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Classification of Motor Imagery BCI Using

Multivariate Empirical Mode Decomposition
Cheolsoo Park, David Looney, Naveed ur Rehman, Alireza Ahrabian, and Danilo P. Mandic

Abstract—Brain electrical activity recorded via electroen-

cephalogram (EEG) is the most convenient means for brain–com-

puter interface (BCI), and is notoriously noisy. The information

of interest is located in well defined frequency bands, and a

number of standard frequency estimation algorithms have been

used for feature extraction. To deal with data nonstationarity,

low signal-to-noise ratio, and closely spaced frequency bands

of interest, we investigate the effectiveness of recently intro-

duced multivariate extensions of empirical mode decomposition

(MEMD) in motor imagery BCI. We show that direct multi-

channel processing via MEMD allows for enhanced localization of

the frequency information in EEG, and, in particular, its noise-as-

sisted mode of operation (NA-MEMD) provides a highly localized

time-frequency representation. Comparative analysis with other

state of the art methods on both synthetic benchmark examples

and a well established BCI motor imagery dataset support the

analysis.

Index Terms—Brain–computer interface (BCI), electroen-

cephalogram (EEG), empirical mode decomposition, motor

imagery paradigm, noise assisted multivariate extensions of em-

pirical mode decomposition (NA-MEMD).

I. INTRODUCTION

B RAIN–COMPUTER interface (BCI) is an emerging tech-

nology dealing with computer-aided control using exclu-

sively brain activity, and has found application across bioengi-

neering fields and in neuroprosthetics. Most common BCI are

based on the electroencephalogram (EEG) owing to its noninva-

sive nature and affordable recording equipment which facilitates

real-time operation [1]. In particular, motor imagery BCI, that is,

the imagination of a motor action without any actual movement

of limbs, has clear practical significance [2]. However, motor

imagery BCI is notoriously difficult to analyze, requiring long

training times and exhibiting limited BCI channel capacity.

The neurophysiological basis for motor imagery BCI are

the so-called (8–12 Hz) and rhythms (18–25 Hz) in

EEG [3], which have been observed in the central region of

the brain when subjects plan and execute hand or finger move-

ments [4], [5]. Results by Nikouline et al. [6] demonstrated
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that somatosensory stimuli suppressed rhythms at both

the contralateral and the ipsilateral somatosensory cortex (SI),

while Pfurtscheller et al. [4] described changes of EEG activity

in the low-frequency bands, including and rhythms,

caused by voluntary movements. It has been suggested by Yuan

et al. [5] that such changes to the and rhythms are due

to the reflection of phase coherence in thalamocortical circuits.1

The blocking (ERD) of the rhythm over the contralateral

scalp, and the enhancement (ERS) over the ipsilateral area

during motor imagery were also demonstrated in [5].

The so observed changes to and rhythms are utilized

by several existing BCI systems, however, studies so far have

employed mostly standard signal processing techniques, mainly

those based on Fourier analysis [5], [6], [9]. These methods are

based on a projection onto a predefined set of basis functions and

thus inherit the well-known problem associated with standard

spectrum estimations: poor time-frequency localization [10]. In

addition, fixed linear orthogonal basis functions used in standard

spectrum estimation are not suitable for processing real-world

data such as EEG, which are almost invariably nonlinear and

nonstationary [11]. It is well established that complex biolog-

ical systems, like the brain, do not produce tones with fixed fre-

quencies, and thus the rhythms in brain electrical responses will

drift within different EEG bands, making the estimation based

on sine-cosine bases inadequate. Finally, the analysis of multi-

variate responses (multichannel EEG) on a channel-by-channel

basis prevents consideration of a key feature of multivariate

data—the cross-channel interdependence.

To account for the nonstationarity, multichannel natures and

the inherent drifts in the frequency estimation of real-world sig-

nals, and at the same time to bypass the problems associatedwith

techniques which employ fixed basis functions, in this paper we

set out to analyze motor imagery responses using recent multi-

variate extensions of a fully data-driven time-frequency analysis

technique, the empiricalmodedecomposition (EMD) [10]. Prop-

erties of the EMD-based decomposition ensure that frequency

and amplitude information can be analyzed locally, enabling ro-

bustanalysisofsignaldynamicsacross timeandfrequency.There

are noprior assumptionson thedata and, as such,EMDis suitable

for the analysis of nonlinear and nonstationary phenomena, such

as intracortical signals and EEG [12]–[15].

We here make use of the physical insight into the EEG

recording and propagation, and combine the locally orthogonal

and narrowband IMF bases with a tool for discriminating be-

tween different classes of EEG activities based on their spatial

configuration across electrodes, the common spatial patterns

(CSP) algorithm. It has already been shown that the combina-

1A spectral power decrease is called event-related desynchronization (ERD)
[7] while an increase is termed event-related synchronization (ERS) [8].

1534-4320/$31.00 © 2012 IEEE
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tion of the EMD and CSP algorithms is a potentially powerful

and unified approach to feature extraction across space, time,

and frequency for nonlinear and nonstationary data, however,

this was achieved without explicitly taking into account a key

feature of EEG—its multichannel nature. For instance, Wang

et al. applied the CSP algorithm to an IMF obtained using

standard EMD for the classification of bistable perception [12].

