III von Neumann algebras.

Let M be a separable acting type III von Neumann algebra. The modular spectrum

S(M) of M is the intersection of the Arveson spectra (see [29]) of the modular

operators A corresponding to all faithful, normal, positive linear functionals

on M Connes and van Daele proved the remarkable fact that S(M)\{0} forms

a subgroup of (0,-) and that S(M) is a closed set which is an isomorphism

invariant of M Connes then divided the type III von Neumann algebras into

subtypes as follows: M is said to be

(i) of type III
0

if S(M) {0,i}

(ii) of type IIIk if S(M) {0,kn-n=0,_+l,_+2, ,...} k (0,I)’,

(iii) of type III
I

if S(M) [0,)

This is a direct generalization of the Araki-Woods classification:for a type III

ITPFI factor M, r(M) S(M) and so

M is of class S01 M is of type III0;
M is of class Sk M is of type lllk, k (0,i);

M is of class S. M is of type III
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Connes then proceeded to prove a fundamental structure theorem for the factors of

type lllk, k [0,i) in terms of discrete crossed products of von Neumann

algebras. The case of type III was not treated, but Connes was not alone in this

work. In the same year as Connes’ thesis appeared, Takesaki also offered [28],

which solved the III case by the introduction of continuous crossed products,

and which also developed a duality theory for crossed products that was to be very

influential. We now proceed to describe the structure theorems of Connes and

Takesaki.

Let G be a locally compact abelian group, M a von Neumann algebra. A

continuous action of o__n M is a homomorphism of G into Aut(M)

the group of all *-automorphisms of M such that for each x M the mapping

g a (x) is *-strongly continuous. If G R (as will be the case in the sequel),
g

we call a one-parameter action on M

Suppose M acts on a Hilbert space H Let denote Haar measure on G

and let L2(G;H) denote the Hilbert space of all H- valued, - square integrable

functions on G We define the representations of M and of G on

L
2
(G;H) as follows

((x)) (h) h l(x)(h); x M h G, L2(G;H);
((g)) (h) (g-lh); g,h G, L2(G;H).

Th__e crosse__d product W*(M,) of M b_ is the von Neumann subalgebra of

B(L2(G;H)) generated by { (x) x M} and {k(g) g 6 G } If 8 Aut(M)

the crossed product W*(M,@) of M by 8 is the crossed product of M by the

8
n

discrete action n- n--0, +I, +2,... We will often refer to W*(M,8) as a

discrete crossed product or a discrete decomposition.

The oldest, and in many ways the most important, example of a crossed product

is the classical group-measure space construction of Murray and von Neumann. Let

(X,) be a o- finite measure space with positive measure and call a

bijective mapping T of X onto X an automorphism of X if T and T-I are
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measurable and T maps sets of - measure zero to sets of g- measure zero. An

automorphism T of X induces an algebra automorphism s
T

of L (X,) in the

natural way

sT f- f O T f 6 L (X,).

Let H L2(X,) denote the Hilhert space of all - square integrable functions

on X L(X,) acts by pointwise multiplication on H and thereby forms a

maximal abelian von Neumann subalgebra of B(H) and sT
is a *-automorphism of

this von Neumann algebra. The von Neumann algebra given by the group-measure

space construction is simply the discrete crossed product W*(L (X,),T)
W*(L (X,),T) is hyperfinite, and if T is ergodic, it is a factor. Two

automorphisms T and T
2

of X are weakly equivalent if there exists an

n (UT2nuautomorphism U of X such that {T I (x) n Z} (x) n Z}

for g- allmost all x In a famous paper which generalized the work of Araki

and Woods, Krieger [30] proved that if T and T2 are ergodic automorphisms of

X then W*(L(X,),TI is isomorphic to W*(L(X,),T2 if and only if

T and T2 are weakly equivalent. For this reason, Connes calls a discrete

crossed product of an abelian von Neumann algebra by an ergodic automorphism of

the algebra a Krieer factor, and so therefore will we. (Incidentally, Connes

cites the work of Krieger (along with Araki-Woods [24]) in the introduction to

[5] as being one of the primary motivations for developing his classification

scheme for type III factors).

We are now in a position to state what may appropriately be called the first,

second, and third fundamental structure theorems for type III factors.

2.2. THEOREM. (Takesaki, [28]). Let M be a factor of type III. There

exists avon Neumann algebra N of type II., a semifinite, faithful, normal

trace on N and a one-parameter action s
t

on N such that

-t
(i) o s

t
e

(ii) M is isomorphic to W*(N,).
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2.3. THEOREM. (Connes, [5]). Let M be a factor of type lllk, k 6 (0,i).

There exists a factor N of type II, an automorphism 8 of N and a faithful

normal, semifinite trace of N such that

(i) moe =h m

(ii) M is isomorphic to W*(N,8).

Furthermore, any pair (N,8) satisfying (i) gives rise to a crossed product

factor of type II, and any two such pairs (NI,8 I) (N2,82) give isomorphic

factors if and only if they correspond to the same k and there is an isomorphism

, of N 1 onto N
2

such that p(n 81-I) p(82) ,where p is the canonical

quotient map of Aut(N2) onto the quotient of Aut(N2) by its subgroup of inner

automorphisms.

2.4. THEOREM. (Connes, [5]). Let M be a factor of type III0. There

exists a von Neumann algebra N of type II with a diffuse center, an automorphism

8 of N which is ergodic on the center of N and a faithful, normal, semifinite

trace on N such that

N

(i) for some k
0
< 1 (8(x)) k0T(x for all positive elements x of

(li) M is isomorphic to W*(N,8).

Any pair (N,8) satisfying the above conditions gives rise to a factor of type

III
o

These theorems in principle reduce the study of factors of type III to the

study of von Neumann algebras of type II and their automorphisms, and Connes lost

no time in beginning such a study.

If M is a II. factor acting on a separable Hilbert space H a theorem

of Murray and von Neumann [4], Theorem IX) allows one to write M as the tensor

product of a II
1

factor N and B(H) Thus the study of automorphisms of II.
factors can be effectively reduced to the study of automorphisms of II factors.

