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Abstract

In recent years, Doppler radar has been used as a sensing modality for human gait recognition, due to its
ability to operate in adverse weather and penetrate opaque obstacles. Doppler radar captures not only the
speed of the target, but also the micro-motions of its moving parts. These micro-motions induce frequency
modulations that can be used to characterise the target movements. However, a major challenge in Doppler
signal processing is to extract discriminative features from the radar returns for target classification. This study
presents a feature extraction method for classification of human motions from the micro-Doppler radar signal.
The proposed method applies the log-Gabor filters at multiple spatial frequencies and orientations on a joint
time-frequency representation. To achieve invariance to the target speed, features are extracted from local
patches along the torso Doppler shift. Then, the (2D)2PCA (two-directional two-dimensional principal
component analysis) method is applied to create a compact feature vector. Experimental results based on real
radar data obtained from multiple human subjects demonstrate the effectiveness of the proposed approach in
classifying arm motions.

Keywords
gabor, signatures, filters, doppler, micro, log, classification, motions, human

Disciplines
Engineering | Science and Technology Studies

Publication Details
F. Tivive , S. Lam. Phung & A. Bouzerdoum, "Classification of micro-Doppler signatures of human motions
using log-Gabor filters," IET Radar, Sonar and Navigation, vol. 9, (9) pp. 1188-1195, 2015.

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/5611


http://ro.uow.edu.au/eispapers/5611

Classification of micro-Doppler Signatures of
Human Motions using Log-Gabor Filters

Fok Hing Chi Tivive, Son Lam Phung, and Abdesselam Bouzerdoum

Abstract—In recent years, Doppler radar has been used as a
sensing modality for human gait recognition, due to its ability
to operate in adverse weather and penetrate opaque obstacles.
Doppler radar captures not only the speed of the target, but
also the micro-motions of its moving parts. These micro-motions
induce frequency modulations that can be used to characterize
the target movements. However, a major challenge in Doppler
signal processing is to extract discriminative features from the
radar returns for target classification. This study presents a
feature extraction method for classification of human motions
from the micro-Doppler radar signal. The proposed method
applies the log-Gabor filters at multiple spatial frequencies
and orientations on a joint time-frequency representation. To
achieve invariance to the target speed, features are extracted
from local patches along the torso Doppler shift. Then, the
(2D)*PCA method is applied to create a compact feature vector.
Experimental results based on real radar data obtained from
multiple human subjects demonstrate the effectiveness of the
proposed approach in classifying arm motions.

Index Terms—Human micro-Doppler signature classification,
feature extraction, S-method, Log-Gabor filters.

. INTRODUCTION

With the advances in radar technology, there is an increasing
interest in using Doppler radar for human gait recognition
and activity monitoring. A modern Doppler radar detects not
only the velocity of a target but also the local dynamics
of its moving parts. The micro-movements induce frequency
modulations around the main Doppler shift are commonly
known as micro-Doppler (u-D) effects. Severa studies have
been conducted to analyze p-D signatures of moving targets
[1]-5]. An early study on u-D effects investigated the jet
engine modulation of radar returns for target identification
[1]. Later, Chen et al. developed mathematical models and
performed simulations to analyze u-D effects of targets un-
der trandlation, rotation, and vibration [2]. Other researchers
conducted numerical simulations and real experiments, which
demonstrated that the p-D signature represents the kinetic
motions of an object and provides a viable means for object
identification [3]-{5]. Micro-Doppler signals have been used
for classifying rigid targets, such as helicopters and aircrafts
[6], and wheel and track vehicles[7]. They have also been used
to differentiate rigid and non-rigid targets, e.g. humans and
vehicles [8]{10]. In recent years, the research on ;-D signals
has been focused on analyzing human movements [11]-{21].
In these applications, one common challenge is to extract
discriminative features from the radar returnsfor classification.
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In this paper, we propose a p-D feature extraction method
for classifying human movements. First, the p-D radar sig-
nature is obtained using time-frequency (T-F) analysis. Then,
two-dimensional (2D) filters are applied on the T-F represen-
tation. Since the p-D modulations induced by the arm and leg
motions appear close to the main Doppler frequency, a loca
T-F patch centered on the torso frequency shift is located for
feature extraction. This step makes the proposed method stable
against variations in the target speed. Then, log-Gabor filters
are used to extract features from the T-F patch. This type of
filters has neither DC component nor bandwidth limitation.
Therefore, asmall set of filters is adequate to cover the desired
frequency spectrum. The remainder of the paper is organized
as follows. Section Il presents a brief description of the pu-
D signa and the related work on human p-D radar signature
classification. Section |11 describes the proposed feature ex-
traction method. Section IV presents the experimental results,
and finaly, Section V gives the concluding remarks.

