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Abstract—n our previous work, we have shown that the induced fields excited by buried conducting targets can then be
detectability of landmines can be improved dramatically by the exploited by a detector.
careful application of signal detection theory to time-domain A gecond problem that besets statistical algorithms is the need
electromagnetic induction (EMI) data using a purely statistical L .
approach. In this paper, classification of various metallic land- f‘?f adequate training da_ta. A wide rang_e of ta_rgets and Clut_ter
mine-like targets via signal detection theory is investigated using a Signatures must be obtained at all possible object/sensor orien-
prototype wideband frequency-domain EMI sensor. An algorithm  tations. Classically, this problem has been addressed by using
that incorporates both a theoretical model of the response of data measured in the field [1], [9], [10]. However, a lack of suf-
such a sensor and the uncertainties regarding the targeysensor fisient training data can severely degrade performance [1], [11].
orientation is developed. This allows the algorithms to be trained T e . . ; .
without an extensive data collection. The performance of this In general, it 'S_d'ﬁ'CUIt if not |_mpos_S|bIe to obtain SU_Ch _data for_
approach is evaluated using both simulated and experimenta| a” pOSSIble ObjeCtlsenSOI’ orientations. An alternaUVe IS to train
data. The results show that this approach affords substantial the algorithms with data produced by computational models,
classification performance gains over a standard approach, which which have only recently become general enough to consider
utilizes the signature obtained when the sensor is centered OVer ¢ ch problems [8].

the target and located at the mean gxpecteq target/sensor distance, In thi ider th bl . hich

and thus ignores the uncertainties inherent in the problem. On the n _'S paper, we consider the problem _|n_ which we assume
average, a 60% improvement is obtained. an object has been detected, and a decision as to “target” or
“clutter” is required. In this approach, we use the complex fre-
guency-dependent EMI response as a signature. A full-wave
model is developed for the wideband EMI response of targets,
specialized to the case of a body of revolution, thus obviating

. INTRODUCTION the need for training on field-collected data. Subsequently, a
PERSISTENT problem with traditional narrowband EM Bayesian classification algorithm is developed, which incorpo-
sensors involves not just detection of metal objects, b#tes the wave model and the target/sensor position uncertainty.
discrimination of targets from clutter. In most fielded sensor§ubstantialimprovements are achieved via this approach over a
the energy in the output of such sensors is calculated, and a dBERCESSOr, which ignores the orientation uncertainties.
sion regarding the presence or absence of a target is made usingiS Paper is organized as follows. In Section Il, we describe
this statistic [1]. This approach leads to excessively large fal@d1€W prototype wideband frequency-domain EMI sensor, the
alarm rates. When each piece of buried metal must be excavdgeM-3 [9]. In Section lIl, we discuss a model that calculates the
in order to determine whether it is a target of interest, signifiideband EMI responses. A model-based Bayesian approach
cant costs are incurred both due to lost time and costs associd@discriminating targets is discussed in Section IV. The process
with digging. The false alarm issue is particularly problemati¢sed to generate the simulated data and the experiment per-
in real world landmine-detection scenarios. In order to facilformed to collect the measured data are described in Section V.
tate the discrimination of targets of interest from other piec®ext, the results from both simulated and measured data are
of metal, several modifications to traditional EMI sensors hag&own. Finally, we summarize our major findings based on these
been considered [1]-[8]. For instance, the late time EMI field§Sults.
are characterized by an exponential decay in the time-domain
[21, [3], [7], [8]. The decay rate has been used for target identi- Il. SENSOROVERVIEW

fication, because it strongly depends on the target conductivitywhen operating an EMI sensor in the frequency-domain, it
permeability, shape, and orientation. Alternatively, a promisings been shown that the frequency-dependent induced fields can
approach is to operate the sensor in the frequency-domaindifer significantly depending on the target shape and conduc-
utilizing wideband excitation. The frequency dependence of thigity [12]. This variability may be exploited to enhance discrim-
ination performance. Therefore, data from a prototype wide-
band EMI sensor, the GEM-3, developed by Geophex Ltd., was
Manuscript received November 23, 1998; revised June 15, 1999. This W&ﬁlegted for th.IS analysis. The validity of a numerlgal model that
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predictions and real data measured with the sensor. In this see-the target surface or equivalently, in terms of electric and
tion, the sensor operating principles are briefly described. magnetic surface currenfls= n x H andK = E x n, re-

