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Abstract. While it is relatively straightforward to automate
the processing of lidar signals, it is more difficult to choose
periods of “good” measurements to process. Groups use var-
ious ad hoc procedures involving either very simple (e.g.
signal-to-noise ratio) or more complex procedures (e.g. Wing
et al., 2018) to perform a task that is easy to train humans to
perform but is time-consuming. Here, we use machine learn-
ing techniques to train the machine to sort the measurements
before processing. The presented method is generic and can
be applied to most lidars. We test the techniques using mea-
surements from the Purple Crow Lidar (PCL) system located
in London, Canada. The PCL has over 200 000 raw profiles
in Rayleigh and Raman channels available for classification.
We classify raw (level-0) lidar measurements as “clear” sky
profiles with strong lidar returns, “bad” profiles, and pro-
files which are significantly influenced by clouds or aerosol
loads. We examined different supervised machine learning
algorithms including the random forest, the support vector
machine, and the gradient boosting trees, all of which can
successfully classify profiles. The algorithms were trained
using about 1500 profiles for each PCL channel, selected
randomly from different nights of measurements in differ-
ent years. The success rate of identification for all the chan-
nels is above 95 %. We also used the t-distributed stochastic
embedding (t-SNE) method, which is an unsupervised algo-
rithm, to cluster our lidar profiles. Because the t-SNE is a
data-driven method in which no labelling of the training set
is needed, it is an attractive algorithm to find anomalies in
lidar profiles. The method has been tested on several nights
of measurements from the PCL measurements. The t-SNE

can successfully cluster the PCL data profiles into meaning-
ful categories. To demonstrate the use of the technique, we
have used the algorithm to identify stratospheric aerosol lay-
ers due to wildfires.

1 Introduction

Lidar (light detection and ranging) is an active remote sens-
ing method which uses a laser to generate photons that are
transmitted to the atmosphere and are scattered back by at-
mospheric constituents. The back-scattered photons are col-
lected using a telescope. Lidars provide both high temporal
and spatial resolution profiling and are widely used in at-
mospheric research. The recorded back-scattered measure-
ments (also known as level-0 profiles) are often co-added in
time and/or in height. Before co-adding, profiles should be
checked for quality purposes to remove “bad profiles”. Bad
profiles include measurements with low-power laser, high
background counts, outliers, and profiles with distorted or
unusual shapes for a wide variety of instrumental or atmo-
spheric reasons. Moreover, depending on the lidar system
and the purpose of the measurements, profiles with traces
of clouds or aerosol might be classified separately. During
a measurement, signal quality can change for different rea-
sons including changes in sky background, the appearance
of clouds, and laser power fluctuation. Hence, it is difficult
to use traditional programming techniques to make a robust
model that works under the wide range of real cases (even
with multiple layers of exception handling).
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In this article we propose both supervised and unsuper-
vised machine learning approaches for level-0 lidar data clas-
sification and clustering. ML techniques hold great promise
for application to the large data sets obtained by the cur-
rent and future generation of high temporal–spatial resolu-
tion lidars. ML has been recently used to distinguish between
aerosols and clouds for the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) level-2 mea-
surements (Zeng et al., 2019). Furthermore, Nicolae et al.
(2018) used a neural network algorithm to estimate the most
probable aerosol types in a set of data obtained from the Eu-
ropean Aerosol Research Lidar Network (EARLINET). Both
Zeng et al. (2019) and Nicolae et al. (2018) concluded that
their proposed ML algorithms can classify large sets of data
and can successfully distinguish between different types of
aerosols.

A common way of classifying profiles is to define a thresh-
old for the signal-to-noise ratio at some altitude: any scan that
does not meet the pre-defined threshold value is flagged as
bad. In this method, bad profiles may be incorrectly flagged
as good, as they might pass the threshold criteria but have
the wrong shape at other altitudes. Recently, Wing et al.
(2018) suggested that a Mann–Whitney–Wilcoxon rank-sum
metric could be used to identify bad profiles. In the Mann–
Whitney–Wilcoxon test, the null hypothesis that the two pop-
ulations are the same is tested against the alternate hypothesis
that there is a significant difference between the two popula-
tions. The main advantage of this method is that it can be
used when the data distribution does not follow a Gaussian
distribution. However, Monte Carlo simulations have shown
that when the two populations have similar medians, but dif-
ferent variances, the Mann–Whitney–Wilcoxon can wrong-
fully accept the alternative hypothesis (Robert and Casella,
2004). Here, we propose a machine learning (ML) approach
for level-0 data classification. The classification of lidar pro-
files is based on supervised ML techniques which will be
discussed in detail in Sect. 2.

Using an unsupervised ML approach, we also examined
the capability of ML to detect anomalies (traces of wildfire
smoke in lower stratosphere). The PCL is capable of detect-
ing the smoke injected into the lower stratosphere from wild-
fires (Doucet, 2009; Fromm et al., 2010). We are interested
in whether the PCL can automatically (by using ML meth-
ods) detect aerosol loads in the upper troposphere and lower
stratosphere (UTLS) after major wildfires. Aerosols in the
UTLS and stratosphere have important impacts on the ra-
diative budget of the atmosphere. Recently, Christian et al.
(2019) proposed that smoke aerosols from the forest fires,
unlike the aerosols from the volcanic eruptions, can have a
net positive radiative forcing. Considering that the number of
forest fires have increased, detecting the aerosol loads from
fires in the UTLS and accounting for them in atmospheric
and climate models is important.

