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Abstract. We couple the standardized low-resolution electromagnetic tomography (sLORETA), an 

inverse solution for electroencephalography (EEG) and the common spatial pattern, which is here 

conceived as a data-driven beamformer, to classify the benchmark BCI (Brain Computer Interface) 

competition 2003, data set IV. The data-set is from an experiment where a subject performed a self-

paced left and right finger tapping task. Available for analysis are 314 training trials whereas 100 

unlabeled test trials have to be classified. The EEG data from 28 electrodes comprise the recording 

of the 500 ms before the actual finger movements, hence represents uniquely the left and right finger 

movement intention. Despite our use of an untrained classifier, and we extract only one attribute per 

class, our method yields accuracy similar to the winners of the competition for this data-set. The 

distinct advantages of the approach presented here are the use of an untrained classifier and the 

processing speed, which make the method suitable for actual BCI applications. The proposed 

method is favourable over existing classification methods based on EEG inverse solution, which 

either rely on iterative algorithms for single-trial independent component analysis or on trained 

classifiers. 

 
Keywords. Brain Computer Interface, Movement Intention, Beamforming, Joint Diagonalization, 

EEG, Inverse Solution, sLORETA, Common Spatial Pattern, Permutation Tests. 

 

 

1. Introduction  

By means of a Brain Computer Interface (BCI) humans can send simple commands to electronic 

devices without using motor activity. A major line of research pursues this goal by the acquisition 

of volitional control over the production of specific brain activities (Kübler et al, 2001; Wolpaw et 

al, 2002). A typical example is the imagination of limb movement, which engenders negative 

potentials (Bereitschaft Potential) and desynchronization of mu and beta oscillatory activity 

(Movement Event-Related Desynchronisation) in the contralateral primary motor cortex. The 

extraction and classification of these brain activities as belonging to left or right limb movement 

intention enables the emission of a binary command (Blankertz et al, 2002; Müller et al, 2004; 

Pfurstcheller et al, 1993; Wang et al, 2004). This bit of information may be coded arbitrarily, e.g., 

for displacing a cursor on the screen, opening/closing a hand orthosis, or spelling text. BCI systems 

have been originally conceived to provide a means of communication to people affected by 

"locked-in" syndrome. As a consequence of amyotrophic lateral sclerosis, brainstem stroke, brain or 

spinal cord injury, multiple sclerosis and several other diseases, human beings may experience 

difficulties in communicating with the external world. For the most severe impairments, a BCI 

offers the only possible channel of communication, thus it represents the only way for improving 

the quality of life of the patient (Neumann et al, 2003). Currently, the potential of BCI as an 

alternative or additional interface modality has been widely recognized and research is in progress 

linking BCI to new applications in multimedia technology.  

Traditionally, a great deal of attention has been devoted to the accuracy of the classification 

algorithm. For most existing BCI systems a long learning phase based on many training trials is 

necessary. Besides the characteristics of the method itself, the accuracy of the classification 

depends on at least three factors, namely, the measurement’s signal-to-noise ratio (SNR), the degree 
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of distinction of the extracted attributes and the simplicity of the brain feature under consideration4. 

Several forms of cerebral and extra-cerebral noise mask the membership and are a major cause of 

misclassification. On the other hand, how well the extracted attributes are distinct and separable 

depends strictly on how they are defined and processed, i.e., how specifically and precisely each 

attribute independently represents the different intentions of the user. The third confounding factor 

is the fact that the brain does not seem to reproduce one-to-one relationships between mental and 

physiological states. In general, the more elementary the brain process, the lower the inter-

individual and intra-individual variability, yielding a more consistent brain feature to be extracted 

for classification purposes.  

The aim of this paper is to introduce, formalize and evaluate the conjunction of data-driven 

spatial filters and electromagnetic source localization for the extraction of separable attributes 

related to left and right finger movement intention. The method is non-invasive and has only one 

major requirement; that the observable brain activities associated with each command are generated 

by sources with different spatial location in the neocortical volume. If this is the case, as for the 

desynchronization engendered by limb movement intention, it seems a natural choice to derive the 

relevant attributes taking advantage of the spatial segregation of their sources. This may be 

accomplished by, and is the very aim of, source localization methods (for a review see Michel et al, 

2004). Little work has been done investigating this opportunity, probably because several 

limitations of the EEG (electroencephalography) inverse problem need to be appropriately 

addressed for such an approach to be effective. Qin et al (2004) successfully combined independent 

component analysis (ICA), a data-driven method to solve the blind source separation (BSS) 

problem (Cichocki and Amari, 2002, Hyvärinen, et al, 2001), and frequency-specific cortical 

current density projection to classify a motor imagery dataset without training. Jun et al (2005) 

proposed to combine ICA and a source localization method based on a multi layer neural network 

with the same goal. Grave de Peralta Menendez et al (2005) reported high classification accuracy 

using a trained classifier based on frequency-domain inverse solution.  

In this paper sLORETA, the standardized low-resolution electromagnetic tomography 

(Pascual-Marqui, 2002), is used to detect activity of the left and right motor cortex using only 28 

EEG channels and an untrained classifier. sLORETA is a data-independent minimum norm inverse 

method featuring exact localization of single sources (Greenblatt et al, 2005; Pascual-Marqui, 2002, 

Sekihara et al, 2005). It is known to suffer from poor spatial resolution and to be negatively 

affected by noise. Both limitations add on as confounding factors and in general sLORETA alone 

does not allow satisfactory classification accuracy. This is shown in the Results section. Therefore, 

a spatial filter is introduced to enhance the left/right segregation capability of the sLORETA 

reconstruction, reducing the negative effect of both noise and poor spatial resolution. As compared 

to previous works our approach is a hybrid, in the sense that the classifier is untrained but some 

learning is required to find the suitable spatial filter. Thus, while our method adapts to the 

individual characteristics, it also allows fast classification, which stems from the fact that it does not 

require the lengthy iterative computations needed for the extraction of relevant components by ICA. 

