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This study demonstrates that LIBS mapping and spatially resolved local analysis is an efficient and practical

approach for the classification of mineral grains (quartz, feldspar, biotite, amphibole) and for prospecting of

technologically relevant, low-Z elements (e.g. Be and Li) in granitoid rock samples. We tested three

statistical approaches (classification tree (CT) based on indicator elements, linear discriminant analysis

(LDA) and random forest (RF)) for the classification of the mineral grains and found that each of the three

methods provides fairly similar, very good classification accuracies. RF and LDA provided better than 92%

accuracy for all minerals, whereas CT showed a somewhat poorer (around 80%) accuracy for quartz in

particular. Our results also demonstrate that using multiple analytical locations within each grain and

resting the classification on the majority vote of these individual analysis gives more reliable

discrimination (grain-based accuracy is better than location-based accuracy). We also demonstrated that

LIBS elemental mapping can provide valuable information about the distribution of chemical elements

among the minerals, especially if it is combined with matrix-matched calibration of emission intensity

data. We illustrated this by the successful assessment of ng to mg amounts of Be and Li in the studied

mineral grains. Our results suggest that mining for Be and Li in granitoid rocks should be aiming for

biotite and amphibole grains.

1. Introduction

As it is known, LIBS is a versatile, laser ablation-based atomic

emission spectroscopy technique, which allows the fast and

direct analysis of solid and liquid (even gaseous) samples with

minimum sample preparation, in a non-contact, marginally

destructive way.1–3 Its routine conguration already makes trace

(ppm level) elemental analysis possible for all elements of the

periodic table, but more sophisticated laboratory setups (e.g. in

double- or multi-pulse congurations) can even provide ppb-

range detection limits.1,4 Time-resolved analysis of the plasma

emission also permits isotope-selectivity.5 There is ample

demonstration in the literature that the feature-rich LIBS

spectra can be successfully used for the accurate identication

or discrimination of a variety of samples (chemical nger-

printing).6–11 Micrometer-resolution local analysis or elemental

mapping can also be done on solid samples, allowing for

material science, medical, environmental or industrial appli-

cations,1–3,9,12–14 even in the eld.

One of the most appealing characteristics of LIBS is the

possibility of direct solid sample analysis, which makes it of

interest also to geologists andmineralogists. In this context, the

analytical performance and package of attributes of LIBS have

oen been compared to those of other spatially resolving solid

sampling atomic spectroscopy techniques. Although it is not

a perfect analytical technique, but LIBS does offer a uniquely

advantageous combination of features. For example, laser

ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS), which has several decades of success in geology, has

a similar overall analytical potential, but is not portable, cannot

be used in a stand-off conguration, struggles with the detec-

tion of some lighter elements and has challenges in the quan-

titative analysis due to issues related to the need for the

transportation of ablated sample matter. Micro X-ray uores-

cence spectrometry (m-XRF) is a popular desktop instrument in

geochemical elemental analysis, but in contrast to LIBS it

cannot sensitively detect low-Z elements (below Na), it has

a narrower dynamic range, its spectra contain far less chemical

information and it cannot be used remotely. Electron-probe

micro analyzers (EPMA, similar to SEM-EDS or SEM-WDS) can

provide very high spatial resolution and an elemental map
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within a very short time, but require tedious sample preparation

and vacuum-ready samples and are very bulky and costly

instruments. In addition they are not capable for measuring

light elements or in the eld or stand-off, and have quite limited

accuracy and dynamic range.1,15–17

Based on the above-discussed aspects, it is no wonder that

LIBS is being increasingly explored by geologists and the

mining and mineral processing industry in the last 10–15 years

and is now more and more used for the analysis of geological

material (GEOLIBS).15,16,18 A further, highly related, although

more specialized application is planetary exploration using the

LIBS instrumentation in the ChemCam system of the Curiosity

Mars rover.9,19,20

LIBS geochemical analysis is generally directed towards one

or the other of two primary and related goals: quantitative

analysis of the elemental contents of rocks/minerals (e.g. ore

prospecting) and identication of the minerals (e.g.mapping of

geochemical and mineralogical footprints, provenance anal-

ysis). For example, LIBS measurements with eld-applicable

bespoke or laboratory-based instrumentation were success-

fully demonstrated for the compositional analysis of silicate

and carbonate minerals,21,22 iron and phosphate ores,23–25 spe-

leothems,26,27 monazite sand,28 volcanic rocks,29,30 soils,31 uid

inclusions32 and other materials. In these studies, the concen-

tration of several elements including Au, Fe, Cu, Zn, Pb, Ca, Mg,

Sr, Mn, Si, Cr, Al, K, REEs, etc. were assessed by using principal

components analysis (PCA), multivariate regression (PCR),

articial neural network (ANN) analysis or partial least-squares

regression (PLSR) for the construction of calibration models.