Il. RELATED WORK

In this section, a brief description of ;-D radar signal is given
in Section I1-A, followed by a review of existing p-D radar
signature classification approachesin Section 11-B. Then, three
T-F analysis techniques used to depict ;-D radar signature are
presented in Section I1-C.

A. Micro-Doppler radar signal

When a radar signal is backscattered from a target moving at
a constant radial velocity, the carrier frequency of the radar
signal is shifted according to the target velocity. If the target
is a point scatterer, the received signal can be expressed as

x(t) = A(t) exp{j ¢a(t)}, )

where A(t) is the time-varying amplitude and ¢ 4(¢) is the in-
stantaneous Doppler phase[11]. Let A be the transmitted signal
wavelength and v(t) be the target velocity. The instantaneous
Doppler phase is given by

Galt) = 47” /O o(r) dr. @

A complex target such as a human can be represented as a set
of point scatterers. For example, Bilik and Tabrikian modeled
a human body as a set of K segments; each segment moves at
its own velocity and has M points [11]. The signal received
by the antenna can be written as

K M s
z(t) = Z Z Agem () 2 [ B, (7) cos B (1) - (3)
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where Ay, ,,, is the amplitude for the m-th point-target on the
k-th segment, 51 (t) is the instantaneous angle from the zenith
of the segment, 3 (t) is the instantaneous angular velocity,
and Iy, ,, is the distance of the m-th point aong the segment.
In practice, the human locomotion is much more complex
than the model given in (3). Therefore, advanced modeling
tools, e.g. electromagnetic wave scattering model, have been
employed to simulate the u-D signals exhibited by different
parts of a moving person [22].

B. Existing micro-Doppler classification approaches for hu-
man motions

The various p-D classification approaches require first the ex-
traction of salient features from the radar signal. The features
are calculated from the time, frequency or joint time-frequency
domain. In the time domain, Fairchild and Narayanan em-
ployed the empirical mode decomposition (EMD) agorithm
to decompose the radar signa into a set of intrinsic mode
functions (IMFs) and computed the IMF energies as fea-
tures [12]. In the frequency domain, Bilik and Khomchuk
applied speech and audio processing techniques to extract
three types of features. real cepstrum, linear predictive coding
coefficients, and Mel-frequency cepstrum coefficients (MFCC)
[13]. Molchanov et al. computed discrete cosine transform
features from p-D signals for target classification [14]. In the
joint T-F domain, Kim and Ling defined six features from
the spectrogram of a moving person: 1) the torso Doppler
frequency, 2) the total bandwidth of the Doppler signal, 3)
the offset of the tota Doppler, 4) the bandwidth without
micro-Doppler, 5) the normalized standard deviation of the
Doppler signal strength, and 6) the period of the limb motion
[15]. Orovic et al. applied the Hermite S-method to convert
the radar signal into a T-F representation and developed an
envel ope detection method to capture the evolution of the arm
swing [16]. Mobasseri and Amin extracted features from the
spectrogram by applying principal component analysis (PCA)
[17]. Li et al. employed the matrix-based PCA technique on
spectrogram to classify different arm motions of a walking
person [18]. Bjorklund et al. computed the cadence velocity
diagram (CVD) and extracted the cadence frequencies and
velocity profiles as u-D features [19]. Tivive et al. proposed
a machine learning method to extract ;-D features from the
spectrogram [20]. Groot et al. proposed to use particle filters
to differentiate walking from running motions and estimate
the person’s height from the spectrogram [21]. Given the
importance of converting the p-D signal into a joint T-F
representation for classification, the next section describes
three T-F analysis methods.

