
Commun.Math.Phys. 183,477-510(1997) Communications in

Mathematical
Physics

© Springer-Veriagl997

Classification of iV-(Super)-Extended Poincare Algebras
and Bilinear Invariants of the Spinor Representation of
Spin(p,q)

D.V. Alekseevsky1 >*, V. Cortes2 **

1 Max-Planck-Institut fur Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
2 Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720-5070, USA

Received: 4 December 1995 / Accepted: 16 May 1996

Abstract: We classify extended Poincari Lie super algebras and Lie algebras of any
signature (p, q\ that is Lie super algebras (resp. Z2-graded Lie algebras) fl = flo + fli,
where Jlo = 50( V)+V is the (generalized) Poincare Lie algebra of the pseudo-Euclidean
vector space V = Rp'g of signature (p, q) and fli = 5 is the spinor S0(F)-module
extended to a go-module with kernel V. The remaining super commutators {flii,fli}
(respectively, commutators [fl i, 01 ]) are defined by an $0(V)-equivariant linear mapping

V2fli -* V (respectively, A2fli ->• V).

Denote by V+(n, s) (respectively, V~ (n, s)) the vector space of all such Lie super
algebras (respectively, Lie algebras), where n = p + q = dim V and s = p — q is
the classical signature. The description of V^in, s) reduces to the construction of all
S0(\^)-invariant bilinear forms on 5 and to the calculation of three Z2-valued invariants
for some of them.

This calculation is based on a simple explicit model of an irreducible Clifford
module S for the Clifford algebra ClP)q of arbitrary signature (p, q). As a result of
the classification, we obtain the numbers L±(n, s) = dimV±(n1 s) of independent Lie
super algebras and algebras, which take values 0,1,2,3,4 or 6. Due to Bott periodicity,
L ± (n, s) may be considered as periodic functions with period 8 in each argument. They
are invariant under the group F generated by the four reflections with respect to the axes
n = —2, n = 2, s — 1 = — 2 and 5—1 = 2. Moreover, the reflection (n, s) -> (—n, s)
with respect to the axis n = 0 interchanges L+ and L~ :
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Introduction

General relativity is a gauge theory with the Poincare group P ( l , 3) = E1 > 3^Lor(l, 3)
of Minkowski space M1'3 as gauge group. In AT-extended supergravity the N-extended
Poincar6 supergroup plays the role of (super) gauge group.

The Lie super algebra of this super group for N = 1 is defined as follows: p (1 )(l, 3) =
0 = flo + fli = p(l , 3) + 5, where p(l , 3) = M1'3 + 50(1,3) is the Poincare Lie algebra
and 5 = C2 is the spinor module of the Lorentz algebra 50(1,3) = 5 ((2, Q trivially
extended to a p(l,3)-module. The supercommutator {•, •} : S®S ->• M1'3 is defined as
projection onto the unique vector submodule V = M^'3 in the symmetric square V25.

We remark that in this case there exists also a unique vector submodule in A25,
which defines on p(l , 3) + S the structure of a Z2-graded Lie algebra p (~ 1}(1,3).

Our goal is to classify for any pseudo-Euclidean space V = Mp'q all similar ex-
tensions of the (generalized) Poincare algebra p(V) = p(p, q) = Rp>q + 50(p, q) to a
super Lie algebra or to a Zrgraded Lie algebra. The super Lie algebra extensions of the
Poincare algebra p(p, q) are the natural gauge algebras for supergravity theories over
space times of signature (p, q). Since the time when the classical (i.e. (p, q) = (1,3))
super Poincare algebra was discovered [G-L] these (generalized) super Poincar6 alge-
bras play a mayor role in many super symmetric field theories, see e.g [O-S and F] for
further reference. However, despite the various realizations of particular super Poincare
algebras as infinitesimal symmetries of supergravity theories (for special dimensions
and signatures of the space time), a systematic classification, as given in our paper, was
missing.
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Another motivation to study such extensions is that extended Poincare Lie algebras
are closely related to the full isometry algebra isotn(M) of homogeneous quaternionic
Kahler manifolds M (see [dW-V-VP, A-Cl]). In fact, isom(M) = p + RA9 where p is
an extension of the Poincar6 algebra p(3,3 + k) of the pseudo-Euclidean space M3>3+*
of signature (3,3 + Ar), k = —1,0 ,1 , . . . , and A is a derivation of p defining a natural
gradation.

