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Abstract—In our previous work, we have shown that the
detectability of landmines can be improved dramatically by the
careful application of signal detection theory to time-domain
electromagnetic induction (EMI) data using a purely statistical
approach. In this paper, classification of various metallic land-
mine-like targets via signal detection theory is investigated using a
prototype wideband frequency-domain EMI sensor. An algorithm
that incorporates both a theoretical model of the response of
such a sensor and the uncertainties regarding the target/sensor
orientation is developed. This allows the algorithms to be trained
without an extensive data collection. The performance of this
approach is evaluated using both simulated and experimental
data. The results show that this approach affords substantial
classification performance gains over a standard approach, which
utilizes the signature obtained when the sensor is centered over
the target and located at the mean expected target/sensor distance,
and thus ignores the uncertainties inherent in the problem. On the
average, a 60% improvement is obtained.

Index Terms—Bayes procedures, electromagnetic induction, ob-
ject detection, pattern classification.

I. INTRODUCTION

A PERSISTENT problem with traditional narrowband EMI
sensors involves not just detection of metal objects, but

discrimination of targets from clutter. In most fielded sensors,
the energy in the output of such sensors is calculated, and a deci-
sion regarding the presence or absence of a target is made using
this statistic [1]. This approach leads to excessively large false
alarm rates. When each piece of buried metal must be excavated
in order to determine whether it is a target of interest, signifi-
cant costs are incurred both due to lost time and costs associated
with digging. The false alarm issue is particularly problematic
in real world landmine-detection scenarios. In order to facili-
tate the discrimination of targets of interest from other pieces
of metal, several modifications to traditional EMI sensors have
been considered [1]–[8]. For instance, the late time EMI fields
are characterized by an exponential decay in the time-domain
[2], [3], [7], [8]. The decay rate has been used for target identi-
fication, because it strongly depends on the target conductivity,
permeability, shape, and orientation. Alternatively, a promising
approach is to operate the sensor in the frequency-domain by
utilizing wideband excitation. The frequency dependence of the
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induced fields excited by buried conducting targets can then be
exploited by a detector.

A second problem that besets statistical algorithms is the need
for adequate training data. A wide range of targets and clutter
signatures must be obtained at all possible object/sensor orien-
tations. Classically, this problem has been addressed by using
data measured in the field [1], [9], [10]. However, a lack of suf-
ficient training data can severely degrade performance [1], [11].
In general, it is difficult if not impossible to obtain such data for
all possible object/sensor orientations. An alternative is to train
the algorithms with data produced by computational models,
which have only recently become general enough to consider
such problems [8].

In this paper, we consider the problem in which we assume
an object has been detected, and a decision as to “target” or
“clutter” is required. In this approach, we use the complex fre-
quency-dependent EMI response as a signature. A full-wave
model is developed for the wideband EMI response of targets,
specialized to the case of a body of revolution, thus obviating
the need for training on field-collected data. Subsequently, a
Bayesian classification algorithm is developed, which incorpo-
rates the wave model and the target/sensor position uncertainty.
Substantial improvements are achieved via this approach over a
processor, which ignores the orientation uncertainties.

This paper is organized as follows. In Section II, we describe
a new prototype wideband frequency-domain EMI sensor, the
GEM-3 [9]. In Section III, we discuss a model that calculates the
wideband EMI responses. A model-based Bayesian approach
for discriminating targets is discussed in Section IV. The process
used to generate the simulated data and the experiment per-
formed to collect the measured data are described in Section V.
Next, the results from both simulated and measured data are
shown. Finally, we summarize our major findings based on these
results.