C. Time-frequency representations

We review three main T-F analysis representations for de-
picting pu-D radar signature: the short-time Fourier transform
(STFT), the pseudo Wigner-Ville distribution (PWD), and the
S-method. Consider a time-domain signal «(¢). The STFT of
the signal is given by

e

x(t + )w(r)e T dr, (4

where w(7) is a time window. The spectrogram (SP) is the
squared magnitude of the STFT:
Xsp(t,w) = | X (t,w)|?. (5)
The STFT has a simple implementation, but it generaly
provides alow resolution. In comparison, the PWD produces a
high resolution T-F representation, and is related to the STFT
as
XpWD(t (JJ / X t w+9) (t w — 9) de. (6)
However, the PWD produces cross-terms which may cause
difficulties in interpreting the T-F distribution.
By contrast, the S-method achieves similar auto-term con-

centration, but it does not suffer from the cross-terms. The T-F
distribution of the S-method (SM) is given by

/ QU
where Q(6) is a finite frequency domain window. The S
method behaves as the STFT when Q(0) = #d(0), and as

the PWD when Q(0) = 1. The discrete form of the S-method
can be written as follows:

Xsm(t,w) = X(t,w+ ) X*(t,w—0)do, (7)

N/2

ZQ

—N/2

Xsm(n, k) = X(n,k+1i) X*(n,k—1), (8

where n is the discrete time index, & is the discrete frequency
index, and N is the number of frequency samples. For a
rectangular window, i.e., Q(i) = 1 for |[i|] < J and zero
otherwise, the S-method with J terms can be written as

J
S X k+i) X*(nk—i).  (9)
i=—J

XSM(TL, k) =

The parameter .J is usualy set to a small value (J € [3,10])
since most of the auto-term energy is located around the
maximum value of the auto-term [23].

As an illustration, the above three T-F analysis techniques
are applied to a u-D signal; the respective T-F representations
are shown in Fig. 1. The Doppler frequency shift induced by
the torso is around 200 Hz. The main peak represents the
leg swing. Although the PWD generates a high resolution T-F
representation, shown in Fig. 1(b), it is hard to discern the
1-D modulations, not to mention the cross-terms. Therefore,
in this paper only the STFT and S-method will be investigated
to generate the joint T-F representation.

I1l. MICRO-DOPPLER FEATURE EXTRACTION

In this section, we describe the proposed approach for signal
classification using u-D radar signatures. Figure 2 shows the
main steps of the feature extraction, followed by the classi-
fication step. After the T-F analysis, the p-D radar signature
is converted into a low-dimensional feature vector by using
log-Gabor filters and a dimensionality reduction technique.
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Fig. 1. Time-frequency representations (logarithmic scale) for a u-D signal of a person walking towards the radar with both arms swinging: (a) STFT, (b)

PWD, and (c) S-method.
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Fig. 2. A schematic diagram of the proposed u-D feature extraction method.

A. Time-frequency patch and contrast enhancement

When a person is walking, the ;.-D modulations induced by
the arm and leg motions occur mainly around the human torso
frequency. Therefore, we extract local patches centered on
the torso frequency instead of the entire T-F representation.
This strategy improves invariance to trandational speed of
the target. The torso frequency can be easily determined by
locating the main peak in the frequency profile. From the
joint T-F representation X (n, k), the frequency profile can
expressed as

M
Fy(k) =Y X(n,k), (10)
n=1

where M isthe number of time samples. The frequency profile
is passed to a median filter and then normalized by dividing
by the maximum value to obtain F,(k). The location of the
torso frequency is computed as
k; = arg max ﬁp(k). (NN
The patch height is determined relative to the height of the
main peak, whereas the patch width is determined based on
the task at hand; here, it is chosen so as to maximize the
classification rate on individual patches. Assuming the person
is inducing positive micro-Doppler modulations, the height of
the main peak is estimated by finding the smallest frequency

index k, that satisfies the following condition:

ko -
zion 60 1
Sile, Fok)
where N is the number of frequency samples and 7 is a fixed
threshold (0 < n < 1). The threshold 7 is chosen based on the
T-F representation noise level. When the T-F representation
is noisy, the threshold is set to a low value and vice versa
In this paper, it is set to 0.99. The vertical span of the patch
is given by the frequency interva [k; — ko, k: + ko). Since
different individuals swing their legs at different speeds, the
patch height is fixed to a predefined value N, through down-
sampling or up-sampling operation on the columns of the
patch.