Despite the potential of EMD-CSP, there are several obstacles

which limit its usefulness when processing multichannel data,

most significantly the problem of uniqueness associated with

single channel EMD. The problem of uniqueness refers to the

phenomenon whereby IMFs for each data channel typically do

not correspond in number and/or frequency [16]. In this way,

it is difficult to establish a consistent pattern of multi-channel

IMF relevance without sacrificing accuracy, reducing the per-

formance of the CSP analysis. In our previous work [11], [16],

[17] we addressed direct bivariate (2-channel) data analysis

and were able to show that complex extensions of EMD can

be used to circumvent the problem of uniqueness and yield a

more accurate estimation of the IMFs when the narrowband

oscillations of interest are common to each channel, giving

enhanced spectrum estimates. We here extend the analysis to

multivariate extensions of EMD and propose an MEMD-based

CSP approach to motor imagery classification, fully bene-

fiting from its enhanced localization properties, the use of

cross-channel information, ability to identify signal-bearing

components across the data channels, and increased robustness

to noise and recording artifacts.

II. EMPIRICALMODE DECOMPOSITION ALGORITHM

Empirical mode decomposition is a fully data-driven method

forobtaininghighly localized time-frequencyestimation fornon-

linear and nonstationary signals [10], whereby the signal in hand

is decomposed into a finite set of AM/FM components (IMFs).

The two conditions required for a signal to be considered an IMF

are: 1) the number of extrema and the number of zero crossings

differ atmost by one, 2) themean of the envelopes connecting re-

spectively the local maxima and local minima is approximately

zero. Every IMF can thus be regarded as a narrow-band signal,

reflecting a different temporal scale intrinsic to the data—a key

property givingEMDan advantage over Fourier techniques [10].

The EMD operation is outlined in Algorithm 1.

Algorithm 1 The Standard EMD Algorithm

1) Let ( is original signal)

2) Identify all local maxima and minima of

3) Find a lower “envelope,” that interpolates all local

minima

4) Find an upper “envelope,” that interpolates all

local maxima

5) Calculate the local mean,

6) Subtract the local mean from ,

( is an order of IMF)

7) Let and go to step 2); repeat until

becomes an IMF

The first IMF is subtracted from the original data,

, and the procedure is applied iteratively to the

residue, , until it becomes constant or contains no more os-

cillations; this so called sifting process is controlled by a suit-

ably defined stopping criterion [18]. The signal is then

(1)

where , , are the IMFs and the remaining

residue. The narrowband nature of the IMFs satisfies the condi-

tions under which the Hilbert transform

(2)

can be applied to obtain a localized time-frequency spectro-

gram, where symbol indicates the Cauchy principal value,

and the analytic signal is then obtained as

(3)

and is described by its amplitude and phase functions, and

. The phase function, , is differentiated to produce

the instantaneous frequency, [19]. A plot of

the amplitude versus time and instantaneous frequency

, that is, amplitude contours on the time-frequency plane,

is called the Hilbert–Huang spectrogram (HHS), , and

represents a time-frequency spectrogram of a nonlinear and

nonstationary signal.

A. Obstacles to Multichannel Data Analysis by EMD

Owing to the random natures of EEG signals and noise, the

uniqueness problem refers to the fact that the IMFs obtained for

different EEG channels can be different in number and proper-

ties (frequency), heavily compromising any analysis or fusion

of multicomponent signals obtained in a channel-by-channel

basis. This is reflected by the different decompositions ob-

tained for signals with similar statistics, and the phenomenon

of mode-mixing, whereby similar frequencies appear across

different IMFs. To address this problem, Wu et al. proposed

a noise-assisted data analysis method, the ensemble EMD

(EEMD), which defines the IMF components as the mean of an

ensemble of IMFs obtained by applying standard EMD on the

signal corrupted by added white noise of finite amplitude [20],

[21]. However, despite being a significant step forward, EEMD

does not fully resolve the uniqueness problem and is further

limited by its computational and its univariate nature.

In our previous work [11], [16], [17], we used complex ex-

tensions of EMD to solve the uniqueness problem for problems

pertaining to 2-channel data sources.2 This was achieved by ap-

plying bivariate EMD to decompose the different channels “si-

multaneously” and then separating the real and imaginary parts

of the decompositions, giving two sets of IMFs with the fol-

lowing desired properties.

� The bivariate IMFs are matched in number and frequency;

even if mode-mixing is present, it occurs simultaneously

in both the real and imaginary components and thus an

IMF-by-IMF comparison make sense [16], [17].

2There are three different ways to extend the real-valued EMD to the bi-
variate or complex domain, “rotation invariant empirical mode decomposition
(RIEMD)” [22], “complex empirical mode decomposition (CEMD)” [23] and
“bivariate empirical mode decomposition (BEMD)” [24].
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� Any shared activity, e.g., common oscillations of a given

frequency, between the data channels are identified though

bivariate IMFs that have the same oscillatory properties at

every level and enhance robustness to noise.

However, the bivariate EMD can cater only for 2-channel data,

or a multidimensional data where the channels are analyzed

pair-wise. We here extend our bivariate analysis to multichannel

data sets using the recently developed multivariate extensions

of EMD algorithm (MEMD) [25] and show that it enables a

matched-scale decomposition across multichannel data (two or

more), thus allowing for multi-channel pattern estimation at the

intrinsic scales of the signal—the IMF level. There are many ad-

vantages in simultaneously analyzing the intrinsic modes from

multichannel data, especially for EEG where the background

noise is broadband and the useful information narrowband, both

exhibiting various degrees of nonstationarity and spatial and

temporal dependence.