II. SENSOROVERVIEW

When operating an EMI sensor in the frequency-domain, it
has been shown that the frequency-dependent induced fields can
differ significantly depending on the target shape and conduc-
tivity [12]. This variability may be exploited to enhance discrim-
ination performance. Therefore, data from a prototype wide-
band EMI sensor, the GEM-3, developed by Geophex Ltd., was
selected for this analysis. The validity of a numerical model that
predicts the wideband EMI responses (discussed in the next sec-
tion) can be tested using data collected with the GEM-3. Fur-
thermore, a decision-theoretic discrimination algorithm can be
applied to both simulated data generated based on the model
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predictions and real data measured with the sensor. In this sec-
tion, the sensor operating principles are briefly described.

The design of the transmitting coils of the GEM-3, two con-
centric circular coils, results in a magnetic cavity in the center
zone of the two coils, i.e., an area where the primary magnetic
flux vanishes. A small receiving coil is located in this magnetic
cavity [13]. Therefore, the receiver can sense a weak, secondary
field returned from the earth and any buried objects. By using
two transmitting coils connected in series, the coils carry the
same amount of current. However, current flows in opposite di-
rections. The magnetic cavity is created by carefully choosing
the radius of the two coils and the number of turns of the coils.
The sensor records the real and imaginary parts (in-phase and
quadrature) of the induced complex voltage at the receiving coil,
relative to that on the transmitting coils.

Instead of using a pulse excitation, such as that used by time-
domain EMI systems, the transmitting coils of the wideband
frequency-domain EMI sensor transmit a continuous, complex
waveform consisting of multiple frequencies predefined by the
operator [9], [13]. Thus, the sensor is only subject to the noise at
the frequencies of interest, not within the whole frequency band,
as is the case for time-domain EMI sensors. Therefore, fre-
quency-domain EMI sensors can operate at much higher SNR’s
than time-domain systems. In addition to the improved SNR,
theoretical calculations and experimental data have shown that
the frequency-domain EMI signatures differ significantly across
targets [12], which provides the underlying physical mecha-
nisms important for discriminating, identifying, or classifying
targets.

III. M ODEL FOR WIDEBAND FREQUENCY-DOMAIN EMI
RESPONSES

In this paper, a model-based Bayesian decision-theoretic ap-
proach is investigated to discriminate four manmade metal tar-
gets of different shapes, sizes, and metal types under conditions
where the target/sensor relative position is unknown. In order
to model the signature of these targets, a method of moment
(MoM) analysis is used to predict the theoretical response from
the target [12], [14]. The calculation provides the theoretical in-
duced voltage (magnitude and phase, or in-phase and quadrature
components) for each target and frequency considered. Later in
this paper, it is shown that by incorporating the model into the
detector formulation, the classification performance is improved
dramatically when the relative target/sensor position is uncer-
tain, as it is in field operations.

We consider the fields induced by a highly (but not perfectly)
conducting and/or permeable target in free space, due to EMI
excitation at kHz frequencies. The problem is solved via a fre-
quency-domain boundary-integral equation formulation. More-
over, to make such an analysis tractable, we specialize to a par-
ticular class of targets: those that can be modeled as a body of
revolution (BOR) [15] (i.e., targets possessing rotational sym-
metry). Although here we consider near-field effects for metallic
and ferrous targets, the general formulation is very similar to
those used previously for far-zone scattering from low-loss di-
electric targets [16], [17]. In particular, the problem is formu-
lated in terms of the tangential electricand magnetic fields

on the target surface or equivalently, in terms of electric and
magnetic surface currents and , re-
spectively, where is the outward unit normal. If and
represent, respectively, the electric and magnetic fields inside
the target, and and represent the “scattered” fields out-
side the target, boundary conditions at the interface yield the
relationships (enforced at the boundary)

(1)

where and represent the incident fields. The operators
involve well-known manipulations of the homogeneous-

media Green's function [17]–[19] for medium parameters in-
side ( ) and outside ( ) the body. The problem there-
fore reduces to solving for and for particular incident fields

and . In the MoM solution for BOR [15]–[20], , , ,
, and are expanded in a Fourier series in the azimuthal

variable , and for each Fourier component,and are ex-
panded in terms of one-dimensional (1-D) basis functions along
the BOR generating arc (see Fig. 1). In this paper, we use sub-
sectional basis functions and testing functions, as in [18]–[20].
The interested reader is referred to [18]–[20] for details con-
cerning implementation of the general algorithm, while here we
focus on issues of particular relevance to the EMI problem.