Now the hyperfinite II factor is in many ways the simplest of all the II
1

factors, and hence any program which aspires to a classification of automorphisms

of II
1

factors must first of all handle the case of the hyperfinite II
1
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factor R In [9], this is precisely what Connes did. In this deep and penetrat-

ing study, he determined all outer conjugacy classes of automorphisms of R and

in particular showed that the quotient of Aut(R) by its subgroup of inner auto-

morphisms is a simple group with only countably many conjugacy classes. By our

previous comments, all automorphisms of the II factor R
0,I

be determined.

NB (H) can now

The factor R0,1 is also of interest for another reason. An old question

of Murray-vonNeumann asked whether all hyperfinite II factors are isomorphic

to R
0

? This question arose naturally from their work on the hyperfinite II,I

factor, and for a long time was viewed as one of the most important open questions

in the theory of von Neumann algebras. In [i0] it received an affirmative answer.

The key to this answer lies in the concept of injectivity, an idea introduced by

Tomiyama in [31] and exploited by him and others in the study of tensor products

of yon Neumann algebras (the terminology is due to Effros and Lance [14]). The

great achievement of [10] was to identify injectivity and hyperfiniteness for

separably acting factors, first in the II
1 case, then for the II case, and

finally for the type III case using the fundamental structure Theorems 2.2, 2.3,

and 2.4. It is to a detailed discussion of these ideas that we now turn.

A few words are in order concerning the organization of the remainder of the

paper. The main theorem occurs in Section 8, and asserts that all injective II

factors are isomorphic. In Sectio 3, we define injectivity for von Neumann

algebras and give a tracial characterization of injectivity for finite factors.

Sections 4 and 5 are concerned with establishing a certain type of finite dimensional

approximation property for standardly acting, injective, finite factors which plays

a central role in the proof of the main theorem. Section 6 discusses semi-

discreteness for injective finite factors. Automorphisms of factors are briefly

treated in Section 7, and several important results of Connes on automorphisms of

II factors are stated for use in the proof of the main theorem. Section 8

commences with the proof of the main theorem, Section 9 provides some necessary

lemmas on embeddings in ultraproducts, and proof of the main theorem is completed
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in Section I0. The eleventh and final section uses the results of Sections 2 and

8, together with some results from [7] and [8], to obtain the classification of in-

jective factors of type II(R) and III k [0,i)

3. INJECTIVE VON NEUMANN ALGEBRAS AND THE HYPERTRACE.

A von Neumann algebra N acting on a Hilbert space H is said to be in-

jective if there is a projection E of B(H) onto N with E It

follows easily that E _> 0 and by a well-known theorem of Tomiyama ([31]), E

is a conditional expectation, i.e.,

E(axb) aE(x)b a,b N x B(H)

Suppose now that N is an injective finite factor acting on H Let

denote a tracial state on N and set o E where E is a projection of

norm 1 of B(H) onto N Then is a state on B(H) such that for all

x B(H), a N

(xa) (E(xa)) (E(x)a)

(aE(x)) (E(ax))

(ax) (3.1)

A state of B(H) satisfying (3. i) is called a hypertrace of N

Conversely, suppose N is a finite factor acting standardly on H with

hypertrace We will eventually show that this forces N to be injective,

but before doing this we need to recall some facts about the Hilbert space L2(N,T)
of Segal ([32]). An element x of L2(N,) is a closed, densely defined operator

on H affiliated with N in the sense of Definition 2.1 of [32]. A positive

operator T affiliated with N is called .integrable when its spectral measure

(E) (XE(T)) (E a Borel subset of (0, + )) satisfies o d(k) < and we

set (T) o d(k) 2(N,) consists of all integrable x satisfying

(x*x) < , and the norm of 2(N,) is given by x (x*x) 1/2
N is

contained in 2(N,) as a dense submanifold, and for a N a (a*a)
1/2

If we restrict the hypertrace to N a tracial state on N results

and so %1N_ The Schwartz inequality for positive linear functionals therefore
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yields for each A B(H)

l(aA) -< (A*A) 1/2
(a*a)

1/2
(A*A)

1/2
(a*a)

A ll(a*a) 1/2 V a N (3.2)

Thus each A B(H) determines a bounded linear functional A a (aA) on

L2(N,) and hence a unique E(A) in L2(N,) such that

(aE(A)) (a,E(A)*)62(N,) (aA) V a N (3.3)

Claim: If A >_ 0 then A is positive on N Let a N T B(H) Then

(a*aT*T) (aT*Ta*) is a hypertrace)

(aT* (aT*) *) >_ 0

This verifies the claim.

We can now show that E(A) N for A >_ 0 Since E(A) is affiliated with

N it suffices by the double commutant theorem to show that E(A) extends to a

bounded operator on H-- [2 (N,)
_< 1 ThenLet a, b N a11 2

b 112
I(E(A) a, blHl l(b*E(A)a)l

l(ab*E(A)) by [32], Corollary 11.2

l(ab*A) lA(ab*)l by (3.3)

A(a*a) A(bb*) since A 0

_< [[A[[ (a a*) 1/4
(b b*)

1/4
by (3.2)

IIAII llal11/22 llbll

Since N is dense in H [2(N,) it follows that E(A) extends to a bounded

operator on H with IIE(A) II-< IIAII
We conclude that E(A) N for all A B(H) It is now straightforward

to deduce from (3.3) that A E(A) is a projection of norm of B(H) onto N.

The following proposition now obtains:

3.1. PROPOSITION. Let N be a finite factor. N is injective if and only

if N admits a hypertrace in its standard representation.

4o THE METHOD OF DAY FOR INJECTIVE FINITE FACTORS

Let N be avon Neumann algebra, a linear functional on N u a unitary
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in N We denote by o ad u the linear functional

x-+ (uxu*) x N

4.1. PROPOSITION. Let N be an injective finite factor acting standardly in

H Then for each finite set Ul,...,Un} of unitaries in N and e > 0,

there exists a normal state @ on B(H) such that

II@- ( o aduj)ll < e j l,...,n (4.1)

PROOF. The proof uses a separation argument first employed by Day [33] in

the context of countable amenable discrete groups.