III. MULTIVARIATE EMPIRICALMODE DECOMPOSITION

The multivariate EMD, recently introduced by Rehman and

Mandic [25], is a natural and generic extension of the stan-

dard EMD and BEMD. Standard EMD computes the local mean

using the average of upper and lower envelopes. However, the

local mean of -dimensional signals cannot be defined directly,3

and thus the multiple -dimensional envelopes are generated

by projecting the signal along different directions in -variate

spaces, those projections are then averaged to obtain the local

mean. For a uniform set of direction vectors used to project

the input multivariate signal, low discrepancy Hammersley se-

quences are used to obtain quasi-uniform points on high dimen-

sional spheres [26]. The details of MEMD are outlined4 in Al-

gorithm 2 [25].

Algorithm 2 The Multivariate EMD Algorithm (MEMD)

1) Choose a suitable point set for sampling on an ( )

sphere.

2) Calculate a projection, denoted by , of the

input signal along the direction vector ,

for all (the whole set of direction vectors), giving

as the set of projections.

3) Find the time instants corresponding to the maxima

of the set of projected signals .

4) Interpolate to obtain multivariate envelope

curves

5) For a set of K direction vectors, the mean

of the envelope curves is calculated as

.

6) Extract the “detail” using

( is an order of IMF). If the “detail” fulfills the

stoppage criterion for a multivariate IMF, apply the

above procedure to , otherwise apply it

to .

3For example, it is impossible to find maxima of the complex signals as the
ordering operators are not defined.

4The MATLAB code of MEMD is available from http://www.
commsp.ee.ic.ac.uk/~mandic/research/emd.htm.

The sifting process for a multivariate IMF can be stopped

when all projected signals fulfill any stoppage criterion

adopted in standard EMD; we employed a combination of

EMD stoppage criteria, given in [18] and [27], for MEMD

sifting. The MEMD algorithm acts as a dyadic filter bank

on each channel (variate) when applied to multidimensional

white Gaussian noise (WGN), exhibiting greatly enhanced

alignment of the corresponding IMFs from different channels

across the same frequency range compared to EMD. Using

this property of MEMD, Rehman and Mandic [28] introduced

a noise-assisted MEMD (NA-MEMD) to further alleviate the

mode mixing problem. This was achieved by increasing the

dimensionality, including a subspace containing multivariate

independent white noise, and processing the resulting com-

posite signal using MEMD. Notice that in this way the noise

is never mixed with the useful data channels, as it resides in a

different subspace, and is used to enforce a filterbank structure,

and thus alleviate the problem of mode mixing and provide

much better definition of frequency bands inherent to the data.

A set of IMFs corresponding to only the original input signal is

kept by discarding the IMF subspace associated with the noise.

Owing to the noise subspace, the alignment of IMFs obeys

the dyadic filter bank structure and also ensures that IMFs

associated with the original input signal are aligned, having

the same information at the same level of decomposition, and

hence providing an intuitive and rigorous tool for the analysis

of narrowband but nonstationary rhythms from biomedical

data. The details of the NA-MEMD method are described in

Algorithm 3.

Algorithm 3 Noise-Assisted MEMD (NA-MEMD)

1) Create an uncorrelated white Gaussian noise

time-series ( -channel) of the same length as that of

the input.

2) Add the noise channels ( -channel) created in Step 1

to the input multivariate ( -channel) signal, obtaining

an -channel signal.

3) Process the resulting -channel multivariate

signal using the MEMD algorithm listed in Algorithm

2, to obtain multivariate IMFs.

4) From the resulting -variate IMFs, discard the

channels corresponding to the noise, giving a set of

n-channel IMFs corresponding to the original signal.

A. Common Oscillatory Modes of Multivariate IMFs

We shall illustrate the operation of MEMD in multichannel

data decomposition, where common oscillatory modes are

present [25], and a 3-channel synthetic signal [ , ,

], shown in the top row of Fig. 1, where
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Fig. 1. MEMD-based decomposition of a synthetic multivariate signal
, which containsmultiple frequency components. The common

oscillatory modes are aligned at the same IMF level, however, the problem
of mode mixing is present in the seventh and eighth IMFs, and .

and , , and denote realizations of 30 dB

WGN. All the data channels contained continuous sinusoid

components, and MEMD was applied to this multivariate

synthetic data and the resulting three-variate IMFs are shown

in Fig. 1. Observe the common oscillatory modes are aligned

at the same IMF level, where the 11 Hz sinusoid, common to

the three channels, is present at the sixth IMF level. However,

the mode mixing problem is evident in the seventh and eighth

IMF as shown in Fig. 1. When the NA-MEMD method was

applied to the same data with one additional noise channel,

, unlike MEMD, IMFs obtained using NA-MEMD in

Fig. 2 fully alleviated the problem of mode mixing and the

two different frequency components of were extracted

correctly. This illustrates the ability of MEMD to identify and

align information at similar scales in different data channels [29],

and that NA-MEMD can furthermore help alleviate the mode

mixing problem, indicating that an MEMD-based approach

enables a robust scale-by-scale comparison between the data

channels—a key requirement for a posterior analysis at the

IMF level.