The patch width is determined by the length of the input
signal and the length and the step of the window in the T-F
representation. Furthermore, the patch is aligned with respect
to the main peak. Let T; denote the time of the i-th main peak,
AT denote the time duration between two consecutive main
peaks, and NV, be the length of the input signal in samples.
The horizontal span of the patch is given by the time interval
[T; + AT/2, T, + AT/2 + N, — 1].

Next, contrast enhancement is performed on the patch.
We use the Naka-Rushton equation [24] because it not only
enhances the weak p-D amplitudes but also suppresses the
small amplitudes, which usually represent noise. Furthermore,
it constrains the input to the range [0, 1), facilitating the
subsequent feature extraction. Let W (i, j) denote the patch
containing the absolute value of the T-F representation, where
i € [1,N,] and j € [1, N,]. The contrast-enhanced patch is
computed as

T W (i, j)"

Wi, j) W)y £ (13
where 1 is the mean value of the patch. In this paper, the
parameter r is set to 1 (r = 1). Figure 3 presents the
patches extracted from the spectrogram that are contrast-
enhanced by the logarithmic scale and Naka-Rushton equation.
The difference between Figs. 3(b) and (c) shows that the
Naka-Rushton equation is better than the logarithmic scale at
enhancing weak micro-Doppler modulations and suppressing
clutter.
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Fig. 3.
scaling, and (c) T-F patch enhanced by the Naka-Rushton equation.

B. Log-Gabor filtering

L og-Gabor filters, which were proposed by Field [25], are used
to analyze the pre-processed T-F patch. A log-Gabor filter has
similar shape to a Gabor filter on the logarithmic frequency
scale with an extended tail in the high-frequency region. Due
to the singularity at the origin, a Log-Gabor filter is designed
in the frequency domain and is computed as

. [In(f/fr)]? (0 —6,)°
Gra(f,0) = exp{m}exp {Tgl} ,
(14)

k =1,...,Ny, 1=1,..., Ny,
where f}. is the k-th center frequency of the filter, 9, is the
[-th orientation angle, Ny is the number of scales, Ny is the
number of orientations, /3 is the bandwidth of the filter, and
oy is the angular bandwidth. Here, the bandwidth of the filter
is set to two octaves (8 = 0.55), and the angular bandwidth
og is set to 1.5 for even spectrum coverage. Figure 4 shows
examples of the log-Gabor filter.

The filtering operation is performed in the frequency do-
main. Let 1Wr denote the 2D Fourier transform of the normal-
ized patch W, see (13). The output of the (k, [)-th log-Gabor
filter is computed as

Zyy = [IFFT2(Wr G1)l, (15)
where IFFT2 denotes the 2D inverse Fast Fourier transform.
The output map is further normalized as

Zk,l(iv J)
Z;\;ol Zk,l(iv J)

This normalization step provides some degree of intensity
invariance. Next, each output map is partitioned into R =
d1 x ds non-overlapping sub-regions, and the means of all the
sub-regions are concatenated to form a mean vector p, ;, =
[t - -, ur]T. Then, the mean values of the L output maps
(Where L = Ny Ny) are arranged into a matrix 4 € R L:

Z11(i,5) = (16)

AZ[“LI)"'?I’LNJ:,NQ]' (17)

Finally, the feature matrix A is normalized to the range
[0, 1] before applying a dimensionality reduction technique to
generate a compact feature vector.

T-F patch extracted from the spectrogram before and after contrast enhancement: (a) input T-F patch, (b) T-F patch enhanced by the logarithmic

Orientation: 0 Orientation: 45’

Orientation: 90 Orientation: 135’

Fig. 4. Examples of Log-Gabor filters with 4 orientations at a normalized
center frequency of 0.12 in the 2D frequency domain.

C. Dimensionality reduction

Two different matrix-based subspace techniques are consid-
ered to reduce the size of the feature matrix A: two-directional
two-dimensional principal component analysis (2D) ?PCA [26]
and two-directiona two-dimensional linear discriminant anal-
ysis (2D)?LDA [27]. In comparison to standard PCA and
LDA, the matrix-based methods do not require a matrix-to-
vector conversion to compute the image covariance matrices,
thereby reducing the computational cost significantly. Unlike
LDA, (2D)2LDA does not suffer from the singularity problem
for small training sets. Both (2D)?PCA and (2D)?LDA will
be investigated in the proposed feature extraction. A brief de-
scription of each method is given in the following subsections.

