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Some explicit travelling wave solutions to constructing exact solutions of nonlinear partial di	erential equations of mathematical
physics are presented. By applying a theory of Frobenius decompositions and, more precisely, by using a transformation method to
the coupled Burgers, combined Korteweg-de Vries- (KdV-) modi
ed KdV and Schrödinger-KdV equation is written as bilinear
ordinary di	erential equations and two solutions to describing nonlinear interaction of travelling waves are generated. �e
properties of the multiple travelling wave solutions are shown by some 
gures. All solutions are stable and have applications in
physics.

1. Introduction

�e investigation of traveling wave solutions of nonlinear
evolution equations (NLEEs) plays a vital role in di	erent
branches of mathematical physics, engineering sciences, and
other technical arenas, such as plasma physics, nonlinear
optics, solid state physics, �uid mechanics, chemical physics,
and chemistry.

�e Burgers’ equation has been found to describe various
kinds of phenomena such as a mathematical model of
turbulence [1] and the approximate theory of �ow through
a shock wave traveling in viscous �uid [2]. Fletcher using the
Hopf-Cole transformation [3] gave an analytic solution for
the system of two-dimensional Burgers’ equations.

�e Korteweg-de Vries (KdV) equation which models
shallow-water phenomena has been analyzed extensively
using the invariance properties that occur from the Lie
point symmetry generator that admits it. In particular,
travelling wave solutions arise from the combination of
translations in space and time. Also, Galilean invariants
and scale-invariant solutions are dependent on 
rst and

second Painleve transcendent [4]. Further, the modi
ed KdV
(mKdV) has attracted interest in a similar way and its Lie
point symmetry generators are known [5]. Recently, the
combinedKdV (cKdV) andmKdV equation has been studied
using various methods with a special reference to soliton-
type solutions. For example, simple soliton solutions to cKdV-
mKdV used in plasma and �uid physics are obtained in [6].
Here, the particular form uses the fact that the equation
admits a scaling symmetry which is nonexistent for the
general cKdV [7, 8].

�e topic of solitons produced by nonlinear interactions
is a very fundamental topic in various 
elds, including
optical solitons in 
bers [9]. �e one-dimensional soliton
can be considered as a localized wave pulse that propagates
along one space direction undeformed; that is, dispersion is
completely compensated by the nonlinear e	ects. �ere is
an enormous amount of literature about the integrability of
nonlinear equations related to scattering equations, including
especially inverse scattering theories, in relation to solitons
[10]. In particular, analysis related to NLS and KdV equations
has been studied [10–12].
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In recent years, various methods have been established to
obtain exact traveling solutions of nonlinear partial di	eren-
tial equations, for example, the Jacobi elliptic function expan-
sion method [13], the generalized Riccati equation method
[14], the Backlund transformation method [15], the Hirota’s
bilinear transformationmethod [16], the variational iteration
method [17–20], the tanh-coth method [21, 22], the direct
algebraic method [23, 24], the Cole-Hopf transformation
method [25, 26], the Exp-function method [27–29], and
others [30]. Recently, Wang et al. [31] introduced a method
to obtain traveling wave solutions of the nonlinear partial
di	erential equations, called the (��/�)- expansion method.

�is paper is organized as follows. An introduction is
given in Section 1. In Section 2, an analysis and theory of
method theory of transformation the partial di	erential
equations to a bilinear ordinary di	erential equations. In
Section 3, the multiple travelling wave solutions of coupled
Burgers’ equations are obtained. Two cases of traveling wave
solutions of the combined KdV-modi
ed KdV equation are
given in Section 4. In Section 5, multiple travelling wave
solutions of the coupled Schrödinger-KdV equations are
given.

2. An Analysis of the Method and Applications

Now, we simply describe the generalized extended tanh-
function method. Consider a given system of NEEs, say, in
two variables, � and �:

�(�, V, ��, V�, ��, V�, ���, V��, . . .) = 0, (1)

� (�, V, ��, V�, ��, V�, ���, V��, . . .) = 0. (2)

We consider the following formal traveling wave solutions�(�, �) = 	(
), V(�, �) = �(
), and 
 = � − ��, where � is
a constant to be determined later. �en, (1) and (2) become
system of nonlinear ordinary di	erential equations as

�(	,�,	�, ��, 	��, ���, . . .) = 0, (3)

�(	,�,	�, ��, 	��, ���, . . .) = 0. (4)

In order to seek the traveling wave solutions of (3) and (4), we
introduce the following new ansätz:

	 (
) = �10 +
�1∑
�=1

{{{{{
�1��� + �1��−� + �1���−1√� + �2

+�1�√� + �2
��

}}}}}
,

(5)

� (
) = �20 +
�2∑
�=1

{{{{{
�2��� + �2��−� + �2���−1√� + �2

+�2�√� + �2
��

}}}}}
,

(6)

where ��0, ���, ���, ���, ��� (� = 1, 2, . . . , ��; � = 1, 2), and � are
constants to be determined later.�e value of�� in (5) and (6)
can be determined by balancing the highest-order derivative
term with the nonlinear term in (5) and (6).�e new variable� = �(
) satis
es �� = � + �2.