Fig. 2. Decomposition of a syntheticmultivariate signal
using the noise assisted MEMD (NA-MEMD), where is an additional
white noise channel. Note that each IMF contains a single narrow-band
component with no mode mixing present.

B. Component Estimation Using Multivariate IMFs

In this section, we examine the ability of MEMD to achieve

a more robust and localized estimate of components at the IMF

level compared to the single channel EMD algorithm. Partic-

ular emphasis, following our previous work in [11], [16], is on

illuminating that MEMD can extract IMFs that have physical

meaning and are better aligned with the components of interest,

thus enhancing robustness to noise.

We decomposed the signal using EMD and

EEMD, where was a sinusoid of frequency and a real-

ization of WGN, and subsequently applied the Wiener filter5 to

the IMFs to obtain estimates of the sinusoid, and ,

denoting the estimates using EMD and EEMD respectively. In

the EEMD decomposition,6 noise with a ratio of 0.4 between

the standard deviation of the noise and data was added and the

number of ensembles for each case was 100. The more accu-

rate the estimate of , the more accurately the IMFs represent

the original oscillating components of the input. Additionally,

MEMD was performed on a multi-channel sinusoid data set,

where all channels contained the same sinusoid, , corrupted

with different realizations of WGN, that is

where is a realization of WGN in the th channel. The per-

formance of MEMD was examined by increasing the number

of channels from 4 to 12. This analysis was performed for sev-

eral frequencies (5, 11, 23 Hz), and over three signal-to-noise

5For more details, we refer to [30].

6For MATLAB code, see http://rcada.ncu.edu.tw/research1_clip_pro-
gram.htm.
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TABLE I
SINUSOID RECONSTRUCTION FOR DIFFERENT FREQUENCIES AND INITIAL NOISE LEVELS . DENOTES
AN N-CHANNEL MEMD OPERATION. NOTE THE IMPROVED PERFORMANCEWHEN INCREASING THE NUMBER OF CHANNELS

ratios of 5 dB, 0 dB, and . The sampling

frequency was 256 Hz and the signal length 5 s. The average

SNRs of the reconstructed sinusoids over 50 simulations using

the EMD, EEMD, and MEMD algorithms are given in Table I.

In all the scenarios,MEMD outperformed the single channel de-

composition algorithms, EMD and EEMD. Observe, in the case

of MEMD, that an increase in the number of channels resulted

in an increase in performance. These results illustrate that when

common activity (oscillating components) exists between sev-

eral data channels, MEMD has the ability to generate a more

accurate estimate of the signal envelope (see the envelope esti-

mation stage as described in Algorithm 2) and thus identify the

common activity between multiple data channels more robustly.

IV. MULTIVARIATE ANALYSIS OFMOTOR IMAGERY DATA

This section evaluates the MEMD performance using two

motor imagery datasets.

A. Materials: Motor Imagery EEG Datasets

1) BCI Competition IV Dataset I: The data7 was recorded

from four healthy subjects using the BrainAmp MR plus

EEG amplifier with 59 electrodes sampled at 1000 Hz [31].

Each subject selected two motor imagery tasks among three:

, and (both feet). Specifically, sub-

ject chose and , subject chose

and , subject chose and , and sub-

ject chose and . Subjects performed a

total of 200 trials. In each trial, the subject imagined one of the

two possible tasks (one task per trial) for a duration of 4 s. The

selected task was randomised between trials so that the subject

imagined each task 100 times in total. Before each task, base-

line recordings were made and the subject was presented with

a series of pre-task cues so that the onset and termination times

were well defined. Based on neurophysiological insight, out

of the 59 EEG channels, 11 were selected for analysis, “FC3,”

“FC4,” “Cz,” “C3,” “C4,” “C5,” “C6,” “T7,” “T8,” “CCP3,”

and “CCP4” according to the 10–20 system [32], since the

motor imagery response is primarily associated with the central

area of the brain [4], [5]. The data was down sampled to a 100

Hz sampling rate.

7The BCI Competition IV Dataset I was recorded for both human and ar-
tificially-generated motor imagery data and only the human-generated motor
imagery data was considered in our simulations. There were two sessions of
collected data, calibration and evaluation sessions, and only the calibration ses-
sion was used. The data is available from http://www.bbci.de/competition/iv/.

2) Physiobank Motor/mental Imagery Database: We

used the Physiobank Motor/Mental Imagery (MMI) database

recorded using the BCI2000 system [33], available through

Physionet8[34]. Subjects performed different motor imagery

tasks while 64-channel EEG were recorded according to 10–10

system, sampled at 160 Hz. We chose the blocks where the

subjects imagined movement of and .

Subjects performed a total of 45 trials and imagined one of the

two tasks for a duration of 4 s. Out of 64 EEG channels, 11

were selected for analysis, “FC3,” “FC4,” “Cz,” “C3,” “C4,”

“C5,” “C6,” “T7,” “T8,” “CP3,” and “CP4.”

B. Time-Frequency Analysis Using MEMD

A comprehensive comparative study was performed to

illustrate the ability of MEMD to produce more accurate

spectrogram estimates over the short-time Fourier trans-

form (STFT), continuous wavelet transform (CWT), and

synchrosqueezed wavelet transform (SST). Time-frequency

spectrograms for the motor imagery datasets of

subject (“BCI Competition IV Dataset I”) from electrode

C3 and C4 were estimated using the STFT, CWT, SST, and

NA-MEMD. A 0.3 s sliding Hamming window with 29 data

points overlap was applied to create the STFT representation.