We consider the Banach space (B(H),)
n

formed by taking the Banach space

direct sum of n copies of the predual of B(H) Consider the set

C (, (, o ad Ul),...,@ ( o ad u )) :@ B(H), }
n

To verify (4.1), it suffices to show that 0 ( norm closure of C C

Suppose 0 C Then there is a norm-continuous linear functional f on

(B(H),)
n

and > 0 such that

Re f( ( o ad uI) ( o ad Un)) V B(H),
n

Now there exist x x
n

B(H) such that f(g) Z gi(xi) for g (gl ’gn
n

(B(H) ,) Hence

n
Re Z ((xj) -(ujxjuj*)) >_ a V B(H), (4.2)

j=l

By Proposition 3.1, N has a hypertrace % By the bipolar theorem ([34,

Theorem 2.14]), is the o(B(H)*,B(H)) limit of a net (@)aA of normal states

on B(H) Since (4.2) holds for each @a we hence conclude that (4.2) holds

for But %(xj) %(ujxjuj*) j n We conclude that O C-

QED

5. AN ANALOG OF F#LNER’S CONDITION FOR INJECTIVE FACTORS.

As mentioned in the previous section, Day used the technique of Proposition

4.1 to show that when G is a countable, amenable, discrete group, there exists
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a sequence F of normalized positive functions in gl(G) such that
n

llgF
n Fnlll 0 for all g G Somewhat earlier Finer [35] had given a

stronger result by finding a sequence S
n

of finite subsets of G such that

S # for all n and
n

(Sn A S
n

0 V cj G

where A
#

cardfnality of A c G and A denotes synnetric difference.

Let N be an injective finite factor acting standardly in H The next

proposition gives an analog of Flnr’s result for N and will play a crucial

role in the sequel. Before giving its statement and proof, we need a rather

technical lemma concerning certain approximations for positive Hilbert-Schmidt

operators.

For its proof, consult [I0], Theorem 1.22 or [37], Section 2.5.

LEMMA. Let H be a Hilbert space. Let X denote the characteristic
a

function of the interval (a,+) a 0 Let hl,...,hn be positive Hilbert-

Schmidt operators on H such that

{lhj -h1{{HS < {IhI{{HS j I, n

for some g > 0 where [[HS denotes the Hilbert-Schmidt norm. Then there

exists a > 0 such that Xa(hl) # 0 and

n
Z ]IX (hi) X (h I)[]2a a HS < 3nell) (hl)l12a HS
j=l

5.1. PROPOSITION. Let N be an injective finite factor acting standardly

in H For each finite subset Xl, xn } c N and > 0 there exists

a finite-rank projection E B(H) such that E # 0 and

II[E,xj]IIHS < glIEIIHS j l,...,n

(For operators A and B we denote AB-BA by [A,B].)
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PROOF. By Proposition 4.1, for any set {ul,...,Un} of unitaries of N

we can find a normal state of B(H) such that

{{- ( o ad u.){{ < s j l,...,n
3

Let 0 denote the density matrix of i.e.,

(5.2)

(-) Tr(p-) p >_ 0 Tr(o) I

where Tr canonical trace on B(H) For x B(H) we have

o ad u.3(x) (ujxu.*)3 Tr(oujxuj*) Tr((uj*guj)x)
Thus o ad u.3 has density matrix uj*ouj and since the norm of a normal

functional on H is the trace norm of its density matrix, we conclude from (5.2)

that

lluj*puj -911Tr < s j l,...,n (5.3)

For j I, n set hj uj*huj where h 9
1/2

is a positive Hilbert-

Schmidt operator. By (5.3) and the Powers-Strmer inequality [36],

llhj hllHS -< llhj
2 h211Tr lluj*ouj 911Tr

< j l,...,n

2
I[h[IHS Ilhmllrr 1[91ITr

Thus by the lemma, there exists a > 0 such that X (h) # 0 and

[[Xa(hj) -X (h)[[ < (3(n + 1) s 1/2)1/2[IX (h)[[ j ,n
a HS a HS (5.4)

Let E (h) Then X (hi) u.*Eu, and Tr E< Thus E has finite rank,
a a 3 3

and by (5.4)

1/21/2lIE- uj*Euj]IHS < (3(n + I) )IIEIIHS k l,...,n

Claim: I[[E,uj]IIHS liE- uj*Euj[IHS Let e } be an orthonormal

* E, uj Thenbasis for H and let Aj uj

(5.5)

lIE uj*Euj I]2HS IIAjII2HS Z (AjAj*e,e)

Z ([E,uj] [E,uj]*uje,uje=)
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ll[E,uj]ll2HS j i, n

(5.1) now follows by the claim, (5.5), the arbitrariness of s and the fact

that N is the span of its unitary group. QED

6. SEMIDISCRETENESS AND PURIFICATION OF FACTOR STATES.

Let A be a C*-algebra acting on a Hilbert space H Let Hc denote the

conjugate Hilbert space with c H
c

a conjugate-linear isometry of H onto

c cc cFor x E B(H) denote by x the element in B(Hc) such that x (x)

EH Let Ac {xc x A } Ac is a C*-subalgebra of B(Hc)

Let be a factor state on A Assume for simplicity that in the Gelfand-

Naimark-Segal construction (@,H,) corresponding to @ is separating for

(A)" Let A Ac denote the algebraic tensor product of A and Ac and

define :A @ Ac by

(a (R) bc) ((a) , % (b))H a A b
c Ac

where & is the modular operator corresponding to the existence of which

follows from Tomita-Takesaki theory. always extends to a state on A (R) Ac
max

if extends to a state on A (R). Ac the spatial tensor product on H (R) H
c

mn

we say that admits _a purification.

