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Abstract
Characterizing the taxonomic diversity of microbial communities is one of the primary objectives of metagenomic
studies. Taxonomic analysis of microbial communities, a process referred to as binning, is challenging for the follow-
ing reasons. Primarily, query sequences originating from the genomes of most microbes in an environmental
sample lack taxonomically related sequences in existing reference databases. This absence of a taxonomic context
makes binning a very challenging task. Limitations of current sequencing platforms, with respect to short read
lengths and sequencing errors/artifacts, are also key factors that determine the overall binning efficiency.
Furthermore, the sheer volume of metagenomic datasets also demands highly efficient algorithms that can operate
within reasonable requirements of compute power. This review discusses the premise, methodologies, advantages,
limitations and challenges of various methods available for binning of metagenomic datasets obtained using the shot-
gun sequencing approach. Various parameters as well as strategies used for evaluating binning efficiency are then
reviewed.

Keywords: binning algorithms; metagenomics; taxonomic classification; lowest common ancestor; oligo-nucleotide
composition; taxonomic diversity

INTRODUCTION
A majority of microbes residing in diverse envir-

onments cannot be cultured in the laboratory [1].

Consequently, traditional genomics-based

approaches, requiring prior cloning and culturing of

individual microbes, cannot be used to study entire

microbial communities residing in any given envir-

onment. The advent of the ‘metagenomics’ approach

has enabled researchers to circumvent this limitation

by facilitating direct extraction, sequencing and ana-

lysis of specific phylogenetic marker genes or the

entire genomic content of microbial communities.

These microbial communities (microbiomes) can dis-

play a wide degree of spatial/temporal variations in

their taxonomic composition [2]. Consequently, a

key preliminary step in metagenomic analysis is to

decipher the microbial community structure of the

given environment by categorizing various microbes

residing therein and quantifying their diversity in

terms of species richness/abundance. In the context

of microbial communities, the term ‘species’ refers to

a fundamental and distinct rank of taxonomic hier-

archy. Organisms are grouped at the rank of ‘species’

primarily on the basis of their overall genotypic and/

or morphological similarity. However, the criteria

adopted by researchers for grouping individuals into

the same species are currently not universal and are

generally observed to be context dependent [3].

Species richness, a frequently employed diversity

metric, refers to the number of distinct species

(within a given unit area) inhabiting a particular bio-

logical community, habitat, or ecosystem type [4]. In

contrast, species abundance incorporates calculations

with respect to species evenness and/or dominance,
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i.e. the pattern of the relative abundances of species in

a given environment. Values of relative abundance in

turn indicate the quantitative pattern of rarity and

commonness among species in a sample or a commu-

nity [4]. Obtaining such insights into the microbial

diversity helps in identifying and associating specific

organisms or taxonomic groups (and the genes/pro-

teins they encompass) with various phenotypic/func-

tional traits characterizing a given environment.

Two approaches are generally adopted for charac-

terizing taxonomic diversity of metagenomes. In the

first approach, referred to as the shotgun sequencing

based approach, genomic fragments originating from

genomes of organisms constituting a microbiome are

extracted and sequenced [2]. The sequencing step

typically generates millions of sequences. These se-

quences (genomic fragments), also referred to as

‘reads’, can be considered to represent the compos-

itional properties of their source genomes. Analyzing

these reads can thus provide insights into the com-

position of various microbes constituting a micro-

biome. The second approach focuses on the

isolation, extraction and sequencing of amplicons

corresponding to entire (or specific portions of)

phylogenetic marker genes (e.g. 16S rRNA, rpoB,

etc., in the case of prokaryotic organisms) or specific

genomic regions such as the Internal Transcribed

Spacer (ITS) regions (for fungal species) [5, 6].

Various structural properties of these genes and gen-

omic regions enable their use as ‘species-specific

taxonomic barcodes’ that can be employed for ob-

taining quick estimates of taxonomic diversity [6].

In both approaches (described above), the subse-

quent step of analyzing the sequenced data in order

to get the taxonomic diversity profile of an environ-

mental sample is referred to as ‘binning’. Binning, a

process conceptually similar/analogous to established

machine learning techniques, involves classifying

and/or clustering reads into specific bins. Given the

two approaches of characterizing taxonomic diver-

sity, binning methods can be classified into two

groups, namely shotgun sequencing based and

amplicon based. Based on their methodologies and

final objectives, binning methods can be further cate-

gorized as ‘taxonomy dependent’ and ‘taxonomy in-

dependent’. Methods belonging to the former

category follow ‘supervised learning procedures’,

wherein, individual reads are taxonomically classified

by comparing them to sequences/models (of known

phylogenetic origin) present in reference databases.