The design of the transmitting coils of the GEM-3, two conspectively, wheran is the outward unit normal. [E; andH;
centric circular coils, results in a magnetic cavity in the centeepresent, respectively, the electric and magnetic fields inside
zone of the two caoils, i.e., an area where the primary magnetie target, and, andH, represent the “scattered” fields out-
flux vanishes. A small receiving coil is located in this magnetiside the target, boundary conditions at the interface yield the
cavity [13]. Therefore, the receiver can sense a weak, secondahationships (enforced at the boundary)
field returned from the earth and any buried objects. By using i .
two transmitting coils connected in series, the coils carry the 1 x [£87(=J) + £ (-K)]
same amount of current. However, current flows in opposite di- =nXx [sng(_J) + £EK( K)] +n x E’
rect|on_s. The magnet|c_caV|ty is created by carefully choos!ng n % [E{IJ(_J) + SHE(_K)
the radius of the two coils and the number of turns of the coils.

The sensor records the real and imaginary parts (in-phase and [ )
qanrature) of the induced co.m_plex vgltage atthe receiving C%hereEi and H? represent the incident fields. The operators
relative to that on the transmitting coils. . . .

; o . £, involve well-known manipulations of the homogeneous-

Instead of using a pulse excitation, such as that used by timg= . . : : :
domain EMI systems, the transmitting coils of the WidebanrtqIGdIa Green's funct!on [17}-{19] for medium parameters in-

' side (» = 1) and outsides{ = 2) the body. The problem there-

frequency-domain EMI sensor transmit a continuous, compl%(re reduces to solving faF andK for particular incident fields

waveform consisting of multiple frequencies predefined by tfﬁi andH'. In the MoM solution for BOR [15]-[20}), K, £
operator [9], [13]. Thus, the sensor is only subject to the noiselg,t and H; are expanded in a Fourier series in th,e a{zirrr:,uthal
the frequencies of interest, not within the whole frequency banva;iable</) and for each Fourier componedtandK are ex-

as is the case for time-domain EMI sensors. The_refore, freémded in terms of one-dimensional (1-D) basis functions along
quency-domain EMI sensors can operate at much higher SN 2 BOR generating arc (see Fig. 1). In this paper, we use sub-
than tme—domaln §ystems. In adgimon o the improved SN é({tional basis functions and testing functions, as in [18]-[20].
theoretical calculations and experimental data have shown t L interested reader is referred to [18]-[20] for details con-
the frequency-domain EMI signatures differ significantly acroscseming implementation of the general algorithm, while here we
targets [12], which provides the underlying physical mech?- '

: : T T o ... focus on issues of particular relevance to the EMI problem.
nisms important for discriminating, identifying, or classifying , . . .
targets We first consider requirements concerning the subsec-

tional-basis-function discretization df and K. For scattering
from low-loss targets, it is well known that approximately
[1l. M ODEL FORWIDEBAND FREQUENCY-DOMAIN EMI ten basis functions are required per wavelength [17]. In such
RESPONSES problems, this rule is applied to the smallest wavelength of
) . . _interest in the problem, generally corresponding to the medium
In th's_ paper, a model-br_;\seq Baye5|an decision-theoretic H&ide the target. For the highly conducting targets of interest
proach is investigated to discriminate four manmade metal @fsre the wavenumber inside the target approximately satisfies
gets of different shapes, sizes, and metal types undercondm%?s: (1 — j)/6, wheres is the skin depth. To sample the
where the target/sensor relative position is unknown. In Ordérreen‘s function phasexp(—jki R) sufficiently, we require
to model the signature of these targets, a method of mom%ﬁt/é < 27 andAt/§ < 1 (for the real and imaginary parts
(MoM) analysis is used to predict the theoretical response frgp k., respectively), whereAt is the basis-function width.
the target [12], [14]. The calculation provides the theoretical iR\a5e constraints are usually sufficient to satisfy the outer
duced voltage (magnitude and phase, or in-phase and quadrajiyte \ sampling requirements: generally representing the
components) for each target and frequency considered. Latef il g5 cewavenumber). Extensive numerical experiments
this paper, it is shown that by incorporating the model into ”]ﬁdicate that accurate results are obtainediif< 6 /3.
detector formulation, the classification performance isimproved 54 giscussed above, for EMI applications, we are generally
dr_amatic_:a_lly_when the relgtive target/sensor position is UNCetierasted in current loop excitation, as distinguished from
tain, as it s in field operations. _ the plane-wave fields considered for radar problems. While
We consider the fields induced by a highly (but not perfectly}, fields due to a current loop are well known [21], [22],
conducting and/or permeable target in free space, due to EML yiscuss how such are placed into the BOR framework,
excitation at kHz frequencies. The problem is solved via a frgg el as appropriate approximations for the EMI problem.