Let N be a factor acting on H An early result of Murray and von Neumann

[I] asserts that the homomorphism defined on N @ N’ by :a (R) a’ aa’

is an isomorphism. N is semidiscrete (in the sense of Effros and Lance, [14])

if this isomorphism extends to an isomorphism of N min N’ i.e., if

n n
E a (R) b E a.b H

V a N
j=l J j HH j=l J j l’’’’’an

bl"’’’bn N’

Connes characterizes semidiscreteness in terms of purification of states as follows

([37] Section 2.8):

6.1. PROPOSITION. Let N be a factor on H Then N is semidiscrete if

and only if N has a faithful normal state which admits a purification.

Now, let N be an injective finite factor, with denoting the canonical

trace. is normal and faithful. We claim that admits a purification. To
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see this notice first that the map S induced by the involution and the canonical

trace vector on (N) I, vizo., S:a(1) a*(1) is isometric, since

lla(1)ll
H (a*a) (aa*) lla*(1)ll

Thus, A (S’S) 1/2 I whence for all a (R) b
c N @ Nc

(a (R) bc) ((a) l,(b)l)H
(b*a)

But by Proposition 5.1 and ([37], Section 2.7), we have the following inequality:

n n
I( % b.*a.)l I( % a.b.*)l

j=l ] ] j=l
j

n
-< llj=IY, a.j (R) bjCllHC, V aj,bj E N.

It follows that is bounded on N @ Nc relative to the spatial tensor product

norm, and therefore has an extension to N %in Nc We can now deduce from

Proposition 6.1:

6.2. PROPOSITION. Injective finite factors are semidiscrete.

7. AUTOMORPHISMS OF FACTORS.

Let M be a von Neumann algebra. We set

Aut(M) automorphism group of M (by automorphism, we will always mean

*-automorphism)

Int(M) inner automorphisms of M i.e., the set of all automorphisms of the

form adu: x u*xu x M u a unitary operator in M. This is a

normal subgroup of Aut(M)

Out(M) Aut(M)/Int(M)

p :Aut (M) Out (M) canonical quotient map.

The weak topology on Aut(M) is the topology of point-norm convergence in the

predual M, of M for the action 8() (8-I) i.e., a net 8 of

automorphisms converges weakly to @ Aut(M) if and only if

c -o o I1:o, vq M,.

We set Int M closure of Int(M) in the topology just described.

Let f be a fixed linear functional on M and let a M The linear
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functionals af and fa on M are defined respectively by af:x f(xa)

fa:x f(ax) x 6 M We set [a,f] af fa A bounded sequence {x }CM
n

is centralizing if ll[Xn,]ll-O for all 6 M, An automorphism of M is

centrally trivial if O(Xn) -Xn 0 *-strongly, for tverv, centralizing sequence

{x } of M We set
n

Ct(M) group of all centrally trivial autoorphisms of M

Ct(M) is a normal subgroup of Aut(M)

7. io LEMMA. Int(M) _c Ct(M)

PROOF. We notice first that

(*) if {an is a bounded sequence in M and llanII, llan*ll both tend to 0

for all ( M, then a 0 *-strongly.
n

Let ad u (Int(M) and let {xn} be a centralizing sequence. We must

show that (xn) x 0 *-strongly. Now 8(xn) x [u,x ]u* and setting
n n n

a [u, ]u* it suffices by (*) to show that
n Xn

lira ll[u,x ]il lira II[u Xn]*ll 0 M, (7 I)
n

n n

But [U,Xn]* = [u*,x *] Thus to verify (7.1), it suffices to show that for
n

any unitary u M any centralizing sequence {x } and any ( M, have
n

lim ll[u ]II 0 (7 2)x
n

n

Let M, One verifies by direct computation that for y M

[UXnU*, ](y) [n’ u*u] (u*yu) (7.3)

For 6 M, y M.

[U,Xn](y) (yux
n YXnU) u(yux u* YXn)n

u(yux u* ux u’y) + u(UXnU*Y yxn)n n

[UXnU*,U] (y) + u(UXnU*Y YXn)

[Xn,U] (u*yu) + u(UXnU*Y- yxn) by (7.3) (7.4)

Now,

ux u*y yx ux u*y yu*ux
n n n n

(ux u*yu* yu*UXnU*)Un
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[ux u* yu*]u
n

Therefore,

uq) (UXnU*Y YXn) u2q) ([UXnU*’yu*])
2

-u q) [yu*, UXnU*]
[ux u*,-u2q)] (yu*)

n

-[x u@u] (u’y) by (7 3)n’ (7.5)

Thus by (7.4) and (7.5)

[u,x ]q)(y) [x
n

ou] (u*yu) Ix
n

uqu] (u’y)
n

(7.6)

(7.2) now follows from (7.6) and the fact that {x is centralizing.
n

7.2. LEMMA. Let M be a von Neumann algebra with separable predual.

Then for each 0 Ct(M) -nt M

QED

p(O)p() p()p(O)

PROOF. For M, denote the seminorm x (x*x)
1/2

by II@, Since

is centrally trivial, for each positive integer n there is a neighborhood V of
n

in Aut(M) such that for all unitaries u M with ad u V
n

-nIlO(u) ull -i
< 2

lie(u) ull < 2
-n

o o (e-1-1)
Let W be a decreasing basis of heighborhoods of e in Aut(M) such that

n

W W
-1 c V and II@ o -I o -lll < 2

-2n
Let u be a unitary in M such

n n n n

that ad u W Then 00-I
lim ad(un)_ so we must show that u *(U_)nn n n
n

converges *-strongly to a unitary in M

-i
Let nV Un+lUn* so that Vn WnWn Then

llO(Vn) Vnll -I
< 2-n and therefore

IIO(Vn*)Vn -ill .
o adu

n

< 2 2-n + 2
-n

3 2
-n
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since ad u W Thus
n n

llO(Vn*)V u u
nn n

-n
<3"2

and

llS(Un+l*)Un+ 8(Un*)Unll ll8(Un*)O(Vn*)VnUn e(Un*)nll < 3-2
-n

Also because

and

(Vn+ i Vn+l o
< 2

-n

-I -10-1 2-nI! o (ad 0 (u
n

)) - 0 (0= )11 <

we obtain

JJUn+l*O(Un+l) u*O(u)ll < 3 2
-n

This shows that Un*0(Un) converges *-strongly to a unitary u M such that

ad u -I00-I QED

The relation between Int(M) Int(M), and Ct(M) has a strong bearing on the

structure of M By Lemma 7.2, one always has p(Ct(M)) _c commutant of pC[ M)o

On the other hand, Connes proves the following remarkable theorem:

7.3. THEOREM ([ 9] Theorem 2.2. I) Let M be a factor with separable

predual, and let R denote the hyperfinite factor of type II

are equivalent:

l
The following

(a) M is isomorphic to M(R) R

(b) p(Int M) is nonabelian.