More importantly, our method does not need an algorithm for the real-time automatic selection of 

relevant independent components for each trial, a task that so far has proven elusive. 

In section 2 we present a suitable theoretical framework to obtain spatially filtered sLORETA 

estimations based on inverse quadratic form operators. In section 3 we show that the common 

spatial pattern (CSP), a spatial filter previously employed for classification purposes (Blanchard 

and Blankertz, 2004; Guger et al, 2000; Ramoser et al, 2000), is optimal for maximizing the 

separation of sLORETA source power associated with the left and right hand movement intention 

as observed in the involved sectors of the primary motor cortex. The filter is here derived within a 

functional optimization framework, following the literature on beamforming (Van Veen and 

Buckley, 1988). A connection with the BSS problem is suggested as well. The performance of the 

method is assessed on self-paced left and right finger-tapping data from the BCI competition 2003, 

                                                 
4 For the sake of terminological precision throughout this paper we will use the word feature to describe the brain activity of 

interest in general (motor cortex desynchronization), whereas by attribute we will refer to the specific extracted activity 

linked to each class (e.g., the left and right motor cortex desynchronization). Thus, for this study we consider one feature and 

we extracted two attributes. 
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data set IV (Blankertz et al, 2004). The description of the data-set, along with all details on the 

feature extraction/classification method and the results are reported in section 4. Although we 

extracted only one feature and rely on an untrained classifier, our method nearly reaches the 

accuracy of the winner of the BCI competition 2003 for this data-set, demonstrating not only the 

suitability of sLORETA for extracting brain activity related to movement intention, but also, that 

adequately defining the brain feature of interest may be as important as using multiple features and 

a trained classifier. Section 5 contains our conclusions and a discussion.  

 

2. The inverse problem by quadratic forms  

The biomagnetic inverse problem (Lopes da Silva, 2004; Sarvas, 1987) generally refers to the 

estimation of location and strength of the brain dipolar sources generating electric (or magnetic) 

activity detectable by extra-cranial sensor measurements. For any linear and discrete EEG inverse 

solution the estimation of the source power γ Ω  in a region of interest Ω  (ROI) can always be 

expressed as a quadratic form reading  

( ) ( ) ( ) ( ) 2

2

T Tt t t tγ Ω Ω Ω= =v Q v H v . (2.1) 

In the first expression v(t) is a vector holding N instantaneous measurements at time sample t, 

superscript T denotes transposition and the matrix QΩ is the quadratic inverse operator referred to as 

the quadratic form matrix for ROI Ω . In the second expression HΩ is obtained by full-rank 

factorization of QΩ, such that HΩHΩ
T=QΩ (see Appendix). ||·||2 is the L2-norm. Whenever several 

time points are available, which is usually the case of real-time applications where a sliding 

window t  of arbitrary length and ending at time instant t is recursively considered, γΩ can be 

estimated directly from the sensor average outer product matrix  

( ) ( )T
t t=V v v . (2.2) 

In (2.2) <·> indicates averaging across the chosen time window. The estimation reads in this case 

( ) ( )Tt trγ Ω Ω Ω= H VH , (2.3) 

where tr(·) indicates the trace of a matrix.  

To derive these results let us consider the forward problem, which consists in computing 

the observable surface potentials knowing location, orientation and strength of all current sources. 

After modelling of the physical characteristics of the propagation medium (head), the problem has 

an approximated analytical solution (Sarvas, 1987) given by linear equation 

( ) ( )t t=v Kc , (2.4) 

where each one of the N-dimensional 3M columns of K holds the surface field (leadfield) for unit 

dipole basis component (x, y, z). Vector c(t) is 3M-dimensional and holds the three dipolar current 

components for each one of M discrete voxels (volume element). Solving (2.4) for the current 

yields an undetermined system of equations admitting infinite solutions with form 

( ) ( )ˆ t t=c Tv , (2.5) 

where the transfer matrix T is a 3M·N (right) generalized inverse of K. The least squares (minimum 

norm) and Tikhonov regularized solution for common average referenced voltage is given in the 

EEG case by (Pascual-Marqui, 2002, Eq 11) 

( )T T α
+

= +T K KK X , (2.6) 

where α is a non-negative regularization parameter taken as zero for noise-free measurements, X 

is the centering matrix (common average reference operator) and superscript + indicates Moore-

Penrose pseudo-inverse. One detail should be noted here; (2.6) assumes that all columns of K are 

centered (common average of unit scalp fields), thus so must be the voltage measurements 

entering the inverse problem. That is to say, throughout this work we implicitly consider only 

EEG and leadfield referenced to the common average. Because of the referential nature of EEG 

the Gram matrix KK
T (Gross and Ioannides, 1999) has N-1 non-null eigenvalues. Similarly, the 

signal subspace dimension of the sensor average outer product V (2.2) is at most N-1. 

The minimum norm transfer matrix for α=0 is easily shown to be the Moore-Penrose 

pseudo-inverse of K and as such is unique. More precisely, it is the unique solution yielding both 
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minimum reconstruction error and minimum overall source power in the least-squares sense 

(Cichocki and Amari, 2002, p. 58). The resolution matrix (Backus and Gilbert, 1968; Pascual-

Marqui, 1999a), sometimes called resolution kernel, S=TK, is far from the identity, from which 

the idea to obtain a standardization (sLORETA). In a Bayesian framework Pascual-Marqui (2002) 

shows that the resolution matrix is the actual source variance assuming the identity as its prior, 

KK
T+αX as the sensor variance prior and αX as the noise variance prior. The standardized source 

power at voxel λ is then given by the author as  

( ) ( ) ( )1ˆ ˆTt t tλ λ λ λγ −= c S c , (2.7) 

where Sλ
-1 is the inverse of the λth 3·3 diagonal block of the resolution matrix and ( )ˆ tλc is the λth 

triplet of (2.5). We see that the sLORETA source power is the square of the Mahalanobis distance 

of point ( )ˆ tλc  from the origin. As a consequence, source power estimations all across the volume 

are expressed by sLORETA on the same dimensionless metric.  