quency-domain boundary-integral equation formulation. Morgs naricular, the incident fields are derived from the vector
over, to make such an analysis tractable, we specialize to a R¥tential [21], [22]
ticular class of targets: those that can be modeled as a body of '
revolution (BOR) [15] (i.e., targets possessing rotational sym- Aulp.2) wola [ e cos ¢/ @
. _ . . p7 Z %
metry). Although here we consider near flgld effects for _m(_atalllc @ dr Jo /PP +aZ+ 2% — 2apcos
and ferrous targets, the general formulation is very similar to
those used previously for far-zone scattering from low-loss dishere the origin of the local cylindrical coordinate system
electric targets [16], [17]. In particular, the problem is formugp, ¢, z) is situated at the loop center, with axis parallelzto

lated in terms of the tangential electlicand magnetid fields and/ anda are the loop current and radius, respectively. The

]
=nx [£§/(-0)+ £ (-K)]+nxH (1)
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ally slowly varying in¢ and integrals of the type in (4) do not
_ _ present a significant numerical challenge.
axis of rotation Before proceeding to a comparison of theoretical and mea-

p—
generating arc sured results, we note that the EMI fields induced by a con-
/ ducting and/or ferrous target are generally measured in the near
zone. Therefore, when calculating the induced fields, we cannot
£y, U2, Oz invoke the simplifying far zone approximation generally used
for radar-scattering problems [15], [17], [23]. We therefore cal-
&1, f1, 01 culate the EMI “scattered” fields via a rigorous convolution of
the calculated current$ and K with the free-space Green's
function (e.g., with€,), performing integrals similar to those
i x f

z

D‘ v used in calculating the components of the MoM impedance ma-
trix. Additionally, we note that an actual EMI sensor does not
measure the induced fields, but rather the electromotive force
/ induced on a sensing current loop. To calculate such, we have
! used appropriate magnetic field components, integrated over the
aperture of the sensing loop, to generate a theoretical induced
Fig. 1. Equivalent electric and magnetic surface currents for modelingltage for each target and frequency considered.
ell(ectrolma_lgneg%ilgteraction with a highly conducting and/or permeable body Using data collected from a prototype wideband frequency—
of revoltion (BOR). domain EMI sensor, the GEM-3, the effectiveness of the nu-
o ) ) ) ) ) . meric model is tested. A comparison of the theoretical model
expression in (2) invokes a quasi-static approximation, sincg,y measurements is shown in Section V-B.
at the wavelengths of interest (in air and soil), the electrical Tha simulation outputs from the model can be used to cali-
distance between the sensor and target is infinitesimal. SimilaL o the frequency-domain EMI sensor. L:@t) represent the
approximations can be used (but have not been here) Wil ation constant for frequeney, the K x 1 vectorM rep-
regard to the Green's function components in the air region (;osent a set of measurements obtained at se{&rapositions,
in (1)), while the very high conductivity and/or permeabilityynq thexr x 1 vectorB represent model outputs for the same
inside the target necessitates a rigorous analysis (i.e., a rigor%@et and positions. We have the relation Bafw) = M, and
formulation of £,). The incident electric and magnetic fields, jg55t-squares method is used to obtain the calibration constants
are readily computed as as a function of frequency.

Hi(p. ) 104,
p,Z) = —— )
r p 0z V. FORWARD MODEL-BASED BAYESIAN CLASSIFIER
Hi(p,2) = 1 9(pAy) FORMULATION
S Op e . .
> /prA p 3 In a real-world classification scenario, the uncertainty
o0y 2) R —jw Ay ®) inherent in the sensor output is not only due to additive noise,

and these fields are finally expressed in terms of complete Bﬂgiﬁ‘o tto th? fact tEat the r;alt?]tlve potsmﬁn b;a;ween the sensotr
liptical integrals. If the loop axis and the BOR axis are aligne(‘jil,n € target1s unknown at the point when the measurements

the fields in (3) can be applied directly to the BOR MoM solud'® obtained. In this work, we investigate the classification
rformance of a Bayesian classifier that incorporates modeled

tion, and only the lowest-order Fourier series mode is excit@d

(reflecting azimuthal symmetry). If the axes are not aligned vgdeband EMI signatures as well as position uncertainties and