We first consider requirements concerning the subsec-
tional-basis-function discretization of and . For scattering
from low-loss targets, it is well known that approximately
ten basis functions are required per wavelength [17]. In such
problems, this rule is applied to the smallest wavelength of
interest in the problem, generally corresponding to the medium
inside the target. For the highly conducting targets of interest
here, the wavenumber inside the target approximately satisfies

, where is the skin depth. To sample the
Green's function phase sufficiently, we require

and (for the real and imaginary parts
of , respectively), where is the basis-function width.
These constraints are usually sufficient to satisfy the outer
region sampling requirements ( generally representing the
free-spacewavenumber). Extensive numerical experiments
indicate that accurate results are obtained if .

As discussed above, for EMI applications, we are generally
interested in current loop excitation, as distinguished from
the plane-wave fields considered for radar problems. While
the fields due to a current loop are well known [21], [22],
we discuss how such are placed into the BOR framework,
as well as appropriate approximations for the EMI problem.
In particular, the incident fields are derived from the vector
potential [21], [22]

(2)

where the origin of the local cylindrical coordinate system
is situated at the loop center, with axis parallel to,

and and are the loop current and radius, respectively. The
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Fig. 1. Equivalent electric and magnetic surface currents for modeling
electromagnetic interaction with a highly conducting and/or permeable body
of revolution (BOR).

expression in (2) invokes a quasi-static approximation, since,
at the wavelengths of interest (in air and soil), the electrical
distance between the sensor and target is infinitesimal. Similar
approximations can be used (but have not been here) with
regard to the Green's function components in the air region (
in (1)), while the very high conductivity and/or permeability
inside the target necessitates a rigorous analysis (i.e., a rigorous
formulation of ). The incident electric and magnetic fields
are readily computed as

(3)

and these fields are finally expressed in terms of complete el-
liptical integrals. If the loop axis and the BOR axis are aligned,
the fields in (3) can be applied directly to the BOR MoM solu-
tion, and only the lowest-order Fourier series mode is excited
(reflecting azimuthal symmetry). If the axes are not aligned, a
Fourier series representation of the incident tangential fields on
the BOR surface is generally required (with the BOR problem
solved separately using the incident fields from each such mode
[15]–[18]). While the Fourier components for plane-wave inci-
dence can be expressed in closed form [15], we have not found
such a simple representation for the loop-induced fields. There-
fore, in the general case, we must numerically determine the
Fourier coefficients. For example

(4)

where represents the incident magnetic field along the gener-
ating arc (Fig. 1), and represents the local BOR coordinate
system. Thus, while the space domain fields for the loop can be
expressed in closed form, the requisite Fourier components are
evaluated numerically. However, the incident fields are gener-

ally slowly varying in and integrals of the type in (4) do not
present a significant numerical challenge.

Before proceeding to a comparison of theoretical and mea-
sured results, we note that the EMI fields induced by a con-
ducting and/or ferrous target are generally measured in the near
zone. Therefore, when calculating the induced fields, we cannot
invoke the simplifying far zone approximation generally used
for radar-scattering problems [15], [17], [23]. We therefore cal-
culate the EMI “scattered” fields via a rigorous convolution of
the calculated currents and with the free-space Green's
function (e.g., with ), performing integrals similar to those
used in calculating the components of the MoM impedance ma-
trix. Additionally, we note that an actual EMI sensor does not
measure the induced fields, but rather the electromotive force
induced on a sensing current loop. To calculate such, we have
used appropriate magnetic field components, integrated over the
aperture of the sensing loop, to generate a theoretical induced
voltage for each target and frequency considered.