Section 2 is a brief description of the characteristics of the
lidars we used and an explanation of how ML can be useful

for the lidar data classification. Furthermore, the algorithms
which are used in the paper are explained in detail. In Sect. 3
we show classification and clustering results for the PCL sys-
tem. In Sect. 4, a summary of the ML approach is provided,
and the future directions are discussed.

2 Machine learning algorithms

2.1 Instrument description and machine learning

classification of data

The PCL is a Rayleigh–Raman lidar which has been opera-
tional since 1992. Details about PCL instrumentation can be
found in Sica et al. (1995). From 1992 to 2010, the lidar was
located at the Delaware Observatory (42.5◦ N, 81.2◦ W) near
London, Ontario, Canada. In 2012, the lidar was moved to
the Environmental Science Western Field Station (43.1◦ N,
81.3◦ W). The PCL uses a second harmonic of an Nd:YAG
solid state laser. The laser operates at 532 nm and has a repe-
tition rate of 30 Hz at 1000 mJ. The receiver is a liquid mer-
cury mirror with the diameter of 2.6 m. The PCL currently
has four detection channels:

1. A high-gain Rayleigh (HR) channel that detects the
back-scattered counts from 25 to 110 km altitude (verti-
cal resolution: 7 m).

2. A low-gain Rayleigh (LR) channel that detects the back-
scattered counts from 25 to 110 km altitude (this chan-
nel is optimized to detect counts at lower altitudes where
the high-intensity back-scattered counts can saturate the
detector and cause non-linearity in the observed signal;
thus, using the low-gain channel, at lower altitudes, the
signal remains linear) (vertical resolution: 7 m).

3. A nitrogen Raman channel that detects the vibrational
Raman-shifted back-scattered counts above 0.5 km in
altitude (vertical resolution: 7 m).

4. A water vapour Raman channel that detects the vi-
brational Raman-shifted back-scattered counts above
0.5 km in altitude (vertical resolution: 24 m).

The Rayleigh channels are used for atmospheric temperature
retrievals, and the water vapour and nitrogen channels are
used to retrieve water vapour mixing ratio.

In our lidar scan classification using supervised learning,
we have a training set in which, for each scan, counts at
each altitude are considered as an attribute, and the classi-
fication of the scan is the output value. Formally, we are
trying to learn a prediction function f (x): x → y, which
minimizes the expectation of some loss function L(y,f ) =

6N
i (ytrue

i − y
predicted
i ), where ytrue

i is the actual value (label)

of the classification for each data point; y
predicted
i is the pre-

diction generated from the prediction function, and N is the
length of the data set (Bishop, 2006). Thus, the training set is
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Figure 1. Example of measurements taken by PCL Rayleigh and Raman channels. (a) Examples of bad profiles for both Rayleigh and Raman
channels. In this plot, the signals in cyan and dark red have extremely low laser power, the purple signal has extremely high background
counts, and the signal in orange has a distorted shape and high background counts. (b) Example of a good scan in the Rayleigh channel. (c)

Example of cloudy sky in the nitrogen (Raman) channel. At about 8 km a layer of either cloud or aerosol occurs.

a matrix with size (m,n), and each row of the matrix presents
a lidar scan in the training set. The columns of this matrix
(except the last column) are photon counts at each altitude.
The last column of the matrix shows the classifications of
each scan. Examples of each scan’s class for PCL measure-
ments using Rayleigh and nitrogen Raman digital channels
are shown in Fig. 1.

We also examined unsupervised learning to generate
meaningful clusters. We are interested in determining
whether the lidar profiles, based on their similarities (sim-
ilar features), will be clustered together. For our clustering
task, a good ML method will distinguish between high back-
ground counts, low-laser power profiles, clouds, and high-
laser profiles, and put each of these in a different cluster.
Moreover, using unsupervised learning, anomalies in profiles
(a.k.a. traces of smoke in higher altitudes) should be appar-
ent.

Many algorithms have been developed for both supervised
and unsupervised learning. In the following section, we intro-
duce support vector machine (SVM), decision tree, random
forest, and gradient boosting tree methods as part of ML al-
gorithms that we have tested for sorting lidar profiles. We
also describe the t-distributed stochastic neighbour embed-
ding method and density-based spatial clustering as unsuper-
vised algorithms which were used in this study.

Recently, deep neural networks (DNNs) have received at-
tention in the scientific community. In the neural network
approach the loss function computes the error between the
output scores and target values. The internal parameters
(weights) in the algorithm are modified such that the error
becomes smaller. The process of tuning the weights contin-
ues until the error is not decreasing anymore. A typical deep
learning algorithm can have hundreds of millions of weights,
inputs and target values. Thus, the algorithm is useful when
dealing with large sets of images and text data. Although
DNNs are power full tools, they are acting as black boxes
and important questions such as what features in the input
data are more important remain unknown. For this study we

decided to use the classical machine learning algorithms as
they can provide a better explanation of feature selection.

