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Abstract—Classification of interbeat interval time-series which fluctuates in an irregular and complex manner is very challenging. 

Typically, entropy methods are employed to quantify the complexity of the time-series for classifying. Traditional entropy methods 

focus on the frequency distribution of all the observations in a time-series. This requires a relatively long time-series with at least 

a couple of thousands of data points, which limits their usages in practical applications. The methods are also sensitive to the 

parameter settings. In this paper, we propose a conceptually new approach called attention entropy, which pays attention only to 

the key observations. Instead of counting the frequency of all observations, it analyzes the frequency distribution of the intervals 

between the key observations in a time-series. The advantages of the attention entropy are that it does not need any parameter 

to tune, is robust to the time-series length, and requires only linear time to compute. Experiments show that it outperforms fourteen 

state-of-the-art entropy methods evaluated by real-world datasets. It achieves average classification accuracy of AUC=0.71 while 

the second-best method, multiscale entropy, achieves AUC=0.62 when classifying four groups of people with a time-series length 

of 100. 

Index Terms—Attention entropy, the complexity-loss, peak points, heart rate variability, HRV, RR interval, interbeat interval, 

time-series, synthetic signals. 

——————————   u   —————————— 

1 INTRODUCTION

IOLOGICAL signals are space, time, or space-time rec-
ords of biological events such as the heart beating or a 

muscle contracting [1]. Biological signals including electro-
encephalogram (EEG) [2], electrocardiogram (ECG) [3], [4], 
electro-oculography (EOG) [5], surface electromyogram 
(sEMG) [6], [7], galvanic skin response (GSR) [8], [9] and 
respiration, are widely used in fields such as clinical dis-
ease diagnosis. 

Living systems exhibit self-regulating mechanisms that 
process inputs with a broad range of characteristics [10], 
[11]. Many biological time-series such as heart rate varia-
bility (HRV) also called interbeat intervals extracted from 
ECG are extremely inhomogeneous, non-stationary, and 
fluctuate in an irregular and complex manner [12]. Fig. 1 
shows four time-series of interbeat intervals from different 
subjects. We can see that they vary in an irregular manner. 
HRV is used to physiological analysis, such as depressive 
disorder analysis [2], stress recognition [13], [14], [15], and 
affective states analysis [16]. There also has been consider-
able interest in quantifying the complexity of HRV to un-
cover hidden information, such as heart failures [17], [18], 
[19] and coronary artery disease [20]. Typical methods such 
as multiscale entropy (MSE) [21] and grouped horizontal 
visibility graph entropy (GHVE) [22] analyze complexity 
by segmenting the signals into equal-length sub-series and 

calculating the entropy based on how frequently the artifi-
cial patterns occur extracted from the sub-series. The pro-
cess of a typical method is illustrated in Fig. 2 (top). Given 
a time-series X, the method segments it into over-lapping 
sub-series of equal length, extracts patterns from the sub-
series, and then calculates the entropy based on the fre-
quencies of the patterns. The result depends on the length 
of the sub-series and the definition of the artificial patterns. 

 

 

Fig. 1. Interbeat interval time-series from a young subject with age ≤ 
55, an elderly subject with age > 55, a subject with congestive heart 
failure (CHF), and a subject with atrial fibrillation (AF). 

There are three main challenges with typical entropy 
methods. One is that the patterns in the time-series data 
must be complex enough to be able to model the data. 
Therefore, it requires a lot of data to populate all histogram 
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bins to obtain a dense histogram. Typical entropy methods 
need a time-series length of at least 30,000 samples to 
model the data [21]. This takes more than 30 minutes to 
collect which induces high cost in the clinical diagnosis 
and therefore limits their usage in the real-world applica-
tions.  

The second challenge is that it can take considerable 
time to extract the patterns. Most methods require O(𝑚#𝑛%) 
time, where m is the dimension of the vector (see Section 
2), n is the time-series length, and a, b >1. This is a dilemma 
as the methods need a lot of data to calculate reliable en-
tropy value, but having more data means also more time 
required. This prevents the use of the methods from large-
scale data.  

The third challenge is that the artificial patterns also lack 
clear intuitive interpretation. As a result, the patterns have 
no direct analytical capability which limits its contribution 
to the medical analysis of different diseases. 

To overcome these challenges, we propose a conceptu-
ally new method called attention entropy, which pays atten-
tion only to the key observations and focuses on how reg-
ularly they repeat in the time-series. Fig. 2 (bottom) illus-
trates the process of computing the attention entropy. 
Given a time-series X, attention entropy extracts the key 
patterns and uses the intervals between the key patterns to 
calculate the entropy value. 