The CWT time-frequency representation was calculated using

the commonly used Morlet wavelet.9 The SST [35], [36] is a

recent extension of the CWT which reduces redundancy in the

wavelet spectrogram and increases its localization [37], see

Appendix A for the mathematical formulation. The NA-MEMD

decomposed all data channels with the aid of two additional

noise channels and the individual HHS were calculated from

the 14-variate IMFs. The spectra of C3 (left hemisphere) and

C4 (right hemisphere) were produced to examine ERS of

and rhythms over the ipsilateral hemisphere and ERD over

the contralateral hemisphere corresponding to the

motor imagery task.

Fig. 3 illustrates the percentage changes of power in log-

arithmic scale, relative to the power in a baseline interval

from to 0 s prior to the stimulus (Event-related spectral

8http://www.physionet.org/pn4/eegmmidb/#experimental-protocol

9The continuous wavelet transform is given by

(4)

where is the mother wavelet, the dilation factor and the translation of
the origin.
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Fig. 3. Event-related spectral perturbation (ERSP) obtained using the short-time Fourier transform (STFT), wavelet (Morlet), synchrosqueezed wavelet (SST)
and NA-MEMD HHS for motor imagery tasks. NA-MEMD estimated more localized and salient power increases (ERS in C3) and decreases (ERD in
C4) of the and rhythms after 0 s.

perturbation (ERSP) [38]), where the motor imagery task was

performed within the time period 0–4 s. Subfigures in the

left column show the spectra over the ipsilateral hemisphere

while subfigures in the right column display the spectra over

the contralateral hemisphere. The ERSPs obtained using all

four methods illustrate obvious contralateral decrease (ERD)

in the alpha (8–12 Hz) and beta (13–30 Hz) bands on the

sensorymotor cortex for the duration of the motor imagery task

[5], while ipsilateral increase (ERS) is not shown using STFT.

Observe that the STFT and the CWT obtained less localized

ERD than the SST and NA-MEMD. However, the SST lost

rhythm information over approximately 20 Hz.

To compare NA-MEMD and standard methods within the

same time-frequency domain, Fig. 4 shows the STFT of the

complete EEG signal from C3 and the IMF ( rhythm)

obtained for the EEG using NA-MEMD. Observe that the

NA-MEMD-based approach gave highly localized analysis,

where the time-frequency component of was very close

to the alpha band component in (a).

The extracted and rhythm time-series from to 6

s obtained using the fifth-order Butterworth filter (BF), CWT,

SST, and NA-MEMD are shown in Fig. 5. The time series dis-

play the amplitude changes of the signal relative to the mean

amplitude in a baseline interval, which were normalized by the

standard deviation of baseline waveform. All the methods de-

tected an ipsilateral (C3) increase (ERS) and contralateral (C4)

decrease (ERD) in the and rhythms after the onset time

(0 s). In particular, the ERS and ERDwithin the rhythms are

more prominent than those observed within the rhythms.

Note the power changes of the time series relative to the base-

line power in Fig. 6; the power was estimated by the squared

envelope of the time series.

In order to compare the component estimation performance,

we generated noisy realizations of C3 and C4 by adding white
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Fig. 4. STFT spectra of EEG and its IMF . Note that alpha activity has
been better estimated by performing the Fourier analysis at the IMF level.

noise to the extracted and rhythms from the previous

set of simulations, defined as:

where is composed of and rhythms from

channel C3 ( , , , , , ,

, , where denotes BF, wavelet, SST

and NA-MEMD) and is composed of those from

channel C4 ( , , , , , ,

, ). The and rhythms were estimated

from and ( and denote

realizations of 0 dB WGN) using the four methods, and the

mean squared errors (MSEs) were calculated by comparing the

estimated with original ( and ) and

( and ) rhythms. Using 100 different realizations

of and , the averaged MSEs for each channel and

frequency band are shown in Table II. Note that NA-MEMD

always outperformed the other considered methods.

C. MEMD-Based CSP Feature Estimation

1) Preprocessing: The motor imagery data was band-pass

filtered to occupy the frequency band 8–30 Hz [9], [39], using

a fifth-order Butterworth filter, and subsequently the CWT, the

SST, EMD, EEMD, MEMD, and NA-MEMD. In the case of

the CWT and the SST, the scales were reconstructed to obtain

the band-pass filtered signals. As before, the standard single

channel EMD algorithms (EMD, EEMD) were applied to each

channel separately while MEMD was applied to the 11 chan-

nels simultaneously. The NA-MEMD algorithm was used to de-

compose the 11-channel EEG signals with two additional noise

channels (SNR 20 dB). The IMFs obtained using the EMD ap-

proaches were retained or omitted based on inspection, with the

most relevant ones added together to obtain the band-pass fil-

tered signals. Relevance of the IMFs was estimated by calcu-

lating the combination which gave the best classification perfor-

mance with respect to the common spatial patterns algorithm.

Fig. 5. Amplitude changes in and rhythms based on the mean and
standard deviation of baseline (from to 0 s) waveform, which were estimated
using the BF, the CWT, the SST and the NA-MEMD from the EEG responses
at C3 and C4. After the onset time (0 s), an ipsilateral (C3) increase (ERS) and
contralateral (C4) decrease (ERD) in the and rhythms can be observed.