For our purpose let us express the source power estimation at voxel λ equivalently by means of 

quadratic form 

( ) ( ) ( )T
t t tλ λγ = v Q v , (2.8) 

which is obtained substituting the right-hand side of (2.5) in (2.7) and posing 
1T

λ λ λ λ
−=Q T S T . (2.9) 

It is straightforward to see that for a ROI Ω  composed of an arbitrary number of voxels λ∈Ω the 

total source power is simply obtained by setting 

λ
λ

Ω
∈Ω

= ∑Q Q , (2.10) 

yielding the expressions (2.1) for time points and (2.3) for time windows. sLORETA is our choice 

as an inverse solution for this work, however everything we say henceforth applies to any linear 

inverse solution, for which Qλ=Tλ
T
Tλ and Tλ is found according to another method.  

 

3. Spatial filters by joint diagonalization  

Beamforming has been widely applied to systems of sensors and sources such as radar and sonar 

and have been lately adopted for directly solving the biomagnetic inverse problem (Greenblatt et al, 

2005; Sekihara et al, 2005) or for improving the performance of other inverse solution methods 

(Bolton et al, 1999; Gross and Ionannides, 1999; Rodriguez et al, 2006). For our purposes, a spatial 

filter is sought to maximize the separation of source power estimation in two ROIs, while 

suppressing noise and interference of energy originating elsewhere in the brain. A spatial filter is 

here conceived as an N·D matrix F reducing the sensor space into the beamspace F
T
v(t). The 

beamspace has dimension D<(N-1). The filtered source power estimation, after projection  

( ) ( )ˆ Tt t=v FF v , (3.1) 

yields expression formally identical to (2.1) and (2.3). That is to say, for a time point the filtered 

source power estimation reads  

( ) ( ) ( ) 2

2
ˆ ˆ ˆ ˆ

T Tt t tγ Ω Ω Ω= =v Q v H v , (3.2) 

while for a time window reads  

( ) ( )
1

ˆ ˆˆ
H

T T

h h

h

t trγ Ω Ω Ω Ω Ω
=

= = ∑H VH h Vh , (3.3) 

where ˆ T T=V FF VFF , H is the number of columns of full-column rank matrix HΩ (2.1) and hΩh is 

its hth column. The expressions for the filtered estimation as in (3.2) and (3.3) holds for both point 

regions (i.e., a single voxels) and extended regions (covering an arbitrary large volume), the only 

difference possibly being H. In the case of EEG, for point regions we have H=3, whereas for 

extended regions we have H≥3.  

The method we follow to derive the data-driven beamformers is the optimization of 

functional using extreme properties of eigenvalues (Bolton et al, 1999; Gross and Ioannides, 1999; 

Schott, 1997), which yields analytical solutions. Throughout this paper we will refer to L and R as 

to the ROI chosen to represent the sector of the left and right primary motor cortex implicated in the 
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desynchronization. Let VL and VR (2.2) be the grand average outer product of sensor measurements 

for available training trials corresponding to left and right limb movement intention, respectively. 

These two matrices, taken here as prototypes, carry a common covariance structure reflecting 

background noise plus interference (brain activity not related to the movement intention) and a 

peculiar covariance structure reflecting the source activity in L and R. The problem of extracting 

and maximizing the latter in L as compared to R and vice versa may be posed for each pair of 

vectors fd and fe of F such as 

( ) ( )
max , max

d e

T T

d L d e R e

T T

d L R d e L R e

      
   

+ +      f f

f V f f V f

f V V f f V V f
,(3.4) 

with constraint of unit norm for each vector of F. Only N-1 vectors of F are considered because one 

degree of freedom is lost in the reference, as seen in section 2. A set of vector pairs maximally 

divergent in the sense of (3.4) is obtained by finding the N·N-1 matrix F as the joint diagonalizer of 

VL and VΣ=VL+VR  (Fukunaga, 1990, p 33-34), i.e., in such a way to verify 

 
T

T

L

T

R

Σ =


=
 = −

F V F I

F V F W

F V F I W

 (3.5) 

where W=diag(W1≥W2≥…≥WN-1), I-W=diag(1-W1≤1-W2≤…≤1-WN-1). The vectors in F are sorted so 

to “absorb” progressively less and less energy from VL and more and more energy from VR and, by 

construction, the vectors f1 and fN-1 are those best differentiating the structural information 

embedded in those two matrices. Indeed the eigenvalues associated with those two vectors are the 

extrema attaining the maxima of the functionals in (3.4). 

The matrix F actually holds all solutions to the first maximization problem in (3.4) and the 

same matrix, but with vectors in reverse order, holds the solutions to the second maximization 

problem. In other words, the two solutions are reflections to each other along the main diagonal. 

The pairs of corresponding vectors are f1 and fN-1, f2 and fN-2 etc.. For BCI purposes we will consider 

two filters FL and FR, both of dimension N·D, each one targeting the respective ROI and defined 

such that FL holds the first D<(N-1)/2 vectors of F while FR holds the last D<(N-1)/2 vectors of F 

in reverse order. To see how the filter acts let [ ]L R=F F NF  be an arbitrary partition of the joint 

diagonalizer, which number of vectors in each partition depends on the choice of D. Given the outer 

product matrix Vtest of an unlabeled trial and since FF
T= FLFL

T + NN
T + FRFR

T, we can expand the 

filtered source power estimation for ROI L in (3.3), such as 

( )
( ) ( ) ( )
( ) ( ) ( )

ˆ

2 2 2 .