 

 

Fig. 2. Main process of calculating the entropy of series. 

2 ENTROPY METHODS 

Entropy is a quantitative measure of the randomness and 
disorder of a system. Rudolf Clausius [23] was the first to 
introduce a mathematical version of the concept to meas-
ure the proportion of heat energy transferred from a body 
to another. Boltzmann and Gibbs [24], [25] extended the 
concept into statistical mechanics to model the molecular 
disorder and chaos. Shannon later defined the entropy as 
the smallest size that a message can be encoded without 
loss [26]. In this section, we review the entropy measures 
that are most relevant to our study. 

2.1 Existing methods 

The process of typical entropy methods has four compo-
nents as summarized in Fig. 3: (1) convert the original se-
ries into another series; (2) construct the sub-series; (3) ex-
tract the patterns from the sub-series; (4) analyze the fre-
quency distribution of the patterns. Different entropy 
methods are based on the different combinations of these 
four components, as summarized in Table 1.  

From Table 1, we can see some entropy methods convert 
the original series into another series and then segment the 
converted series into sub-series to extract patterns. For ex-
ample, spectral entropy [27], average entropy [28], and 
MSE [21] convert the series using the discrete Fourier 

transform [27], the grid [28], and the coarse-graining func-
tion [21], respectively. 

We can also see that there are three typical methods to 
construct the sub-series: single value, template vector, and 
delay vector. They can be formed as 𝑧'

(,* = [ 𝑥', 𝑥',*, . . . , 
𝑥',((./)*] for 1 ≤ i ≤ n–(m-1)𝜏, where 𝜏 is the time delay, and 
m is the dimension of the vector, given a finite time-series 
X = 𝑥/, . . . , 𝑥2 with the length n. Single value is the case of 
𝑧'
(,* with m = 1 and 𝜏 = 0. Template vector is the case of 𝑧'

(,* 
with m > 1 and 𝜏	= 1. Delay vector is the case of 𝑧'

(,* with 
m > 1 and 𝜏	> 0.  

 

 
Fig. 3. Typical components of entropy methods. 

TABLE 1 Summary of Entropy Methods 

Entropy methods 
Convert 

series 
Sub-series Patterns 

Fre-

quency 

of… 

Shannon [26] 

NO 

Single  

value 

Single  

value 

Patterns 

Rényi [29] 

Tsallis [30] 

Permutation [31] 

Template 

vector 

Permutation 

Approximate [33] Similar template 

vectors Sample [34] 

Bubble [35] Swaps 

Horizontal  

visibility [36] 
Visibility graph 

Grouped horizon-

tal visibility [22] 

Grouped  

visibility graph 

SVDE [38] 
Delay 

vector 

Singular values 

Edge  

permutation [32] 
Permutation 

Spectral [27] 

YES 

Single 

value 

Single  

value Average [28] 

Multiscale [21] 
Template 

vector 

Similar template 

vectors 

Attention (new) NO - Peak points Intervals 

 
Different entropy methods have major difference in the 

way they extract the patterns from the sub-series. Shannon 
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entropy [26], Rényi entropy [29], Tsallis entropy [30], spec-
tral entropy [27], and average entropy [28] use the values 
directly. Permutation entropy [31] and edge permutation 
entropy (EPE) [32] use the permutations of the rankings of 
each value in the template vectors as the patterns. Approx-
imate entropy [33], sample entropy [34], and multiscale en-
tropy [21] use similar template vectors as the patterns. Bub-
ble entropy [35] uses the swaps of sorting sub-series with 
bubble sort algorithm as the patterns. Horizontal visibility 
entropy (HVE) [36] uses visibility graphs [37] and GHVE 
[22] uses grouped visibility graphs as the patterns. The sin-
gular value decomposition entropy (SVDE) [38] uses the 
singular values obtained by performing singular value de-
composition on the embedding space spanned by the delay 
vectors as the patterns. 

Once the patterns are defined, the entropy values will 
be calculated by analyzing the frequency distribution of 
these patterns. Approximate entropy [33] and sample en-
tropy [34] analyze the frequency distribution of the pat-
terns defined with m and m+1 dimensional template vec-
tor, respectively. They calculate the entropy value from the 
difference of these two distributions. 

From Table 1, we can also see that the proposed atten-
tion entropy does not need to convert the series. It uses peak 
points in the series as the patterns. It analyzes the frequency 
distribution of patterns’ intervals, which will be discussed 
in Section 3. 

2.2 Discussion 

Each method introduced above has its advantages and dis-
advantages. Shannon entropy [26], Rényi entropy [29], and 
average entropy [28] can be applied globally to all data, or 
locally only to points around specific points [39]. However, 
they ignore the temporal order of the patterns in the signal 
[40].  