(c) Int M Ct(M)

Moreover, if (a) holds, then p(Ct(M)) commutant of p(Int M)

We now list several theorems which allow us to manipulate Int N and Ct(N)

for a factor N of type II
1

Regretfully we must omit all proofs; for details,

consult the indicated references (all results are due to Connes)o

Let N be a finite factor, the canonical trace on N Recall that N

has pro__p_ert_y

_
of Murray and von Neumann ([4]) if for each finite subset
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Xl,...,xn of N and > 0 there is a unitary u M with (u) 0 and

[u,xj]112 < g j i, n

7.4. THEOREM. ([7], Corollary 3.8) Let N be a II factor with separable

predual. Then

Int(N) # Int N if and only if N has property F

7.5. THEOREM. ([10], Theorem 2.1) Let N be a II factor acting stand-

ardly on H Let K denote the compact operators on H C*(N,N’) the C*-

algebra generated by N and N’ Then

N has property F if and only if C*(N,N’) K (0)

Since N acts standardly on H C*(N,N’) is irreducible. The next theorem

gives a complete characterization of Int N for II factors.

7.6. THEOREM ([i0], Theorem 3.1) Let N be a II factor acting

standardly on H Then Int N if and only if e extends to an automorphism

Aut (C* (N,N’)) such that

IN N’ Identity on N’

7.7. THEOREM. ([10], Corollary 4.4) Let NI,N2 be II 1 factors. Then for

’i Aut (Ni) i 1,2

I (R) 2 Ct(NI (R) N2) if and only if Ct(N
i i

i 1,2.

8. UNIQUENESS OF THE INJECTIVE 111 FACTOR.

In this section, we begin the proof of the main theorem. The proof will end

in Section I0.

8.1 THEOREM. ([I0], Theorem 5.1) All injective factors of type II

acting on a separable Hilbert space are isomorphic.

PROOF. Let N denote an injective II factor acting on a separable Hilbert

space, and acting standardly on H L2(N,) We will show that N is isomorphic

to the hyperfinite lllfactor R.

By Proposition 6o2, N is semidiscrete, ioeo, the mapping D:N e N’ B(H)
n n

given by rl: 7.. a. (R) b. 7. a.b. is isometric as a mapping from B(H (R) H) B(H)
1 1 1 1

1
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Since
n

C*(N,N’) norm closure of 7, a b a N b N’ n Z+i i i i

it follows that extends to an isomorphism of N (R) N’ onto C*(N,N’).
rain

We claim that N and N’ are simple, i.e., they contain no closed, two-

sided ideals. Since N is a finite factor, by [38], Theorem 6.2 N contains

no nonzero maximal ideals. Since every two-sided ideal of N is contained in a

maximal one, we conclude that N is simple. Since N is conjugate-linearly

isomorphic to N’ ([13], Proposition 2.9o2), it follows that N’ is also

simple.

By a theorem of Takesaki ([39] we conclude that N (R) N’ is simple so that
min

C*(N,N’) is simple. Hence if K denotes the (closed, two-sided) ideal of compact

operators on H then C*(N,N’) U K is either (0) or C*(N,N’) Since

I 6 C*(N,N’) and H is infinite-dimensional, C*(N,N’) K # C*(N,N’) so

C*(N,N’) K (0) Thus by Theorems 7.4 and 7.5,

Int(N) # Int N (8.1)

Let o
F

denote the flip automorphism of N (R) N i.e.,

o
F (x (R) y) y (R) x x,y N

We want to show that o
F

Int (N (R) N)

To do this, let M be a standardly acting semidiscrete II factor, and

let 8 Aut(M) Then for all a a
n

M, b ,bn M’

n n
7. aibi[ E a.1 (R) b.lll (M is semidiscrete)

n
7, 8(ai) (R) bil since 8 (R) id extends to

an automorphism of M . M’
m.n

n
7. 8(ai) bill (semidiscreteness again)

This shows that extends to an automorphism a of C*(M,M’) such that

aiM- 8 [M’- identity on M’ Thus by Theorem 7.6, 8 Int M.

We have hence shown that

Aut M Int Mo
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Now by a theorem of Effros and Lance ([14], Proposition 5.6) N (R) N inherits

semidiscreteness from N and standard facts about tensor products imply that

N (R) N is a standardly acting II factor. We hence conclude that Aut (N (R) N)

Int (N (R) N), and so o
F

6 Int (N (R) N)

Since N acts on a separable Hilbert space, so does N (R) N and therefore

N (R) N has separable predual. By Lemma 7.2, p(Ct(N (R) N)) c commutant of

p(Int(N (R) N)) whence by Theorem 7.7,

p(8 (R) l)P(OF) p(oF)p(8 (R) i) V 8 6 Ct(N)

-I
Since OF(8 (R) I)oF

(R) 8 we get

p(l (R) 8) p(oF(8 (R) I)o
F

I) p(8 (R) I)

whence

-I8 (R) 8 Int(N (R) N) (8.2)

Now a theorem of R. Kallman ([40], Corollary 1.14) asserts that if M and

M
2

are yon Neumann algebras, i Aut(Mi) i 1,2 then 81 (R) 82
Int(M (R) M2) if and only if either I Int(Ml) or S

2 Int() Thus by

(8.2), Int(N) Recalling Lemma 7.1, we have thus shown that

Ct(N) Int(N) (8.3)

We conclude from (8.1) and (8.3) that

Ct(N) Int(N) c Int N

so by Theorem 7.3, N is isomorphic to N (R) R

This completes the first major step of the proof of Theorem 8.1. In order

to fully exploit this isomorphism, we must relate N more closely to R (after

all, we are trying to show that N and R are in fact the same) This is done

by embedding N in the ultraproduct R free ultrafilter. We take up

the details in the next section and it is there that Proposition 5.1 plays a

crucial role.