2.2 Support vector machine algorithms

SVM algorithms are popular in the remote sensing commu-
nity because they can be trained with relatively small data
sets, while producing highly accurate predictions (Mantero
et al., 2005; Foody and Mathur, 2004). Moreover, unlike
some statistical methods such as the maximum likelihood
estimation that assume the data are normally distributed,
SVM algorithms do not require this assumption. This prop-
erty makes them suitable for data sets with unknown distri-
butions. Here, we briefly describe how SVM works. More
details on the topic can be found in Burges (1998) and Vap-
nik (2013).

The SVM algorithm finds an optimal hyperplane that sep-
arates the data set into a distinct predefined number of classes
(Bishop, 2006). For binary classification in a linearly separa-
ble data set, a target class yi ∈ {1,−1} is considered with a
set of input data vectors xi . The optimal solution is obtained
by maximizing the margin (w) between the separating hyper-
plane and the data. It can be shown that the optimal hyper-
plane is the solution of the constrained quadratic equation:

minimize:
1

2
‖w‖2, (1)

constraint: yi(w
⊺
xi + b)>1. (2)

In the above equation the constraint is a linear model where
w and the intercept (b) are unknowns (need to be optimized).
To solve this constrained optimization problem, the Lagrange
function can be built:

L(w,b,α) =
1

2

∥

∥

∥
w

2
∥

∥

∥
−

∑

i

αi

(

yi(w
⊺

xi + b) − 1
)

, (3)
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where αi are Lagrangian multipliers. Setting the derivatives
of L(w,b,α) with respect to w and b to zero:

w =
∑

i

αiyixi, (4)

∑

i

αiyi = 0. (5)

Thus we can rewrite the Lagrangian as follows:

L(w,b,α) =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjx
⊺

i xj . (6)

It is clear that the optimization process only depends on the
dot product of the samples.

Many real-world problems involve non-linear data sets in
which the above methodology will fail. To tackle the non-
linearity, using a non-linear function 8(x) the feature space
is mapped into higher-dimensional feature space. The La-
grangian function can be re-written as follows:

L(w,b,α) =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjk(xi,xj ), (7)

k(xi,xj ) = 8(xi)
⊺8(xj ), (8)

where k(xi,xj ) is known as the kernel function. Kernel func-
tions let the feature space be mapped into higher-dimensional
space without the need to calculate the transformation func-
tion (only the kernel is needed). More details on SVM and
kernel functions can be found in Bishop (2006).

To use SVM as a multi-class classifier, some adjustments
need to be made to the simple SVM binary model. Meth-
ods like a directed acyclic graph, one-against-all, and one-
against-others are among the most successful techniques for
multi-class classification. Details about these methods can be
found in Knerr et al. (1990).

2.3 Decision trees algorithms

Decision trees are nonparametric algorithms that allow com-
plex relations between inputs and outputs to be modelled.
Moreover, they are the foundation of both random forest and
boosting methods. A comprehensive introduction to the topic
can be found in Quinlan (1986). Here, we briefly describe
how a decision tree is built.

A decision tree is a set of (binary) decisions represented
by an acyclic graph directed outward from a root node to
each leaf. Each node has one parent (except the root) and can
have two children. A node with no children is called a leaf.
Decision trees can be complex depending on the data set. A
tree can be simplified by pruning, which means leaves from
the upper parts of the trees will be cut. To grow a decision
tree, the following steps are taken.

– Defining a set of candidate splits. We should answer a
question about the value of a selected input feature to
split the data set into two groups.

– Evaluating the splits. Using a score measure, at each
node, we can decide what the best question is to be
asked and what the best feature is to be used. As the
goal of splitting is to find the purest learning subset that
is in each leaf, we want the output labels to be the same;
called purifying. Shannon entropy (see below) is used to
evaluate the purity of each subgroup. Thus, a split that
reduces the entropy from one node to its descendent is
favourable.

– Deciding to stop splitting. We set rules to define when
the splitting should be stopped, and a node becomes a
leaf. This decision can be data-driven. For example, we
can stop splitting when all objects in a node have the
same label (pure node). The decision can be defined by
a user as well. For example, we can limit the maximum
depth of the tree (length of the path between root and a
leaf).

In a decision tree, by performing a full scan of attribute
space the optimal split (at each local node) is selected, and
irrelevant attributes are discarded. This method allows us to
identify the attributes that are most important in our decision-
making process.

The metric used to judge the quality of the tree splitting
is Shannon entropy (Shannon, 1948). Shannon entropy de-
scribes the amount of information gained with each event and
is calculated as follows:

H(x) = −6pi logpi, (9)

where pi represents a set of probabilities that adds up to 1.
H(x) = 0 means that no new information was gained in the
process of splitting, and H(x) = 1 means that the maximum
amount of information was achieved. Ideally, the produced
leaves will be pure and have low entropy (meaning all of the
objects in the leaf are the same).