Either drill-core or ground rock samples were tested. In both

cases, a large number of measurements are carried out to

provide stratication or average concentration data.15,16,18

Another important eld, where the on-site quantitative analysis

of natural solid resources is needed and LIBS has already

proven itself useful is the energy industry, more precisely coal

analysis. For instance, the LIBS determination of carbon

content, volatile content and the caloric value was shown to be

practical and accurate enough33,34 so that this information to be

used for fuel type discrimination or control of coal-fueled power

plants.

Mineral and rock type identication also necessitates the use

of statistical data analysis. Broad discrimination of ore miner-

alogy by PCA was demonstrated in selected wavelength windows

in Australian iron ores.23 Poř́ızka et al. also used PCA to classify

27 igneous rock samples.35 In another study, PCA and so

independent modelling of class analogy (SIMCA) methods were

used to generate a model and predict the type of samples.36

Harmon et al. used a spectral library approach to rapidly iden-

tify and classify samples based on their dominant elements

with a high degree of condence. It was observed that

a maximum variance weighted – maximum correlation

approach performs best. Minerals of different classes were

correctly identied at a success rate of >95% for carbonates and

>85% for feldspars and pyroxenes.37 PCA and partial least

squares discriminant analysis (PLS-DA) were used by Gottfried

et al.38 to identify the distinguishing characteristics of geolog-

ical samples and to classify them based on their minor

impurities. The PLS-DA approach was later successfully

extended to the provenance analysis of garnets,39 obsidian

glasses,40 igneous and sedimentary rocks9 as well as conict

minerals (e.g. columbite and tantalite).41 Most recently, the

application of the advanced spectral angle mapper algorithm

(SAM) for the identication of variations in the chemical

composition in a complex chromite ore sample was also

successfully demonstrated by Meima and Rammlmair.42 Nar-

decchia et al. introduced a new, LIBS-based spectral analysis

strategy and named it embedded k-means clustering, for the

simultaneous detection of major and minor compounds and

the generation of associated localization maps for the charac-

terization of complex and heterogeneous rock samples at the

micro-scale level.43

The above examples only illustrate the unique analytical

potential of LIBS in geology-related or raw material exploration

applications. This potential is expected to unfold in the coming

years and more and more industrial, green-eld or brown-eld

(mine), stand-off LIBS applications will be developed. This

development is also propelled by the increased demand and

declining reserves for raw materials needed by advanced tech-

nologies. Two of the metals that are in high demand in recent

years are Li and Be. Beryllium is widely used, e.g. in telecom-

munications infrastructure, advanced medical diagnostics

instrumentation, automobile components and aeroplane

equipment. Lithium is also a greatly sought-aer metal, as it is

used in large amounts in batteries, ceramics and glass, lubri-

cating greases and polymer production. The uneven distribu-

tion and limited availability made critical raw materials to be

a subject of geopolitics and made the governments and

companies44,45 realize that the mineral industry has to adopt

new, cost-effective methodologies and technologies. LIBS is one

of the promising and exible novel exploration tools, consid-

ering its sensitivity towards all elements, speed, information-

rich spectra, as well as eld- and stand-off applicability.15

In the present study, we assess the potential of LIBS for the

identication of minerals (biotite, feldspar, quartz and,

partially, amphibole) and the distribution and quantitative

amount of lithium and beryllium in granitoid rock samples.

The pros and cons of several analytical and data evaluation

approaches are discussed and tested.