Permutation entropy [31] and edge permutation en-
tropy [32] use the temporal information [39], but they rely 
on the occurrence of equal values in the sub-series [41]. Ap-
proximate entropy [33] has the advantage of lower compu-
tational demand and less effect from noise, but it strongly 
depends on the time-series length and therefore lacks con-
sistency [40]. Sample entropy [34] is invariant to the time-
series length and it performs more consistently under var-
ious conditions. However, it has a strong dependency on 
the input parameters [39].  

Bubble entropy [35] and GHVE [22] are not sensitive to 
the parameter settings. However, they have high computa-
tional costs, and therefore, they are not practical for large-
scale data [35], [36].  

MSE [21] is capable of discovering the multiscale feature 
of data but it requires long time-series to work. SVDE [38] 
allows analyzing even very short and non-stationary data, 
but it has high computational costs when applied to large-
scale data [38]. Spectral entropy [27] has the advantage of 
simplicity, but it is sensitive to noise and relies on the as-
sumption that the data error is independent of time [27].  

3 ATTENTION ENTROPY 

To overcome the shortcomings of the typical entropy meth-
ods, we propose attention entropy. We first introduce the 
general principle and then give a suggestion of how to se-
lect the key patterns. 

3.1 The general principle of attention entropy 

Attention entropy is calculated in three main steps: (1) de-
fine the key patterns; (2) calculate the intervals between 
two adjacent key patterns; (3) calculate Shannon entropy 
of intervals. The difference between classical entropy 
methods and attention entropy is demonstrated in Fig. 4. 
Classical frequency-based entropy methods cannot sepa-
rate Series 1 and 2, as both have the same frequency distri-
bution of the patterns. Attention entropy can do it because 
the distribution of the intervals of the key patterns (Apple) 
in the series are different. 

Formally, given a finite series X, we first define the key 
pattern 𝛺. Second, we calculate the intervals 𝐼6 = {v | v = 
j-i} for any given sub-series 𝑢', 𝑢8, and 𝑢9 of X which satisfy 
that 𝑢'  and 𝑢9  match in the pattern 𝛺 , but 𝑢8  does not 
match in 𝛺 for any i < k < j. We finally calculate Shannon 
entropy over 𝐼: as the attention entropy. 

 

 

Fig. 4 Difference between attention entropy and other entropies. 

3.2 Peak points as the key patterns 

We define a point 𝑥' as a peak point, including local maxima 
and local minima , if it satisfies one of the conditions below: 

• 𝑥'./ < 𝑥' and 𝑥' > 𝑥',/ (𝑥' is defined as local maxima) 

• 𝑥' < 𝑥'./ and 𝑥' < 𝑥',/ (𝑥' is defined as local minima) 

If each point in a time-series is considered as one state of a 
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system, the change of the state can then be seen as the sys-
tem’s adjustment to the environment. A complex system is 
expected to have a complex process of the state changes 
when adapting to the environment. The peak points repre-
sent the local upper and lower bounds of the state changes. 
This makes them as the potential key patterns.  

A time-series then can be represented by the series of the 
peak points. We then calculate the intervals between two 
successive peak points. We consider four cases:  

• Intervals of local maxima to local maxima (Max-Max) 

• Intervals of local minima to local minima (Min-Min) 

• Intervals of local maxima to local minima (Max-Min) 

• Intervals of local minima to local maxima (Min-Max) 

We can use any one of these four cases individually by 
calculating the entropy of the respective interval distribu-
tion. We can also merge the results by analyzing the four 
distributions separately and then taking the average of the 
four individual entropy values. In the rest of the paper, we 
use this merging strategy as our recommended method 
and denote it as Average-4. 

Fig. 5 shows an example of how to calculate the atten-
tion entropy when defining peak points as the key pat-
terns. In general, the individual entropy values are not ex-
pected to differ much from each other. In most cases, the 
result is about the same regardless which of the four cases 
we use. However, using all the four cases brings two addi-
tional benefits. First, it can smooth possible abnormalities 
in the data. Second, we have four times more data. This can 
potentially make the method work with shorter time-se-
ries. 

 

 

Fig. 5 A simulated time-series {𝑥;, . . ., 𝑥<;} to illustrate the procedure 
of calculating attention entropy. First, we find local minima (circle 
points): {𝑥/, 𝑥=, 𝑥/>,	𝑥/?} and local maxima (squared points): {𝑥@, 𝑥A, 
𝑥/B,	𝑥/A}. Second, we calculate the intervals of Max-Max, Min-Min, 
Max-Min, Min-Max: {5, 6, 4}, {5, 7, 4}, {2, 4, 2}, and {3, 3, 2， 2}. Third, 

we calculate their Shannon entropies: 1.58, 1.58, 0.92, and 1.01. Fi-
nally, the attention entropy is calculated as the average of these four 

entropy values: 1.27. 