1) (2D)?PCA: This technique generates two projection ma-
trices to reduce the number of rows and columns of an image

simultaneously. The compressed map D € R™r*™e (m, <
R, m. <L), can be rewritten as
D =37 Ad,, (18)



where ®,. and ®. are the projection matrices with orthonormal
components. Then, the columns of matrix D are concatenated
to form a feature vector for classification. Let Y = A® .. The
projection matrix ®. can be determined by maximizing the
following criterion [26]:

Q@) = trace{E[(Y —E(Y))(Y —E(Y))"]}
trace{B[(A®, — E(A®.))(A®, — E(A2.))"]}

trace{® E[(A — E(A))" (A — E(A))]®.}. (19)

The image covariance matrix can be defined as G = E[{A —
E(A)}T{A—E(A)}], whichisan L-by-L nonnegative definite
matrix. Suppose that the training set comprises P patches

{A4,---, Ap}. Theimage covariance matrix G . can be com-
puted as
1 P
@fP;mZAM& A), (20)
where A is the global mean given by
- 1 L
A= 2 A; (21)
i=1
The criterion in (19) can be expressed as
Q®,) = trace(®? G.P..). (22)

The criterion function Q(®.) is maximized when ®. is
composed of the m. most dominant eigenvectors of G.:

¢, = [¢y,...,,,.]. The number of eigenvectors m.. is de-
termined using the following condition:
e\
zimhis 23
Ei:l Ai

where \; denotesthe i-th eigenvalue and ~ is afixed threshold.

Similarly, the other projection matrix ®,. contains the m,
most dominant eigenvectors of the image covariance matrix
G-, which is given by

1

G, = (24)

el

P
Z(AZ- — A)(4; - AT

The number of eigenvectors m,. in the projection matrix @,
is estimated using a similar condition to (23).

2) (2D)2LDA: The LDA technique considers the class
information when forming the projection matrices. Its principle
is to find a linear transformation that maximizes the between-
class scatter and minimizes the within-class scatter of the
training set. For (2D)2LDA, the optimization of the between-
class and within-class scatters is performed in both row and
column directions simultaneous as

D=v"Av,, (25)

where ¥,. and ¥ . are projection matrices. Let C' be the number
of classes and NV; be the number of training samples in the
i-th class. Let P be the total number of training samples,
P = Y N;. Let A} denote the p-th sample and A’ be
the mean of all samples of the i-th class, A = & 2% AL,

The between-class and within-class scatter matrices for the
row direction are given respectively by

C
_ i (A NNT (AT _ A
&rpgmm A)T(A" - A), (26)
and
1 &y S
Gwe = FZ (A — AT (AL - A7), (27)

=

=1 j=

where A is the globa mean given in (21). Similarly, the
between-class and within-class scatter matrices for designing
the projection matrix ¥, are, respectively,

C
_ i (AT AN AT AT
%ﬁpgmm A)(AT= AT, (28)
and
A L
Gur = 5 DN (Al - ATy(AL - AT (29)
i=1 j=1

The projection matrices ¥,. and ¥, are obtained by maximiz-
ing the following Fisher criteria

\I/?: Gbr \IIT
J(¥,.) = trace (7\% G \I’r> (30)
and
vl Gy U,
J(\IIC) = trace (m) . (31)

The discrimination vectors in the projection matrices ¥,. and
V. are the eigenvectors of G,!Gy,y and GGy, and the
number of eigenvectors in these matrices is estimated using a
similar condition to (23).