2. Experimental
2.1. Instrumentation

LIBS experiments were performed on a J-200 Tandem LA/LIBS

instrument (Applied Spectra, USA), in the LIBS mode. This

instrument is equipped with a 266 nm, 6 ns Nd:YAG laser

source and a six-channel CCD spectrometer with a resolution

of 0.07 nm. For every laser shot, the full LIBS spectra over the

wavelength range of 190 to 1040 nm were recorded in the

Axiom data acquisition soware, using a 0.5 ms gate delay and

1 ms gate width. During the experiments, a 40 mm laser spot

size was maintained, as it allows for the sampling of sub-

millimetre grains (small pieces of minerals making up

a rock) at several locations, but is large enough to provide

ample LIBS signal for trace element detection. The pulse
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energy was generally set at 17.5 mJ and the laser repetition

frequency was 10 Hz. The number of repeated measurements

in one sampling location (without translation) was ten. The

rst shots were clean-up shots, so the spectra originating from

them were discarded. Measurements were performed at 4–5

sampling points in each mineral grain (sampling was done in

a total of 128 locations for biotite, 155 for feldspar, 83 for

quartz and 4 for amphibole). LIBS experiments were carried

out under argon, continuously rinsing the ablation cell with

a gas ow rate of 1 L min�1. Argon gas increases the signal

intensities and the continuous ow decreases the fallout of

ablation debris around at the crater.

Contact prolometry measurements performed on a Veco

Dektak 8 Advanced Development Proler. The tip had a radius

of curvature of 2.5 mm and the force applied to the surface

during scanning was 30 mN. The horizontal resolution was set to

0.267 mm and 3.175 mm in the x and y scan directions, respec-

tively. The vertical resolution was 40 �A.

Optical images of the rock samples were taken with an

Olympus BX-43 microscope equipped with an Olympus DP-73

camera, under polarised and transmitted light.

2.2. Materials

2.2.1. Samples. Three samples (M1, M2, M3) were taken

from different locations within the Mórágy Granite rock for the

study. Themainmass of theMórágy Hills belongs to the Eastern

Mecsek Mountains of Hungary and consists of monzogranite,

with monzonite inclusions crosscut by leucocratic dykes. At

places, the igneous body has a foliated structure as it was

affected by ductile deformation and metamorphic overprint.

The minor outcrop of the formation is known in the western

part of the Mecsek as well. According to recent studies, the age

of the formation is 310–320 million years according to K–Ar as

well as zircon U–Pd geochronology.46 The rock types of the

Mórágy Granite Formation can be divided into four main

groups: monzogranite (typical granitoid rocks); hybrid rocks;

monzonite (dark in colour and rich in magnesium and iron-

bearing minerals) and leucocratic (light) dykes of different

compositions. A continuous transition is induced by the hybrid

rocks along the zone between the larger-sizedmonzonite realms

and the host granitic rocks, which formed by the mixing of the

two types of melt.46,47

Our studied samples are of the monzogranite type, i.e.

a granite variant with 35–65% feldspar. The fact that two

different feldspars appear in the rock (orthoclase (K-rich) and

plagioclase (Na-rich) feldspars) suggests that it had crystallized

from magma saturated with water. Besides the two feldspars,

the Mórágy Granite contains the most common rock-forming

minerals, quartz, biotite and, to a lesser extent, amphibole.

2.2.2. Standards. During the calibration and the examina-

tion of matrix effects related to the minerals, various standards

were employed. These included the NIST 610, 612 and 614 type

glass reference materials, as well as biotite (biotite mica–Fe,

from the massif of Saint-Sylvestre, France, provided by the

Centre de Recherches Pétrographiques et Géochimiques

(CRPG)) and feldspar (JF-1 1985 Ohira feldspar Nagiso-machi,

Nagano Prefecture, Japan, provided by the Geological Survey

of Japan (GSJ)) standards.

2.3. Methods

2.3.1. Sample preparation and reference mineral identi-

cation. The rock samples were prepared for investigations in

such a way that from each sample, a 30 mm thin section was cut

for mineral identication by optical microscopy and the

remaining part of the bulk sample (originally in contact with the

material of the thin section) was polished for LIBS analysis. This

approach ensured that the rock surface submitted to LIBS

analysis contained the same mineral grains which were

identied.

The cutting was done using a diamond cutter (Struers Dis-

coPlan) to form 35 � 20 � 10 mm rectangular bodies. These

then underwent vacuum impregnation using ARALDITE AY103

and REN HY956 epoxy resins in a Struers CitoVac equipment.

Aer a full day of setting, a fresh surface was created on the

impregnated rock body using the diamond cutter. The surface

was ground using a Struers LaboPol-35 machine equipped with

80, 220, 500 and 1200 grit Struers MD-Piano diamond grinding

wheels. As a nal step, the aqueous suspension of SiC abrasive

powder (Buehler) was applied to smoothen the sample surface.