Definition 1. A super Lie algebra (respectively a 7L2-graded Lie algebra) 0 = 0o + 01
is called an N-extended (respectively —N-extended) Poincare algebra ofV = Rp>q

if the following conditions hold

i) 00 = pen
2) 0i is a sum ofN irreducible spinoror semi spinor modules ofp(V) = V + S0(V)

with trivial action of the vector group V
3) The super bracket {5 ,5} C V (respectively Lie bracket [5, S] C V).

Let 5 be a p(lO-module with trivial action of the vector group V. Then defining
on 0 = p(V) + S the structure of a super Lie algebra (respectively of a Z2-graded Lie
algebra) such that 0O = p(V), 0i = 5 and {S, S} C V (respectively [5,5] C V) is
equivalent to defining an SO(K)-equivariant mapping j : V* —>• V25* (respectively
j : V* —> A25*). The super bracket (respectively the Lie bracket) is given by j * :
V25 -> V (respectively j * : A2S -»• V). Remark that under these assumptions the
Jacobi identities are automatically satisfied since [[x, y], z] = 0 for ar, t/, z G 0i .

We show that the classification of iV-extended (N G Z) Poincare algebras easily
reduces to the classification of equivariant embeddings V* °> V25* if N > 0 and
V* c-> A25* if N < 0, where V is the vector module and S the spinor module of
S0(V). In other words, we reduce the classification to the cases N = ± 1 , ±2.

We prove that the following three vector spaces are isomorphic:

1) the space J of 50(^)-equivariant mappings j : V* -> S* 0 5*,
2) the space M of SO (F)-equivariant multiplications p :V* <g> S -> S, and
3) the space B of $0(V>invariant bilinear forms /? on 5.

Let p : F* ® 5 -> 5 be the (standard) Clifford multiplication, where we have
identified V = V* using the scalar product on V = Mp g . Then an isomorphism
jp : B -> ,7 is given by

jP(/3) : t ; * G r ^ ^ o />(<;*) = /?(/>(*;*)•, •) G 5* ® S* .

In particular, the classification of SO(F)-equivariant mappings V* -> 5* ® 5* is
equivalent to the classification of S0(Vr)-invariant bilinear forms on the spinor module
5. The latter amounts to the description of the Schur algebra C of 50(F)-invariant
endomorphisms of S. The structure of C as abstract algebra depends only on the signature
s = p — q of Mp>q modulo 8; it is a simple real, complex or quaternionic matrix algebra
of rank 1 or 2 or a sum of two isomorphic such algebras.

To construct equivariant embeddings of the vector module V* into the symmetric
square V2S* (or into the exterior square A2S*) we introduce the notion of an admissible
bilinear form f3 on S and also the corresponding notion of an admissible endomorphism
of 5, which depends on the choice of an admissible bilinear form /?.

Definition 2. An $0(V)-invariant bilinear form (3 on the spinor module S is called
admissible if it has the following properties:
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1) Clifford multiplication p{v) is either ^-symmetric or (3-skew symmetric. We define
the type r of(3 to be r(/3) = +1 in the first case and r(/?) = — 1 in the second.

2) 0 is symmetric or skew symmetric. Accordingly, we define the symmetry a of f3 to

3) If the spinor module is reducible, S = S+ + 5", then S± are either mutually
orthogonal or isotropic. We put i(/3) = +1 in the first case, i(j3) = — 1 in the second
and call i(j3) the isotropy of/3.

Every admissible form /? defines an SO(lO-equivariant embedding jp((3): V* -» V2S*
if T((3M(3) = +1 or jp(/3): V* -> A2S* if r(/?)<r(£) = - 1 . Moreover, if 5 = S+ + S~,
then either S± are orthogonal or isotropic for every bilinear form in the image of jp(f3).

The main part of the paper is the construction of an admissible basis for the space
J of equivariant mappings V* -> S* 0 5*, i.e. a basis consisting of embeddings jp(/3)9

where /? are admissible bilinear forms on 5.

To describe all admissible forms /? we make use of very simple explicit models of
the irreducible Clifford modules inspired by RaSevsktf [R]. We prove that the problem
reduces to the three fundamental cases V = Mm'm,M*'°andlR0'*usingthe isomorphisms
Ct,m+kym = Ctm)m®Cek and (Jm,m+k = 0?m,m(g>Geo,/c and the algebraic properties of
the fundamental invariants r, a and i with respect to ^-graded tensor products.

Moreover, we establish that for every pseudo-Euclidean vector space V = Rp>q there
is a preferred non-degenerate 50(V>invariant bilinear form h on the spinor module 5.
This allows us to define canonically the notion of an admissible endomorphism of S and
the invariants r, <r and i for such endomorphisms. They are multiplicative with respect
to the composition A o i = h(A-, •), A £ C admissible.