Using data collected from a prototype wideband frequency-
domain EMI sensor, the GEM-3, the effectiveness of the nu-
meric model is tested. A comparison of the theoretical model
and measurements is shown in Section V-B.

The simulation outputs from the model can be used to cali-
brate the frequency-domain EMI sensor. Let represent the
calibration constant for frequency, the 1 vector rep-
resent a set of measurements obtained at severalpositions,
and the 1 vector represent model outputs for the same
target and positions. We have the relation that , and
a least-squares method is used to obtain the calibration constants
as a function of frequency.

IV. FORWARD MODEL-BASED BAYESIAN CLASSIFIER

FORMULATION

In a real-world classification scenario, the uncertainty
inherent in the sensor output is not only due to additive noise,
but also to the fact that the relative position between the sensor
and the target is unknown at the point when the measurements
are obtained. In this work, we investigate the classification
performance of a Bayesian classifier that incorporates modeled
wideband EMI signatures as well as position uncertainties and
compare its performance to an approach that ignores these
uncertainties and assumes the target is at a fixed position
corresponding to the mean assumed position.

In this paper, we consider the task of classifying data from
one of four known metal objects. It is always true that one of
the objects is present, and our goal is to decide which object is
present. In real world situations such as landmine detection, it
is often the case that a metal object can be located. The task is
then to determine whether it is a target or a clutter object. In this
case, a library of targets of interest can be established and typical
clutter can also be modeled. Alternatively, a statistical model
could be imposed for clutter based on localized measurements
and the target models can be used as is described here. Thus,
this approach can also be applied to an extended set of objects
in practice.

In this work, four metal objects are considered (a more
detailed description can be found in Section V). Signals used
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to measure classification performance are either the modeled
wideband frequency-domain EMI responses or measured EMI
responses from the GEM-3. Since any sensor is subject to noise,
which is usually assumed to follow a Gaussian distribution, the
distribution of the sensor outputs (obtained data set of discrete
frequencies) while the target/sensor is at a known height and
horizontal position, is a Gaussian random vector. The mean
of this response is the theoretical response, and the variance
is equal to that of the additive noise. Let represent the
hypothesis that theth target is present, where .
The received data from theth target at a known position can
be modeled as

(5)

where corresponds to the discrete frequencies of interest,
is the received data from the sensor, is the

predicted response obtained from the model (as described in de-
tail in Section III, the model can calculate the theoretical fre-
quency-domain EMI responses for a well specified BOR object
at a known position) for theth target at the th frequency at a
known depth and horizontal position relative to the center of the
sensor, and is Gaussian noise with zero mean and variance
of . We assume that 's are independent. However, their
variance is a function of frequency. Letrepresent thea priori
probability that hypothesis is true. We further assume that
the cost of a correct decision is zero, and the cost of any wrong
decision equals 1. Bayes' solution for this classification problem
[24], [25] is to decide that is true if

(6)

is satisfied for any . Here is thea posterioridistri-
bution or discriminant function [26], is the probability
density or likelihood function of data given , and is the
received data from the sensor. Assuming the magnitude and the
phase of the frequency response are independent,is a vector
containing both the magnitude and phase information. There-
fore, when the sampled datais received, we decide in favor of
hypothesis , where

(7)

Thus, we decide in favor of a hypothesis that has the largest
a posteriori probability or largest discriminant function at
among all four possible pdf’s. Since we usually have noa priori
knowledge of (in other words, we do not know the proba-
bility that a particular target is going to be present), an equal
probability assumption for each target is made (i.e., ).
Based on the uniformpriori on , (7) can be further understood
as seeking a hypothesis that provides the maximum likelihood
among the four possible values. Thus, it can also be referred to
as a maximum likelihood (ML) classifier. Since any monotoni-
cally increasing function of is also a valid discriminant
function [26], an alternative discriminant function based on the
above assumptions is