30 mm thin sections of these rock bodies were cut using

a Buehler PetroThin cutting and grinding machine. The thin

sections were mounted on microscope slides using EpoFix

epoxy resin. Aer 24 hours the samples were ready for optical

microscopy. The mineral grains within the thin sections were

identied and categorized under polarized light using optical

microscopy, according to the standardized methods of

petrology.48 The remaining part of the prepared rock body (bulk)

was used for the LIBS measurements.

A reasonable number of the four most common mineral

grains in each sample were identied, labelled and numbered

in the samples (Fig. 1). The total set of mineral grains in the

three samples consisted of 33 biotite, 27 feldspar, 22 quartz

grains and a single amphibole grain. Plagioclase and potassium

feldspar grains were not distinguished.

2.4. Data evaluation

2.4.1. Random forest (RF). A random forest is a classier

that consists of a collection of tree-structured classiers, where

each decision tree, formed on random subset of variables, casts

a vote for one of the input classes. The classication is based on

their consensus. The prediction power of the RF is oen opti-

mized by minimizing the so-called out-of-bag error (OOB error),

which gives the percentage of false classications among the

excluded subset of the training data. The two most important

parameters of the random forest are the number of the trees

grown, and the number of nodes in each tree. The OOB error

usually declines with the increase of the number of trees, but

the usage of too many trees it is not advisable as it would

represent overtting. The node number indicates the splits,

what every individual tree possesses; their number must be

equal or larger than k � 1, where k is the number of groups.49,50

This journal is © The Royal Society of Chemistry 2021 J. Anal. At. Spectrom., 2021, 36, 813–823 | 815
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2.4.2. Linear discriminant analysis (LDA). During linear

discriminant analysis n objects (spectra) are separated into k

groups (samples) according to their m variables (spectral

intensities). There are two different approaches to perform LDA,

the so-called Bayesian and Fisher approaches, and the former

one was applied in our study. The Bayesian approach assumes

amultivariate normal distribution of every variables, and a prior

probability (p1 + p2 +. + pn ¼ 1) is assigned to every group. The

posterior probability is calculated by using the equation below.

The group where an object belongs is selected based on the

similarity of these posterior probabilities.51

Pði=xÞ ¼
fiðxÞpi

Pk

j¼1

fjðxÞpj

2.4.3. Nelder–Mead simplex algorithm. The simplex algo-

rithm is a geometry-based approach for function optimization.

It denes a scalable n + 1-point polygon (simplex) for the n-

parameter function to be optimized and essentially moves this

polygon across the response surface of the function. The func-

tion is rst evaluated at each of the initial apex points of the

polygon and it is established which is the edge of the polygon

that is adjacent to the lowest values (for minimization). Then,

the polygon is geometrically mirrored onto this edge and scaled

up or down depending on how large the function value differ-

ence was between the largest and smallest one in the preceeding

simplex. This approach moves the polygon so that it zeroes in

on the location of the extreme value of the function.52 As with

any function optimization, it is important also with the simplex

method to have a good estimate for the initial coordinates of the

polygon in order to avoid nding a local minimum instead of

a global one.

Spectral line identication was carried out using version 18.0

of the built-in Clarity Soware (Applied Spectra, USA) of the

LIBS instrument. Data processing was done mainly in the open-

source RStudio Desktop soware package (v1.3), via developing

custom codes using the chemometrics, MASS, ALS, RPart and

random forest modules of RStudio. The Nelder–Mead simplex

optimization algorithm was programmed and applied in MS

Quick Basic programming language. The Image Lab soware

(Epina, Austria) was used to visualize LIBS elemental maps,

whereas the open access ImageJ soware was used to extract the

surface area of mineral grains in microscopy images of the rock

samples. The overall LIBS dataset submitted to RF and LDA

contained as many as 12 288 � 370 ¼ 4 546 560 data points.