Finally, we explicitly construct in all the cases an admissible basis for the Schur
algebra C. This canonically yields admissible bases for the space B of invariant bilinear
forms and the space J of equivariant mappings.

This gives an explicit description of all extended Poincare algebras Q = p(VO +
5, where S is the spinor module. The super (respectively Lie) brackets V25 -» V
(respectively A2S —> V0 are given as linear combinations of mappings .;,*, where the
ji : V* -» V2S* (respectively V* -» A2S*) form an admissible basis for the space of
50(V>equivariant mappings V* -* V2S* (respectively V* -> A2S*).

If the spinor module 5 is an irreducible S0(F)-module, we obtain all N = ±1
extended Poincare algebras. If S is reducible, then we obtain all N = ±2 extended
Poincare algebras and using the invariant i we can determine all N = ±1 extended
Poincare algebras. Sometimes there exist only trivial N = 1 (or N = — 1) extended
Poincare algebras, i.e. {5, S} = 0 (or [5,5] = 0).

Given a pseudo-Euclidean vector space V = MM , let \N\ = 1 or 2 denote the
number of irreducible summands of the spinor module 5 of S0(V). For fixed N = +|i\T |
or N = — | N | we give now the dimension rfjv of the vector space of TV-extended Poincare
algebra structures on g = p(V) + S.

The function djv, which depends only on the signature (p, q\ admits a symmetry
group F generated by reflections. Moreover, there is an additional supersymmetry
which relates the dimension L+ := d+\N\ of the space of super algebras to the dimension
L~ := cL|jv| of the space of Lie algebras.

More precisely: Denote by n = p + q the dimension and by s = p — q the signature
of V = W>q and let L+ = L+(n, s) (respectively L~(n, s)) be the maximal number
of linearly independent super algebra structures V2S —> V (respectively Lie algebra
structures A2S -> V0 on Q = p(V) + S. The functions L+ and L~ are periodic with
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period 8 in each argument, h e n c e w e may consider them as functions o n Z 2 = Z x L
The value o f the pair ( L + , L~) i s g iven in Table 1.

Table 1. The numbers L+ of super algebras and L~ of Lie algebras g = p(V) + S are given as functions of
the dimension n and signature s of V. A fundamental domain for the reflection group F is emphasized in
boldface. The supersymmetry axis is given by the equation n = 0.

s:

5

4

3

2

1

0

-1

-2

-3

n:

{L*{n, s), L~~{n, s))

4,4

4,4

1,1

1,1

-4

1,3

1,3

1,3

0,1

1,3

-3

2,6

2,6

0,2

0,2

-2

1,3

1,3

13

0,1

1,3

-1

4,4

4,4

1,1

1,1

0

3,1

3,1

3,1

1,0

3,1

1

6,2

6a

2,0

2,0

2

3,1

3,1

3,1

1,0

3,1

3

4,4

4,4

1,1

1,1

4

It follows from the inspection of this table, that the function (L+, L") is invariant under
the group F generated by the reflections with respect to the 4 axes defined by the
equations n = —2, n = 2, s' := s — 1 = — 2 and s' = 2. A fundamental domain F for T
is

F = {(n, s) E Z2| - 2 < n < 2 , - 2 < *' = s - 1 < 2} fl G,

G = {(n, s)\3(p, q)eZ2:n=p + q, s = p - q} = {(n, 5) G Z2 |n + s even}

and consists of 12 points. The values of the pair (£+, L~) at these points are typed in
boldface in Table 1.

Moreover, the reflection 0 with respect to the axis {n = 0}, 6 : (n, s) •-> (—n, s), is
a supersymmetry of the pair (L+, L~), that is it interchanges the number of Lie algebras
and Lie super algebras:

In short:

A fundamental domain F for the group F =< F, 0 > is given by

F = {(n, 5) = (0,0), (0,2), (1 , -1) , (1,1), (1,3), (2,0), (2,2)}.

In terms of the coordinates (p, q) a fundamental domain with p > 0 and </ > 0 is given
by

D = {(p, ?) = (2,0), (1,1), (3,0), (2,1), (1,2), (3,1), (2,2)} .
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1. (Super) Extensions of the Poincare Algebra p(p, q) and
Spm(p,<j)-Equi variant EmbeddingsPp<? «-+ S* ® 5*

1.1. Extending the Poincare algebra. Let V = W>q be the pseudo-Euclidean space
with the metric < x, y > = £? = 1 x

iyi - YJ£L+\ * V . We denote by BO(V) = 50(p, g)
the pseudo-orthogonal Lie algebra and by p(V) = p(p, #) = SO(V) + V the semidirect
sum of $0(V) and the Abelian ideal V, it is the Lie algebra of the isometry group of
(V,< r >). We call p(V) the Poincare algebra of the space V.