Reads classified under similar taxonomic categories

are finally grouped into bins. However, assignments

of individual reads by taxonomy-dependent methods

are subject to obtaining sufficient levels of similarity,

between reads and sequences/models in reference

databases. In a typical metagenomics scenario, a ma-

jority of reads originate from genomes of hitherto

unknown organisms. In other words, sequences be-

longing to the source genomes of these reads are

absent in existing reference databases. Such reads,

lacking a ‘genomic reference’, typically fail to

exceed the predetermined similarity threshold cri-

teria, and consequently cannot be mapped to the

known ‘taxonomic reference’ tree. Existing

taxonomy-dependent binning methods generally

categorize such reads as unassigned. Therefore, the

overall objective (and applicability) of taxonomy-

dependent methods is to obtain estimates of the pro-

file/abundance of ‘known’ taxonomic groups in a

given environmental sample. In contrast, taxon-

omy-independent methods simply group/bin reads

in a given dataset based on their mutual similarity

and do not involve a database comparison step.

The methodology followed by taxonomy-

independent methods is therefore similar to ‘un-

supervised’ machine learning procedures.

The present review first summarizes the premise,

methodologies, advantages and limitations of existing

binning methods. We also discuss various aspects

with respect to (i) strategies employed for evaluating

binning methods, (ii) parameters used for evaluating

binning efficiency and (iii) existing challenges. This

review lays specific emphasis on binning methodol-

ogies designed for analyzing metagenomic datasets

obtained using the shotgun sequencing approach.

Since two recent reviews [7,8] provide a detailed

description and performance evaluation of various

methods available for binning 16S datasets (obtained

using the amplicon-based sequencing approach),

these methods have not been covered in this review.

BINNINGALGORITHMS FOR
DATASETSOBTAINEDUSING
SHOTGUN SEQUENCING
Analyses of datasets obtained using shotgun sequen-

cing involve characterizing the taxonomic and func-

tional diversity of a given environment by analyzing

DNA fragments originating from the genomes of

resident microbes. Existing binning methods for

such datasets (summarized in Figure 1) can be classi-

fied into two categories, namely taxonomy depend-

ent and taxonomy independent.
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Taxonomy-dependent methods
A majority of methods available for binning datasets

obtained using shotgun sequencing belong to the

taxonomy-dependent category. In these methods,

the extent of ‘similarity’ of reads with sequences

(in reference databases) or pre-computed models

(built using sequences in reference databases) drives

the assignment process. Reads failing to exceed

pre-determined similarity thresholds are categorized

as ‘unassigned’. Based on the strategy used for com-

paring reads with sequences/pre-computed models,

taxonomy-dependent methods can be sub-classified

into alignment-based, composition-based and hybrid

methods.

Alignment-based methods
A majority of these methods work by aligning

reads to sequences or Hidden Markov Models

(HMMs) corresponding to known taxonomic

groups. Alignment-based methods typically employ

algorithms like BLAST [9], BLAT [10], or

read-mapping methods like BWA [11], BOWTIE

[12] to first align individual reads to nucleotide/pro-

tein sequences belonging to known and characterized

genomes. Collections of such reference sequences are

present in major public repositories such as NCBI

(ftp://ftp.ncbi.nih.gov/blast/db/), PFAM (http://

pfam.sanger.ac.uk/), UniProt (http://www.uniprot.

org/), EMBL (http://www.ebi.ac.uk/embl/),

NCBI Genbank (http://www.ncbi.nlm.nih.gov/

genbank/), NCBI Refseq (http://www.ncbi.nlm

.nih.gov/RefSeq/), DDBJ (http://www.ddbj.nig.ac

.jp/) and Ensembl (http://www.ensembl.org/).

Reads are finally assigned to different taxonomic

groups by analyzing the quality of their alignments

with various hit sequences. This approach in its

Figure 1: A schematic representation of various categories of algorithms available for binning metagenomic data-
sets obtained using shotgun sequencing.
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simplest form is adopted by the MG-RAST server

[13] and the CAMERA pipeline [14], wherein

reads are assigned to taxa of the organisms corres-

ponding to their respective best BLAST hits.