Fourier series representation of the incident tangential fields gpmpare !ts performance to an approa_ch that Ignores thgse
the BOR surface is generally required (with the BOR probIell'H“:ert"’“m'e.s and assumes the target IS at a fixed position
solved separately using the incident fields from each such mo%o%respondmg to the mean assumed posmon._ :
[15]-[18]). While the Fourier components for plane-wave inci- n this paper, we con3|de_r the tas_k of classifying data from
dence can be expressed in closed form [15], we have not fo Of_ four _known metal objects. It IS alway_s true t_hat one Of
such a simple representation for the loop-induced fields. TheF & objects Is present, a.”d our goalis to demdel which ob!ect IS
fore, in the general case, we must numerically determine t%esent. In real world situations _such as landmine detection, |.t
Fourier coefficients. For example Is often the case that a metal object can be located. The task is
then to determine whether it is a target or a clutter object. In this
N 1 [ case, alibrary of targets of interest can be established and typical
Hp(t) = a Hi(t, ) exp(—jme) d (4)  clutter can also be modeled. Alternatively, a statistical model
0 could be imposed for clutter based on localized measurements
whereH| represents the incident magnetic field along the geneand the target models can be used as is described here. Thus,
ating arc (Fig. 1), an¢t, ¢) represents the local BOR coordinatehis approach can also be applied to an extended set of objects
system. Thus, while the space domain fields for the loop can imepractice.
expressed in closed form, the requisite Fourier components arén this work, four metal objects are considered (a more
evaluated numerically. However, the incident fields are genatetailed description can be found in Section V). Signals used
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to measure classification performance are either the modeled TABLE |
wideband frequency—domain EMI responses or measured EM’ITROBABMTY OF CORRECTCLASSIFICATION OF THE OPTIMAL CLASSIFIER

. . . \WHEN TARGETS ARE AT AFIXED KNOWN POSITION AS THENOISE VARIANCE
responses from the GEM-3. Since any sensor is subject to noise, 1S INCREASED FROMo2 TO 2902
which is usually assumed to follow a Gaussian distribution, the
distribution of the sensor outputs (obtained data set of discrete

frequencies) while the target/sensor is at a known height ancd yosg variance

PROBABILITY OF CORRECT CLASSIFICATION

horizontal position, is a Gaussian random vector. The mean
of this response is the theoretical response, and the varianc TARGET) | TARGET? | TARGETS | TARGETS
. . . 2
is equal to that of the additive noise. Lé&f; represent the o 1.0000 ) 1.0000 | 10000 | 1.0000
hypothesis that théth target is present, wheie= 1,2, 3,4. 20,2 1.0000 1.0000 1.0000 1.0000
The received data from thih target at a known position can
2%a? 0.9993 1.0000 0.9990 1.0000
be modeled as
g7 0.9862 1.0000 0.9877 1.0000
iy = Aij + 1y ®) 26,2 0.9365 1.0000 0.9394 1.0000
wherej corresponds to the discrete frequencies of inteyest, 2o} 0.8604 10000 0.8640 1.0000
1,2,...,N,r;; is the received data from the sensdy, is the 2652 0.7809 0.9977 0.7747 1.0000
predicted response obtained from the model (as described in de
i : : g} 0.7134 0.9791 0.6854 1.0000
tail in Section lIll, the model can calculate the theoretical fre-
quency-domain EMI responses for a well specified BOR object 2%, 0.6545 0.9254 05756 0.9981
at a known position) for théth target at theth frequency at a P 0.6101 0.8552 0.4554 0.9827

known depth and horizontal position relative to the center of the
sensor, and; is Gaussian noise with zero mean and variance
of o7 . We assume thai;'s are independent. However, theiyhere V is the total number of frequencies usedindA,; are
variance is a function of frequency. Lgtrepresent tha priori - 27 py 1 vectors, and is the covariance matrix of. Given
probability that hypothesig/; is true. We further assume thatthe assumptions on the noise procésss a diagonal matrix
the cost of a correct decision is zero, and the cost of any Wrogth »2 - on thejth diagonal, wherg corresponds to frequency.
decision equals 1. Bayes'solution for this classification problegince the coefficient of the exponential term of (8) is the same