Fig. 6 shows the expected behavior of the attention en-
tropy; it increases with increasing the randomness of peak 
points. Fig. 7 shows sample distributions of the intervals 
among peak points of the four different subjects from Fig. 
1. We can see that all intervals of AF are smaller than 10 
and the distribution of AF always concentrates on the 
lower values, leading to low entropy. Some intervals of 
CHF are bigger than 10 but all of that are smaller than 20, 
and the distribution of CHF drops faster than young and 
elderly. The difference between the distributions of young 
and elderly is less visible from the graphs, but the average 
of the four entropy values, however, makes the distraction 
clear (young=2.68, elderly=2.25).  
 

 

Fig. 6 The more randomly the peaks “^” and “v” appear, the greater is 
the attention entropy. 

Algorithm 1: AttentionEntropy(X, 𝛺) 

Input: X: Time-series of length n, 𝛺:	key patterns 
Output: E: Entropy value 
FOR i = 1 TO n: 
   IF matchKeyPatterns(𝑥' , 𝛺) THEN: 

   interval = i - previous 
   𝐹'2EFGH#I= 	𝐹'2EFGH#I+ 1 
   previous = i 

E= calculateShannonEntropy(F) 

3.3 Implementation  

Implementation of attention entropy is shown in Algo-
rithm 1. It requires O(n) time, where n is the length of time-
series X. The algorithm contains the following steps:  

(1) Detect whether the point is a key pattern; 
(2) Calculate the interval between two key patterns;  
(3) Count the frequencies of all intervals; 
(4) Calculate Shannon entropy over frequencies of all 
intervals. 

When a point 𝑥' is detected as a key pattern, we calculate 
the interval as i – j, where 𝑥9 is the previous key pattern be-
fore 𝑥'. We store the counts of the interval values to 𝐹'2EFGH#I. 
Once the algorithm has analyzed all the points, it then cal-
culates the Shannon entropy over the frequency distribu-
tion of the intervals.  
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Fig. 7 Frequency distributions of the intervals between points of four subjects from Fig. 1. The numbers are the attention entropy values. The 
average entropies (Average-4) are: Young=2.82, Elderly=2.68, CHF=2.25, AF=1.49.

Similar to Algorithm 1, Average-4 is implemented by 
checking the peak point type (local maxima or local min-
ima) and updating the respective frequency histogram. 
Thus, the original O(n) time complexity still remains. Both 
Algorithm 1 and Average-4 require extra space for storing 
the frequency histograms, which is upper limited by O(n). 

4 EXPERIMENTAL SETUP 

Datasets: we first tested with simulated Gaussian distrib-
uted white and 1/f noises [42]-[45], and then tested with 
real-world data of healthy and pathological subjects: the 
interbeat intervals dataset which is downloaded from 
PhysioNet [46]. There are 72 healthy subjects divided into 
two groups: subjects with age  55 (young) and subjects 
with age >55 (elderly). There are also 44 subjects with con-
gestive heart failure (CHF), and 24 subjects with atrial fibril-
lation (AF). The information about the dataset is shown in 
Table 2, and the selected sub-series of different subjects are 
shown in Fig. 1. The length is the number of samples in the 
time-series with a sampling frequency of 128 Hz for young, 

elderly, and part of CHF and 250 Hz for AF and part of CHF 

[46]. 
 

TABLE 2. Dataset Information 

Group Instance Min. length Avg. length Max. length 

Young 26 75,100 101,277 126,945 

Elderly 46 76,926 106,234 136,527 

CHF 44 74,985 111,144 147,879 

AF 24 34,837 48,701 61,915 

 
Define key patterns: we used the peak points introduced 
in Section 3 as key patterns. The same attention entropy 
(Average-4) calculation illustrated in Fig. 5 was applied to 
the experiments.  
Baseline methods: we compared the proposed method to 
all the entropy methods in Table 1. We used the parameters 
suggested from the original paper of each method.  
Measurements: we used the analysis of variance 
(ANOVA) [47] and the area under the receiver operating 
characteristic curve (ROC AUC) [48] as the measurements. 
ANOVA can determine if the means of groups of data are 
significantly different from each other. ANOVA outcomes 
a p-value, and if the p-value is below the threshold chosen 
for statistical significance (usually 0.1, 0.05, or 0.01), there 
are significant differences among the groups. The idea of 

receiver operating characteristic (ROC) curve is to plot the 
true-positive rate against the false-positive rate over the 
ranked entropy values at various threshold values. The 
area under the ROC curve (ROC AUC) serves as the accu-
racy evaluation ranging from 0 to 1. The value 1 corre-
sponds to a perfect classification result. 