(8)

TABLE I
PROBABILITY OF CORRECTCLASSIFICATION OF THEOPTIMAL CLASSIFIER

WHEN TARGETS ARE AT AFIXED KNOWN POSITION AS THENOISEVARIANCE

IS INCREASED FROM� TO 2 �

where is the total number of frequencies used,and are
by 1 vectors, and is the covariance matrix of. Given

the assumptions on the noise process,is a diagonal matrix
with on the th diagonal, where corresponds to frequency.
Since the coefficient of the exponential term of (8) is the same
for all the hypotheses, it can be neglected. After taking the log-
arithm, the alternative discriminant function simplifies to

(9)

where is often referred to as the Ma-
halanobis distance fromto [26]. If is a diagonal matrix
with each diagonal element , (9) can be expressed as

(10)

The discriminant function obtained above [(10)] is valid if the
height and horizontal position of the object are both known,
and the noise is assumed to be independent at each frequency.
This solution is optimal only under the assumptions that all the
parameters are known, and the sensor is subject only to Gaussian
noise. This formulation differs from a bank of matched filters
since the noise is not identically distributed and the variance
of the noise is a function of frequency, and the signals are not
of equal energy. These two facts result in a formulation, which
is similar to, but not identical to, the traditional matched filter

, which is the result of additive white Gaussian noise
[25], [27].

The performance of the classifier given by (10) is a function
of the noise variance and the modeled response. Table I lists the
theoretical performance of the classifier as the noise variance is
increased from to , where is a vector that contains
the noise variance of the magnitude and phase as a function of
frequency obtained from experimental data (see Section. V-B).
As expected, an increase in the noise variance results in a de-
crease in the classification performance. This analysis provides
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insight into how the classification performance is affected by
the sensor noise. Once the sensor is manufactured and well cal-
ibrated, the sensor noise cannot be changed artificially. Thus,
only simulated data was used to illustrate this effect.

A more realistic assumption for the classification problem is
that the height and horizontal position are uncertain, since the
exact sensor position where measurements are obtained relative
to the underground objects is unknown in practice. In this case,
the previously derived processor [as in (10)], which assumed
a “fixed” target/sensor orientation, is not the optimal solution.
Hence, in order to obtain the optimal discriminant function for
the received data, the effect of these random factors must be
integrated out, i.e.,

(11)

where represents the height of the sensor from the target,
and represent the horizontal position of the sensor relative to
the center of the target, and are thea priori distri-
butions of the position factors, and

where is the model prediction (described in detail
in Section III) of the th target response when it is located at
the position ( ) relative to the sensor. The model predicts
the theoretical frequency-domain EMI response as a function of
constitutive parameters, exact dimensions of the object and the
horizontal and vertical distance from the center of sensor to that
of the object. Monte Carlo integration was implemented in order
to calculate the integral in (11).

V. SIMULATED AND EXPERIMENTAL DATA

The performance of both the fixed-position processor (10)
and the optimal classifier (11) is investigated by using both sim-
ulations and measurements for the GEM-3 sensor. In this sec-
tion, the method used to generate simulated data, the experi-
mental design, and the methods used to take the measurements
are described.

Four metal targets are considered for both the simulations
and experimental measurements: an aluminum barbell, an alu-
minum disk, a thick brass disk, and a thin brass disk. The dimen-
sions of these targets are as follows. The diameter of each of the
targets is 5.08 cm. The heights of the targets are 2.897 cm, 2.667
cm, 2.34 cm, and 0.3175 cm for the aluminum bar-bell, the alu-
minum disk, the thick and the thin brass disk, respectively. The
response from a target depends on the constitutive parameters,
geometry of the target, as well as the horizontal and vertical dis-
tance from the center of the sensor to that of the target. In the cal-
culations, 21 linearly spaced frequencies were chosen, ranging
from 3990 Hz to 23 970 Hz. These frequencies are within the
range that the GEM-3 operates.