[24], [25] is to decide that{; is true if for all the hypotheses, it can be neglected. After taking the log-
p(H;lr)  qip(r|H;) o1 ©) arithm, the alternative discriminant function simplifies to
p(Hilr)  anp(r|Hy) logp' (r|H;) = —(r — A)TS 7 (r — A)) 9)

is satisfied for any; # <. Herep( H;|r) is thea posterioridistri- where(r — A;)TS~1(r — A;) is often referred to as the Ma-
bution or discriminant function [26}(r|H;) is the probability 51an0bis distance fromto A; [26]. If 3 is a diagonal matrix

density or likelihood function of data given H;, andr is the | i och diagonal element , (9) can be expressed as
received data from the sensor. Assuming the magnitude and the e

phase of the frequency response are independésia vector 2N 5 / o

containing both the magnitude and phase information. There- log p”(r|H;) = — Z(m — Aij) /Unj (10)
fore, when the sampled datas received, we decide in favor of =t

hypothesisH;, where The discriminant function obtained above [(10)] is valid if the

height and horizontal position of the object are both known,
qip(r|H;) = m,?x{q’“p(rm’“)} k=1,234 () and the noise is assumed to be independent at each frequency.
Thus, we decide in favor of a hypothesis that has the Iarggﬁis solution is optimal only under the_assumptions that all thg
a posteriori probability or largest discriminant function at Parametersare known, andthe sensor is subject only to Gaussian
among all four possible pdf's. Since we usually havepoiori  "IS€- This formulation differs from a bank of matched filters

knowledge ofg; (in other words, we do not know the proba-Since the noise is not identically distributed and the variance

bility that a particular target is going to be present), an equ%fl the noise is a function of frequency, and the signals are not

probability assumption for each target is made (ye= 1/4). pf e_qqal energy. The_se tWO facts result iq gformulation, which
Based on the uniformriori ong;, (7) can be further understood'?Ts'm'lar,to' .but not |dent|c§1I to, thg trad|t_|onal matphed flllter
as seeking a hypothesis that provides the maximum likelihobg4i Which is the result of i.d additive white Gaussian noise

among the four possible values. Thus, it can also be referred4a): [27] e . .
as a maximum likelihood (ML) classifier. Since any monotoni- The pe_rformz?mce of the classifier given by (10) is a fun_ctlon
cally increasing function of(H,|r) is also a valid discriminant of the noise variance and the modeled response. Table | lists the

function [26], an alternative discriminant function based on t@eoretical perf02rman§e20f the C|aSQS.IerI‘ as the noise variance is
above assumptions is mcrea;ed fro.mrn to 2%, whergan is a vector that contains
the noise variance of the magnitude and phase as a function of
p(r|H;) frequency obtained from experimental data (see Section. V-B).
: 1 As expected, an increase in the noise variance results in a de-
= (2m) VIR M exp| - (r - ANTE Hr - A)| ) P

crease in the classification performance. This analysis provides
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insight into how the classification performance is affected b&. Simulations
the sensor noise. Once the sensor is manufactured and well ca,— d hether the classificati ; e
ibrated, the sensor noise cannot be changed artificially. Thus nhor er_to testw .et erthec assl ication periormance Is im
only simulated data was used to illustrate this effect. pri?ved by incorporating the model into the classification fgrmu-
A more realistic assumption for the classification problem @uon, several cases were considered. These cases are:
that the height and horizontal position are uncertain, since thel) fixed position;
exact sensor position where measurements are obtained relativé) random height but fixed horizontal position;
to the underground objects is unknown in practice. In this case,3) random horizontal position but fixed height;
the previously derived processor [as in (10)], which assumed4) both height and horizontal position random.
a “fixed” target/sensor orientation, is not the optimal solutiont is assumed that the distribution of the height,follows a
Hence, in order to obtain the optimal discriminant function foGaussian distribution with a mean of 20 cm and variance of
the received data, the effect of these random factors must1b83 cm? and the horizontal position is uniformly distributed
integrated out, i.e., in a 20 cm by 20 cm square. To generate the simulated data we
specify the constitutive parameters and the dimensions of the
p(r|H;) = ///p(rlHi, h,z,y)p(h)p(z,y) dhdx dy (11) target, then generate 10 000 random sets of héighand hor-
izontal position(x, v), which follow the distributions described
whereh represents the height of the sensor from the target _above. Based on these parameters, the wideband EMI response
s, calculated by the model for each set/gfz, andy. After

andy represent the horizontal position of the sensor relative taining the th tical f ht tatallth
the center of the target() andp(z, y) are thea priori distri- obtaining the theoretical responses of each target at afl the spec-
. - ified positions (which are used in the formulation of the de-
butions of the position factors, and . . .
tector), Gaussian noise is added to the theoretical responses to
(x| Hi, by 2, y) create the simulated data set. Both the processor, which assumes
i 1 71 1 a fixed target/sensor orientation (10), and the optimal classifier
= Gowz P ( - §(r —A;(h,z, )t (11) are then applied to these data. Results of these classifiers
(2m) | are discussed in Section VI.
X zfl(rAi(h,x,y)))