5 RESULTS 

5.1 Simulated white and 1/ f noises 

We applied the attention entropy method to the simulated 
Gaussian distributed white and 1/f noises, and the results 
are shown in Fig. 8. We can see that the attention entropy 
values of 1/f noise are significantly higher (p-value < 0.01) 
than white noise. This result is consistent with the fact that, 
unlike white noise, 1/f noise contains complex structures 
[42], [43]. 
 

 

Fig. 8 Attention entropy analysis of 30 simulated Gaussian distributed 
(mean zero, variance one) white and 1/f noise time-series. Symbols 
represent the mean values of entropy, and bars represent the stand-
ard error (SE =standard deviation / 𝑛, where n is the number of sub-
jects). 

5.2 Real-world heart-rate data 

We next tested the interbeat interval time-series dataset 
with time-series length=100. The p-value results are shown 
in Table 3. We used the star symbol (*) to mark the results 
that are statistically significant (p-values<0.01). We can see 
that the results of attention entropy are statistically signifi-
cant in all the important cases of separating healthy and 
non-healthy subjects. The differences of the entropy values 
in case of young-vs-elderly and CHF-vs-AF are as we ex-
pected but not statistically significant. The possible reason  
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TABLE 3 P-value Results  

Time-series 

length 

Entropy 

methods 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per. 

[31] 

App. 

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave. 

[28] 

MSE  

[21] 

Atten-

tion 

100 

Young, Elderly 0.115 0.159 0.213 0.484 0.376 0.570 0.516 0.922 0.060 0.335 0.482 0.212 0.040 0.463 0.021 

Young, CHF 0.001* 0.001* 0.002* 0.352 0.318 0.029 0.139 0.006* <0.001* 0.037 0.343 0.003* 0.002* 0.017 <0.001* 

Young, AF 0.019 0.025 0.109 <0.001* 0.856 0.025 0.754 0.020 0.015 <0.001* <0.001* 0.011 0.064 <0.001* <0.001* 

Elderly, CHF 0.012 0.006* 0.002* 0.675 0.705 0.060 0.307 0.030 0.018 0.002* 0.663 <0.001* 0.143 0.025 0.007* 

Elderly, AF <0.001* <0.001* 0.003* 0.002* 0.572 0.059 0.334 0.094 0.347 <0.001* 0.002* <0.001* <0.001* <0.001* 0.001* 

CHF, AF <0.001* <0.001* <0.001* 0.021 0.463 0.785 0.086 0.970 0.250 0.026 0.022 0.967 <0.001* 0.116 0.116 

AVG. 0.025 0.032 0.055 0.256 0.548 0.255 0.356 0.34 0.115 0.067 0.252 0.199 0.042 0.104 0.024 

Stars 3 4 4 2 0 0 0 1 1 3 2 3 3 2 4 

1000 

Young, Elderly 0.226 0.151 0.212 0.087 0.477 0.546 0.463 0.716 0.018 0.422 0.086 0.575 0.151 0.211 <0.001* 

Young, CHF <0.001* <0.001* <0.001* 0.175 0.798 0.902 0.096 0.014 <0.001* 0.077 0.165 <0.001* 0.012 <0.001* <0.001* 

Young, AF 0.104 0.233 0.771 <0.001* 0.361 0.149 0.909 0.315 <0.001* <0.001* <0.001* <0.001* 0.039 <0.001* <0.001* 

Elderly, CHF <0.001* <0.001* <0.001* 0.827 0.714 0.679 0.235 0.004* <0.001* 0.006* 0.797 <0.001* 0.098 <0.001* <0.001* 

Elderly, AF 0.005* 0.014 0.174 0.005* 0.101 0.022 0.393 0.304 <0.001* <0.001* 0.004* <0.001* 0.001* <0.001* <0.001* 

CHF, AF <0.001* <0.001* 0.001* 0.042 0.239 0.093 0.080 0.344 0.591 0.020 0.043 0.014 <0.001* 0.148 0.004* 

AVG. 0.056 0.066 0.193 0.19 0.448 0.398 0.362 0.283 0.101 0.087 0.183 0.098 0.05 0.06 0.001 

Stars 4 3 3 2 0 0 0 1 4 3 2 4 2 4 6 

10000 

Young, Elderly 0.145 0.105 0.187 0.009* <0.001* <0.001* 0.953 0.857 <0.001* 0.345 0.008* 0.830 <0.001* <0.001* <0.001* 