A. Simulations

In order to test whether the classification performance is im-
proved by incorporating the model into the classification formu-
lation, several cases were considered. These cases are:

1) fixed position;
2) random height but fixed horizontal position;
3) random horizontal position but fixed height;
4) both height and horizontal position random.

It is assumed that the distribution of the height,, follows a
Gaussian distribution with a mean of 20 cm and variance of
1.53 cm and the horizontal position is uniformly distributed
in a 20 cm by 20 cm square. To generate the simulated data we
specify the constitutive parameters and the dimensions of the
target, then generate 10 000 random sets of heightand hor-
izontal position , which follow the distributions described
above. Based on these parameters, the wideband EMI response
is calculated by the model for each set of, , and . After
obtaining the theoretical responses of each target at all the spec-
ified positions (which are used in the formulation of the de-
tector), Gaussian noise is added to the theoretical responses to
create the simulated data set. Both the processor, which assumes
a fixed target/sensor orientation (10), and the optimal classifier
(11) are then applied to these data. Results of these classifiers
are discussed in Section VI.

B. Measured Data

Using synthetic data to evaluate the performance of the clas-
sifier provides useful insight regarding performance bounds, but
limiting the analysis to simulated data is not sufficient. There-
fore, measurements of the wideband frequency-domain EMI re-
sponse from the four metal targets were taken using the GEM-3
in order to evaluate the improvement of the classification algo-
rithm in a more realistic scenario. First we consider whether data
taken from objects in air is comparable to data obtained when
the objects are buried in soil. Figs. 2 and 3 provide the wideband
frequency-domain EMI responses measured using the GEM-3
from two metal landmines, a Valmara (an antipersonnel metal
landmine) and a VS50 (an antipersonnel metal mine), in air and
in North Carolina clay soil (buried 1 in below the surface). These
figures indicate that the soil effects can be neglected at least for
large metal objects. Therefore, the measured data used to eval-
uate the performance of various classification techniques was
taken in free space.

The experimental set up is as follows. The GEM-3 was
mounted on a wooden rack with the sensor head, approximately
1.8 m above the wooden base of the platform. Both rack and
platform contained no metal parts. The rack assembly allows
placement of a target on a wooden shelf at various distances
beneath the sensor head.

First, in order to obtain an estimate of the noise variance asso-
ciated with the sensor, , 100 measurements were taken with
the sensor at a fixed position and no target present. We refer to an
individual measurement taken without a target present as a back-
ground response. This response is subtracted from the responses
measured with the target present to estimate the response due to
the target alone. Fig. 4 shows a typical plot of the background
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Fig. 2. Wideband frequency-domain response of a Valmara in free space and
buried 1 in below the surface of the ground in North Carolina clay soil. The units
“ppm” reflect the sensor output multiplied by 10.

Fig. 3. Wideband frequency-domain response of a VS50 in free space and
buried 1 in below the surface of the ground in North Carolina clay soil. The
units “ppm” reflect the sensor output multiplied by 10.

response. The background response is not the same at all fre-
quencies, and the noise variance is also a function of frequency.
Table II lists the variance of the noise for the magnitude and
phase of the complex response and the ratio between the mean
value of the response and the standard deviation of the noise as
a function of frequency, respectively. These estimates were used
in the classifier given by (10) and (11).

As described in Section III, to calibrate the sensor, measure-
ments for the four targets were taken so the calibration coeffi-
cients could be calculated. Each target was placed beneath the
center of the sensor head at distances of 17 cm, 19 cm, 20 cm,
21 cm, and 23 cm. Using these 20 measurements, calibration
coefficients were calculated by the least-squares method. Fig. 5

Fig. 4. Wideband frequency-domain response from Earth without the presence
of any targets or background response. The units “ppm” reflect the sensor output
multiplied by 10 .

shows the comparison of the theoretical model predictions and
the measurements. As has been noted previously, the model pre-
dicts the GEM-3 response well [12].