�ere exist the following steps to be considered further.

Step 1. Determine the �1 and �2 of (5) and (6) by, respec-
tively, balancing the highest order partial di	erential terms
and the nonlinear terms in (3) and (4).

Step 2. Substituting (5) and (6) into (3) and (4), the corre-

sponding ODEs, then let all coe�cients of ��(√� + �2)	 ( =0, 1; ! = 0, 1, 2, . . .) be zero to get an overdetermined system
of nonlinear algebraic equations with respect to ��0, ���, ���, ���,���, �, � (� = 1, 2, . . . , ��; � = 1, 2).
Step 3. By solving the system, we may determine the above
parameters.

Step 4. Substituting the parameters ��0, ���, ���, ���, ���, �, � (� =1, 2, . . . , ��; � = 1, 2) obtained in Step 3 into (2), we can derive
the solutions of equation.

3. Example I

�e coupled Burgers’ equations [32] have applications in the
quantum 
eld theory, plasma physics, �uid mechanics, and
solid state physics. �e usual system of equation is as follows:

�� − ��� + 2��� + " (�V)� = 0, (7)

V� − V�� + 2VV� + # (�V)� = 0. (8)

Let us consider the traveling wave solutions �(�, �) = 	(
),
V(�, �) = �(
), and 
 = � − ��, and then (4) becomes

−�	 − 	� + 	2 + "	� = 0, (9)

−�� − �� + �2 + #	� = 0. (10)

Balancing the nonlinear term 	2 and the highest order
derivative 	� gives � = 2. We suppose the solutions of (5)
and (6) are of the forms

	 (
) = �0 + �1$ + �2$−1 + �3√� + $2 + �4√� + $2
$ , (11)
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� (
) = �0 + �1$ + �2$−1 + �3√� + $2 + �4√� + $2
$

+ �5$2 + �6$−2 + �7$√� + $2 + �8√� + $2
$2 .

(12)

Substituting (11) and (12) into (9) and (10) with �� = � + �2
yields a set of algebraic equations for �0, �1, �2, �3, �4, �0, �1,�2, �3, �4, �5, �6, �7, �8.

By the solution of the above system of equations, we can

nd

�0 = 2�# , �1 = 0, �2 = 2�2# − 1 ,

�3 = −3�√−� − 2�2 − 2�2#
# (� + 2�2 + 2�2#) , �4 = 0,

(13)

�0 = −2�, �1 = −1, �2 = 2#2�21 − # ,

�3 = 3�√−� − 2�2 − 2�2#
� + 2�2 + 2�2# ,

�4 = ±√−� − 2�2 − 2�2#, �5 = �6 = �7 = �8 = 0.

(14)

�en, combining (11) and (12) with (13) and (14), we
obtain the traveling wave solutions of (7) and (8) as

� (�, �) = 2�# + 2�2
(# − 1)√�cot√� (� + ��)

− 3�√−� − 2�2 − 2�2#
# (� + 2�2 + 2�2#) √�sec√� (� + ��) ,

(15)

V (�, �) = −2� − √� tan√� (� + ��)
+ 2#2�2
(1 − #)√�cot√� (� + ��)

+ 3�√−� − 2�2 − 2�2#
� + 2�2 + 2�2# √�sec√� (� + ��)

± √−� − 2�2 − 2�2#csc√� (� + ��) .

(16)

�e shape solutions (15) and (16) are shown in Figures
1(a), 1(b), 1(c), and 1(d), with # = −2, � = 2, and � = ±2.
4. Example II

Consider the combined KdV-modi
ed KdV equation:

�� − "��� + #�2�� + &���� = 0, # ̸= 0, (17)

where ", #, and & are constants. Let us consider the traveling
wave solutions �(�, �) = 	(
) and 
 = � + ��, and then (17)
becomes

�	 + "2	2 + #3	3 + 	�� = 0. (18)

We suppose the solution of (18) is of the form (11) and
substituting into (18) yields a set of algebraic equations for �0,�1, �2, �3, �4. We have two cases for these equations that are
found.

Case 1. By the solution of (11), we can 
nd

�0 = − "2# , �1 = 0,

�2 = ±�√ 32#�, �3 = 0,

�4 = ±�√ 3�2# .
(19)

Substituting (11) into (19) we have obtained the following
solution of (17):

� (�, �) = − "2# ± �√ 3�2#cot [√� (� + ��)]

± �√ 3�2#csc [√� (� + ��)] .
(20)

Case 2. By the solution of (11), we can 
nd

�0 = −130, �1 = ±65√2� ,
�2 = ±65√2�, �3 = �4 = 0.