Fig. 6. Power changes in and rhythms based on the mean of baseline
(from s to 0 s) power, which were calculated using the waveforms in Fig. 5.
After the onset time (0 s), ipsilateral (C3) increase (ERS) and contralateral (C4)
decrease (ERD) in the and rhythms can be noted.

2) Common Spatial Patterns: Features relevant to motor im-

agery responses were extracted using the CSP algorithm, widely

used in BCI applications [9], [39]. It determines spatial filters

that maximize the variance of signals in one class and simulta-

neously minimize the variance of signals in the other class. In

this way, CSP filters can discriminate between ERD/ERS caused

by changingmental states as their operation is sensitive to subtle
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Fig. 7. Average power spectra of for each subject, obtained using EMD, EEMD, MEMD and NA-MEMD. Note that the and of MEMD
and NA-MEMD correspond to the and rhythms respectively, contrary to the instability of the standard EMD algorithm, caused by mode mixing—com-
ponents of interest are spread across different IMFs.

TABLE II
MEAN SQUARED ERRORS BETWEEN SYNTHETIC AND RHYTHMS
AND THE ESTIMATED AND RHYTHMS USING BF, CWT, SST AND
NA-MEMD. NOTE THAT NA-MEMD OUTPERFORMS THE OTHERMETHODS

changes in the power of band-pass filtered data. For a detailed

description of the CSP algorithm, see Appendix B.

3) Classification: The feature vectors and

, obtained by (13) in Appendix B for and

, respectively, ( defines the number of spatial filters),

were classified using a support vector machine (SVM) [40] with

a Gaussian kernel.10 The 200 trial data for each subject in “BCI

Competition IV Dataset I” was divided into 140 training and 60

testing sets and the 45 trial data in “Physiobank MMI database”

was divided into 32 subsets for training and 13 for test sets.11

The upper limit of confidence intervals between two classes cor-

responding to the number of trials was 56.9% for 200 trials and

64.0% for 45 trials (cf. [42]). For cross-validation, classification

10The MATLAB code can be downloaded from [41].

11The CSP filter parameters were defined using only the training data set.

was repeated 100 times while mixing the sample order, and the

average of these outcomes was the final classification rate.

4) Results: Fig. 7 illustrates the average power spectra of the

first four IMFs across the EEG channels for all 200

trials of “BCI Competition IVDataset I.” Note that, compared to

standard EMD, the average frequency distributions at each IMF

level using EEMD, MEMD, and NA-MEMD were more local-

ized in frequency and that greater separation was obtained be-

tween the IMF frequency distributions. This indicates that there

is greater consistency in the pattern of extracted EEG compo-

nents between trials and that these components have been better

separated. In particular, the and rhythms have been

clearly separated using MEMD and NA-MEMD, contained in

the IMFs and . These two different rhythms were ex-

tracted erroneously within a single IMF component, , using

the univariate EEMD, illustrating poorer separability compared

to the multichannel algorithms. Observe that the different fre-

quency ranges corresponding to the IMFs of NA-MEMD were

more consistently distributed across the subjects than those of

MEMD, illustrating the benefits of imposing a data-driven fil-

terbank structure.

Table III shows the classification performances for the four

subjects of “BCI Competition IV Dataset I” using the BF, CWT,

SST, EMD, EEMD, MEMD, and NA-MEMD, where the IMFs
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TABLE III
CLASSIFICATION RESULTS (IN AND ASSOCIATED VARIANCE) FOR ALL

THE ALGORITHMS CONSIDERED, AND [SEE (13)] AND FOUR
SUBJECTS OF “BCI COMPETITION IV DATASET I.” SYMBOL “BF” DENOTES THE
BUTTERWORTH FILTER, “CWT” MORLETWAVELET TRANSFORM AND “SST”
SYNCHROSQUEEZEDWAVELET TRANSFORM. THE ENSEMBLE SIZE FOR EEMD
WAS 100. TWO NOISE CHANNELSWERE ADDED TO OBTAIN THE NA-MEMD
DECOMPOSITION AND DEFINES THE NUMBER OF SPATIAL FILTERS. NOTE
THAT THE MEMD-CSP AND NA-MEMD-CSP APPROACHES, USING

AND , GAVE THE BEST RESULTS FOR ALL SUBJECTS

of EMD, EEMD, MEMD, and NA-MEMDwere selected based

on the IMF power spectra in Fig. 7 and the optimal classification

performance. The classification performances were calculated

for and for [see (13)], where the best result among

the seven different methods is indicated in bold. Observe that

MEMD-CSP and NA-MEMD-CSP features always gave clas-

sification rates above the upper limit of confidence interval of

56.9%, and outperformed the other methods. On average (when

), the NA-MEMD-CSP approach gave the best classifica-

tion performance of 83.3%, a 11.6% improvement over the BF,

a 7.8% improvement over the CWT, a 4% improvement over

the SST, a 20.9% improvement over EMD, a 6.7% improve-

ment over EEMD and a 1.1% improvement over MEMD. These

results compare favourably with other methods applied to the

same BCI dataset using a similar number of EEG channels12.