T T T

L L test L

T T T T T T T T T

L L L test L L L L test L L R R test R R L

T T T T T T T T T

L L L test L L L L test R R L L R R test L

tr

tr tr tr

tr tr tr

γ = =

+ + +

+ +

H FF V FF H

H F F V F F H H NN V NN H H F F V F F H

H F F V NN H H F F V F F H H F F V NN H

(3.6) 

By construction, the last three terms of the sum (cross-terms) vanishes as Vtest approaches LV  or 

RV , that is, they are small for trials close to the prototypes. The first term, the projection on the 

beamspace, is maximized, while the third, which here we call the projection on the antibeamspace, 

is minimized. The second term describes an indecision region, the space spanned by the vectors of 

F which eigenvalues are similar, that is, the vectors creating a beamforming projection with 

minimal separation capability. The equivalent expression for ˆ
Rγ , the filtered source power 

estimation for ROI R, is obtained using HR instead of HL in (3.6); in this case the first term is 

minimized, while the third is maximized. Thus, the beamspace for one ROI is the antibeamspace 

for the other. Equation (3.6) shows the actual stop-band regions for filter FL and FR. In conclusion, 

the two filtered source power estimations provide an ideal coupling of attributes for detecting 

separation of energy originating in two ROIs.  

The derivation of a beamspace given by such filters associated to ROI L and R has been 

previously called Common Spatial Pattern (CSP). Several authors applied the CSP to EEG data for 

the purpose of extraction of abnormal EEG components (Koles, 1991), EEG source localization 
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(Koles and Soong, 1998) and for classification of trials for BCI feature extraction (Blanchard and 

Blankertz, 2004; Guger et al, 2000; Ramoser et al, 2000). However, none of the authors also 

applied the CSP to an inverse solution to target the sources of the scalp spatial patterns. We found 

this further step very effective for our purpose.  

Another link to the literature is established considering that, under certain circumstances, the 

joint diagonalization of two covariance matrices has been shown to solve the blind source 

separation (BSS) problem (Parra and Seida, 2003). The problem, which is also the aim of 

independent component analysis (ICA), consists of estimating the time courses of the actual sources 

observing only a linear mixture of them. The problem is said to be blind because no knowledge of 

the mixing process, hence on the propagating medium, is assumed. In our case the observed 

mixtures are the sensor measurements (2.4) and the sources are the activities of neuronal clusters 

associated with each of two commands plus interference and noise. An advantage of considering 

the grand average outer product matrix is that inter-trial uncorrelated noise will asymptotically 

vanish in the averaging processing. However, noise correlated across trials, such as eye movements, 

which tend to have a similar temporal course, will not. It is well known that sources can be 

estimated by BSS methods only up to a trivial permutation (order) indeterminacy. We have already 

stated that the relevant sources are always found by the CSP to be associated with the first and last 

D vectors of the filter. The reason why this is the case here is evident from the construction of the 

filter (3.5). 

 

4. Evaluation and method  

In this section we report relevant information about the data set IV of the BCI competition 2003. 

This data set is used to evaluate the combination of inverse solution and data-driven spatial filters 

for extracting relevant brain features. We then detail the method of training data analysis, which 

consist in defining a suitable frequency band-pass region, an optimal spatial filter, and the two 

ROIs. Finally we set our classification criterion and report the results of the classification of the 

benchmark data.  

 

4.1. The Data Set 

The data set was recorded from a non-clinical subject during a self-paced key pressing task. The 

subject sat in a normal chair, with the arms relaxed on a table and fingers in the standard typing 

position at the computer keyboard. The task was to press with the index and little fingers keys using 

either the left or right hand, in a self-paced timing and self-chosen order. The experiment consisted 

of three sessions of six minutes each, with a few minutes of break between sessions. The average 

key pressing speed was one second. EEG was acquired at 28 leads (F3, F1, Fz, F2, F4, FC5, FC3, 

FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, O1, 

O2) with a 1000 Hz sampling rate. The position of electrodes in realistic Talairach space (Talairach 

and Tournoux, 1988) according to the 3-shell spherical head model implemented in the freeware 

LORETA-Key (available for download at http: //www.unizh.ch/ keyinst/ NewLORETA/ 

LORETA01.htm) is shown in figure 1.  

 

 
Figure 1. Electrode montage used to collect EEG in the BCI competition 2003, data set IV. The brain is seen 

from the left. All electrodes are depicted according to their actual position in the head model implemented in 

the LORETA-Key software as co-registered to the Talairach space.  

 

Epochs of 500 ms were extracted ending 130 ms before the key press. The epochs were divided 

in a training set and a test set. There were 159 epochs for left movements and 157 epochs for right 

movements in the training set. The test set consisted of 49 epochs for left movements and 51 epochs 
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for right movement. Other details on the data-set can be found in Blankertz et al (2004). The task of 

the BCI competition 2003 for this data set was to classify the test trials using only the information 

contained in the training set.  

 

4.2. Definition of Frequency Band-Pass Region  

Our strategy for classifying these data is the spatial segregation of the contralateral 

desynchronization engendered in the motor cortex by the intention of movement of the left and 

right fingers. This activity is known to involve the frequency components mu and beta. The first 

step is then the definition of the frequency band-pass region better differentiating between the two 

alternative tasks. Before processing, we resampled the data to 128 samples per second by means of 

a natural cubic spline interpolation routine (Congedo et al, 2002). This sped up further 

computations and allowed the use of the fast Fourier transform algorithm, which requires power of 

two samples, without padding the data. The LORETA-Key software was used to compute the 

leadfield for a 3-shell spherical head model and for estimating the optimal amount of regularization 

for computing the sLORETA transfer matrix, that is, the α parameter in (2.6). For this purpose, all 

available training data entered a leave-one-out cross-validation procedure (Pascual-Marqui, 1999b). 