2.4 Random forests

The random forest (RF) method is based on “growing” an
ensemble of decision trees that vote for the most popular
class. Typically the bagging (bootstrap aggregating) method
is used to generate the ensemble of trees (Breiman, 2002).
In bagging, to grow the kth tree, a random vector θk from
the training set is selected. The θk vector is independent of
the past vectors (θ1, . . .,θk−1) but has the same distribution.
Then, by selecting random features, the kth tree is generated.
Each tree is a classifier (h(θk,x)) that casts a vote. During
the construction of decision trees, in each interior node, the
Gini index is used to evaluate the subset of selected features.
The Gini index is the measure of impurity of data (Lerman
and Yitzhaki, 1984; Liaw et al., 2002). Thus, it is desirable to
select a feature that results in a greater decrease in the Gini
index (partitioning the data into distinct classes). For a split
at node n the index can be calculated as 1 − 62

i=1P
2
i , where
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Pi is the frequency of class i in the node n. Finally, the class
label is determined via majority voting among all the trees
(Liaw et al., 2002).

One major problem in ML is that when the algorithm be-
comes too complicated and perfectly fits the training data
points, it loses its generality and performs poorly on the test-
ing set. This problem is known as overfitting. For RF, in-
creasing the number of trees can help with the overfitting
problem. Other parameters that can significantly influence
RFs are the tree depth and the number of trees. As a tree
gets deeper it has more splits while growing more trees in a
forest yields a smaller prediction error. Finding the optimal
depth of each tree is a critical parameter. While leaves in a
short tree may contain heterogeneous data (the leaves are not
pure), tall trees can suffer from poor generalization (overfit-
ting problem). Thus, the optimal depth provides a tree with
pure leaves and great generalization. Detailed discussion on
the RFs can be found in Liaw et al. (2002).

2.5 Gradient boosting tree methods

Boosting methods are based on the idea that combining many
“weak” approximation models (a learning algorithm that is
slightly more accurate than 50 %) will eventually boost the
predictive performance (Knerr et al., 1990; Schapire, 1990).
Thus, many “local rules” are combined to produce highly ac-
curate models.

In the gradient boosting method, simple parametrized
models (base models) are sequentially fitted to current resid-
uals (known as pseudo-residuals) at each iteration. The resid-
uals are the gradients of the loss function (they show the dif-
ference between the predicted value and the true value) that
we are trying to minimize. The gradient boosting tree (GBT)
algorithm is a sequence of simple trees generated such that
each successive tree is grown based on the prediction resid-
ual of the preceding tree with the goal of reducing the new
residual. This “additive weighted expansion” of trees will
eventually become a strong classifier (Knerr et al., 1990).
This method can be successfully used even when the rela-
tion between the instances and output values are complex.
Compared to the RF model, which is based on building many
independent models and combining them (using some aver-
aging techniques), the gradient boosting method is based on
building sequential models.

Although the GBTs show overall high performance, they
require large set of training data and the method is quite sus-
ceptible to noise. Thus, for smaller training data set the algo-
rithm suffers from overfitting. As the size of our data set is
large, GBT could potentially be a reliable algorithm for the
classification of lidar profiles in this case.

2.6 The t-distributed stochastic neighbour embedding

method

A detailed description of unsupervised learning can be found
in Hastie et al. (2009). Here, we briefly introduce two of the
unsupervised algorithms that are used in this paper. The t-
distributed stochastic embedding (t-SNE) method is an unsu-
pervised ML algorithm that is based on stochastic neighbour
embedding (SNE). In the SNE, the data points are placed
into a low-dimensional space such that the neighbourhood
identity of each data point is preserved (Hinton and Roweis,
2002). The SNE is based on finding the probability that data
point i has data point j as its neighbour, which can formally
be written as follows:

Pi,j =
exp(−d2

i,j )
∑

k 6=i exp(−d2
i,k)

, (10)

where Pi,j is the probability of i selecting j as its neighbour
and d2

i,j is the squared Euclidean distance between two points
in the high dimensional space. This can be written as follows:

d2
i,j =

‖(xi − xj )‖
2

2σ 2
i

, (11)

where σi is defined so that the entropy of the distribution
becomes logκ , and κ is the “perplexity”, which is set by the
user and determines how many neighbours will be around a
selected point.

The SNE tries to model each data point, xi , at the higher
dimension, by a point yi at a lower dimension such that the
similarities in Pi,j are conserved. In this low-dimensional
map, we assume that the points follow a Gaussian distribu-
tion. Thus, the SNE tries to make the best match between the
original distribution (pi,j ) and the induced probability dis-
tribution (qi,j ). This match is determined by minimizing the
error between the two distributions, and the best match is de-
veloped. The induced probability is defined as follows:

qi,j =
exp(−‖(yi − yj )‖

2)
∑

k 6=i exp(−‖(yi − yk)‖2)
. (12)

The SNE algorithm aims to find a low-dimensional data
representation such that the mismatch between pi,j and qi,j

become minimized; thus in the SNE the Kullback–Leibler
divergences is defined as the cost function. Using the gradi-
ent descent method the cost function is minimized. The cost
function is written as follows:

cost = 6iKL(Pi‖Qi) = 6i6jpj |i log
pj |i

qj ||i

, (13)

where Pi is the conditional probability distribution of all data
points given data points xi , and Qi is the conditional proba-
bility for all the data points given data points yi .