9. EMBEDDINGS OF N IN ULTRAPRODUCTSo

Let Z+ denote the positive integers with the discrete topology. Let
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C
b (Z+) g denote the C*-algebra of bounded sequences. We identify the

Stone-Cech compactification Z+ of Z+ with Mg tL= maximal ideal space

of g Points n Z+ correspond to the homomorphism of evalutaion at n

and free ultrafilters Z+\Z+ correspond to omomorphisms not of this form.

Suppose Z+\Z+ corresponds to Mg Then for a sequence

a } we write lima a if ({ a a.
n n n

Now, let ()kZ+ be a sequence of factors with finite normalized traces

k and let be a free ultrafilter on Z+ On @ iNk the C*-direct sum of

the Nk’S we define the trace

:(xk) lim k(Xk
k-

Let Z kernel of {x @iNk:(x*x) 0 } Z is a closed, two-sided

ideal in @iNk Let

Then ([41], p. 451) NNk
is a yon Neumann algebra with finite normalized trace

00 called the ultraproduct of the Nk’S corresponding __t

Denote by M
c

the ultraproduct formed by countably many copies of the factor

M. We proceed to construct an embedding of N into R

Let Fn denote the free group on the generators gl,...,gn If m Fn
we define the of m as the sum of the absolute values of all exponents

appearing in a reduced presentation of m Let Fk set of all m F of
n

length -< k

Each n -tuple u (Ul,... un) of unitaries defines a unitary representation

u of F as follows: if m F u(m) is the element formed by replacing
n n

each gi occuring in m by u
i

i L,..., n

9.1o LEMMAo Let ul,o.o, Un be unitaries in N For each > 0

there is a finite-dimensional factor Q and unitary operators Vl,..Vn Q

such that
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l(u(m)) (v(m))l < m E F
k

where u -(Ul""’ n-U) v _(Vl,... n-V) and is the normalized trace on
q

Q

PROOF. We first strengthen Proposition 5.1 as follows: given

Xl,...,xn N and s > 0 there exists a finite-rank projection E # 0 on H

such that for j I,..., n

If[E, xj]ll HS
< s IIEIIHS

(x .E,E)
l(xj) ,

To see this, we first claim that there exist unitaries {Ul,..., Um} N

and 6 > 0 such that for any state on N with ll[uj, ]II -< 6 j I, m

one has l(xj) -@(xj)l < j I n For suppose not. Then for each

finite subset o. of unitaries of N and 6 > 0 there is a state o.,6 on N

such that

(ii) Io.,6 (xj) -(xj) >_ for some j E {I,..., n }

If we partially order the set of (o.,6)’s by setting (o.i,61) _< (o.2,62) if

62 then {o., } is a net and so by weak *-compactness ofo.1 c o-
2 and 61 6

the state space of N {o,6} weak *-accumulates at a state of N By

(i), is unitarily invariant, and so But since o.,6 + re(weak*),

we may find o.,6 such that

lo, 5 (xj) (xj)l < e, j I n

contradicting (ii) This verifies the claim.

Now use Proposition 5.1 to find a finite rank projection E # 0 such that for

i I,..., n j I,..., m
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(iii) ll[x
i, E]{IHS < e {{E{{HS

6
(iv) [l[uj, E][[HS < [IE[[HS

We assert that the state on N defined by

(x)
(xE, E)HS Tr (ExE)

llEll 2HS Tr E

satisfies ll[uj, ]II-< 6 j I,..., n This is so because

Tr Euj xu.. *E,u. (x) (uj x uj rr E
3

Tr (Eu.xu.* Eu.u.*)

Tr E

Tr( (uj *Euj x (uj *Euj
Tr E

(xEj E.
3 HS

Tr E E. u.*Eu.
3 3 3

Therefore,

(x) I(xE]*(x) *u. EIHs
3

(xEj ,Ej )HS IIEII2S
-< (I(x(E- Ej), E)HS + I(xEj,E-Ej)HS "IIEII2S

liE EjlIHsIIEII2S (IIEIIHS + IIEjlIHS)

IIxlIIIEII-I 211EIIHS by (iv)
HS

Since [uj, % ](x) (%-%u.) (xuj) x E N we conclude that
3

l[[uj, %][[ -< 6 j i,..., n as asserted. Thus, by the previous claim,

(xjE, E)HS
< e j n(xj.

,,"Z’’2
HS
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which together with (iii) is what we are seeking.

Now, letting 6 s/2k, we may hence find a nonzero finite-rank projection

E such that

II[E,uj]IIHS < 611EIIHS J ,n

(u(m) E,E)
l(u(m)) 2

HS i< s, m F
k

(9.1)

Let E.j u.Eu.*33 then ..IIEj- EIIHS,. < 611EIIHS and, by [i0], Lemma 1.4, there are

unitary operators w.3 B(H) with w.E.w.*33 3
E and llwj. IIIHS.. < 3611EIIHS....