To obtain the data used to evaluate algorithm performance,
measurements were taken from each target at seven heights from
17 cm to 23 cm in 1 cm increments. The distribution of height
is assumed to be Gaussian with a mean of 20 cm and a variance
of 1.53 for the simulations. At each height, between 11 and 36
measurements were taken. The exact count was calculated based
on the assumed distribution. At each height, the position of each
measurement is uniformly distributed within a 20 cm20 cm
square. For each target, there were a total of 328 measurements
taken. These data were not used to train the algorithm, only to
evaluate performance.

VI. RESULTS

We exploit Bayesian decision theory to formulate an optimal
classifier to discriminate these targets. In order to show the im-
provement of the optimal classifier, the performance of a pro-
cessor that assumes a fixed target/sensor orientation was also
evaluated. It was assumed that the sensor is subject to a small
amount of additive Gaussian noise. This assumption is verified
by the experimental data (see Section V-B). The performance
of these classifiers, shown in this section, was evaluated using
both synthetic data and experimental measurements.

A. Simulation Results

1) Fixed Height and Horizontal Position:First, the case
where all the position parameters are known exactly is con-
sidered. The model of each target at the same position and all
desired frequencies is calculated. Then, by adding Gaussian
random noise with zero mean and variance obtained based
on the experimental data (see Table II), 10 000 realizations
of simulated data for each target are generated. The decision
of which target is present is made based on (7) by using the
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TABLE II
VARIANCE OF THE BACKGROUND NOISE AND THE RATIO OF THE MEAN OF THE RESPONSE ANDITS STANDARD DERIVATION AS A FUNCTION OF

FREQUENCY FOR THEMAGNITUDE AND PHASE COMPONENTS, RESPECTIVELY

Fig. 5. Comparison of measurements and theoretical predictions for the thin
brass disk when the distance from the target to the sensor is 20 cm.

processor expressed in (10), which is optimal for this case.
Because of the fact that the wideband EMI signature of these
targets is significantly different [12] and the experimentally
derived 's are low, the performance is perfect.

2) Height Uncertain, Fixed Horizontal Position:Next,
the case where only the height of the sensor from the target

is unknown and the target is located under the center of the
sensor is considered. This situation occurs in a real detection
scenario when the sensor operator can accurately center the
sensor, but the burial depth of the mine is unknown. The height
of the sensor was modeled as a Gaussian distributed random
variable with a mean of 20 cm and a variance of 1.53cm .
Fig. 6 shows the performance of a processor that assumed a
fixed target/sensor orientation along with that of the optimal
classifier. For the former, it is assumed the target is at the
mean height of 20 cm. Clearly, substantial improvements
in classification performance are achieved by the optimal
classifier over a processor that assumes a fixed target/sensor
orientation. This performance is achieved for a relatively small
level of uncertainty in the height. The average performance
improvement is over 70%.

3) Horizontal Position Uncertain, Fixed Height:Thirdly,
we simulate the case where horizontal position is uncertain. It
is assumed that the sensor is located at a known, fixed height.
Because the exact positions of mines are unknown to the sensor
operator during detection, we assumed a uniform distribution
in the horizontal plane. Fig. 7 shows the simulation results of
the processor that assumes a fixed target/sensor orientation and
the optimal classifier when the horizontal positions of targets
are uniformly distributed. For the former, it was assumed that
the target was at the mean horizontal position and was directly
under the sensor. Again, the performance of the optimal clas-
sifier is substantially better than that of the processor, which
ignores the target/sensor orientation uncertainty. It improves
on average by 60%.
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Fig. 6. Comparison of the processor, which ignores target/sensor orientation
uncertainty (“fixed position” processor) and the optimal processor under
uncertain height, fixed-horizontal position conditions for simulated data.

Fig. 7. Comparison of the “fixed position” processor and optimal processor
performance under the uncertain horizontal position, but fixed height condition
for simulated data.