However, a primary limitation of BLAST-based

approaches is the requirement of huge compute

power for aligning millions of reads against huge

number of sequences constituting reference data-

bases. Moreover, a large proportion of reads in data-

sets obtained using the shotgun sequencing approach

typically originate from hitherto unknown taxa be-

longing to either an entirely new species or genus or

family or order or class or even a new phylum. It is

incorrect to assign such reads to the organism corres-

ponding to the best BLAST hit (Figure 2). To address

this, the MG-RAST server also provides a Lowest

Common Ancestor (LCA)-based option to infer

taxonomic affiliation. In the LCA approach, a read

is assigned to the lowest common taxonomic ancestor

of the organisms corresponding to the set of signifi-

cant hits (Figure 2). The LCA approach also forms the

premise of the popular standalone binning software

MEGAN [15].

For reads originating from hitherto unknown gen-

omes, taxonomic affiliations using the LCA ap-

proach, although obtained at higher taxonomic

levels, are expected to be more accurate as compared

to that obtained using the best BLAST hit approach

(Figure 2). However, the most critical step of this

work-flow pertains to identifying the set of ‘signifi-

cant’ hits which can be provided as inputs to the

LCA procedure. MEGAN utilizes bit-score (of indi-

vidual hits) as the sole parameter for judging signifi-

cance. However, studies have indicated that this

single-parameter approach adversely affects the spe-

cificity/accuracy of taxonomic assignments in differ-

ent scenarios [16, 17]. Approaches like SOrt-ITEMS

[16], DiScRIBinATE [17], ProViDE [18],

Figure 2: Accuracy of taxonomic assignments using the best BLAST hit and the LCA approach in two different
database scenarios. Scenario 1: Read originating from the genome of known strains (K1), sequences of which are
present in the reference database. In most cases, the best hit for this read will correspond to K1. A few significant
hits may also be obtained with related organisms K2 and K3. Assignments using both approaches (best BLASTap-
proach and the LCA approach) are generally observed to be correct (indicated using a tick sign). Scenario 2:
Reads originating from genomes of new/unknown strains (U1,U2 and U3), sequences of which are absent in the ref-
erence database. Adopting the best blast approach in this scenario results in wrong assignments (indicated by a X
sign). The success of the LCA approach is observed to be dependent on the extent of representation of organisms
related to the source organism of the reads.
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MetaPhyler [19] and MARTA [20] have addressed

this limitation by utilizing, apart from bit-scores,

pre-computed thresholds of other alignment param-

eters like the numbers/percentages of identities,

positives and gaps to judge the quality of alignments.

For each read, an appropriate level of taxonomic as-

signment is identified based on the observed align-

ment quality. The final assignment of a given read is

made to a taxon that lies at or above this identified

level. Though, the overall premise appears somewhat

similar, these five methods differ with respect to the

reference databases against which the similarity

searches are performed. While SOrt-ITEMS,

DiScRIBinATE employ the nr database, similarity

searches of MARTA are done either against the nt

database or against custom collections of genome se-

quences. In contrast, MetaPhyler performs a similar-

ity search of reads against a customized database that

contains sequences belonging to 31 phylogenetic

marker gene families. MetaPhyler, in its work-flow,

employs alignment parameter thresholds that are sep-

arately pre-computed for individual gene families.

The idea is to capture variation patterns specific for

each gene family, rather than using universal thresh-

olds. It is worthwhile to note that ProViDE [18], a

method customized for binning reads in viral meta-

genomic datasets, uses pre-computed thresholds of

alignment parameters that are empirically deter-

mined by specifically analyzing the patterns of se-

quence divergence within the viral kingdom.

CARMA [21] and AMPHORA [22] are two well

known methods which adopt HMM-based binning

approaches. CARMA first compares reads (using

BLASTx) against protein sequences in the PFAM

database. Subsequently, it generates a phylogenetic

tree by comparing each read to the HMM(s) of the

protein families having significant hit(s). The final

taxonomy is inferred based on the placement of

the read in the constructed phylogenetic tree. In

contrast, AMPHORA first compares reads against

HMMs pre-built using sequences belonging to 31

phylogenetic marker gene families. Subsequently, a

phylogenetic tree is constructed between the read

and the sequences belonging to the best scoring

HMM. The final taxonomic assignments are then

obtained in a manner similar to CARMA.

However, AMPHORA incorporates an additional

bootstrapping step to improve the confidence of

the final assignments. Other methods that utilize

HMMs or reference trees in their assignment process

are MLTreeMap [23], Treephyler [24], pplacer [25]

and papara [26]. These methods additionally utilize

either Maximum-Likelihood estimates or Bayesian-

based strategies to compute confidence scores. While

MLTreeMap compares query sequences against

HMMs built using protein sequences of 40 marker

gene families, Treephyler employs the PFAM data-

base in its work-flow. In contrast, pplacer and papara

provide a generalized algorithmic frame-work which

can be utilized for placing reads onto the best scoring

insertion edge on a user-specified reference phylo-

genetic tree. The pplacer method is also employed as

a core component in the assignment work-flow of

AMPHORA.