Definition 1.1. A %2-graded Lie algebra (respectively a super algebra) g = Jo J i
called an extension (respectively a super extension) ofp(V) ifQo = p(V), V is in the
kernel of the representation of go on JJi and [0i, 0i] C V (respectively {fli, fill} C V).

Remark 1. Sometimes, for unification, we will refer to Z2-graded Lie algebras and to
super algebras as e-algebras, where e = - 1 or +1 respectively. Correspondingly, we will
speak of e-extensions.

Proposition 1.1. There exists a natural one-to-one correspondence between extensions
(respectively super extensions) ofp(V)upto isomorphisms and equivalence classes of
pairs (/>, TT), where

p : SO(V)-+gl(W)

is a representation and

n:A2W^V (resp. V2 W -+ V)

is a $O(V)-equivariant linear map from the space of skew symmetric (respectively
symmetric) bilinear forms on W* to the vector module V. Two pairs (/?, TT) and (//, TT')
(p1 : $0(V) -> gl(W')) are equivalent if there exists an automorphism <j> : p(V) ->•
p(V) and a linear map ip : W —> W such that the following diagrams are commutative
(for pairs of skew symmetric type):

$0(V) - A Qi(Y) A2W - A V

I 4> I 4> I 4> I <t>\v ,

$0(V) -£->QKW') A2W -^V

where <f> is the induced automorphism of$0(V) = p(V)/V. For pairs of symmetric type
A2 must be replaced by V2.

Proof Given a pair (/?, TT) of skew symmetric type, we define a Z2-graded Lie algebra
0 = flo + fli, 0o = POO = S0(V) + V, 0i = W by

[A, w] = p{A)w,

[wuw2] = n(w\ A w2),

[v,w] = 0,

where A E B0(V), v E V and w,w\,W2EW. For a pair of symmetric type we define a
super algebra 0 = 0o + 0i by the same formulas replacing only the middle equation by

{W\ , W2} = 7T(W\ V W2) .

The Jacobi identity is satisfied because p is a representation, n is equivariant and the
(anti)commutator of W with W is contained in V and hence commutes with W. The
other statements can be checked easily. D
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Recall that the spinor representation is the representation of 50(10 on an irreducible
module S of the Clifford algebra Ct(V). It is either irreducible or a sum of two irreducible
semi spinor modules S±.

Definition 1.2. (cf. Def. 1) Let g = fl(/>, ir) be an e-extension ofp(V) associated with
a pair (p, TT). We say that Q is an eN-extended Poincare algebra if p is a sum of
N = 0 , 1 , 2 , . . . irreducible spin 1/2 representations, i.e. irreducible spinor or semi-
spinor representations.

The purpose of this paper is to classify all AT-extended (JV G 2£) Poincare algebras.
Before starting this classification we explain how, given a (super) extension of the
Poincare algebra, we can construct more complicated e-algebras.

1.2. Internal symmetries and charges.

Definition 13 . Let Q = flo + fli be an e-algebra. An internal symmetry ofg is an
automorphism ofQ which acts trivially on go.

Now we give a simple construction which associates with an e-extension g = fl(/>, TT)
of the Poincare algebra p(V) and / E N an e-extension g(+/) and also a —e-extension
g(-2/) whjch admit O(l), respectively, 5p(2/, ffi)as internal symmetry groups. We define

( 1 ) ( 1 \ ( 1 \ where

7r(wi, w2) = n(w\ V w2) if e = +1 and 7r(w\, w2) = TT(W;I A ^2) if e = — 1 .

Proposition 1.2. IfQ is an e-extension of the Poincare algebra p(V), then £j
e-extension and 0 ( ^ is a —e-extension. The standard actions of 0(1) (res

/>(+0 = lp : S0(V) ->IW =

iri+l\wi 0 v\, w2 0 v2) = n(w\, w2)< v\,v2>,

< •, • > is the standard Euclidean scalar product on Wl. Similarly, we define

fl*"20 = Tip : $0(V) 4 M = ̂ ® 1 ^ ,

7r("2/)(u;i 0 v\, w2 ® v2) = TT(WX , w2)u>(vi, v2),

where u; is the standard symplectic form on M2*. Here we have used the convention that

(+/) is an
0 of 0(1) (respectively

5p(2/, TSL)) on W (respectively R21) are naturally extended to actions on g(+/) (respec-
tively g ( - 2 i )) by internal symmetries.