The regularization needed was estimated to be 104. The volume considered in LORETA-Key 

comprises 2394 voxels of dimension 7mm3 covering the gray matter according to the probability 

atlas of the Montreal Neurological Institute (Pascual-Marqui, 1999a). Next, we ran a sLORETA 

multiple comparison randomization-permutation t-max test (Holmes et al, 1996) in the frequency 

domain. The aim of the test is to compare voxel-by-voxel the mean source power in the left and 

right trials of the training set for sixteen 2-Hz frequency band-pass regions spanning the 2-32 Hz 

range. The test procedure repeatedly shuffles at random the labels "left" and "right" for training 

trials. At each shuffling (permutation), t-tests ("left" minus "right") are computed for all voxels to 

approximate the exact distribution of maximal t-statistics under the global null hypothesis (Holmes 

et al, 1996; Westfall and Young, 1993). Before entering the test procedure all source power values 

were natural log transformed and normalized to within-volume unit norm. The first transformation 

aims at approximating symmetry of spectral data, a weak assumption of the test, whereas the 

second minimizes the influence of artifacts and other abnormal activity with stronger energy than 

normal EEG. Notably, neither transformation alters the overall results of the test, but may help in 

preserving its power. What has been listed so far is standard statistical procedure for analyzing 

electromagnetic data in cognitive or clinical studies (for more details see Lubar et al, 2003. A 

freeware for multiple permutation tests is included in the NTE Pack 2005, available for download at 

www.NovaTechEEG.com). There are 2394 voxels for 32 frequency bins, for a total of 76608 

simultaneous tests. The control of the family-wise error rate is guaranteed by the test procedure 

(Westfall and Young, 1993), i.e., the probability to erroneously reject even only one null hypothesis 

(declaring a voxel as significant whether it is not) is kept below 0.05. The test was run using 5000 

random data permutations. 
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Figure 2: Significant results of the multiple-hypothesis permutation t-test comparing the mean source power 

of left and right training trials at each voxel. The cortical representation is the one implemented in the 

LORETA-Key software, which is based on the Atlas of Talairach and Tournoux (1988). All images are top 

views, with front of the brain up. Each image refers to the test for a frequency bin starting at 12 Hz and 

ending at 30 Hz, in 2-Hz increments. The voxel-by-voxel contrasts entered the test as left minus right, thus 

positive t-values (red-coded) indicate stochastic dominance of the source power produced by left movements 

trials while negative t-values (blue-coded) indicate stochastic dominance of the source power produced by 

right movements trials. Each image is scaled to its own absolute maximum. Only significant t-values (with 

family-wise error controlled at the 0.05 level) are colored. 

 

The spatial distributions of the t-statistics for all frequency bins for which significant results 

were found are shown in the form of cortical images in figure 2. The threshold for rejecting the null 

hypothesis was found to be t*(312)=±4.33, to which the corrected p-value upper bound of 

significance can be found by normal approximation to equal 0.00000745. Therefore these results 

depict robust shifts in the central tendency of the two distributions. Significant results were only 

found between 12 and 30 Hz. Evidently, as compared to right movement trials, left movement trials 

engender a desynchronization in the contralateral motor cortex and/or a synchronization of the 

ipsilateral motor cortex, and vice versa for right movement trials. Since data about a baseline 

(control) condition for each task is not available, that is all we can conclude with this test as far as 

hypothesis testing is concerned. However, from the literature, we know that intention of movement 

is associated with contralateral desynchronization rather than with ipsilateral synchronization. In 

any case, we are not concerned with the two marginal effects, but only with their interaction, as 

suggested in (3.5). Thus, for any practical purpose we can associate movement intentions with an 

increase in source power in the ipsilateral motor cortex. Qin et al (2004) arrived at this same 

conclusion.  

Figure 3 shows the maximal and minimal t-statistic across the volume for each frequency bin 

and their relation with the threshold of significance. Refer to the caption for details. Following the 

graph, a sharp frequency window for which the central locations of the source power distribution in 

the two hemispheres maximally diverge is 14-26 Hz. All data (training and test) was therefore 

band-pass filtered using this range by means of inverse fast Fourier transform with a do-nothing 

(rectangular) time-domain tapering window. 
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Figure 3. Frequency distribution of t-statistics maxima and minima in the volume. The lower dotted line plot 

indicates the (negative) t-minima, which are consistently found in the proximity of the right motor cortex. The 

upper dotted line plot indicates the (positive) t-maxima, which are consistently found in the proximity of the 

left motor cortex (see figure 2). The thick grey line plot in the upper portion of the graph is the average of the 

two extrema taken as absolute values. The semi-transparent panel in the foreground indicates the region of 

acceptance of null hypotheses as found by the permutation test. The vertical box includes the chosen 

frequency band-pass region. 

 

 

4.3. Filter Definition 

In this paper we use a single feature, the sLORETA filtered source power in two spatially 

segregated ROIs, L and R. The filter and the resulting projection of the data have been defined in 

(3.5) and (3.1), respectively. The projection aims at the maximal difference of the source power 

associated to each ROI. Using the 159 left fingers movement intention training trials and the 157 

right fingers movement intention training trials we computed the grand average outer product 

sensor measurement matrices VL (left) and VR (right), already introduced in section 3. A method to 

find the joint diagonalizer F of matrices VR and VΣ=VR+VR is to find in succession two matrices A 

and B such that  

 

( )
1.

2.

T

T T

R

identity

diagonal

Σ =

=

A V A

B A V A B
 (4.1) 

 

from which we obtain a matrix satisfying (3.5) as 

 

=F AB . (4.2) 

 

Matrices A and B are easily found by means of eigenvalue-eigenvector decomposition (EVD) with 

a two-step procedure. Let EVD(VΣ)=ΓΣΨΣΓΣT, where ΓΣ holds in columns the eigenvectors and ΨΣ 
holds in diagonal the eigenvalues. We set ΨΣ-1/2ΓΣT =A

T and the first relation of (4.1) is verified. 

Then, let EVD(AT
VLA)=ΓLΨLΓL

T. Setting ΓL
T=B

T, (4.1) is verified altogether (Fukunaga, 1990; 

Schott, 1997).  