The t-SNE uses a similar approach but assumes a lower-
dimensional space, which instead of being a Gaussian distri-
bution follows Student’s t distribution with a single degree
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Figure 2. Red curve: the Gaussian distribution for data points, ex-
tending from −5σ to 5σ . The mean of the distribution is at 0. Blue
curve: the Student’s t distribution over the same range. The distri-
bution is heavy-tailed, compared to the Gaussian distribution.

of freedom. Thus, since a heavy-tailed distribution is used to
measure similarities between the points in the lower dimen-
sion, the data points that are less similar will be located fur-
ther from each other. To demonstrate the difference between
the Student’s t distribution and the Gaussian distribution, we
plot the two distributions in Fig. 2. Here, the x values are
within 5σ and −5σ . The Gaussian distribution with the mean
at 0 and the Student’s t distribution with the degree of free-
dom of 1 are generated. As is shown in the figure, the t dis-
tribution peaks at a lower value and has a more pronounced
tail. The above approach gives t-SNE an excellent capability
for visualizing data, and thus, we use this method to allow
scan classification via unsupervised learning. More details on
SNE and t-SNE can be found in Hinton and Roweis (2002)
and Maaten and Hinton (2008).

2.7 Density-based spatial clustering of applications

with noise (DBSCAN)

DBSCAN is an unsupervised learning method that relies on
density-based clustering and is capable of discovering any ar-
bitrary shape from a collection of points. There are two input
parameters to be set by the user: minPts, which indicates the
minimum number of points needed to make a cluster, and ǫ

such that the ǫ neighbourhood of point p denoting as Nǫ(p)

is defined as follows:

Nǫ(p) = {q ∈ D | dis(p,q) ≤ ǫ}, (14)

where p and q are two points in data set (D) and dist(p,q)

represents any distance function. Defining the two input pa-
rameters, we can make clusters. In the clustering process data
points are classified into three groups: core points, (density)
reachable points, and outliers, defined as follows.

– Core point. Point A is a core point if within the distance
of ǫ at least minPts points (including A) exist.

– Reachable point. Point B is reachable from point A if
there is a path (P1,P2, . . .,Pn) from A to B (P1 = A).
All points in the path, with the possible exception of
point B, are core points.

– Outlier point. Point C is an outlier if it is not reachable
from any point.

In this method, an arbitrary point (that has not been vis-
ited before) is selected, and using the above steps the neigh-
bour points are retrieved. If the created cluster has a sufficient
number of points (larger than minPts) a cluster is started. One
advantage of DBSCAN is that the method can automatically
estimate the numbers of clusters.

2.8 Hyper-parameter tuning

Machine learning methods are generally parametrized by a
set of hyper-parameters, λ. An optimal set λbest will result
in an optimal algorithm which minimizes the loss function.
This set can be formally written as follows:

λbest = argmin{L(Xtest; A(Xtrain,λ))}, (15)

where A is the algorithm and Xtest and Xtrain are test
and training data. Searching to find the best set of hyper-
parameters is mostly done using grid search method in which
a set of values on a predefined grid is proposed. Implement-
ing each of the proposed hyper-parameters, the algorithm
will be trained, and the prediction results will be compared.
Most algorithms have only a few hyper-parameters. Depend-
ing on the learning algorithm, the size of training, and test
data sets, the grid search can be a time-consuming approach.
Thus automatic hyper-parameter optimization has gained in-
terest; details on the topic can be found in Feurer and Hutter
(2019).

3 Result for supervised and unsupervised learning

using the PCL system

3.1 Supervised ML results

To apply supervised learning to the PCL system, we ran-
domly chose 4500 profiles from the LR, HR, and the nitro-
gen vibrational Raman channels. These measurements were
taken on different nights in different years and represent
different atmospheric conditions. For the LR and HR dig-
ital Rayleigh channels, the profiles were labelled as “bad
profiles” and “good profiles”. For the nitrogen channel we
added one more label that represents profiles with traces of
clouds or aerosol layers, called “cloudy” profiles. Here, by
“cloud” we mean a substantial increase in scattering relative
to a clean atmosphere, which could be caused by clouds or
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Table 1. Accuracy scores for the training and the test set for SVM,
RF, and GBT models. Results are shown for HR, LR, and nitrogen
channels.

Test set

Channel SVM RF GBT

HR 83 % 97 % 98 %
LR 88 % 97 % 97 %
Nitrogen 88 % 95 % 96 %

Training set

Channel SVM RF GBT

HR 90 % 98 % 99 %
LR 90 % 98 % 98 %
Nitrogen 88 % 94 % 95 %

aerosol layers. The HR and LR channels are seldom affected
by clouds or aerosols as the chopper is not fully open until
about 20 km. Furthermore, labelling the water vapour chan-
nel was not attempted for this study, due to its high natural
variability in addition to instrumental variability.