Let v.’ w.u. Then
J 3 J

v.’E Ev.’ llv.’ u < IIEII J n (9 2)
3 3 J j HS HS

Let v. v.’E Ev.’ Then v. is a unitary operator in the finite-dimensional
J 3 J 3

factor Q EB(H)E The normalized trace on Q is given by
q

(xE,E)
(x) HS

x Q2q IIEIIHS
Since for any unitaries a,b B(H) we have

g

llaujb- avj HS HS

we conclude by (9.2) and induction on the length of the word m that

flu(m) v’(m)llHS -< (length of m)-IIEIIHS (9.3)

By (9.2), E commutes with all v so that (v’(m))E v(m) for each word m
3

Thus by (9.3) and the Schwartz inequality for the Hilbert-Schmidt norm,

I(u(m)E,E)Hs (v(m)E,E)HsI < slIEII 2HS m F
k

By (9.1) and the definition of this is what we seek.
q

QED

We are now ready to construct an embedding of N into R The

construction depends on the following extensiorr-lemma of Pearcy and Ringrose
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([15], Lemma I), which we record for the convenience of the reader. (In what

follows,-WOT denotes closure in the weak operator topology)o

9.2. LEMMA. Let Mo be avon Neumann algebra, i a faithful, normal,

positive linear functional on Mo and A. a *-subalgebra of M. such that

A
-WOT

M. i =1,2 Suppose that is an algebraic *-isomorphism from

A onto A2 and that 2 o i on A Then can be extended to a

*-isomorphism of M onto M
2

with 2 o i on M

9.3. LEMMA. For each Z+\Z+ there exists a trace-preserving

*-monomorphism of N into R

PROOF. Let F= denote the free group on countably many generators {gn
Let T

0
denote the normalized trace on R Since N acts separably, it

contains a strongly dense sequence, and so we may find a sequence u } of
n

unitary operators generating N as avon Neumann algebra. Finally, let

F
k _c F be the set of all words involving only gl’’’’’ gk and with length <_ k

Using Lemma 9.1 and the hyperfiniteness of R choose for each k unitaries

k k
Vk in R such that

l(u(m)) o(vk(m))l < m F
k

(9.4)

I, I,... For each j Z+ let v. be thek k k
where v (v v

k

k) Then since each m F belongsunitary in R
e

represented by (vj k Z+
to F

k
for all k sufficiently large, we get, with v (Vl,..., vj,...

(v(m)) lim o(vk(m)) (u(m)) m F (9.5)T
k-o

Let A *-algebra generated by u } For x EX u(m)
n m

let (x) Y.X v(m) If %X u(m) 0 then
m m

Ek (u(m)*u(m’)) 0
m m

whence by (9.5)

%%mXm T0, (v(m)*v(m’)) 0

and so EX v(m) 0 Thus is well-defined. By construction is a
m
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*-homomorphism of A into R which preserves the trace, and is hence monomorphic.

We now apply Lemma 9.2 to to obtain the desired *-monomorphism of N into

R QED

9.4. LEMMA. For any e ( Z+\Z+ there is trace-preserving *-monomorphism

of N (R) N into (N (R) R)
e

such that

(a) For each x ( N (x (R) N) is represented by the constant sequence

(x (R) IR) v Z+
(b) For each y N (1N (R) y) is represented by a sequence of the form

(IN (R) zv)v Z+ Zv R

PROOF. Let I be the unique isomorphism of N into (N (R) R) such that

I (x) (x (R) R) n ( Z+..
x N the isomorphism of Lemma 9.3, and 2

the isomorphism of N into (N (R) R) such that
2
(y) IN (R) (y))

n n Z+,

where ( (Y)n)n Z+
is a representing sequence for (y) in R

c
y N

We claim that x (R) y r (x)r
2

(y) extends to a trace-preserving

*-monomorphism N (R) N (N (R) R) satisfying (a) and (b)

With this definition, it is clear that e satisfies (a) and (b) so

we must show that is well-defined and can be extended as claimed.

Now I and 2 are *-isomorphisms, and so i (R) 2 defines a

*-isomorphism on N (R) N. Since I (N) and 2 (N) are commuting subfactors
min

of (N (R) R) 2(N) c I(N)’ so if "q denotes the rl-isomorphism of

Murray-von Neumann Sec. 6 we have (I(R) 2 N @ N
is thus a

-WOT
well-defined *-monomorphism on N @ N Since (N @ N) N (R) N it

suffices by Lemma 9.2 to show that preserves the trace.

Let trace on N o trace on R Then

((x (R) y)) ( (R) ) [(x (R) (y)n)]( (R) o) o

lim T(x)T
O
( (y)n)

n-+(o
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T(x) lira (n(y)) (x) ((y))o n O e
n-0

(x)(y) (x (R) y) V x, y N

i.e., preserves the trace.
QED

9.5. LEMMA. Let Xl,...,xn N > 0 Then there exist

Zl,...,Zn R and a unitary X N (R) R such that

llxj (R)
R

X(IN
(R) zj)X*ll 2

< j 1 n (9.6)

PROOF. Let :N (R) N (N (R) R) be the isomorphism of Lemma 9.4. As we

saw in Section 8, the flip automorphism o
F Aut(N (R) N) is in Int(N (R) N) so

there is a unitary v N (R) N such that

IIxj (R)
N v(l

N
(R) xj)v*II 2

< j I n (9.7)

Now D preserves the trace and hence the L2-norm. Thus by (9.7)

lls(xj (R) I) (v)S(l (R) xj)(v)*ll 2
< j n (9.8)

Let (Xv)v Z+
be a representing sequence of unitary operators in N (R) R for

X (v) (N (R) R) (the injectivity of is invoked here!) For each j

let (zj(U))D Z+
()be a sequence in R such that (I (R) z. represents

(I (R) xj) Then by (9.8),

lira IIxj (R) 1R xu (IN (R) zj (U))xu,ii2 < j n (9.9)

Since the evaluations at points in Z+ are weak *-dense in Mg it follows

from (9.9) that X and z
(u) (u)

u I ,...,Zn satisfy (9.6) for suitable Z+
I0. THE PROOF OF THEOREM 8.1 COMPLETED.