Composition-based methods
Methods in this category utilize compositional prop-

erties like GC percentage, codon usage and oligo-

nucleotide usage patterns for first comparing reads to

sequences or models present in reference databases.

Final taxonomic assignments are based on the extent

of compositional similarity in relative and/or abso-

lute terms. Being alignment free, these methods are

faster and require lesser compute power as compared

to alignment-based methods. However, in order to

generate a robust compositional signal, having taxo-

nomic discrimination capability, the methods require

query sequences of sufficient length.

Composition-based methodologies differ with re-

spect to the way they represent, quantify and com-

pare compositional properties. Most methods

involve an initial training step during which one or

more compositional properties of known genomes

are used for building ‘genome-specific’ reference

models or classifiers. For instance, Phylopythia [27]

and the NBC classifier [28] build genome or

clade-specific classifiers using Support Vector

Machines (SVMs) and Naive-Bayesian approaches,

respectively, in order to capture and represent oligo-

nucleotide usage patterns observed in known taxo-

nomic clades. In contrast, TACOA [29] first builds

genome-specific models by analyzing tetra and

penta-nucleotide usage patterns. A kernelized-

Nearest Neighbor (k-NN) approach is subsequently

employed to decipher the taxonomic assignments of

individual reads. Another method, namely Phymm

[30] represents oligonucleotide usage patterns of ref-

erence genomes as Interpolated Markov Models

(IMMs). Reads are scored against these models and

a Bayesian approach is subsequently employed

for drawing taxonomic inferences. Markovian prop-

erties are also used by another method, namely
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ClaMS [31]. This method generates signatures/

models of training sequences using de Bruijn

graphs and Markovian chain properties. During the

classification phase, a similar procedure is used for

generating and comparing signatures of query reads

with pre-computed signatures of training sequences.

RAIphy [32], a recently developed semi-supervised

method, bases its classification on a index (referred to

as the Relative Abundance Index) that indicates the

over/under-abundance patterns of k-mers in se-

quences belonging to various known taxonomic

clades. This index is subsequently used as a measure

to associate a given taxon to a query sequence.

All methods described above assume that a single

compositional model comprehensively represents the

oligonucleotide usage patterns of a genome.

However, certain genomes are known to be charac-

terized by distinct regions of heterogeneity as com-

pared to the rest of the genome [33]. The assumption

of a ‘one genome—one composition model’ is thus

not appropriate for such scenarios. The recently pub-

lished INDUS algorithm [34] discards this assump-

tion and represents each genome in the form of

multiple vectors. Each vector captures the pattern

of tetranucleotide frequencies of individual

(non-overlapping) 1-Kb segments generated by

dicing the respective genome. During the assignment

process, INDUS utilizes the compositional distance

between the query read and the ‘closest’ identified

set of reference segments for determining an appro-

priate taxonomic level of assignment for the query.

The final assignment is made to a consensus taxon

that corresponds to the closest reference segments at

or above the identified taxonomic level.

Hybrid methods
Binning methods under this category incorporate a

combination of alignment and composition-based

strategies for taxonomic classification. For instance,

SPHINX [35] algorithm adopts a two-phase binning

approach. The first phase compares the composition

of a given read (represented as a tetra-nucleotide fre-

quency vector) with those of reference sequences (in

a pre-clustered format). The objective of this phase is

to quickly identify a subset of clusters of reference

sequences that are closest in composition to the given

read. In the second phase, the taxonomic classifica-

tion of the query read is inferred by first aligning the

query read to reference sequences in the closest clus-

ter and then employing a similarity-based approach

like SOrt-ITEMS. While the first phase aids in

reducing the search-space (and consequently

binning time), the second phase ensures the accur-

acy/specificity of assignment. PhymmBL [30] is

another hybrid method that combines the composi-

tion-based methodology of Phymm (described pre-

viously) along with an alignment-based step

(BLAST) to improve the confidence of taxonomic

assignments.