3. Results and discussion
3.1. Compositional heterogeneities of the mineral grains

Most mineral grains in igneous rocks grow during a longer time

under various physical (rst of all pressure and temperature)

circumstances and changing chemical conditions resulting in

internal chemical zoning patterns. This is, from a chemical

point of view, the manifestation of spatial changes of the

composition inside a grain. The two most common types of

zoning patterns are concentric and sector zoning, but other

types, such as patchy, oscillatory, step and others also occur.53,54

These changes in chemical composition usually can be detected

by different optical methods (e.g. Nomarski Differential Inter-

ference Contrast (NDIC) microscopy, cathodoluminescence

(CL), etc.), if the compositional changes also induce changes in

the optical properties, or by scanning elemental mapping

techniques (e.g. electronmicroprobe (EMP), secondary ionmass

spectrometry (SIMS), protonmicroprobe (PIXE), etc.).53 Minerals

of magmatic rocks, such as the granitoid rocks studied here, are

usually zoned. Although the lateral resolution (40 mm) used in

the present LIBS experiments is not capable to fully resolve

zoning features of the smaller mineral grains investigated, the

effect can still inuence the LIBS spectra collected at various

locations and depths. Therefore, the extent of heterogeneity of

the mineral grains in the samples was rst investigated by

repeated measurements.

Individual LIBS spectra were collected from 10 shots deliv-

ered at 4–5 locations within each mineral grain. LIBS data from

the rst shot (“cleaning shot”) were discarded and data from 9

depth levels were retained. Spectra within each mineral across

locations or depths (intra-mineral variations) were then

Fig. 1 Reflective optical microscopy images of the rock samples M1, M2 and M3 (Mórágy). The four studied mineral types are indicated in the
images with abbreviations and borderline colours: AM ¼ amphibole (purple), BI ¼ biotite (orange), FP ¼ feldspar (green), KV ¼ quartz (blue).
Individual laser sampling locations are indicated by red dots.
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compared to each other using the linear correlation function,

which indicates full similarity with a Pearson correlation coef-

cient value of 1, and full dissimilarity with a value of

0 (assuming positive intensities).55,56 Ray plots in Fig. 2 show the

observed intra-mineral variations of each mineral grain in

sample M1.

It was generally found that there is a reasonable similarity of

spectra, indicated by correlation factors of at least 0.85 in most

cases. It can also be seen that the inter-location (lateral) varia-

tions, or heterogeneities, are signicantly larger than the inter-

depth variations. This can be attributed to the larger spatial

distance between locations (ca. 100–500 mm, cf. Fig. 1) than

depth levels, which makes location-related changes from the

same zone generally more observable. It is also apparent that

the LIBS spectra from depth level 1 are quite dissimilar from the

rest the depth-resolved data, hence the data not only the rst

(already discarded) but also from the second laser shot should

be considered as a cleaning shot. Based on these observed

variations, we decided that in the mineral classication part of

our study, we use the depth-averaged LIBS spectra from depths

2–9 of each location in each mineral grain as a statistical data

element.

Another observation made in data in Fig. 2 is that zoning in

the present samples is most pronounced in quartz and feldspar

grains, whereas variations between different grains of the same

mineral are also clearly identiable. These observations should

be considered when the accuracy of mineral grain classica-

tions is evaluated in Section 3.3.

3.2. Laser ablation characteristics of the mineral grains

The studied minerals are all silicates, but their generalized

composition is disparate.53 Besides, their colours are also

different, hence it can be expected that their laser ablation

behaviours are different as well (because of the different light

absorption characteristics). To assess this, we investigated the

laser ablation craters in the mineral grains by using contact

prolometry aer delivering ten repeated laser shots under the

same conditions as described in the Experimental section. The

cross-sectional prolometry curves (Fig. 3) reveal that the crater

depths and volumes are indeed highly different, which indi-

cates that quantitative analysis (or certain discriminative anal-

ysis) can only be attempted with reasonable accuracy if matrix-

matched calibration or at least crater volume normalization

(with a general silicate standard, such as the NIST 6XX glass

series) is performed. The ablation depth per a laser shot was

approximately 1.4 mm for quartz, 4 mm for biotite and 11 mm for

feldspar.

3.3. Qualitative discrimination of mineral grains

Considering the classication character of the analytical

problem addressed here, we tested the performance of mainly

multivariate chemometric methods (RF and LDA), which can

also be called machine learning (ML) methods. In these

methods, we used uncompressed data sets, as in our experi-

ence, data compression oen leads to a distortion, which in

turn may decrease the discrimination power and reliability

(robustness) of the classication. This requires chemometric (or

ML) methods that can cope with uncompressed data, which is

the case with RF and LDA. In addition, we also assessed the

performance of a more conventional approach in which the

presence of spectral lines of indicator elements (characteristic

of the mineral composition) were used for discrimination.