The classification performances for the second dataset,

“Physiobank MMI database,” are shown in Table IV, and were

obtained using the BF, CWT, SST, and NA-MEMD with CSP

( , which mostly gave higher or equal classification

rates compared to the case of for “BCI Competition

IV Dataset I”). Among the EMD-based algorithms, we chose

NA-MEMD since it obtained the highest classification rates for

“BCI Competition IV Dataset I.” The first 10 subjects from the

12Within the BCI competition dataset considered, submission 11 (16 chan-
nels), submission 13 (three channels), submission 14 (13 channels), and sub-
mission 17 (10 channels) gave average MSE values of 0.557, 0.679, 0.692, and
0.915, while our average MSE value is 0.668 (see http://www.bbci.de/competi-
tion/iv/results/#dataset1avsr).

TABLE IV
CLASSIFICATION RESULTS (IN ) FOR “PHYSIOBANK MMI DATABASE”
OBTAINED USING BF, CWT, SST, AND NA-MEMD. THE NA-MEMD

APPROACH ENABLED THE BEST OVERALL CLASSIFICATION PERFORMANCE,
AND THE BEST PERFORMANCE FOR SEVEN OUT OF TEN OF THE SUBJECTS

“Physiobank MMI database” were chosen, and the classifica-

tion results were above the upper limit of the confidence interval

of 64%. In the simulations, and were decomposed

using NA-MEMD, containing and rhythms. Among

10 subjects, NA-MEMD gave the best classification rates for

seven; in the case of the remaining three subjects (2, 13, and

26), the results obtained with other methods only marginally

outperformed NA-MEMD by 0.1%. On average, NA-MEMD

gave a 2.9% improvement over BF, 5.4% over CWT and 12.8%

over SST.

Fig. 8(a)–(c) displays a series of scatter-plots of classification

rates between NA-MEMD and the other analysis methods con-

sidered using all the classification results of two experiments

in Tables III and IV. For equal performances between two

methods, the values should lie on the diagonal—observe that

most of values lie below the diagonal, indicating an enhanced

performance of NA-MEMD compared to the other algo-

rithms. For rigor, the difference in classification rate between

NA-MEMD and the other methods was also analyzed using the

one-tailed t-test. The corresponding -values in Fig. 8(a)–(c)

shows NA-MEMD performing significantly better than the

other algorithms ( -values less than 0.01).

We next examined the relationship between the number of

EEG channels analyzed and the MEMD performance. Table V

shows classification results obtained by using the following.

1) IMFs for four channels (C3, C4, CCP3, and CCP4 for “BCI

Competition IV Dataset I,” and C3, C4, CP3, and CP4 for

“Physiobank MMI database”) of the original 11-channel

MEMD decomposition denoted by .

2) IMFs for four channels C3, C4, CCP3, and CCP4 for “BCI

Competition IV Dataset I,” and C3, C4, CP3, and CP4 for

“Physiobank MMI database”) of a 4-channel MEMD de-

composition denoted by .

The number of spatial filters, in (13), was . The

best performance for 9 subjects out of 14 was obtained using

the approach, exhibiting on the average a 1.4% im-

provement compared to “ .” A series of scatter-plots

of these classification rates is displayed in Fig. 8(d). Most of the

dots are distributed below the diagonal, which means that sim-

ulations based on 4-channel IMFs from an 11-channel MEMD

decomposition outperformed those from 4-channel MEMD de-

composition. These significant improvements were also con-

firmed by the one-tailed -values of the t-test (less than 0.05).
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Fig. 8. Scatter-plot of classification results of “BCI Competition IV dataset
I” and “Physiobank MMI database” for NA-MEMD versus the other methods
based on Tables III and IV [(a), (b), and (c)], and 4-channel IMFs from an
11-channel MEMD decomposition versus those from a 4-channel
MEMD decomposition based on Table IV (d). The dots below the
diagonal are cases where NA-MEMD outperforms the other algorithm in (a),
(b), and (c), and outperforms in (d). The significance of
these improvements are confirmed by the one-tailed -values of the t-test (less
than 0.05).

TABLE V
CLASSIFICATION RATES (IN ) OF “BCI COMPETITION IV DATASET I” AND
“PHYSIOBANK MMI DATABASE” USING 4-CHANNEL IMFS OBTAINED USING
MEMD FOR [SEE (13)]. “ ” DENOTES THE 4-CHANNEL
IMFS FROM AN 11-CHANNEL MEMD DECOMPOSITION. “ ” IS
THE 4-CHANNEL IMFS FROM A 4-CHANNEL MEMD DECOMPOSITION.

DEFINES THE NUMBER OF SPATIAL FILTERS

V. DISCUSSION

Analysis of the motor imagery response in Section IV-B

illustrates the high level of accuracy that is achievable using

MEMD/NA-MEMD for time-frequency analysis. While the

SST gave a similar performance, it inherited the problems of

high frequency resolution associated with wavelets and was

not sensitive to frequency components above 20 Hz, critically

ignoring the full range of the beta band (13–30 Hz). In addition

to the spectrogram analysis, the accurate estimation of synthetic

and rhythms using NA-MEMD in the time domain

was also investigated.

Power spectra of MEMD/NA-MEMD contained in the IMF

in Fig. 7 have been shown to include some parts of the

band (20–30 Hz). However, the classification results obtained

using IMF were always outperformed by features that in-

cluded IMF and only. This implies that the compo-

nents and obtained using MEMD/NA-MEMD ac-

curately reflected and rhythms, which occupy respec-

tively between 9 and 14 Hz and between 18 and 26 Hz [2].