D. Classification stage

Support vector machines (SVMs) are used as a classifier
because they possess good generalization capability. The key
concept of SVMs is to determine an optimal hyperplane that
separates two different classes. A hyperplane is optimal if it
maximizes the margin between the two classes, where the
margin is defined as the distance between the hyperplane and
a closest training vector. Consider a training set {x;, v},
where x; € R™ isthe i-th input vector and y; € {1, —1} isthe
corresponding class label. Training an SVM classifier involves
solving the following optimization problem:

w,b,€ —

P
. 1 7 .
min {510 w—i—CZfl}, subject to
(32)

Here, ¢(x;) mapsan input vector x; into a higher-dimensional
space so that the classification problem becomes simpler (i.e.
linearly separable). Parameter C' is a positive regularization
constant to control the trade-off between the margin and the



misclassification rate. A dual optimization problem is given
by

P P
1 .
max 2; =5 _Zl ooy K (25, 25) p subject to
1= 1,]=
P
0<a; <C, Zaiyi =0, (33
=1
where K (z;, z;) = ¢(x;)T ¢(z;) is the kernel function. Vec-
tor w inthe primal problemisrelated to variable ov;, 7 € [1, P]
in the dual problem as

P
w = Zyiaiéb(wi)- (34)
i=1

Once «; has been calculated, the decision function is given by

p
yp(x) = Sgn {ZyiaiK(wi, x) + b} =sgn {wT¢(m) -+ b} .

i=1

(35)
where

1 &

_ T o
b*ﬁs;w T Yi, (36)
and N, is the number of support vectors. In this paper, the
linear kernel, K (z;, z;) = «! x;, is used and parameter C is
obtained from the training set via a cross-validation procedure.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup,
and then investigate the effects of different steps in feature
extraction. Finally, we compare the classification performance
of the proposed method with other feature extraction methods.

A. Experimental setup

A 24-GHz frequency modulated continuous wave radar was
used for data acquisition. The beam width of the radar antenna
is 7° horizontal and 25° vertical. The radar was positioned at
a height of 0.7 m from the ground. The Doppler data were
acquired in two environments (outdoor and indoor) from 18
subjects (7 females and 11 males). Each subject performed
three motion types. (i) walking with both arms swinging; (ii)
walking with one arm swinging; (iii) walking with no arm
swinging. Each subject walked towards the radar at azimuth
angles of 0° and 3.5°, and repeated each motion type three
times. The radar signal was recorded at a sampling rate of
7.812 kHz. Overall, 234 Doppler signals of length 10 s were
recorded. Figure 5(a) shows images of a subject walking with
different arm motions and their respective T-F representations.

B. Analysis of feature extraction steps

In the proposed method, several adjustable parameters need to
be considered, e.g., the window length in the T-F representa-
tion, the number of scales and orientations of the log-Gabor
filters, and the dimensionality reduction settings. A six-fold
cross-validation is performed to investigate the effect of these

parameters on the classification rate (CR). In each validation
fold, five subsets are used for training, and the remaining
subset is used for testing. This is repeated six times for
different choices of the test subset. The final CR is computed
as the percentage of correctly classified samples, which are
aggregated across all the validation folds. Initialy, a signal
length of 1 sis used to determine the adjustable parameters
of the proposed method.

Doppler frequency (Hz)

Time (s)

Doppler frequency (Hz)

Time (s)

(c) Two-arm swing

Fig. 5.
radar at an azimuth angle of 0° and their T-F representations produced by
the S-method and enhanced by the Naka-Rushton equation.

Images of a subject walking with different arm motions towards the

1) Time-frequency representation: In the STFT and
S-method, the choice of the window length can affect the
performance significantly. In the first experiment, the number
of DFT (Discrete Fourier transform) points and the overlap
between consecutive windows are set to 2048 and 90%,
respectively. Then a variable window length is used to form
the T-F representation. When the window length is smaller
than 2048 samples, the signa is padded with zeros prior
to T-F anadysis. The extracted patch is fixed to a height



of 128 pixels (N, = 128) and contrast-enhanced by the
Naka-Rushton equation. Initially, a set of 32 log-Gabor filters
(4 scales and 8 orientations) are used. To compute the mean
values of the filtered map as features, the height d, of the
non-overlapping sub-region is set to 8, whereas the width d
is chosen to have a time duration of 125 ms. Therefore, for an
input signal length of 1 s, d> is equa to 8. In the following
two experiments, the feature vector is directly classified by
the SVMs without dimensionality reduction. Figure 6 depicts
the CR as a function of the window length. Both T-F analysis
methods reach a peak CR with a window length of 139.3 ms.
Further increasing the window length reduces the CR; this is
due to poor time resolution. Both T-F representations will be
used in the succeeding experiments.