(21)

Substituting from (11) and (21) we have obtained the following
solution of (17):

� (�, �) = −130 ± 65√2 tan [√� (� + ��)]
± 65√2 cot [√� (� + ��)] . (22)

�e shape solution (22) is shown in Figure 2(b), with � = 2
and � = −16.
5. Example III

Consider the coupled Schrödinger-KdV equations (Davey-
Stewartson)

��� + ��� − �

 − 2 |�|2 � − 2�V = 0, (23)

V�� − V

 − 2 (|�|2)�� = 0. (24)
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Figure 1: Travelling waves solutions (15) with various di	erent shapes are plotted: periodic solitary waves in (a) and contour plot in (b).
Travelling waves solutions (16) with various di	erent shapes are plotted: periodic solitary waves in (c) and contour plot in (d).

Let us consider the traveling wave solutions �(�, �) = 	(
)
and 
 = (8� + �9 + ��)/(� + 9 − ��), and then (23) and (24)
become

( 2 − !2 − :)	 + (82 − �2)	�� + 83 − 2	(3) − 2	� = 0,
(25)

(82 + �2)��� + (	2)�� = 0. (26)

We suppose the solutions of (25) and (26) are of the forms (11)
and (12). Substituting (11) and (12) into (25) and (26) yields a
set of algebraic equations for �0, �1, �2, �3, �4, �0, �1, �2, �3, �4,

�5, �6, �7, �8. �e solution of the system of equations has two
cases.

Case 1. Consider the following: 82 = 1/4, �2 = 3/4, and � =5/9,
�0 = 0, �1 = ±10√29 , �2 = −1,

�3 = 2, �4 = 32 ,
�0 = 136 (−17 ± 80√2 − 18!2 + 18 2 − 18:) ,

�1 = −11227 , �2 = −103 ,

(27)
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Figure 2: Travelling waves solutions (20) with various di	erent shapes are plotted: periodic solitary waves in (a) and contour plot in (b).
Travelling waves solutions (22) with various di	erent shapes are plotted: periodic solitary waves in (c) and contour plot in (d).

�3 = ∓10√23 , �4 = 4, �5 = −16,
�6 = −94 , �7 = 209 (1 ± 2√2) , �8 = 3.

(28)

Substituting from (25), (26), (27), and (28), we have
obtained the following solutions of (23) and (24):

� (�, �) = ±10√2�9 tan 
 − 1√�cot 
 + 2√� sec 
 + 32csc 
,
(29)

V (�, �)
= 136 (−17 ± 80√2 − 18!2 + 18 2 − 18:)

− 112√�27 tan 
 − 10
3√�cot 
 ∓

10√2�3 sec 
 + 4 csc 


− 16� tan2
 − 94�cot2
 + 20�9 (1 ± 2√2) tan 
sec

+ 3√�cot 
 csc 
,

(30)

with 
 = √�((� + √39 + √4�)/√4(� + 9 − �)).
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Figure 3: Travelling waves solutions (29) and (30) with various di	erent shapes are plotted: multiple travelling wave solutions (a and b).
Travelling waves solutions (33) and (34) with various di	erent shapes are plotted: multiple travelling wave solutions (c and d).

Case 2. Consider the following: 82 = 1/9, �2 = 8/9, and � = 1,
�0 = �4 = 1, �1 = �3 = ∓√143 , �2 = ±13√72 , (31)

�0 = −2, �1 = ±2√143 , �2 = ±√143 ,
�3 = ∓8√143 , �4 = 154 (−10 + 9!2 − 9 2 + 9:) ,
�5 = −149 , �6 = 1108 (−36 + 9!2 − 9 2 + 9:) ,

�7 = 289 , �8 = ∓√143 .

(32)

Substituting (31) and (32) into (25) and (26), we have obtained
the following solutions of (23) and (24):

� (�, �) = 1 ∓ √14�3 tan 
 ± 13√ 72�cot 
 ∓
√14�3 sec + csc 
,

(33)

V (�, �) = −2 ± 2√ 14�3 tan 
 ± √143� cot 
 ∓ 8√14�3 sec 

+ 154 (−10 + 9!2 − 9 2 + 9:) csc 

− 14�9 tan2

+ 1108� (−36 + 9!2 − 9 2 + 9:) cot2

+ 28�9 tan 
 sec 
 ∓ √14

3√�cot 
 csc 
,
(34)

with 
 = √�((� + √89 + √9�)/√9(� + 9 − �)).
�e shape solutions (29) and (30) are shown in Figures

3(a)and 3(b), with ! =  = : = 1 and � = 0.01. �e shape
solutions (33) and (34) are shown in Figures 3(c)and 3(d),
with ! =  = : = 1 and � = 0.01.
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