Taxonomy-independent methods
Methods under this category include TETRA [36],

variants of SOMs [37, 38], CompostBin [39],

AbundanceBin [40] and MetaCluster [41]. Among

these, the simplest methodology is adopted by

TETRA. For a given sequence dataset, TETRA

computes the pairwise correlations between

tetra-nucleotide usage patterns of all reads. This in-

formation is used for segregating reads (expected to

originate from related taxonomic clades) into distinct

bins. Self Organizing Maps (SOMs) are neural

network-based approaches which involve clustering

of multidimensional data (e.g. tetra-nucleotide fre-

quencies). The results of this clustering are then rep-

resented on a two dimensional map. The usage of

4-mer frequencies, by both these methods, is based

on previous observations that 4-mers have optimal

taxonomic discrimination capability as opposed to

other k-mer frequencies [42]. In contrast, the

CompostBin method involves computing frequen-

cies of k-mers of various lengths and subsequently

adopting a weighted PCA-based strategy to reduce

the dimensionality of compositional space. However,

both TETRA and CompostBin require sequences of

sufficient length for optimal binning performance.

Furthermore, in scenarios where the sample contains

multiple species with highly varying levels of abun-

dance, methods like TETRA tend to create multiple

clusters (bins) for reads originating from the highly

abundant species. This limitation is addressed by the

recently published AbundanceBin method [40]

which models the number of reads originating

from different species using separate Poisson distri-

butions. The objective of AbundanceBin is to form

bins containing reads originating from species having

similar abundance levels. Although AbundanceBin

works efficiently with samples having highly varying

abundance levels, its binning efficiency is observed to

decrease with simulated samples having an even dis-

tribution of species. However, given that environ-

mental samples with an even species distribution are

highly unlikely to occur, this limitation (poor
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efficiency in samples with an even species distribu-

tion) is not an issue in practice. Nevertheless, another

method, namely MetaCluster [41], attempts to ad-

dress such hypothetical ‘even distribution’ scenarios

by adopting a two-phase strategy. In the first phase,

reads are segregated into taxonomically homoge-

neous clusters of similar sizes. However, since this

phase is likely to result in distributing reads of species

with high abundances into several clusters, the

second phase of MetaCluster involves merging of

different clusters (expected to contain fragments

from the same species) by generating probabilistic

models that are based on the l-mer distributions of

the fragments constituting each cluster.

SELECTIONOF BINNING
METHODS
Taxonomic classification of metagenomic data is pri-

marily performed with the objective of cataloging/

classifying various microbial groups inhabiting a

given environment. Subsequent analyses involve

comparing the obtained taxonomic profile with

those of related environments to identify spatial

and/or temporal variations in the microbial commu-

nity structure and characterizing the identified vari-

ations in taxonomic/functional terms. The extent to

which these subsequent analyses are successful is in-

tricately dependent on the resolution and the accur-

acy of the obtained taxonomic profiles. Accurate

results obtained with high resolution (i.e. at specific

taxonomic levels) aid in identifying the subtle differ-

ences between metagenomes.

Depending on the context/setting of the metage-

nomic study, results of binning are used for address-

ing/answering various questions. In clinical settings,

results of binning help in the identification of key

microbial groups responsible for the onset and pro-

gression of various diseases and/or physiological dis-

orders. For example, a comparison of the taxonomic

profiles (obtained using SPHINX) of gut metagen-

omes sequenced from healthy and malnourished

children have implicated bacterial species belonging

to Campylobacterales lineage to be associated with

malnourishment [43]. In yet another recent study,

comparative analysis of taxonomic profiles (obtained

using PhymmBL and MEGAN) of oral metagen-

omes [44] has indicated that dental cavities house a

complex community of microbes belonging to di-

verse bacterial lineages and are not specifically domi-

nated by Streptococcus mutans (earlier considered as the

prime causative agent of dental caries). Interestingly,

results of binning, in this study, have therefore

helped in negating the role of a microbial species

which was earlier thought to be associated with a

specific disease (in this case, dental caries). In the

context of ecological studies, taxonomic diversity es-

timates (obtained through binning) provide crucial

insights with respect to the spatial and temporal vari-

ations within microbial communities residing in di-

verse environments. For instance, the taxonomic

characterization of the terephthalate (TA) wastewater

metagenome (using Phylopythia) has helped in iden-

tifying specific microbial species that play a key role

not only in the degradation of TA but also in main-

taining the stability of this unique microbial commu-

nity [45].