In section 3 we advanced an analogy between the beamspace and the source space within a BSS 

framework. Here we make use of this analogy. Particularly, the matrix F
T (see section 3) is the 

equivalent of the unmixing matrix. The mixing matrix is therefore its pseudo-inverse  

 

( ) ( ) 1
2T T T

L

+ +

Σ Σ= = =G F B A Γ Ψ Γ , (4.3) 

 

where we have been using the orthogonality of eigenvector matrices. Note that G≠F as a 

consequence of the fact that the joint diagonalizer is not orthogonal unless VΣ 
and VL commutes in 

multiplication (Schoot, 1997, p 155-157), which in general is not the case. Nonetheless, there is a 

one-to-one relation between the columns of G and the columns of F. Figure 4 shows the sLORETA 
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images corresponding to the first five and last five among the 27 (N-1) non-null columns of G, 

which represent scalp spatial patterns of left and right finger movement intention. This is a well-

known result routinely employed in the BSS literature. Letting gd be a column of G, with d=1…27, 

the corresponding sLORETA source power estimation all over the volume is obtained computing 

gd
T
Qλgd at each voxel λ, following (2.8). Since the spatial patterns reflect source activity, which we 

assume to be noiseless, these sLORETA source power estimations have been here obtained without 

regularization. Note that obtaining F and G from the joint diagonalization of VΣ 
and VR (instead that 

of VΣ 
and VL) is equivalent, in that the resulting columns of both matrices (hence the spatial 

patterns) are the same in reverse order, which results from the construction of the filter (3.5). That 

is why this joint diagonalization method has been called “common spatial pattern”, although this 

terminology may seem contradictory, in that those patterns seek indeed the spatial 

“uncommonality” between the “left” and “right” covariance structure.  

Figure 4 illustrates appropriately the formation of a beamspace, an indecision space and the 

antibeamspace, according to terminology introduced in section 3. Spatial patterns are arranged in 

pairs and so are the columns of the filter. The source activity of interest is the desynchronization of 

the sectors of the primary motor cortex corresponding to the left and right finger movement 

intention, which in figure 4 is seen as increased source power in the ipsilateral side (see subsection 

4.2.). Notice the contralateral correspondence of the first two (left beamspace, or right 

antibeamspace) and last two (right beamspace, or left antibeamspace) spatial patterns. Spatial 

patterns from 3 to 25, included, describe the indecision region (among those, only patterns 3-5 and 

23-25 are shown). They correspond to vectors with little separation capability since their sources do 

not belong to regions where a consistent difference in source power for left and right movements is 

observed. More importantly, the differences observed for those vectors are not localized in the 

primary motor cortex. Based on this analysis we set D=2 (the beamspace dimension defined in 

section 3). Therefore the actual filters employed are  

 

1 2 27 26,L R
   = =   F f f F f f , (4.4) 

 

where df  is the unit norm dth column of F in (4.2). The normalization fulfils the constraint of the 

maximization problems stated in (3.4) and assign equal weight to each projection vector.  
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03  

04  

05  

… 

 

23   

24  

25  

26  

27  
Figure 4. sLORETA cortical images of the spatial patterns associated with vector 1-5 and 23-27 of the 

spatial filter. The spatial patterns are the vectors of the mixing matrix G as defined in (4.3). For each image, 

from left to right, are shown the left lateral and medial view, the right lateral and medial view and the bottom 

view. Each image is scaled to its own maximum. The activity is color-coded with black representing the 

maximum and white representing zero. Legend: A=Anterior; P=Posterior; S=Superior; I=Inferior; L=Left; 

R=Right; 
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4.4. Definition of the Regions of Interest 

The next step is the definition of the location and extent of the two ROIs L and R best 

differentiating left and right fingers movement intention respectively. For this purpose we use the 

regularized filtered source power estimation of the grand average sensor measurements outer 

product matrix for training data corresponding to left and right fingers movement intention. Using 

(3.3) for each voxel λ, we obtain such a grand average estimation as ( )ˆT

Ltr λ λH V H  for left fingers 

movement intention and ( )ˆT

Rtr λ λH V H  for right fingers movement intention. In the above 

expressions Hλ is the N·3 full-rank factorizations of the inverse quadratic form operator for voxel λ, 
while ˆ T T

L L L L L L=V F F V F F  and ˆ T T

R R R R R R=V F F V F F  are the projected grand average outer product 

matrices for left and right finger movement intention. Deriving the images from actual EEG data, 

the regularization helps in suppressing the noise. The resulting sLORETA images are shown in 

figure 5. 

 

 
Figure 5. Regularized sLORETA cortical images showing the filtered source power of left (top row) and 

right (bottom row) finger movement intention grand average training trials. For the meaning of the graphical 

representation and legend see the caption of figure 4. 

 

 

Figure 5 shows that the filtered average source power has high spatial specificity for the two 

involved sectors of the primary motor cortex. The two activation regions are nearly symmetric 

along the midline. The region on the left hemisphere has maximum (2.91e-7) at Talairach 

coordinates x=-59, y=-39, z=50, while the region on the right hemisphere has maximum (1.47e-7) 

at x=53, y=-18, z=57. As compared to the right region, the maximum of the left region is located 6 

mm more lateral (x-axis), 21 mm more posterior (y-axis) and 7 mm more inferior (z-axis). The only 

relevant asymmetry seems to be along the y-axis. There are many reasons that could account for 

this, including 1) asymmetry of the motor cortex in this individual, 2) the use of a spherical head 

model, 3) asymmetry of electrode placements, 4) noise, and 5) the non homogeneous scalp 

sampling due to the electrode placement for this experiment (Michael et al, 2004; Van Veen et al, 

1997), which is shown in figure 1. It is noteworthy that the first of the above causes of concern is 

not critical for our purpose, because the head anatomy is constant. On the other hand the last four 

may have affected the accuracy of the source localization and may limit the classification accuracy 

based on source localization. In any case, the agreement of these images with the results of the 

permutation test (figure 2) is substantial. 

The motor cortex has a topographic organization and body parts follow closely in their cortical 

representation. Therefore we assume that the sources implicated with finger movement have small 

coverage. Our current space sampling allows a resolution of 7mm3. We estimated the voxel 

carrying maximal divergence (as seen on data by the spatial filter) to be a good representation of the 

neuronal activity of interest. Thus we define the left ROI L and right ROI R as the voxels 

displaying the maxima in figure 5. This choice was also suggested by the performance of a simple 

linear classifier (on the training set) obtained using ROIs centered at the maxima and varying their 

dimension.  
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4.5. Classification of the Test Set 

Classifying trials in which membership is unknown requires a classification criterion. Traditionally 

BCI relies on trained classifiers; a learning algorithm is employed and its job is to learn how to 

assign membership based on training data. In the introduction we stated that our approach is hybrid. 