For model construction (training), we used minerals in

sample M1. The model then was validated by using it on sample

M2 and M3. The accuracy of the methods was established by

comparing the predicted and actual mineral types; the accuracy

was expressed in terms of correct classications. Moreover, we

give calculated accuracy results according to two approaches:

Fig. 2 Intra-mineral compositional variations of each mineral grain in sample M1, as assessed by comparing LIBS spectra taken at various
locations and depths by the linear correlation function. The average spectrum across the non-varying coordinate, depth or location, was taken as
reference during the comparisons. The ray plots show the correlation coefficient on their radial axes.
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a location- and a grain-based metric. The grain-based accuracy

was obtained in the way that separate laser ablation locations

(4–5 within each grains) were evaluated individually and the

majority “vote” for the mineral type was associated with that

grain. The location-based accuracy was calculated as the overall

accuracy obtained when spectra from ablation locations in each

grain were evaluated individually.

3.3.1. Classication by using indicative spectral lines. LIBS

is a method of elemental analysis, thus one of the obvious

potential approaches for the classication of mineral grains is

to look for the presence of characteristic (indicative) spectral

lines of the elements that make up the minerals. In the present

case the nominal composition of the four minerals are

[K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2] for biotite, [SiO2] for quartz,

[NaAlSi3O8–KAlSi3O8–CaAl2Si2O8] for feldspar, and Na0�1Ca2(-

Mg,Fe,Al)5(Al,Si)8O22(OH)2 for amphibole.53 Based on this

knowledge, we have set up a simple protocol – essentially

a controlled decision tree – for classication. The protocol,

shown in Fig. 4, is based on the detection of characteristic

major components Al, Fe, K and Ca via the presence or absence

of their selected lines in the LIBS spectrum. Amphibole was

actually not involved in this part of this evaluation, because the

single grain studied of this mineral is not enough for a statisti-

cally relevant evaluation – nevertheless we indicated its position

in the decision tree structure.

For the testing of this protocol, the spectral lines of Al I

308.21 nm, Fe I 371.99 nm, Ca II 393.37 nm and K I 769.93 nm

were selected from the NIST Atomic Spectra Database. Each of

these spectral lines is free from interference, at the resolution of

our LIBS instrument, from the other three elements, as well as

from Si, O, Na and Mg, the other commonly occurring compo-

nents of these minerals. It is essential for the functioning of the

protocol that a given element is only considered as present if the

intensity of its spectral line exceeds a threshold intensity cor-

responding to a concentration level that classies as a major

component (e.g. 0.5 m/m%). Corresponding intensity thresh-

olds for the above four spectral lines were taken from calibra-

tion plots obtained using the NIST glass (silicate) standards.

These four intensity thresholds were then used as initial esti-

mates for the Nelder–Mead simplex optimization algorithm52

which was performed to maximize the accuracy of the classi-

cation of all mineral grains in sample M1. As described earlier,

depth-averaged LIBS spectra taken at each location in each

grain were used as statistical elements in this classication.

When the simplex algorithm terminated, the optimized inten-

sity thresholds were used to evaluate LIBS data from themineral

grains in samples M2 andM3. A grain was only considered to be

accurately identied if the majority of the locations within the

grain gave correct identication. As can be seen, the classica-

tion is very accurate for biotite and feldspar but is signicantly

poorer for quartz, for which it is around 80% only. This result is

in line with the former nding, namely that quartz grains are

rather impure in the samples. The results also strongly suggest

that sampling at several locations within each grain makes the

identication more robust. Table 1 gives an overview of the

accuracies obtained.

3.3.2. Classication by using random forests. Random

forests (RF) is a multivariate method of classication, which can

be considered to be the advanced version of the classication

(or decision) tree approach. It was recently introduced by Brei-

man in 2001.49 The generally recognized advantages of the RF

method includes the ability to work with large datasets (with

Fig. 3 Ablation crater cross-sections of the mineral grains from ten repeated laser shots, as obtained by contact profilometry. The crater volume
is indicated in the upper right corner of each graph.

Fig. 4 Flow chart for mineral grain classification based on the LIBS
detection of major components Al, Fe, K and Ca.
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thousands of variables), good accuracy and fast computation.