In principle, any taxonomy-dependent binning

method can be employed to classify sequences con-

stituting metagenomic datasets. However, the length

of the metagenomic sequences (which is dependent

on the sequencing platform) is generally observed to

be a key factor that drives the selection of the bin-

ning method. Sequences of relatively longer lengths

are amenable for both alignment-based as well as

composition-based binning methods. However, the

latter category of methods are preferable due to

their faster execution speeds and low memory re-

quirements. For example, in the TA wastewater

metagenome study mentioned above [45], a compo-

sition-based method (Phylopythia) was employed,

given that input sequences were of sufficient

length. In contrast, for lower length sequences

(with weak compositional signals), it is preferable

to adopt alignment-based or hybrid binning meth-

ods. For instance, the lower length of sequences

(200–400 bp) in both the malnourished gut metage-

nomic study [43] and the oral metagenomes [44]

necessitated the adoption of hybrid (SPHINX and

PhymmBL) and alignment-based (MEGAN) binning

methods. On the other hand, for ultra-short se-

quences, a pre-assembly step becomes a necessity

prior to performing taxonomic classification. For ex-

ample, in a comparative study on human gut meta-

genomes [46], metagenomic sequences of length of

�75 bp (obtained using the Illumina sequencing

platform) were first assembled into contigs and sub-

sequently classified using MEGAN. The extent of

coverage achieved using the present generation of

sequencing technologies is yet another important

factor that affects binning results. Results obtained

with metagenomes sequenced at a higher coverage
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are expected to capture the rare taxa resident in a

particular environment.

Taxonomy-independent methods are more rele-

vant in cases of metagenomes where the proportion

of taxonomically classifiable sequences using

taxonomy-dependent methods is very low. The re-

sults obtained using taxonomy-independent methods

may also aid in downstream processes like assembly.

A progressive assembly of sequences constituting in-

dividual clusters (expected to be more or less taxo-

nomically homogeneous) is likely to reduce the

time/memory requirements of the downstream as-

sembly process.

VALIDATION STRATEGIES
Taxonomy-dependent methods
In order to validate taxonomy-dependent methodol-

ogies, validation should be performed using

simulated metagenomic datasets and databases

(Figure 3). Reads in these datasets should simulate

the lengths as well as the error models associated with

various sequencing technologies. For measuring

scalability, multiple datasets of varying sizes should

be used. Three simulated datasets currently being

employed as a ‘gold-standard’ for evaluating the per-

formance of various metagenomics analysis algo-

rithms (including binning) are the ‘Fidelity of

Analysis of Metagenomic Samples’ (FAMeS) datasets

[47]. These datasets of varying taxonomic complex-

ity contain approximately 100 000 reads having

lengths ranging between 650 and 1000 bp. These

reads, sampled from 112 real-world genome sequen-

cing projects data, contain typical sequencing errors

associated with Sanger sequencing technology.

However, evaluating binning efficiency using only

these datasets is not comprehensive, given that

reads in these datasets do not represent lengths and

error models corresponding to the present gener-

ation of sequencing technologies. Given this, soft-

wares like MetaSim [48] and ART [49] have been

developed to simulate reads generated using the

latter technologies. A comparison of the pattern of

taxonomic assignments, obtained for simulated data-

sets generated using these read-simulators

(Supplementary Material 1), indicates that end-users

Figure 3: Suggested design of simulated (A) metagenomic datasets and (B) databases for validation of
assignment-dependent binning algorithms. Simulated datasets should ideally mimic read lengths and error models
associated with various sequencing technologies. Datasets containing varying number of input sequences should
be considered to assess scalability. A range of databases simulating a ‘leave one species out’ or ‘leave one clade out’
scenario should be constructed.
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can employ either of these softwares for generating

evaluation datasets.

The design of the reference database is another

important aspect to be considered during evalu-

ation of taxonomy-dependent methods. Simulated

databases should mimic real-world metagenomic

scenarios wherein they are devoid of sequences that

are taxonomically related to the input reads at vari-

ous taxonomic levels. This simulation is typically

done by adopting a ‘leave one (species) out’ strategy,

wherein sequences or models belonging to only a

single species are removed from reference databases

and validation is performed using reads from this

species [15, 21]. However, in typical metagenomic

scenarios, query reads may originate from entirely

new taxonomic clades, not necessarily diverged at

the species level. Consequently, to encompass such

scenarios, it is preferable to adopt ‘leave one clade

out’ strategies, wherein sequences belonging to an

entire clade (genus, family, order, class, phylum,

etc.) are removed from the reference database

(Figure 3). Such a validation strategy has been

adopted in methodologies like SOrt-ITEMS [16]

and DiScRIBinATE [17].