. . ) ] B. Measured Data
where A;(h,z,y) is the model prediction (described in detail

in Section 111) of theith target response when it is located at Using synthetic data to evaluate the performance of the clas-
the position &, z, y) relative to the sensor. The model predictsifier provides useful insight regarding performance bounds, but
the theoretical frequency-domain EMI response as a functionliiting the analysis to simulated data is not sufficient. There-

constitutive parameters, exact dimensions of the object and fAee, measurements of the wideband frequency-domain EMI re-
horizontal and vertical distance from the center of sensor to tif@onse from the four metal targets were taken using the GEM-3

of the object. Monte Carlo integration was implemented in ord#t order to evaluate the improvement of the classification algo-
to calculate the integral in (11). rithmin a more realistic scenario. First we consider whether data

taken from objects in air is comparable to data obtained when
the objects are buried in soil. Figs. 2 and 3 provide the wideband
frequency-domain EMI responses measured using the GEM-3
from two metal landmines, a Valmara (an antipersonnel metal

The performance of both the fixed-position processor (1ndmine) and a VS50 (an antipersonnel metal mine), in air and
and the optimal classifier (11) is investigated by using both sirit North Carolina clay soil (buried 1 in below the surface). These
ulations and measurements for the GEM-3 sensor. In this ségures indicate that the soil effects can be neglected at least for
tion, the method used to generate simulated data, the expkige metal objects. Therefore, the measured data used to eval-
mental design, and the methods used to take the measuremeate the performance of various classification techniques was
are described. taken in free space.

Four metal targets are considered for both the simulationsThe experimental set up is as follows. The GEM-3 was
and experimental measurements: an aluminum barbell, an aheunted on a wooden rack with the sensor head, approximately
minum disk, a thick brass disk, and a thin brass disk. The dimeh8 m above the wooden base of the platform. Both rack and
sions of these targets are as follows. The diameter of each of pigtform contained no metal parts. The rack assembly allows
targets is 5.08 cm. The heights of the targets are 2.897 cm, 2.@rcement of a target on a wooden shelf at various distances
cm, 2.34 cm, and 0.3175 cm for the aluminum bar-bell, the albeneath the sensor head.
minum disk, the thick and the thin brass disk, respectively. TheFirst, in order to obtain an estimate of the noise variance asso-
response from a target depends on the constitutive parameteigted with the sensoax,%j, 100 measurements were taken with
geometry of the target, as well as the horizontal and vertical dike sensor at a fixed position and no target present. We refer to an
tance from the center of the sensor to that of the target. In the dadividual measurement taken without a target present as a back-
culations, 21 linearly spaced frequencies were chosen, ranggrgund response. This response is subtracted from the responses
from 3990 Hz to 23970 Hz. These frequencies are within tmeeasured with the target present to estimate the response due to
range that the GEM-3 operates. the target alone. Fig. 4 shows a typical plot of the background

V. SIMULATED AND EXPERIMENTAL DATA
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VALMARA c
or 6 __ In Phase
i [ — — — Quadrature
5 ~ 5 :_
o 4F
[ = [
[ o [
- [+ 9 -
£ sk 3F
& I -
- 2F
10 b= [
i ———h—— In Phase, in Air N
= ~—@— Quadrature, in Air 1
B — ~{A — InPhase, in Soil i
sr — B - Quadrature, in Soll C ' |
: 0 L L b I |103 104
_20 C Ll Ll I H 1 L | I I i 4 I I L LOG FREQUENCY (Hz)

10° 10° 10°
LOG FREQUENCY (HZ) Fig.4. Wideband frequency-domain response from Earth without the presence

of any targets or background response. The units “ppm” reflect the sensor output

Fig. 2. Wideband frequency-domain response of a Valmara in free space amdtiplied by 1C.

buried 1 in below the surface of the ground in North Carolina clay soil. The units

“ppm” reflect the sensor output multiplied by 6.0

shows the comparison of the theoretical model predictions and
the measurements. As has been noted previously, the model pre-