The motor imagery classification experiments were con-

ducted with the aim of showing that when IMFs are obtained

from a greater number of data-bearing channels, this yields

more accurate classification rates [see Table V and Fig. 8(d)].

This is also supported by the simulation results in Section III-B

for synthetic data. This is explained by the enhanced decom-

position accuracy that is enabled by processing data-bearing

channels simultaneously—in this instance the and

rhythms. Observe that by introducing extra noise channels into

the MEMD framework, the noise-assisted MEMD algorithm

was furthermore able to alleviate the effects of mode mixing

and mode misalignment in multivariate IMFs, as shown in

Fig. 2 (time domain) and Fig. 7 (frequency domain).

In our analysis the IMF relevance was estimated empirically,

however the high classification rates, obtained with significant

improvements for the two motor imagery datasets (see Fig. 8),

suggest that the MEMD spectrogram estimates for the motor

imagery response approximate the ground truth. Unlike stan-

dard single-channel EMD, the robust natures of the MEMD

and NA-MEMD ensure that the information contained in mul-

tivariate IMFs remains the same across the data channels, trials,

and subjects.

EMD-based algorithms, including ensemble EMD (EEMD)

and multivariate EMD (MEMD), require large computational

resources [20], [25]; for instance, in our case it takes around 100

s for MEMD to process a quadrivariate white Gaussian noise

(WGN) data of length . For NA-MEMD, the compu-

tational requirements are even larger since added noise channels

(in NA-MEMD) also need to be processed. However, real-time

and online computation of EMD-based operations has attracted

considerable attention recently, which along with the advance-

ments in computational hardware is expected to alleviate the

computational limitations of EMD.

VI. CONCLUSION

It has been illustrated how the multivariate empirical mode

decomposition (MEMD) algorithm provides robust time-fre-

quency analysis for multichannel signals where the narrowband

nonstationary signal of interest is buried in broadband noise.

In a BCI study based on motor imagery EEG responses, the

MEMD algorithm facilitated multicomponent extraction of the

and rhythms of interest. Unlike the standard single

channel EMD algorithm, MEMD and, in particular its noise-as-

sisted variant NA-MEMD allowed a more stable estimate of

the time-varying frequency responses from multichannel EEG,

providing physical meaning to the intrinsic data modes. The

performance of the proposed approach for motor imagery clas-

sification via the common spatial patterns algorithm has been

compared to those of conventional methods of a kind, including

the short-time Fourier transform, wavelet transform and the
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synchrosqueezed wavelet transform, exhibiting significant

improvements.

APPENDIX A

SYNCHROSQUEEZEDWAVELET TRANSFORM

The synchrosqueezed wavelet transform (SST) [36] is an ex-

tension of the CWT, given by

(5)

The CWT convolves the original signal with a wavelet (a finite

energy oscillation) for different scales and time shifts, thus ef-

fectively projecting the original signal from the time domain to

the time-scale domain. The CWT spreads the energy contained

in a narrow range of frequencies in a signal around a particular

scale, by ( —a frequency around which the ap-

plied wavelet is concentrated, —a pure harmonic signal); this

also introduces redundancy in the wavelet coefficients. To ad-

dress this issue, the synchrosqueezed wavelet transform (SST)

reallocates the wavelet coefficients from the time-scale domain

to the time-frequency domain through the procedure known as

synchrosqueezing, ensuring that a wavelet in the positive spec-

trum is selected, from which the instantaneous frequency of the

resulting CWT coefficients (5) is calculated as

(6)

for each time-scale . The next step is to perform frequency

binning of the wavelet coefficients by synchrosqueezing. In

other words, all the wavelet coefficients are combined from

the same time-frequency bin to reduce the redundancy13 in the

CWT. Mathematically, synchrosqueezing (in the discrete case)

can be formulated as

(7)

where is the central frequency of a selected frequency bin,

a difference of successive discrete scales and a differ-

ence between successive frequency bin centers.

APPENDIX B

COMMON SPATIAL PATTERNS

A single trial EEG data is represented as an matrix

, where is the number of channels and the number of

samples per channel. The normalized spatial covariance of

can be calculated from

(8)

where denotes the matrix transpose operator and is

the sum of the diagonal elements of . The spatial covariance

for a task, or , is obtained by the averaged covariance

matrix of the task trials. The CSP analysis seeks to find a matrix

13The implementation of the synchrosqueezed transform is detailed in [37].

and diagonal matrices and ( , the identity

matrix) with elements such that

(9)

The composite spatial covariance is given as

(10)

where is factored as , where is the ma-

trix of eigenvectors, and is the diagonal matrix of eigen-

values. Using the whitening transformation, ,

the variances in the space spanned by are equalized, which

makes all the eigenvalues of equal to unity. Secondly,

let and , then and share the

common eigenvector matrix, that is

(11)

Since we assume the eigenvalues are sorted in a descending

order, the final spatial filter that satisfies (9) is given by

. This allows us to project the EEG signals as

(12)

Each column vector of is called

a spatial filter, or simply a filter. For discriminating between

two motor imagery tasks, the variances of the spatially filtered

signals using (12) are used as a feature. The row vectors

( and ) from that

maximize the difference in the variance between the two groups

are associated with the largest eigenvalues in and . These

signals are contained in the first and last rows of in (12),

due to the calculation of . The features of interest can be

obtained as

(13)

where the symbol denotes the variance.
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