Young, CHF <0.001* <0.001* <0.001* 0.128 0.018 0.013 0.130 0.098 <0.001* 0.042 0.120 <0.001* 0.004* <0.001* <0.001* 

Young, AF <0.001* 0.008* 0.052 <0.001* 0.812 0.383 0.545 0.071 <0.001* <0.001* <0.001* <0.001* 0.013 <0.001* <0.001* 

Elderly, CHF <0.001* <0.001* <0.001* 0.564 0.075 0.223 0.090 0.065 0.001* 0.001* 0.583 <0.001* 0.883 0.249 0.038 

Elderly, AF <0.001* <0.001* 0.001* <0.001* 0.004* 0.082 0.572 0.040 0.377 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 

CHF, AF <0.001* <0.001* <0.001* 0.001* 0.124 0.401 0.046 0.572 0.127 <0.001* 0.001* 0.019 <0.001* 0.014 0.004* 

AVG. 0.024 0.019 0.040 0.117 0.172 0.184 0.389 0.284 0.084 0.065 0.119 0.141 0.15 0.044 0.007 

Stars 5 5 4 4 2 1 0 0 4 4 4 4 4 4 5 

The “*’ symbol means the p-values <0.01. 

 

TABLE 4 ROC AUC Results 

Time-series 

length 

Entropy  

methods 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per.  

[31] 

App. 

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave. 

[28] 

MSE  

[21] 

Atten-

tion 

100 

Young, Elderly 0.63 0.63 0.63 0.43 0.58 0.56 0.56 0.45 0.62 0.73 0.43 0.58 0.65 0.52 0.68 

Young, CHF 0.75 0.76 0.76 0.36 0.56 0.67 0.61 0.32 0.74 0.40 0.36 0.29 0.73 0.62 0.78 

Young, AF 0.36 0.36 0.36 0.17 0.55 0.71 0.54 0.34 0.68 0.20 0.17 0.26 0.39 0.71 0.85 

Elderly, CHF 0.65 0.65 0.66 0.43 0.53 0.63 0.55 0.38 0.65 0.30 0.43 0.24 0.60 0.59 0.67 

Elderly, AF 0.27 0.27 0.27 0.22 0.47 0.66 0.51 0.41 0.56 0.12 0.22 0.25 0.29 0.68 0.72 

CHF, AF 0.18 0.18 0.19 0.29 0.45 0.50 0.48 0.53 0.41 0.34 0.29 0.50 0.23 0.60 0.56 

AVG. 0.47 0.47 0.48 0.32 0.52 0.62 0.54 0.41 0.61 0.35 0.31 0.35 0.48 0.62 0.71 

SD 0.23 1.16 0.16 0.11 0.05 0.08 0.04 0.08 0.11 0.21 0.11 0.15 0.21 0.07 0.10 

1000 

Young, Elderly 0.59 0.61 0.60 0.35 0.55 0.52 0.55 0.53 0.68 0.61 0.35 0.54 0.63 0.60 0.77 

Young, CHF 0.75 0.77 0.77 0.33 0.51 0.52 0.61 0.30 0.88 0.46 0.33 0.22 0.73 0.80 0.90 

Young, AF 0.38 0.42 0.42 0.15 0.43 0.40 0.46 0.27 0.85 0.19 0.15 0.06 0.41 0.87 0.96 

Elderly, CHF 0.70 0.72 0.72 0.43 0.48 0.49 0.57 0.27 0.80 0.39 0.43 0.21 0.66 0.77 0.71 

Elderly, AF 0.33 0.35 0.35 0.22 0.41 0.38 0.40 0.25 0.81 0.16 0.22 0.08 0.33 0.88 0.82 

CHF, AF 0.21 0.21 0.21 0.30 0.42 0.41 0.34 0.44 0.57 0.30 0.30 0.33 0.24 0.62 0.67 

AVG. 0.49 0.56 0.56 0.30 0.47 0.45 0.49 0.34 0.77 0.35 0.30 0.24 0.50 0.76 0.81 

SD 0.22 0.18 0.18 0.10 0.06 0.06 0.11 0.11 0.12 0.17 0.10 0.18 0.20 0.12 0.11 

10000 

Young, Elderly 0.59 0.61 0.60 0.30 0.79 0.77 0.49 0.52 0.85 0.60 0.30 0.53 0.79 0.82 0.80 

Young, CHF 0.75 0.80 0.79 0.32 0.69 0.69 0.55 0.35 0.92 0.40 0.32 0.16 0.76 0.83 0.87 

Young, AF 0.22 0.30 0.28 0.10 0.62 0.67 0.48 0.27 0.79 0.05 0.10 0.03 0.32 0.95 0.94 