Recall from Section 2 that a finite factor M satisfies condition C if

for each finite subset {Xl,...,x } of M and s > 0 there exists a finite-
n

dimensional subfactor C of M and Vl, o,Vn in C such that

IIxj vjll 2 < s j n In order to show that N is isomorphic to R



34 S. WRIGHT

it suffices by Theorem 2.1 to verify condition C for N This is what we

now proceed to do.

We saw that N N (R) R in Section 8. Now R M
2

(R) M
2

(R) where

M
2

2 x 2 matrices and the infinite tensor product is taken relative to the

is the normalized trace on M
2

Itproduct state (R)n’ where each n
n

follows that R R (R) R (R) where the infinite tensor product is taken

relative to the infinite tensor product of the canonical trace on R (see [13],

pp. 205-206) Hence we may identify N with N (R) R (R) R (R) It follows

from the definition of the infinite tensor product that N (R) R (R) R (R) contains

an increasing sequence N
k

of subfactors such that

N
k

N (R) R(R) (R) R

k times

c
The relative commutant N

k
of N

k
is N is isomorphic to R (R) R (R) R

c
Also N } is an increasing sequenceThus N (R) R R N

k
(R) N

k

in N (R) R (R) R (R) such that U N
k

is L2-dense, and N
k

N (R) R (R) (R) R N
k

for all k
k times

By the foregoing discussion, we may choose an increasing sequence M
k

of subfactors of N with the following properties:

(i) M
k

N for all k

(ii) U M
k

is L2-dense in N
k

(iii) The relative commutant < of M
k

in N is isomorphic to R, for

all k

(iv) N Mk (R) < for all k

Now, let Xl’’’’’Xn N By (ii), choose k and x

such that

j j 2
(io. i)

By (i) and (iii), there are isomorphisms
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0I: N 02:< R

So we may extend 81 (R) B
2

to an isomorphism of M
k

(R) < N (R) R which

preserves the trace (see the introduction), and hence the L2-norms. Thus, by

identifying M
k

with its image under the isomorphism a l(a) (R)
R

a 6 M
k

we may assume by (iv) that each x.’ has the form m. (R) in some factorization
3 3 R

of N-- M (R) R M N By Lemma 9.5, there exist Zl’’’’’Zn R and a unitary

X M (R) R such that

X(I
N

(R) zj)X*II 2 < j I n (10.2)

Since R is hyperfinite, there is a finite-dimensional subfactor Q of R and

ql,...,qn Q such that

llzj qjll 2 < j I, n (10.3)

Then X( (R) Q)X* is a finite-dimensional subfactor of N M (R) R and by

(10.1)- (10.3),

llxj X(l
M

(R) qj)X*ll 2 < j n

This verifies condition C for N
QED

II. CLASSIFICATION OF INJECTIVE FACTORS OF TYPE II(R), lllk, k [0,I).

With Theorem 8.1 and the fundamental structure Theorems 2.2, 2.3, and 2.4

now at our disposal, the precise structure of injective factors of type II and

III, X E (0,I] can now be deduced in a fairly straightforward fashion.

Recall from Section 2 that R
0

is the hyperfinite II factor R (R) B(H)

where H is a separable Hilbert space.

Ii.i. THEOREM ([I0], Theorem 7.4). All separably acting injective

factors of type II are isomorphic to R
0,I

PROOF. Let M be an injective II factor acting on a separable Hilbert

space H By [4], Theorem IX, we can write M - N (R) B(H) for a separably

acting II factor N M can thus be viewed as the algebra of -X- matrices
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with entries in N The map F (xij) E M Xll defines a projection of norm

of M onto N and composing this with a projection of B(H (R) H) onto M

we see that N is injective. By Theorem 8.1, N is isomorphic to R whence

M is isomorphic to R0, 1 QED

If M } is an increasing family of injective von Neumann algebras, it

M is injective.follows by [14] Proposition 5 7 that the weak closure of Us

Since every finite-dimensional algebra is injective, we conclude that all

hyperfinite von Neumann algebras are injective. Applying Theorem II.i, we deduce

11.2. COROLLARY. All separably acting, hyperfinite, II factors are

isomorphic.

11.3. THEOREM. ([I0], Theorem 7.7). Let E (0, I). All separably

acting injective factors of type lllk are isomorphic to Powers factor Rk
PROOF. Let M be an injective III factor acting on a separable Hilbert

space with discrete decomposition W*(N,e) obtained via Theorem 2.3. We want

to show that N is injective.

By Theorem 2.2 and [28], p. 303, we can find an abelian von Neumann algebra

A and a one-parameter action on A (R) N such that M W*(A (R) N,) By

[28], Theorem 8.1, the fixed point algebra of = on M is precisely A (R) N

Hence, if is an invarient mean on g (R) it is straightforward to verify

that

(E(x),) t(x)’)} x M , H

defines a projection E of norm of M onto A (R) N Since M is injective,

we conclude that A (R) N is injective. Thus by [14], Proposition 5.6, N is

injective.

We conclude by Theorem 11.1 that N is isomorphic to R0, 1
But by [9]

Corollary 6 and [5], Th6orme 4.4.1, Rk is the only IIIk factor the II part

of whose discrete decomposition is isomorphic to R0, Hence M is isomorphic

to Rk QED

11.4. THEOREM ([i0], Theorem 7.5). If M is a separably acting injective
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factor of type III0, then M is a Krieger factor.

PROOF. Let W*(N,8) be a discrete decomposition of M as in Theorem 2.4.

As in the proof of Theorem 11.3, N is injective; however, it is not in general

a factor. On the other hand, it is a direct integral of factors, and each factor

appearing in its direct integral decomposition (except possibly for a set of

measure 0) is injective by [I0], Proposition 6.5 and of type II and hence

isomorphic to R0,1 But these are precisely the hypotheses of [8], Theorem II.I,

which asserts that under these conditions M is a Krieger factor QED

It follows from [30] that injective III0 factors are classified up to

isomorphism by ergodic non-transitive flows. For further details, the reader

can consult [30] [I0], and [37].

The only known injective factor of type III
1

is the factor R of Araki

and Woods (see Section 2). It is not known whether this is the only possible

one.
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