92
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88---
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76 | ‘ ! ‘ ! ‘
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72, ! | | | | -=%=-= STFT

Classification rate (%)
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98.4 114.8 131.2 147.6 164 180.4 196.8 213
Window length (ms)

70 L *
328 49.2 656 82

Fig. 6. Classification rates of the STFT and S-method as a function of the
window length.

2) Log-Gabor filtering: Discriminative features are ex-
tracted by convolving the pre-processed patch with log-Gabor
filters of different scales and orientations. To design a set of
log-Gabor filters, we vary the number of scales from 3 to 5,
and the number of orientations from 4 to 10. Figures 7(a) and
(b) show the CR as a function of the number of scales and
orientations for the STFT and S-method, respectively. The CR
improves markedly when the number of scales increases from
3 to 4; it reaches a steady state when the number of scales
reaches 4. With 4 scales, the STFT obtains apeak CR of 90.0%
with 8 orientations, whereas the S-method achieves a CR of
90.4% with 9 orientations. Therefore, we use a set of 32 log-
Gabor filters (i.e., 4 scales and 8 orientations) for the STFT,
and 36 log-Gabor filters (i.e., 4 scales and 9 orientations) for
the S-method.

3) Dimensionality reduction: Two subspace methods,
(2D)?PCA and (2D)%LDA, are evauated for feature compres-
sion. Figure 8 presents the CRs as a function of the number
of features obtained by dimensionality reduction. When the
number of features is small, (2D)2LDA performs better than
(2D)2PCA. However, increasing the number of features im-
proves the CR of (2D)2PCA to the same level as (2D)?LDA.
For this classification problem, (2D)2PCA achieves the highest
CR; therefore, it will be used to reduce the number of features
in the following experiments.
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Fig. 7. Classification rates of the log-Gabor filter as a function of the number
of scales and orientations, using (@) STFT and (b) S-method as T-F analysis.
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4) Input signal length: The input signal length is an impor-
tant factor in the classification of u-D radar signature. A too
short signal will not contain adeguate cycles of the arm/leg
swings to differentiate between the three human motions,
whereas a too long signal will lead to data redundancy. To



investigate the effects of input signal length, we vary the
signal length from 0.5 to 3.0 s with a step of 0.5 s. For each
input signal length, a new SVM classifier is trained. Figure 9
presents the CRs as a function of input signal length. The CR
improves when the input signal length increases from 0.5 s
to 3 s and reaches a plateau for a signal length of 1.5 s for
S-method and 2 s for STFT. Based on these results, we use a
signal length of 2 sin the following experiments.
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Fig. 9. Classification rates of the proposed method for different input signal
lengths.

5) Effects of azimuth angle and clutter: So far in
Section IV-B, the proposed method has been tested on radar
data for subjects walking towards the radar at an azimuth
angle of 0° in an outdoor environment. We also evaluate the
proposed method in different configurations, especialy in the
presence of clutter. Here, the clutter or noise in the received
signals include multi-path propagations and reflections from
other stationary targets. Four data sets are used. Data sets
outdoor-0.0 and outdoor-3.5 are acquired from subjects walk-
ing in an outdoor environment, a an azimuth angle of 0°
and 3.5°, respectively. Data sets indoor-0.0 and indoor-3.5
are acquired from subjects walking along a corridor inside a
building, at azimuth angles of 0° and 3.5°, respectively. Table |
lists the CRs of the proposed method on different data sets
using a two-fold cross-validation. The proposed method has a
CR of 91.6% for theindoor-0.0 and 91.4% for the outdoor-0.0.
For subjects walking obliquely towards the radar at an azimuth
angle of +3.5°, the CR reduces by 0.4% for the outdoor-3.5
and 2.5% for the indoor-3.5.

TABLE |
CLASSIFICATION RATES OF THE FEATURE EXTRACTION METHOD TESTED
ON RADAR SIGNALSCOLLECTED IN DIFFERENT ENVIRONMENTS.