Random forests have recently been successfully used in LIBS

sample discrimination studies e.g. on polymers,57 ceramics,58

steel samples59 and iron ores.60

In the present application, we trained the RF with datasets

on sample M1 and optimized the number of trees as well as the

number of nodes. Up to 500 trees with up to 20 nodes were

evaluated by monitoring the out-of-bag error. It was found that

the OOB initially steeply decreases with the increase in the

number of trees and asymptotically reaches its minimum at

around 50. Simultaneously, the increase of the number of nodes

clearly deteriorated the OOB; the minimum was found with as

little as two nodes. All RF classication results were therefore

obtained by using 100 trees with two nodes.

As can be seen in Table 1, RF gave good, well-balanced

results. The accuracy for grain-based classication was at least

92.6% for all three minerals. Similarly to the indicator line

approach, the grain-based accuracy (majority vote of sampling

locations within the grain) was better than when classication

by each sampling locations was considered. By scrutinizing the

nodes, it is also possible to estimate the most important (most

frequent) classiers. This analysis interestingly revealed that

274.29 nm, 400.84 nm, 345.65 nm and 326.08 nm were these

variables, which may be associated with Fe, Th and V, instead of

major components of the rock-forming minerals.

3.3.3. Classication by using linear discriminant analysis.

Linear discriminant analysis (LDA), also known as discriminant

function analysis, is a widely employed classication tech-

nique.51 It generally performs well in LIBS classication studies

done on various samples, including rocks,10,34,61,62 although it is

known to give unstable results if multicollinearity is present in

the data set.

We tested Bayesian LDA on our uncompressed LIBS data.

The results can be seen in Table 1 and Fig. 5. The overall clas-

sication accuracy was good, over 87% based on separate

sampling locations and over 92% for grains (based on the

majority vote within a grain). False classications can be mostly

associated with quartz and feldspar.

3.4. Quantitative assessment of the distribution of selected

trace elements

3.4.1. Mapping of Be and Li. Considering their relevance,

we collected LIBS elemental maps of Be and Li in granitoid

sample M1. Step scanning with non-overlapping laser spots

(resolution: 40 mm, laser pulse energy: 5 mJ) was employed in

this part of the investigation. Spectral intensity-based elemental

Table 1 The overall accuracy of the classification of minerals in all three rock samples according to the three employed statistical methods. The
grain-based accuracy is based on the majority “vote” for the mineral type from all sampling locations within the grain. Location-based accuracy
was calculated as the overall accuracy when spectra from ablation locations in each grain were evaluated individually

Indicator lines Random forest (RF) Linear discriminant analysis (LDA)

As per sampling
locations As per grains

As per sampling
locations As per grains

As per sampling
locations As per grains

Biotite 97.60% 100.00% 95.30% 97.00% 95.30% 97.00%
Feldspar 95.50% 100.00% 88.40% 92.60% 89.00% 92.60%

Quartz 80.70% 77.30% 84.30% 95.40% 87.90% 95.40%

Fig. 5 Biplot of the LDA classification results of the mineral grains.
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maps for Be II 313.0 nm and Li I 670.7 nm lines can be seen in

Fig. 6. Besides other uses proposed recently in the literature for

such LIBS elemental maps, such as grain boundary42 or grain

size determination,63 here we demonstrate that it is possible to

identify the type of mineral that contains most of the targeted

trace elements. By the comparison of Fig. 6 and 1, it can be

realized that biotite and amphibole grains contain the most Li

and Be, whereas feldspar has signicantly lower amounts of

both elements. As Li+ has a cation radius rather close to that of

Mg2+, in most crystal lattices Li incorporates to the position

occupied by Mg. Among the studied phases, biotite and

amphibole are the minerals where the Mg 4 Li exchange is

possible. Similarly, due to the close geochemical behaviour of

[BeO4]
6� with [AlO4]

5�, beryllium can replace aluminum in

most silicate structures, like in the feldspar and mica (biotite)