Elderly, CHF 0.71 0.74 0.74 0.49 0.42 0.45 0.56 0.35 0.70 0.37 0.48 0.17 0.54 0.60 0.61 

Elderly, AF 0.18 0.26 0.24 0.19 0.35 0.45 0.49 0.27 0.58 0.04 0.19 0.05 0.18 0.77 0.80 

CHF, AF 0.12 0.15 0.14 0.20 0.42 0.49 0.43 0.39 0.40 0.21 0.20 0.31 0.19 0.67 0.71 

AVG. 0.43 0.54 0.54 0.27 0.55 0.59 0.50 0.36 0.71 0.28 0.26 0.21 0.46 0.77 0.79 

SD 0.29 0.16 0.16 0.14 0.18 0.14 0.05 0.09 0.19 0.22 0.13 0.19 0.27 0.12 0.12 
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is that the number of samples in the data is too small for 
this. Attention entropy is the only method capable to sep-
arate all six groups when time-series length = 1000 so that 
the result is statistically significant (p-values <0.01). 

Another measurement of the results of classifying bi-
nary groups is shown in the AUC in Table 4. We can see 
that attention entropy outperforms other entropy methods 
on average (AUC: 0.71 vs. 0.62 with time-series length = 
100, 0.81 vs. 0.77 with time-series length = 1000, 0.79 vs. 
0.77 with time-series length = 10000). This indicates that 
the attention entropy is more powerful to separate the 
groups than the other methods are. It gives evidence that 
analyzing the frequencies of the intervals between patterns 
is more beneficial than analyzing the frequencies of pat-
terns, especially when the time-series length is short, for 
example, 100. 

5.3 Effect of the time-series length 

We studied the effect of the time-series length and the re-
sults are summarized in Table 3, Table 4 and Fig. 9. From 
Table 3 and Table 4, we can see that, except for the case of 
CHF-and-AF with the times-series length of 100 (p-value = 
0.116) and the case of elderly-and-CHF with the time-series 
length of 10000 (p-value = 0.038), the attention entropy val-
ues between each group are always statistically and signif-
icantly different (p-values < 0.01). This indicates that the 
attention entropy can differentiate the groups at the same 
time very well and is robust to the time-series length. How-
ever, all the other methods are sensitive to the length of the 
time-series. 

 

 

Fig. 9 Attention entropy analysis of interbeat intervals time-series de-
rived from healthy subjects with age ≤55 (young), healthy subjects 
with age >55 (elderly), subjects with congestive heart failure (CHF), 
and subjects with atrial fibrillation (AF). Symbols represent the mean 
values of entropies, and bars represent the standard error (SE 
=standard deviation / 𝑛, where n is the number of subjects). 

From Fig. 9, we found that, regardless of the time-series 
length, the attention entropy values decrease by following 
the order: entropy (young) > entropy (elderly) > entropy 
(CHF) > entropy (AF). These results are consistent with the 
concept that the cardiac dynamics of healthy young sub-
jects are the most complex [43] and provide stronger sup-
port for the hypothesized complexity-loss of aging and disease 
theory [49] than multiscale entropy. The attention entropy 
method reflects the regularity of repeating patterns of sig-
nals and plays more critical roles behind the complexity-

loss of aging and disease. The regularity-loss ignored by 
conventional entropy methods is explicitly addressed by 
the attention entropy. 

5.4 Intervals between peak points 

To study the intervals among peak points further, we 
tested the intervals between local maxima and local max-
ima (Max-Max intervals), the intervals between local min-
ima and local minima (Min-Min intervals), the intervals be-
tween local maxima and local minima (Max-Min intervals 
and Min-Max intervals). We calculated Shannon entropy of 
these four intervals and the average of Shannon entropy of 
these four intervals (Average-4). The AUC results are sum-
marized in Table 5. We can see that the choice of the inter-
val does not matter regardless of which time-series length 
is used. To simplify the choice, we recommend using Aver-
age-4 by default. 

 
TABLE 5 Average AUC of Binary Groups 

Time-series length 100 1000 10000 

Max-Max 0.68 0.81 0.80 

Min-Min 0.71 0.80 0.78 

Max-Min 0.64 0.75 0.75 

Min-Max 0.68 0.75 0.76 

Average-4 0.72 0.81 0.79 

5.5 Compared with basic statistics 

Basic statistics such as mean, standard deviation, root 
mean square, and the number of pairs of successive inter-
beat intervals that differ by more than 50 ms (NN50 de-
fined in [50]) are also used to analyze the interbeat time-
series [50]. We make comparison with attention entropy 
and the results are summarized in Table 6. We can see at-
tention entropy outperforms all basic statistics regardless 
of the time-series length. 
 