Data acquisition environment Outdoor Indoor
Azimuth angle 0° 3.5° 0° 3.5°
Proposed feature extraction 91.6% | 91.2% | 91.4% | 88.9%

In summary, based on the experiments presented in
Subsection 1V-B, we select the following configurations for
the proposed method: (i) S-method for T-F analysis; (ii) the
Naka-Rushton equation for preprocessing the patch; (iii) a set
of 9 orientations and 4 scales log-Gabor filters for generating
the feature map; (iv) (2D)?PCA for dimensionality reduction;
(v) input signal length of 2 s; and (vi) SVM classifier.

C. Comparison of feature extraction methods

A six-fold cross-validation is employed to compare differ-
ent feature extraction methods. The indoor radar dataset
(indoor-0.0) is used to generate the training and test sets.
The dataset is partitioned so that no human subject appears
simultaneoudly in the training set and the test set. The radar
signals are divided into segments of 2 s. Each segment is
aligned so that it comprises two full gait cycles.

For comparison, four different feature extraction methods
are dso tested: 1) MFCC, 2) CVD, 3) EMD, and 4) Gabor
filters. In the MFCC based method, 40 triangular bandpass
filters are used to produce 64 mel-scale cepstral coefficients.
The analysis window length and the overlap between succes-
sive windows are set to 0.5 s and 0.01 s, respectively. In the
CVD based method, the first three harmonic frequencies and
the velocity profile at each harmonic frequency are used to
form a feature vector. Then, the feature vector is compressed
using the standard PCA technique. In the EMD method, the
energies of the IMFs are used as features. The Gabor filter
based method employs the same number of filters and applies
the same step of converting the filtered outputs into a feature
vector. All the feature extraction methods employ SVMs as
classifier. Furthermore, they are implemented using MATLAB
software and executed on a PC with a 2.9 GHz i7-CPU.

TABLE I
CLASSIFICATION RATES OBTAINED USING SIX-FOLD CROSS-VALIDATION
OF DIFFERENT FEATURE EXTRACTION METHODS.

Method Features | CR £ std (%) | Extraction time (s)
Proposed method 3277 91.34+6.9 0.2405
Gabor filters 2408 79.9+75 0.2105
MFCC 40 72.7+£7.2 0.0272
CVD 1638 62.3 £5.1 0.0210
EMD 16 41.6 £ 3.2 8.4400

Table Il presents the CRs and the processing times of
different feature extraction methods. The proposed method
achieves the highest CR of 91.3%, followed by the Gabor filter
based method with a CR of 79.9%. The EMD method gives
the lowest CR, which indicates that using only the energy of
the IMF is not sufficient to discriminate the subtle differences
of the arm swings. In terms of processing time, the proposed
method takes about 0.2405 s on average to extract a feature
vector, and its most time consuming stage is the filtering
operation. We should note that no code optimization was used
in the implementation of the proposed method; the processing
time can be reduced by optimizing the implementation or using
a different programming language. Compared to the proposed
method, the Gabor filter based method is about 1.14 times
faster, but it yields a CR of 11.4% lower. The MFCC based
method is about 8.84 times faster than the proposed method,
but its CR is 18.6% lower. The CVD based method is about
11.5 times faster than the proposed method, but its CR is
29.0% lower. The EMD method is significantly slower and less
accurate compared to the proposed method. The EMD high
processing time is due to the iterative technique for extracting
the IMFs.



The results shown in Table Il are obtained using different
number of features for each method. To compare the clas-
sification performances of the different methods using the
same number of features, Fig. 10 illustrates the CRs of the
feature extraction methods as a function of the number of
input features. Clearly, the CRs of the proposed method are
till higher than those of the other methods, when using the
same number of features.
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Fig. 10. Classification rates of the proposed method and other feature
extraction methods as a function of the number of features.

V. CONCLUSION

This paper presents a 2D feature extraction method for clas-
sifying p-D radar signature of human motions. The radar
return is transformed into a T-F representation using the S
method. Instead of processing the entire T-F representation, a
small patch centered on the torso frequency is automatically
extracted to improve stability against the target speed. The T-F
patch is then contrast-normalized to highlight the weak p-D
modulations. log-Gabor filters are employed to detect salient
features at multiple scales and orientations, and (2D)2PCA is
applied for dimensionality reduction. The proposed method
is validated using p-D radar signals obtained from human
subjects walking with various arm motions. Experimental
results show that it achieves promising results in classifying
different human motions.
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