° F VS50 dicts the GEM-3 response well [12].
4 To obtain the data used to evaluate algorithm performance,
3 _ measurements were taken from each target at seven heights from
- 17 cmto 23 cm in 1 cm increments. The distribution of height
2F is assumed to be Gaussian with a mean of 20 cm and a variance
1E of 1.5 for the simulations. At each height, between 11 and 36
= measurements were taken. The exact count was calculated based
e OF on the assumed distribution. At each height, the position of each
4 measurement is uniformly distributed within a 20 620 cm
- square. For each target, there were a total of 328 measurements
2F ——A—— In Phase, in Air taken. These data were not used to train the algorithm, only to
SE - S evaluate performance.
s — © - Quadrature, in Soil
4F VI. RESULTS
5 We exploit Bayesian decision theory to formulate an optimal
LOG FREQUENCY (H2) classifier to discriminate these targets. In order to show the im-

provement of the optimal classifier, the performance of a pro-
Fig. 3. Wideband frequency-domain response of a VS50 in free space dssor that assumes a fixed target/sensor orientation was also
buried 1 in below the surface of the ground in North Carolina clay soil. The . _
units “ppm” reflect the sensor output multiplied by¢10 evaluated. It was assumed that the sensor is subject to a small

amount of additive Gaussian noise. This assumption is verified

response. The background response is not the same at all kf’rSé-the experlm_ental data (s_ee Sec“or? V-B). The performan_ce

guencies, and the noise variance is also a function of frequelﬁghese clas_smers, shown in _th|s section, was evaluated using

Table Il lists the variance of the noise for the magnitude al th synthetic data and experimental measurements.

phase of the complex response and the ratio between the mean . .

value of the response and the standard deviation of the noisé‘as>imulation Results

a function of frequency, respectively. These estimates were used) Fixed Height and Horizontal PositionFirst, the case

in the classifier given by (10) and (11). where all the position parameters are known exactly is con-
As described in Section Ill, to calibrate the sensor, measusedered. The model of each target at the same position and all

ments for the four targets were taken so the calibration coeffiesired frequencies is calculated. Then, by adding Gaussian

cients could be calculated. Each target was placed beneathrdr@lom noise with zero mean and variance obtained based

center of the sensor head at distances of 17 cm, 19 cm, 20 om,the experimental data (see Table 1l), 10000 realizations

21 cm, and 23 cm. Using these 20 measurements, calibratadrsimulated data for each target are generated. The decision

coefficients were calculated by the least-squares method. FigpfSwhich target is present is made based on (7) by using the



1358

VARIANCE OF THE BACKGROUND NOISE AND THE RATIO OF THE MEAN OF THE RESPONSE ANDITS STANDARD DERIVATION AS A FUNCTION OF

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

TABLE I

FREQUENCY FOR THEMAGNITUDE AND PHASE COMPONENTS RESPECTIVELY

Frequency (Hz) o mean(magnitude) ijme mean(phase)
Omagnitude Tphese
3,990 8.25E-05 3.62E+02 8.86E-02 1.74E+02
5,010 8.99E-05 4.12E+02 5.55E-02 2.00E+02
5,970 9.41E-05 4.52E+02 3.91E-02 2.16E+02
6,990 9.47E-05 4.95E+02 2.83E-02 2.27E+02
8,010 8.96E-05 5.46E+02 2.19E-02 2.31E+02
8,970 8.35E-05 5.96E+02 1.77E-02 2.31E+02
9,990 7.47E-05 6.58E+02 1.44E-02 2.28E+02
11,010 6.57E-05 7.27E+02 1.21E-02 2.22E+02
11,970 5.73E-05 8.00E+02 1.05E-02 2.14E+02
12,990 5.44E-05 8.42E+02 8.99E-03 2.05E+02
14,010 5.70E-05 8.40E+02 8.05E-03 1.92E+02
14,970 6.23E-05 8.18E+02 7.20E-03 1.80E+02
15,990 9.25E-05 6.82E+02 6.23E-03 1.70E+02
16,950 1.11E-04 6.31E+02 5.14E-03 1.64E+02
17,970 1.55E-04 5.42E+02 4.87E-03 1.46E+02
18,990 1.49E-04 5.62E+02 9.35E-03 9.00E+01
19,950 1.63E-04 5.40E+02 1.39E-02 6.25E+01
20,970 7.26E-04 2.60E+02 3.64E-03 1.01E+02
21,950 3.90E-04 3.58E+02 9.92E-03 4.99E+01
22,950 7.81E-04 2.58E+02 9.23E-03 3.99E+01
23,970 1.21E-03 2.10E+02 8.32E-03 3.10E+01