Binning efficiency of taxonomy-dependent meth-

ods is typically quantified in terms of four parameters,

viz. accuracy, specificity, execution time and require-

ments of compute power. Assignment of a read is

considered to be accurate if it is assigned to ‘any’

taxon that lies in the taxonomic lineage of the

source organism of the read. On the other hand,

assignment specificity is defined in terms of the taxo-

nomic level (strain, species, genus, family, order,

class, phylum, superkingdom) at which the read is

assigned. Assignments at strain level are considered

to be the most specific in scenarios where the reads

originate from a known strain, sequences of which

are present in the reference database. However, in

most metagenomic scenarios, the taxon correspond-

ing to the source organism of the read is absent in the

reference database. In such scenarios, an ideal bin-

ning method (with high specificity) is expected to

identify and assign such a read to an appropriately

higher level taxon that represents the point of evo-

lutionary divergence between the source organism

(of the read) and various taxa in the known reference

taxonomic tree (Figure 4). Various taxonomy-

dependent methods currently use different measures

for quantifying accuracy and specificity. Methods

like MEGAN and SOrt-ITEMS compute the per-

centage of correctly assigned reads at different

taxonomic levels, and use this information as a meas-

ure to quantify accuracy and specificity. On the

other hand, methods like CARMA and TACOA

evaluate these parameters in terms of true and false

positive rates.

Requirements of compute power and the overall

processing time are also significant parameters that

need to be considered while evaluating binning ef-

ficiency. It has been observed that there exists a

trade-off between the accuracy and specificity of a

method and the requirements of time/compute

power. For instance, though composition-based

methods have been shown to score over

alignment-based methods in terms of execution

time and compute power, the relatively lower accur-

acy and specificity of these methods as compared to

alignment-based methods and their limited applic-

ability with metagenomic datasets containing short

reads, still remain a point of concern. It is encoura-

ging to note that the recently reported hybrid bin-

ning methods [30, 35] utilize the principles of both

alignment and composition-based approaches in

order to capitalize on the relative advantages of

both. Comparative evaluation of binning efficiency

(with respect to the trade-off between accuracy, spe-

cificity and execution time) of methods belonging to

all three categories (alignment-based, composition-

based and hybrid) have already been performed

and discussed in earlier studies [34, 35]. A summary

of these results is provided in Supplementary

Material 2.

Taxonomy-independent methods
In contrast to taxonomy-dependent methods, per-

formance evaluation of taxonomy-independent

methods is typically done in the following manner.

Simulated datasets containing a mixture of reads ori-

ginating from multiple species are first binned using

these methods. Binning efficiency is then evaluated

using parameters such as taxonomic homogeneity of

the resulting bins and the number as well as the size

of bins generated. Ideally, an efficient method is ex-

pected to form ‘n’ number of taxonomically homo-

genous bins where ‘n’ is the number of species

constituting the validation dataset. However, in

cases where in multiple homogeneous bins arise

due to segregation of reads from the same species,

additional evaluation parameters, such as normalized

mutual information (NMI) and F-score need to be

employed. A comprehensive description of these

parameters is provided in an earlier review by
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Sun et al. [8]. To ensure comprehensive evaluation,

the methods should ideally be tested with simulated

datasets of varying taxonomic complexity. For in-

stance, CompostBin [39] first computes the error

rate of each generated bin in terms of the number

of misclassified DNA sequences present in the bin.

Subsequently, the error rate of the method on the

given dataset is computed as the average of the error

rates obtained for each of the individual bins.

A similar evaluation strategy has been used by

MetaCluster [41].

CHALLENGES
In spite of the availability of several approaches for

binning metagenomic sequence datasets, there are

several challenges which still remain to be addressed.

These challenges are discussed below.

Pre-processing stage
Notwithstanding the availability of efficient binning

methods, estimating the taxonomic diversity of any

microbial community critically depends on the

efficacy of the initial experimental steps like sample

collection, preparation, DNA extraction and sequen-

cing. Limitations in DNA extraction/sequencing

protocols can severely bias the representation of dif-

ferent species in the extracted DNA sample, conse-

quently leading to erroneous estimates of taxonomic

diversity [50]. Furthermore, host-associated meta-

genomes are frequently known to contain a signifi-

cant proportion of contaminating sequences

Figure 4: Schematic representation of a taxonomic tree and an associated table indicating the accuracy and speci-
ficity of assignments under various database scenarios. In this figure, species S1 represents a known species whose
sequences are present in the reference database. Species S3, S10 represent hitherto unknown species belonging to
a new family (F3) and new genus (G9), respectively. Species S9 represents a hitherto unknown species belonging to
known genus (G8). Dotted lines indicate novel lineages. The inset table indicates the accuracy and specificity of as-
signments for reads in various database scenarios.
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originating from the host genome. Ideally, such data-

sets should be ‘de-contaminated’ using available

methods like Eu-Detect [51] or DeConseq [52]

prior to binning.