We used 70 % of our data for the training phase and we
kept 30 % of data for the test phase (meaning that during
the training phase 30 % of data stayed isolated and the al-
gorithm was built without considering features of the test
data). In order to overcome the overfitting issue we used the
k-fold cross-validation technique, in which the data set is di-
vided into k equal subsets. In this work we used 5-fold cross-
validation. The accuracy score is the ratio of correct predic-
tions to the total number of predictions. We used accuracy as
a metric of evaluating the performance of the algorithms. We
used the Python scikit-learn package to train our ML mod-
els. The prediction scores resulting from the cross-validation
method as well as from fitting the models on the test data set
is shown in Table 1.

We also used the confusion matrix for further evaluations
where the good profiles are considered as “positive” and the
bad profiles are considered as “negative”. A confusion matrix
can provide us with the number of the following:

– True positives (TP) – the number of profiles that are cor-
rectly labelled as positive (clean profiles);

– False positives (FP) – the number of profiles that are
incorrectly labelled as positive;

– True negatives (TN) – the number of profiles that are
correctly labelled as negative (bad profiles);

– False negatives (FN) – the number of profiles that are
incorrectly labelled as negative.

A perfect algorithm will result in a confusion matrix in
which FP and FN are zeros. Moreover, the precision and re-
call can be employed to give us an insight into how our al-

Table 2. Precision and recall values for the nitrogen, LR, and HR
channels. The precision and recall values are calculated using the
GBT model.

Nitrogen channel

Scan type Precision Recall

Cloud 0.94 0.91
Clear 0.96 0.98
Bad 1.00 1.00

LR channel

Scan type Precision Recall

Clear 0.99 0.99
Bad 0.96 0.95

HR channel

Scan type Precision Recall

Clear 0.98 1.00
Bad 0.98 0.94

gorithm can distinguish between good and bad profiles. The
precision and recall are defined as follows:

precision =
true positive

true positive + false positive
,

recall =
true positive

true positive + false negative
. (16)

The precision and recall for the nitrogen channel for each
category (clear, cloud, and bad) are shown in Table 2 as well.
The GBT and RF algorithms, both have high accuracy results
on HR and LR channels. The accuracy of the model on the
training set on the LR channel for both RF and GBT are 99 %
and on the test set are 98 %. The precision and recall values
for the clear profiles are close to unity and for the bad profiles
they are 0.95 and 0.96 respectively. The HR channel also has
a high accuracy of 99 % in the training set for both RF and
GBT, and the accuracy score in the testing set is 98 %. The
precision and recall values in Table 2 are also similar to the
LR channel.

For the nitrogen channel the GBT algorithm has the high-
est accuracy of 95 %, while the RF algorithm has accuracy
of 94 %. The confusion matrix of the test result for the GBT
algorithm (the one with the highest accuracy) is shown in
Fig. 3a. The algorithm can perform almost perfectly on dis-
tinguishing bad profiles (only one bad scan was wrongly la-
belled as cloudy). The cloud and clear profiles for most pro-
files are labelled correctly; however, for a few profiles the
model mislabelled clouds as clear profiles.

3.2 Unsupervised ML results

The t-SNE algorithm clusters the measurements by means
of pairwise similarity. The clustering can differ from night
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Figure 3. The confusion matrices for nitrogen channel (a), LR channel (b), and HR channel (c). In a perfect model, the off-diagonal elements
of the confusion matrix are zeros.

to night due to atmospheric and systematic variability. On
nights where most profiles are similar, fewer clusters are
seen, and on other nights when the atmospheric or the instru-
ment conditions are more variable, more clusters are gener-
ated. The t-SNE makes clusters but does not estimate how
many clusters are built, and the user must then estimate the
number of clusters. To automate this procedure, after apply-
ing the t-SNE to lidar measurements we use the DBSCAN
algorithm to estimate the number of clusters. The second step
of applying DBSCAN is used to estimate the number of gen-
erated clusters by t-SNE.

To demonstrate how clustering works, we show measure-
ments from the PCL LR channel and the nitrogen channels.
Here, we use the t-SNE on 15 May 2012 that contains both
bad and good profiles. We also show the clustering result for
the nitrogen channel on 26 May 2012. We chose this night
because at the beginning of the measurements the sky was
clear but the sky became cloudy.

On the night of 15 May 2012, the t-SNE algorithm gen-
erates three distinct clusters for the LR channel (Fig. 4).
These clusters correspond to different types of lidar return
profiles. Figure 5a shows all the signals for each of the clus-
ters. The maximum number of photon counts and the value
and the height of the background counts are the identifiers be-
tween different clusters. Thus, cluster 3 with low background
counts and high maximum counts represents a group of pro-
files which are labelled as good profiles in our supervised
algorithms. Cluster 1 represents the profiles with lower than
normal laser powers, and cluster 2 shows profiles with ex-
tremely low laser powers. To better understand the difference
between these clusters, Fig. 5b shows the average signal. Fur-
thermore, the outliers of cluster 3 (shown in black) identify
the profiles with extremely high background counts. This re-
sult is consistent with our supervised method, in which we
had good profiles (cluster 3), and bad profiles which are pro-
files with lower laser power (clusters 1 and 2).