48—

4.7 E— Theoretical Prediction /’
s = — — — Measurement p
of

37 :l l ] 1 1 l L L 1 L l | I | I |

10000 15000 20000

LOG FREQUENCY (HZ)

is unknown and the target is located under the center of the
sensor is considered. This situation occurs in a real detection
scenario when the sensor operator can accurately center the
sensor, but the burial depth of the mine is unknown. The height
of the sensor was modeled as a Gaussian distributed random
variable with a mean of 20 cm and a variance of 1.68¥.
Fig. 6 shows the performance of a processor that assumed a
fixed target/sensor orientation along with that of the optimal
classifier. For the former, it is assumed the target is at the
mean height of 20 cm. Clearly, substantial improvements
in classification performance are achieved by the optimal
classifier over a processor that assumes a fixed target/sensor
orientation. This performance is achieved for a relatively small
level of uncertainty in the height. The average performance
improvement is over 70%.

3) Horizontal Position Uncertain, Fixed HeightThirdly,
we simulate the case where horizontal position is uncertain. It
is assumed that the sensor is located at a known, fixed height.
Because the exact positions of mines are unknown to the sensor

Fig. 5. Comparison of measurements and theoretical predictions for the tRRerator during detection, we assumed a uniform distribution

brass disk when the distance from the target to the sensor is 20 cm.

in the horizontal plane. Fig. 7 shows the simulation results of
the processor that assumes a fixed target/sensor orientation and
the optimal classifier when the horizontal positions of targets

processor expressed in (10), which is optimal for this casare uniformly distributed. For the former, it was assumed that
Because of the fact that the wideband EMI signature of thethe target was at the mean horizontal position and was directly
targets is significantly different [12] and the experimentallynder the sensor. Again, the performance of the optimal clas-
deriveds?'s are low, the performance is perfect.

2) Height Uncertain, Fixed Horizontal PositionNext,

sifier is substantially better than that of the processor, which
ignores the target/sensor orientation uncertainty. It improves

the case where only the height of the sensor from the target average by 60%.
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—A—— Height & Horiz. Position Uncertain, Optimal Processor
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) . . ) Fig. 8. Comparison of the “fixed position” processor and optimal processor
Fig. 6. Comparison of the processor, which ignores target/sensor orientaliformance when both height and horizontal position are uncertain for
uncertainty (“fixed position” processor) and the optimal processor undgjylated data.

uncertain height, fixed-horizontal position conditions for simulated data.
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Fig. 7. Comparison of the “fixed position” processor and optimal processor 1 TARZGET NUMBER 3 4
performance under the uncertain horizontal position, but fixed height conditior

for simulated data.

Fig. 9. Comparison of the “fixed position” processor and optimal processor

. . . . performance under the condition of both height and horizontal position
4) Both Height and Horizontal Position Uncertairin the  ynknown for measured data.

final simulation, both height and horizontal position are uncer-

tain. The height is assumed to follow a Gaussian distribution .

with mean of 20 cm and variance of 153 he horizontal po- B: Experimental Data

sition follows a uniform distribution (within a 20 cre 20 cm Simulations have shown that significant performance im-
square). Fig. 8 illustrates the performance of the two processgmovements can be achieved when the position uncertainty is
The “fixed orientation” processor assumes that the target is lacorporated into the classifier. To verify this result, measured
cated at the mean height and horizontal position. Performardsa were collected using the GEM-3, as described in Sec-
improves under these conditions by an average of 70% over thah V-B. In this section, the results of implementing these
of the “fixed position” processor. The results in Figs. 6—8 indprocessors using the measured data are shown.

cate that for the fixed position processor the performance be-The same two signal processing algorithms that were applied
comes progressively worse as the position uncertainty increagessimulated data: a fixed position processor, which assumes
Clearly, incorporating the uncertainty of these environmentehch target at the mean position, and the optimal classifier,
parameters into the processor affords a significant performamnekich incorporates the position uncertainty into the processor,
gain over a processor, which ignores this uncertainty. were applied to the experimental data. Fig. 9 illustrates the
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performance achieved by each of these two algorithms. Clea(ljiJXOCO), Fort Belvoir, VA. They would also like to thank the
better performance is achieved by the optimal processor. Paviewers, Y. Tan for her assistance with the data collection, and
formance improves on the average by 60%. This improvemebt;, L. Nolte and Dr. S. Tantum for useful discussions regarding
obtained on the measured data, is consistent with that obsertréd work.
in the simulated data set.
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