We do not rely on iterative ICA algorithms to extract the activity of interest from each trial. Rather, 

we use training data to design a filter able to accomplish the same task, but much faster. The other 

advantage of our approach is that the classification algorithm itself is untrained. Given a test trial 

with average sensor measurements outer product Vtest we obtain directly the filtered source power 

estimation in L as (see equation (3.6)) 

( )ˆ T T T

L L L L test L L Ltrγ = H F F V F F H  (4.5) 

and in R as  

( )ˆ T T T

R R R R test R R Rtrγ = H F F V F F H . (4.6) 

The classification criterion is then simply set such as 

ˆ ˆclassify trial as finger movement intention if

ˆ ˆclassify trial as finger movement intention if

L R

L R

left

right

γ γ

γ γ

 >


<
,(4.7) 

that is, after plotting in a Cartesian space the point with coordinates ( )ˆ ˆ,L Rγ γ , the classifier is the 

line with equation y=x.  

It has been found that movement-related potentials associated to different body parts do not 

differ on the scalp as soon as the movement is planned. Rather, in a first phase, starting several 

seconds before electromyographic (EMG) activity, the potentials are indistinguishable. In a second 

phase, starting approximately 500 ms before EMG onset, the potential associated to different body 

parts begin to diverge. This divergence is more pronounced on the vertex (Cz electrode) and 

increase as the EMG onset approaches, being maximal just before EMG onset (Jankelowitz and 

Colebatch, 2002). Thus, it appears that the preparatory phase engender common spatial activation, 

whereas body part-specific activity takes place shortly before the actual movement. Our 

classification method relies on the spatial segregation of brain activity related to the intention of 

movement of different body parts. Based on these evidences, the test trial average outer product 

matrix as computed only the last portion of the trial may carry more spatial specific information 

that the average outer product matrix computed on the whole available trial. For each test trial we 

repeated the classification task using Vtest computed on the whole available data (500 ms for this 

benchmark) and using Vtest computed on the last 250 ms only. 

The pre-processing steps to which the test data was submitted were exactly the same to which 

the training data were submitted. Namely, the trials were down-sampled to 128 samples per second 

and band-pass filtered in the region 14-26 Hz. The classification processing consisted uniquely in 

source power magnitude comparison as per (4.7). 
 

4.6. Results 

The accuracy rate in this study is defined as the proportion of correctly classified test trials. This 

was the accuracy criterion used in the BCI competition 2003. The data set contains a total of 100 

test trials, of which 49 pertain to left finger movement intention and 51 to right finger movement 

intention. Plots of filtered source power estimation in L and R for both left and right fingers 

movement intention, for the training and test set and estimating the average outer product matrix 

from all available 500 ms or only the last 250 ms, are shown in figure 6 (A, B, C, D). As a 

comparison, plots of unfiltered source power in the same ROIs (raw sLORETA) obtained 

considering the last 250 ms for each trial are shown in Fig 6 (E, F). Those may be directly 

compared to figure 6 (C, D). For graphical accommodation, we plot the natural logarithm of the 

source power estimation previously multiplied by a large constant (105). Using only the last 250 ms 

the classification accuracy for the training set (figure 6D) equals 83% using the filter, which is very 

close to the score reached by the winners of the competition for this data set (84%: Wang et al, 

2004), despite our use of an untrained classifier and only one attribute for each class was extracted. 

On the other hand the classification accuracy employing sLORETA without spatial filtering on the 
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same data is significantly lower (78%: figure 6F). It should be noted that when using no spatial 

filter the points are more scattered, indicating lower classification power. 

 

 

 

 
Figure 6. Scatter plots depicting the results of the classification. In each plot on the x-axis and y-axis is the 

source power in the left and right region of interest (ROI), respectively. Left column (A, C, E): results on the 

training set (159 Left + 157 Right trials). Right column (B, D, F): results on the test set (49 Left + 51 Right 

trials) . Top row (A, B): results obtained using the filter on the whole available 500 ms for each trial. Middle 

row (C, D): results obtained using the filter on the last 250 ms for each trial. Bottom row (E, F): results 

obtained with no filter (raw sLORETA) on the last 250 ms for each trial. The untrained classifier is 

represented by the thick grey line, which has equation y=x. According to (4.7), right fingers movement 

intention trials (black squares) are correctly classified if they fall above the line, while left fingers movement 

intention trials (white squares) are correctly classified if they fall below the line. The classification accuracy 

is printed as percentage of correctly classified trials near the bottom-right corner of each plot. 
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5. Conclusions and Discussion  

 

The aim of this paper was to investigate the coupling of sLORETA and a data-driven filter 

for the purpose of classifying movement-related desynchronization engendered by finger movement 

intention. The filter here adopted may be conceived as a beamformer particularly designed for 

classification purposes and its application to an EEG inverse solution has been proposed here for 

the first time. As shown, a source localization method alone does not allow sufficient classification 

power for the purpose of classifying motor cortex desynchronization. For this reason previous 

works relied on either independent component analysis or on a trained classifier. In actual BCI 

implementations the first approach (Jun et al, 2005; Qin et al, 2004) would require dedicated 

parallel processing units in order to extract the independent component in real-time. Furthermore, 

the automatic selection of relevant independent components is cumbersome. The second (Grave de 

Peralta Menendez et al, 2005) would require a long training phase for the classifier, still, it is our 

impression that any attempt to use raw inverse solutions to localize movement-related 

desynchronizations from the noisy single-trial EEG is vain. Our approach has been presented as 

hybrid, in that on one hand a learning phase is required to estimate the spatial filter and on the other 

the classifier is untrained. The advantage of such an approach is the speed of computations required 

(matrices FLFL
T
HL in (4.5) and FRFR

T
HR in (4.6) are computed off-line) preserving the ability to 

adapt to the individual brain characteristics. No automatic selection of independent component is 

required. Therefore our approach is suitable for actual BCI applications as it stands.  