Using the t-SNE, we also have clustered profiles for the
nitrogen channel with the measurements taken on 26 May
2012. This night was selected because the sky conditions
changed from clear to cloudy. The measurements from this
night allows us to test our algorithm and determine how well
it can distinguish cloudy profiles from the non-cloudy pro-

Figure 4. Clustering of lidar return signal type using the t-SNE al-
gorithm for 339 profiles from the low-gain Rayleigh measurement
channel on the night of 15 May 2012. The profiles are automati-
cally clustered into three different groups selected by the algorithm.
Cluster 3 has some outliers.

files. The result of clustering is shown in Fig. 6a in which two
well-distinguished clusters are generated, where one cluster
represents the cloudy and the other represents the non-cloudy
profiles. The averaged signal for each cluster is plotted in
Fig. 6b. Moreover, the particle extinction profile at altitudes
between 3 and 10 km is plotted in the same figure (Doucet,
2009). The first 130 profiles are clean and the last 70 pro-
files are severely affected by thick clouds; thus the extinction
profile is consistent with our t-SNE classification result.

The t-SNE method can be used as a visualization tool;
however, to evaluate each cluster the user either needs to ex-
amine profiles within each cluster or use one of the aforemen-
tioned classification methods. For example Fig. 4 shows this
night of measurement had some major differences among the
collected profiles (if all the profiles were similar only one
cluster would be generated). But, to evaluate the cluster the
profiles within each cluster must be examined by a human,
or a supervised ML should be used to label each cluster.

3.3 PCL fire detection using the t-SNE algorithm

The t-SNE can be used for anomaly detection. As fire’s
smoke in the stratosphere is a relatively rare event, we can
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Figure 5. (a) All 339 profiles collected by the PCL system LR channel on the night of 15 May 2012. The sharp cutoff for all profiles below
20 km is due to the system’s mechanical chopper. The green signals have extremely low power. The red line represents all signals with
low return signal and the blue line indicates the signals that are considered good profiles. The black lines are signals with extremely high
backgrounds. (b) Each line represents an average of the signals within a cluster. The red line is the average signal for profiles with lower
laser power (cluster 1). The green line is the average signal for profiles with really low laser power (cluster 2). The blue line is the average
signal for profiles with strong laser power (cluster 3). The black line indicates the outliers that have extremely high background counts and
are outliers belonging to cluster 3 (blue curve). The background counts in the green line start at about 50 km, whereas for the red line the
background starts at almost 70 km and for the blue line profiles the background starts at 90 km.

Figure 6. (a) Profiles for the nitrogen channel on the night of 15 May 2012 were clustered into two different groups using the t-SNE
algorithm. (b) The red line (cluster 2) is the average of all signals within this cluster and indicates the profiles in which clouds are detectable.
The blue line (cluster 2) is the average of all signals within this cluster and indicates the clear profiles (non-cloudy condition). (c) The particle
extinction profile for the night shows the last 70 profiles are affected by thick clouds at about 4.5 km altitude.

test the algorithms to identify these events. Here, we used the
t-SNE to explore traces of aerosol in stratosphere within one
month of measurements. We expect that the t-SNE would
generate a single cluster for a month with no trace of strato-
spheric aerosols that means no “anomalies” have been de-
tected. The algorithm should generate more than one clus-
ter in the case of detecting stratospheric aerosols. We use
the DBSCAN algorithm to automatically estimate the num-
ber of generated profiles. In DBSCAN, most of the bad pro-
files will be tagged as noise (meaning that they do not belong
to any cluster). Here we are showing two examples, in one
of which the stratospheric smoke exists and our algorithm
generates more than one cluster. In the other example strato-
spheric smoke is not present in the profiles, and the algo-
rithm only generates one cluster. The nightly measurements
of June 2002 are used as an example of a month in which
the t-SNE can detect anomalies (thus more than one cluster

is generated), as the lidar measurement were affected by the
wildfire in Saskatchewan, and nights of measurements in July
2007 are used as an example of nights with no high loads of
aerosol in stratosphere (only one cluster is generated).

The wildfires in Saskatchewan during late June and early
July 2002 produced a massive amount smoke that was trans-
ported southward. As the smoke from the fire can reach to
higher altitudes (reaching to lower stratosphere), we are in-
terested in seeing whether we can automatically detect strato-
spheric aerosol layers during wildfire events. The PCL was
operational on the nights of 8, 9, 10, 19, 21, 29, and 30 June
2002. During these nights, 1961 lidar profiles were collected
in the nitrogen channel. We used the t-SNE algorithm to ex-
amine if the algorithm can detect and cluster the profiles with
the trace of wildfire in higher altitudes, using profiles in the
altitude range of 8 to 25 km. To automatically estimate the
number of produced clusters we used the DBSCAN algo-
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Figure 7. Profiles for the nitrogen channel for the nights of June
2002 were clustered into four different groups using the t-SNE al-
gorithm. The small cluster in cyan indicates the group of profiles
that do not belong to any of the other clusters in the DBSCAN al-
gorithm.

rithm. We set the minPts condition to 30, and the ǫ value to 3.
The DBSCAN algorithm estimated four clusters and few pro-
files remained as the noise, which do not belong to any other
clusters (shown in cyan, in Fig. 7). To investigate whether
profiles with layers are clustered together the particle extinc-
tion profile for each generated cluster is plotted (Fig. 8). Most
of the profiles in cluster 1 are clean and no sign of particles
can be seen in these profiles (Fig. 8a), cluster 2 contains all
profiles with mostly small traces of aerosol between 10 and
14 km (Fig. 8b). The presence of high loads of aerosol can
clearly detected in the particle extinction profiles for both
cluster 3 and 4; the difference between the two clusters is
in the height at which the presence of aerosol layer is more
distinguished (Fig. 8d and c). Profiles in the last two clusters
belong to the last two nights of measurements on June 2002
which are coincidental with the smoke being transported to
London from the wildfire in Saskatchewan.