TABLE 6 Average AUC of Binary Groups 

Time-series length 100 1000 10000 

Attention entropy 0.72 0.79 0.78 

Mean 0.57 0.56 0.54 

Root mean square 0.58 0.56 0.54 

Standard deviation 0.61 0.48 0.55 

NN50 0.57 0.63 0.58 

 

 

Fig. 10 Effects of different amounts of Gaussian distributed white 
noise on attention entropy curves. SNR corresponds to a single-noise-
ratio. The attention entropy curve labeled original corresponds to the 
attention entropy results for the interbeat intervals from a healthy sub-
ject. 
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5.6 Effect of noise and outliers 

The result of an experiment may be affected by the type of 
noise. Here, we discuss the effects of superimposing uncor-
related (Gaussian distributed white) noise on a physiologic 
time-series. Fig. 10 shows that the attention entropy 
method is sensitive to the noise. The same observation in 
Fig. 11 holds for the effects of outliers. This is because noise 
and outliers affect the key patterns, namely the peak 
points.  
 

 

Fig. 11 Contour plot showing how the percentage of outliers and their 
amplitude (relative to the mean value of the time-series) affect the at-
tention entropy. 

 

Fig. 12 Log-log plot of running time over time-series in Table 7. 

5.7 Computational complexity 

Attention entropy takes O(n) time, where n is the time-se-
ries length. To measure the actual processing time of the 
algorithm, the algorithm was implemented in Python 3.7, 

 

1 http://cs.uef.fi/sipu/soft/attention_entropy.py 

which can be found from the web 1 and tested using PC 
with CPU Intel Core i7, 16GB RAM, and clock frequency 
2.3 GHz. Fig. 12 and Table 7 show the relationship between 
the running time and the time-series length of one young 
subject. We can see that with the increase of the time-series 
length, attention entropy requires much less computing 
time than most of the competing entropy methods, includ-
ing the competitive MSE [21]. 

5.8 Discussion 

In this section, we discuss the potential usability of the 
method in affective computing, its limitations, and the 
threats to the validity of the results of the proposed 
method. Many methods based on HRV have been devel-
oped for affective state analysis. This is because plenty of 
affective computing researches consider that specific emo-
tional states can elicit changes in the autonomic nervous 
system, which can be exactly monitored by HRV analyses 
as shown by studies over the decades. However, quantify-
ing HRV with entropy-based methods has been rarely 
used for affective analysis although it has been widely 
adopted in many tasks such as disease detection and clas-
sification. This may be because conventional entropy 
methods were proposed for long-term HRV analysis as in-
troduced in Section 2, therefore, they were not applicable 
to short duration HRV analysis. This obstacle is expected 
to be removed by attention entropy, which can work well 
with short duration HRV signals and, therefore, can be po-
tentially applied to affective state analysis. Moreover, at-
tention entropy may be able to capture the change of affec-
tive states in a timely manner considering its advantage of 
requiring linear time complexity. 

One limitation of the proposed method is that it needs 
to define key patterns in advance. The limitation of using 
peak points as key patterns is that it is sensitive to outliers 
and noise. The key patterns may be application-specific, 
which may be a threat to the validity of the results. How-
ever, these threats may be overcome by defining different 
key patterns and combining the results from multiple key 
patterns; future work could explore this strategy. The 
mechanisms behind the key patterns such as peak points 
could also be explored in future work. 

 6. CONCLUSION 

A novel complexity analysis method called attention 
entropy is proposed, which does not need any parameter 
tuning when using peak points as key patterns. It has lin-
ear time complexity and is robust to the time-series length. 
We compared it to fourteen state-of-the-art complexity 
analysis methods with real-world datasets. The results 
show that attention entropy outperforms all the compared 
methods and is the only method to be able to separate all 
groups with statistical significance using time-series length 
of 1000. This shows attention entropy has higher discrimi-
nation power in short duration HRV signals and has po-
tential in other tasks such as affective computing. Future 
work could uncover more key patterns and the hidden 
mechanisms behind them.  
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TABLE 7 Running Time over Time-Series Length (Milliseconds). 

Time-series 

length 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per.  

[31] 

App.  

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave.  

[28] 

MSE  

[21] 

Attention 

100 <1 <1 <1 59 68 50 78 85 91 206 1 41 <1 <1 <1 

1000 3 5 5 60 74 53 7714 8763 253 206 5 42 5 2 2 

10000 36 77 75 67 254 237 795821 885471 1935 223 523 43 44 160 16 

100000 636 1328 1374 133 7599 8236 >1h >1h 19019 229 5001 106 448 16404 166 
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