4) Both Height and Horizontal Position Uncertain:In the
final simulation, both height and horizontal position are uncer-
tain. The height is assumed to follow a Gaussian distribution
with mean of 20 cm and variance of 1.53. The horizontal po-
sition follows a uniform distribution (within a 20 cm 20 cm
square). Fig. 8 illustrates the performance of the two processors.
The “fixed orientation” processor assumes that the target is lo-
cated at the mean height and horizontal position. Performance
improves under these conditions by an average of 70% over that
of the “fixed position” processor. The results in Figs. 6–8 indi-
cate that for the fixed position processor the performance be-
comes progressively worse as the position uncertainty increases.
Clearly, incorporating the uncertainty of these environmental
parameters into the processor affords a significant performance
gain over a processor, which ignores this uncertainty.

Fig. 8. Comparison of the “fixed position” processor and optimal processor
performance when both height and horizontal position are uncertain for
simulated data.

Fig. 9. Comparison of the “fixed position” processor and optimal processor
performance under the condition of both height and horizontal position
unknown for measured data.

B. Experimental Data

Simulations have shown that significant performance im-
provements can be achieved when the position uncertainty is
incorporated into the classifier. To verify this result, measured
data were collected using the GEM-3, as described in Sec-
tion V-B. In this section, the results of implementing these
processors using the measured data are shown.

The same two signal processing algorithms that were applied
to simulated data: a fixed position processor, which assumes
each target at the mean position, and the optimal classifier,
which incorporates the position uncertainty into the processor,
were applied to the experimental data. Fig. 9 illustrates the



1360 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

performance achieved by each of these two algorithms. Clearly,
better performance is achieved by the optimal processor. Per-
formance improves on the average by 60%. This improvement,
obtained on the measured data, is consistent with that observed
in the simulated data set.

VII. CONCLUSION

In this paper, we utilize a Bayesian decision-theoretic ap-
proach to classify metal targets using wideband EMI data. Four
manmade metal targets were used. Results from both simula-
tion and measured data, shown in Section V, indicate that incor-
porating the uncertainty associated with the target/sensor rel-
ative position into the processor affords a significant perfor-
mance gain over a processor that matches to the predicted re-
sponse at the mean expected target position. It is also noted that,
as expected, under conditions of uncertainty the performance
of both the fixed orientation processor and the optimal proces-
sors drops compared to that of the signal-known-exactly case.
Though the optimal classifier can improve performance under
uncertain conditions over processors that ignore the uncertain-
ties, it will never achieve the performance obtained when no
uncertainty is present.

As expected, simulations have shown that the SNR’s of the
signal affect the performance of a classifier. Since frequency-do-
main systems can achieve high SNR’s compared to time-domain
EMI systems, essentially, it will improve the classification per-
formance.

Our work indicates that we can effectively discriminate dif-
ferent metal targets using wideband EMI signals by incorpo-
rating an accurate physical model and models of the uncer-
tainty regarding environmental parameters into the classifier.
Performance can be dramatically improved over the standard
approach, which ignores environmental uncertainty. In addition,
extensive libraries of target signatures do not have to be mea-
sured experimentally in order to train the classifier.

This technique can be extended to apply to other applications
such as landmine detection and unexploded ordnance (UXO)
detection, since in these applications, targets of interests need
to be discriminated from metallic clutter in order to reduce
false alarm rates. The standard algorithms for these applica-
tions, such as matched filters, do not take the uncertainties
associated with the target/sensor orientation into account, and
only partially exploited the underlying physical nature of the
outputs from the sensor. The work shown in this paper provides
a promising technique, which integrates both the uncertainties
associated with target/sensor orientation and a forward model
exploiting the physical signature of wideband frequency-do-
main EMI response. By developing a model for other signals
and sensor modalities, this algorithm can be further applied to
other applications that require classification of different targets.
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