Optimization of algorithms
An important consideration that still remains to be

addressed by most of the binning methods pertains to

the representation bias of different taxonomic groups

in existing reference databases. Due to priorities of

scientific research, reference databases are observed

to be biased with sequences from organisms/clades

having pathogenic or industrial implications. For in-

stance, >60% of prokaryotic sequences in the nr

database belong to phylum Proteobacteria. In con-

trast, phyla like Chlorobi and Fusobacteria have <1%

representation. This uneven representation biases the

scoring/classification step of binning methods (espe-

cially composition-based approaches) towards highly

represented taxonomic groups, thereby adversely im-

pacting binning accuracy. Currently, a few (existing)

binning methods (INDUS being an example) in-

corporate suitable normalization procedures in their

work-flow to address this issue.

Both taxonomy-dependent and taxonomy-

independent methods have their own drawbacks.

Existing taxonomy-dependent methods fail to clas-

sify a large fraction of reads (originating from hith-

erto unknown organisms). This in turn affects

abundance and diversity estimates in unknown

ways. On the other hand, although taxonomy-

independent methods cluster all reads, the taxonomic

affiliations of these reads cannot be identified.

Development of methods that can capitalize on the

advantages of taxonomy dependent as well as

taxonomy-independent methods still remains an

open challenge. Furthermore, the compute require-

ments of binning methods (especially the alignment-

based methods) are still observed to be high. This

limits their usage to research labs having sufficient

computational resources/infrastructure. Though

hybrid methods such as PhymmBL [30] and

SPHINX [35] significantly reduce the overall com-

pute requirements and binning time, their overall

accuracy is yet to match the levels attained by pure

alignment-based methods. In addition, the efficiency

of binning methods is generally observed to be rela-

tively low with ultra-short reads (length <50 bp)

generated using technologies like SOLiD (http://

solid.appliedbiosystems.com). Without a pre-

assembly step, it is still challenging to classify such

reads. However, given that current generation of

sequencing technologies are gradually moving to-

wards generating reads of relatively longer length,

the above aspect may not be a challenge in the

near future. In addition, a majority of binning meth-

ods are optimized for binning reads originating from

prokaryotic genomes. Methods specifically designed

for binning reads originating from pico-eukaryotic

and fungal genomes are currently unavailable.

Post-processing stage
Some of the binning algorithms (e.g. Phymm,

PhymmBL, NBC classifier, etc.) are observed to clas-

sify all reads in a dataset (irrespective of their origin

from known or hitherto unknown organisms) at the

level of strain/species. Although these methods pos-

sess reasonably high levels of classification efficiency,

the absence of a correlation between the assignment

score and the taxonomic level of divergence makes it

difficult for end-users to properly interpret these re-

sults. Furthermore, it is observed that binning esti-

mates obtained using most of the currently available

methods are generally not normalized with respect to

varying sizes of the source genomes. This aspect still

remains to be addressed.

CONCLUSIONS
With rapid advances in sequencing technologies and

the increased focus on personalized genomic solu-

tions, the field of metagenomics research is currently

witnessing exponential growth. This has necessitated

the development of computational tools that enable

efficient and accurate analysis of metagenomic data-

sets. The problem of binning, i.e. taxonomic char-

acterization of metagenomes, is currently being

addressed by several research groups. Typical chal-

lenges related to binning, due to incomplete data-

bases, insufficient read lengths and high sequencing

error rates, are expected to ease with improvements

in sequencing technologies. Furthermore, the recent

emergence of single cell sequencing technologies

[53, 54], which attempt to perform an experimental

pre-segregation of microbial cells prior to sequen-

cing, are expected to further ease the computational

challenges associated with binning. In summary,

technological and computational advances seen in

the recent past provide a positive outlook with re-

spect to using the power of the metagenomics ap-

proach to obtain greater insights about the vast
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majority of hitherto unknown microbes present in

various environments.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Accurate estimates of taxonomic diversity, obtained using bin-
ning methods, provide valuable insights regarding the structure
and dynamics of microbial communities residing in any given
environment.

� Need to comprehensively evaluate efficiency of binning algo-
rithms not only in terms of accuracy and specificity, but also
with respect to time and compute requirements.

� Alignment-based binning procedures have relatively higher bin-
ning accuracy and specificity than composition and hybrid
approaches. However, it is difficult to employ them in resource
poor settings.

� Advancements in sequencing technologies are expected to im-
prove binning efficiency in the near future.

� Need for development of gold-standard simulated datasets as
well as databases and uniform standards for evaluating binning
methods.
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