lattices. As there is no exchangeable cation in its structure, not

surprisingly, quartz has the least traces of these metals. The

distribution of Be and Li among the grains seem to be quali-

tatively correlated. These results suggest that mining for Be and

Li in granitoid rocks should be aiming for biotite and amphi-

bole grains. A promising approach for such a mining activity

may be the ISL (in situ leaching) technique, which is being

intensively developed recently.64

3.4.2. Quantitative estimation of the Be and Li content.

Intensity-based elemental maps provide limited information for

prospecting purposes, therefore we also performed calculations

to quantitatively assess the Be and Li content in the mineral

grains of samples M1 to M3 (only considering those biotite,

feldspar and quartz grains which were identied in Fig. 1.). Net

intensity data for the Li I 670.7 nm and Be II 313.0 nm spectral

lines collected at the measurement locations indicated in Fig. 1

were converted to concentrations by calibration using matrix-

matched standards. The NIST 612 standard was used for

quartz calibration based on their similar laser ablation behav-

iour (similar crater volumes). The average of the 4–5

concentration data obtained within each grain was assigned to

that grain and then the surface area of the grain, determined by

the ImageJ soware, and the typical density value of the mineral

was used to convert this to the mass of Be and Li present in each

grain. We assumed an arbitrary, uniform 100 mm “depth” value

during the volume determination; this value is roughly the

average grain diameter in our sectioned samples – a better

estimation for the individual grain volumes was not available.

The results are summarized in Fig. 7 and reveal that ng to mg

amounts of the metals could be quantitatively determined by

LIBS. On the le panel of the gure the metal contents

expressed in mass, and on the right panel in concentration, can

be observed.

Data in Fig. 7 justify the assumption suggested by the

intensity-based elemental maps namely that the Li and Be

content varies concertedly in all three minerals – the pattern

show that generally (with very rare exceptions) wherever the Li

content is high, so is the Be content. The mass of the metals

present in the grains naturally changes with the size of the

grain, thus the concentration distribution does not follow the

same pattern, but the relative contents of Be and Li follow the

same trend. Be concentrations (amounts) are in the same

magnitude as Li concentrations (amounts) in quartz and feld-

spar, whereas they are signicantly different in biotite, in which

Li concentrations are almost one hundred times higher than

those of Be. Not surprisingly, quartz contains the smallest

amounts of both metals. It is also apparent that feldspar is the

best source of Be, whereas biotite is for Li. According to the

relevant report published by the Geological Institute of Hun-

gary, the mineral composition of Mórágy Granite samples is

10% biotite, 70% feldspar and 15% quartz, with the remaining

5% being mostly amphibole.65 Using this average mineral

composition data, an estimate can be given for the overall Be

and Li content of these rocks: 1 kg of these rocks contain ca.

28 mg of Be and 144 mg of Li.

Fig. 6 Intensity-based step-scan LIBS elemental maps of the M1 sample. Colors of the contours are indicating themineral types, as seen in Fig. 1.
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4. Conclusions

We have shown that LIBS mapping and spatially resolved local

analysis is an efficient and practical approach for the classi-

cation of mineral grains (quartz, feldspar, biotite, amphibole)

and for prospecting of technologically relevant elements in

granitoid rock samples. We have tested three statistical

approaches for the classication and it was demonstrated that

better than 92% classication accuracy is achievable by using

random forests and linear discriminant analysis. Direct classi-

cation by assessing the presence of the characteristic elements

(decision tree based on indicative spectral lines) is a powerful

method but can lead to great failure rates in case of relatively

pure minerals, such as quartz. Our results also revealed that

using multiple analytical locations within each grain and

resting the classication on themajority vote of these individual

analysis gives more reliable discrimination. We also demon-

strated that LIBS elemental mapping can provide valuable

information about the distribution of chemical elements in the

minerals, especially if it is combined with the matrix-matched

calibration of emission intensity data.

It is also worth emphasizing that the appeals of LIBS in this

and similar geochemical and mining industry-oriented appli-

cations include that it is a highly versatile analytical technique

which is portable, robust, can be used in a stand-off situation

and is equally sensitive to light and heavy elements. This is

a unique set of features among atomic spectroscopy techniques.

In our opinion, the sensitivity of the technique is well demon-

strated by the fact that we successfully assessed ng to mg

amounts of Be and Li in the studied mineral grains. We also

point out that the described LIBS analytical and data evaluation

approaches can be potentially fairly easily generalized and

automated. For example, once grain boundaries in a rock

sample are automatically identied by modern computer vision

and machine learning methods (e.g. ref. 42), spatially resolved

LIBS analysis can identify the mineral types and use this

Fig. 7 The Li and Be content of each analyzed mineral grain, expressed in terms of mass (on the left) and ppm concentration (on the right).
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information to select the proper calibration standards (cali-

bration curves) that can be used to convert spectral intensity

data to concentration (mass) data of relevant elements.
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At. Spectrom., 2016, 31, 119–134.

6 A. Metzinger, R. Rajkó and G. Galbács, Spectrochim. Acta, Part
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