Since the spatial filter is data-driven, new available trials can be used to refine the projection 

filters FLFL
T and FRFR

T
 on the background while the BCI system is at work. Given that only 

prototypical trials are used to update the filter, we may expect the spatial filter so constructed to be 

asymptotically optimal. The method presented hereby reached 83% classification accuracy on the 

test set using the last 250 ms of data for each trial. The result is obtained using a single feature. An 

inspection of the scatter plots in the right column of figure 6 reveals that some of the misclassified 

test trials are far away from the separating line. This is especially true for right finger movement 

intention trials (black squares in the figure). These data suggest that the obtained classification 

accuracy could not be dramatically improved over the current result using only the event-related 

desynchronization feature. Many research teams analyzed this data set for the BCI competition 

2003 using a great variety of features and classification algorithms, yet only Wang et al (2004) 

outperformed the present result. Hence, we may actually hypothesize that the obtained 

classification accuracy could not be dramatically improved upon, even using additional features and 

trained classifiers. Rather, for some trials the membership may be confounded. This is a natural 

occurrence in an experiment involving self-paced repetitive tasks in which the subject may not be 

able to keep a constant level of concentration and performance throughout the duration of the 

experiment.  

It may be surprising that using an untrained classifier and a single feature, we obtain nearly the 

same classification accuracy obtained by Wang et al (2004), who used a trained classifier and three 

features, two related to the Bereitschaft potentials and one related to the event-related 

desynchronizations. Two common mistakes in classification tasks amount to improper definition of 

attributes and to the assumption that the best classifier is the one best fitting the training set. 

Multiple attributes are useful as long as their joint probability vanishes. It is well-known that if this 

is not the case, multiple attributes are redundant and the SNR drops down. On the other hand, one 

should not seek necessarily the best fit of the training data, since such a classifier guarantees fitting 

of the available sample, but not of the population of interest. This phenomenon is knows as 

overlearning.  Actually, the smaller the number of observations (training trials) and the lower their 

SNR, the lower the ability to estimate the best classifier from that sample. Rather, one should seek, 

as much as possible, parameters independent from the training data to tune the classifier. This is the 

strategy we followed. Wang et al (2004) reported 92.98% classification accuracy on the training set 

and 84% on the test set. Such a difference is a typical outcome of overlearning. Our classifier 

features similar classification accuracy for the training and test set, both using 500 ms of data or 

only the last 250 ms (figure 6). This shows that our classifier did not overlearn (actually it did not 

learn at all). Sure enough we could have marginally increased the classification accuracy of this 

data set adding a feature related to the Bereitschaft potentials. However, our aim was restricted at 
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showing the feasibility of classifying movement-related desynchronizations by coupling an accurate 

inverse solution with a suitable data-driven spatial filter. 

In EEG, the SNR of single-trials is very low and the noise affects the localization accuracy of 

linear inverse solutions. The data-driven filter we designed aims at separating the interesting 

components associated to the movement intention. In doing so it clearly has a noise-suppression 

capability. However, we cannot ascertain at the present stage if the previous use of blind source 

separation would provide additional advantages for noise removal.  

The method currently presented is subject to major improvements, especially related to the 

definition of the location and extent of the brain regions of interest involved in motor planning. It 

should be stressed here that spatial segregation of sources belonging to different classes does not 

assume that the sources are point-like or that they are confined to small neuronal populations. As 

long as the sources are spatially segregated, the linear superposition principle holds and sources 

may as well be composed of clusters of neuronal populations, physiologically connected, but 

possibly far away from each other in space (Van Veen et al, 1997). The accurate definition of such 

neuronal grouping is therefore a major task for the success of the method and a challenging line of 

research for future investigations. In addition, multiple regions may be employed, associated to 

multiple frequency and temporal windows. Of course, the use of a more realistic head model based 

on the magnetic resonance images of the subject and the use of more electrodes would increase the 

accuracy of the source localization method itself, hence of the method described in this paper 

altogether. Further margin for improvement concerns the definition of the prototypical covariance 

structures VL and VR used to define the filter (Section 3). In this respect ICA may be very useful. 

There are several indicators that suggest movement-related brain activity has a distinct spatio-

temporal course. Early motor planning seems to be generated in the supplementary motor area 

(SMA), whereas other pre-motor areas seem to be involved before the primary motor cortex itself 

(Jankelowitz and Colebatch, 2002). Implication of the SMA in this study is noticeable in the pair of 

spatial patterns 3 and 25 (figure 4). Detection of SMA activation may prove useful for early 

detection of movement intention, a fundamental task necessary for actual BCI applications. The 

time course of brain activations, specific in space and frequency, may constitute a powerful way to 

exploit the advantage of EEG inverse solution over raw scalp potentials. For this reason we believe 

that source localization methods are going to draw more and more attention in the BCI community.  
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Appendix 

We here remind a classic result of linear algebra proving the last equality in equation (2.1). We 

are concerned with quadratic forms of the kind v
T(t)Qv(t), with v(t) non-null and Q positive-

definite, symmetric and non defective. In the following we omit the time index. Let P=rank(Q). 

Then, the eigenvalue-eigenvector decomposition 

T
T µ

µ η µ η
η

 
   = =       

W 0
Q UwU U U U U

0 0
       

is such that Uµ contains, in columns, the P dominant eigenvectors and Uη contains the remaining 

N-P eigenvectors; similarly, Wµ holds, in diagonal, the P positive eigenvalues, with W1≥…≥ 

WP>(WP+1…WN = 0). If we pose P·N matrix 
1

2T T

µ µ=H W U  such that HH
T=Q and project the sensor 

measurements space into z=H
T
v, it follows 2

1

PT

pp
z

=
= ∑v Q v . The equality is seen as 

( )1 1
2 22

1

P T T T T

pp
z

µ=
= = =∑ z z v UW W U v v Q v .  
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