We also examined a total of 2637 profiles in the altitude
range of 8 to 25 km obtained from 10 nights of measurements
in July 2007. As we expected, no anomalies were detected
(Fig. 9). The particle extinction profile of July 2007 also in-
dicates that at the altitude range of 8 to 25 km no aerosol load
exists (Fig. 9).

Thus, using the t-SNE method we can detect anomalies in
the UTLS. In the UTLS region, for the clear atmosphere we
expect to see a single cluster, and when aerosol loads exist
at least two clusters will be generated. We are implementing
the t-SNE on one month of measurements, and when the al-
gorithm generates more than one cluster we examine profiles
within that cluster. However, at the moment, because we only
use the Raman channel it is not possible for us to distinguish
between smoke traces and cirrus clouds (unless the trace is
detected in altitudes above 14 km, similar to Fig. 8 where we

are more confident in claiming that the detected aerosol lay-
ers are traces of smoke, as shown in Fromm et al., 2010).

4 Summary and conclusion

We introduced a machine learning method to classify raw
lidar (level-0) measurements. We used different ML meth-
ods on elastic and inelastic measurements from the PCL li-
dar systems. The ML methods we used and our results are
summarized as follows.

1. We tested different supervised ML algorithms, among
which the RF and the GBT performed better, with a suc-
cess rate above 90 % for the PCL system.

2. The t-SNE unsupervised algorithm can successfully
cluster profiles on nights with both consistent and vary-
ing lidar profiles due to both atmospheric conditions and
system alignment and performance. For example, if dur-
ing the measurements the laser power dropped or clouds
became present, the t-SNE showed different clusters
representing these conditions.

3. Unlike the traditional method of defining a fixed thresh-
old for the background counts, in supervised ML ap-
proach the machine can distinguish high background
counts by looking at the labels of the training set. In
the unsupervised ML approach, by looking at the sim-
ilarities between the two profiles and defining a dis-
tance scale, good profiles will be grouped together. High
background counts can be grouped in a smaller group.
Most of the time the number of bad profiles are small;
thus they will be labelled as noise.

We successfully implemented supervised and unsuper-
vised ML algorithms to classify lidar measurement profiles.
The ML is a robust method with high accuracy that enables
us to precisely classify thousands of lidar profiles within a
short period of time. Thus, with accuracy of higher than 95 %
this method has a significant advantage over previous meth-
ods of classifying. For example, in the supervised ML, we
train the machine by showing (labelling) different profiles
in different conditions. When the machine has seen enough
examples of each class (which is a small fraction of the en-
tire database), it can classify the un-labelled profiles with no
need to pre-define any condition for the system. Furthermore,
in the unsupervised learning method, no labelling is needed,
and the whole classification is free from subjective biases of
the individual marking the profiles (which is important for
large atmospheric data sets ranging over decades). Using ML
avoids the problem of different observers classifying profiles
differently. We also showed that the unsupervised schema
has the potential to be used as an anomaly detector, which
can alert us when there is a trace of aerosol in the UTLS re-
gion. We are planning to expand our unsupervised learning
method to both Rayleigh and nitrogen channels to be able to
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Figure 8. The t-SNE generates four clusters for profiles of nitrogen channels in July 2007. (a) Most of the profiles are clean and no sign of
particles can be seen. (b) Profiles with mostly small traces of aerosol between 10 and 14 km. (c, d) The presence of high loads of aerosol can
clearly be detected.

Figure 9. (a) The particle extinction profile of July 2007 indicates no significant trace of stratospheric aerosols. (b) The t-SNE generates a
single cluster for all of 2637 profiles of nitrogen channel for July 2007.

correctly identify and distinguish cirrus clouds from smoke
traces in the UTLS. Our results indicate that ML is a pow-
erful technique that can be used in lidar classifications. We
encourage our colleagues in the lidar community to use both
supervised and unsupervised ML algorithms for their lidar
profiles. For the supervised learning the GBT performs ex-
ceptionally well, and the unsupervised learning has the po-
tential of sorting anomalies.

Data availability. The data used in this paper are publically avail-
able at https://www.ndaccdemo.org/stations/london-ontario-canada
(last access: 8 January 2021, NDACC, 2021) by clicking the

DataLink button or via FTP at http://ftp.cpc.ncep.noaa.gov/ndacc/
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used in this study are also available from Robert Sica at The Uni-
versity of Western Ontario (sica@uwo.ca).
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