Proof The first statement follows immediately from Prop. 1.1 and the remark that
the bilinear map 7r(+/) (respectively TT*"20) has the same (respectively the opposite)
symmetry as n. The last statement is immediate. •

Example 1: Applying this construction to an e-extended (see Def. 1.2) Poincare algebra,
we obtain an ̂ /-extended Poincar6 algebra and also an —e2/-extended Poincare algebra
with internal symmetry groups O(l) and 5p(2/, M) respectively.

Definition 1.4. A Z2-graded Lie algebra (respectively a super algebra) 0 = go + fill is
called a charged extension (respectively a charged super extension) of the Poincare
algebra p(V) if

1) flo = P(V) + C is a trivial extension ofp(V), i.e. [C, C] = 0.
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2) The action ofV + Con the ^-module W = Q\ is trivial.
3) The Lie (respectively super) bracket IT : A2W -> go (respectively V2W —y go) is

a sum 7T = Try + TTC, where ny : /\2W —>• V and nc - A2W —>• C (respectively
nv : V2W -> l^anJTTc : V2W ->• C). In particular, (p(V)+W, ay) isan extension
(respectively super extension) ofp(V).

If moreover, [50(10, C] = 0, and hence [C, fl] = 0, fAew fl is called a central charge
extension (respectively a central charge super extension) ofp(V).

Let an extension (respectively super extension) p(V) + W admitting a connected
Lie group H of internal symmetries be given. Without restriction of generality we can
assume that H is simply connected and we denote the Lie algebra of H by t). To
construct a charged extension (respectively super extension) (p(V)+C)+W preserving
the internal symmetry group H it is necessary and sufficient to define an ($0(V) + I))-
equivariant map nc from the exterior (respectively symmetric) square of W to an
($0(V) + ^-module C.

Example 2. Letp(V)+W be an extension of p(V). Consider the extension fl(+0 = p(V)+
W <g>Rl with internal symmetry group H = O(l) defined above. Let h e V2W* 0 E r

be a symmetric SO(V^)-invariant (possibly trivial) vector valued bilinear form on W and
rf E A2 W* ® W a skew symmetric such form. Define

where wuw2 G W and xux2 6 M'. Then TTC defines on (p(F) + C) + W 0 Mz the
structure of central charge extension of p(V) with symmetry group O(/).

Analogously, we can define on (p(Vr)+C)+W®R2/, C = Mr0V2M2/+lR50A2M2/,
the structure of central charge super extension of p(V) with symmetry group 5p(2/, R)
by

V X2 + ^(^1,^2)^1 A X2 .

Example 3. Let p(VO + W be a super extension of p(VO. Consider the super extension
jj(+O = p ( \ / )+ iy 0 R' with internal symmetry group H = O(l) and let /i be a symmetric
and 77 a skew symmetric vector valued S0(F)-invariant bilinear form on W9 as above.
Define

7TC : V2(W 0 R') -> C = IRr 0 V2M' + M5 0 A2Mf,

0 Xi, ll?2 0 ^2) = h(W\,W2)X\ V #2 + ^K^l, U>2)#1 A «2 •

Then we defines on (p(V)+C)+W 0 R1 the structure of central charge super extension
of p(V) with symmetry group 0(1).

Analogously, we can define on (p(F)+C)+W0M 2 / , C = R r0A2M2Z+M50V2M2/

the structure of central charge extension of p(V) with symmetry group 5p(2i, R) by

7Tc(W\ 0 X\, W2 0 X2) = h(W\,W2)x\ A X2 + »/(^l, «?2)^1 V X2 .

In the physical literature (see [¥]) the expression "central charges" is used for a
special case of Example 3.
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1.3. Reduction of the classification of N-extended Poincare algebras to the cases N =
± 1 , ±2. Let fl = fl(/>, 7r) = p(V) + W be a ±iV-extended Poincare algebra, N =
1,2,.... Then either the spinor representation po : $0(V) -» fll(5) is irreducible and
p = Npo, W = NS = 5 <g) R N

9 or it decomposes into two irreducible subrepresentations
/>o = P+ + />-, 5 = S+ + 5 - and p = N+/?+ + N_ p_ , W = JV+S+ + N- S~ = 5 + 0 R *• +
5 " <8>RN~,N = iV++iV_. The description of all €JV-extended Poincare algebras g(p, 7r)
reduces to the description of all S0( Vr)-equivariant mappings 7r:A2W-*Vife = — 1
and 7T : V2W ->• V̂  if e = +1. If ?r ̂  0, the dual mapping defines an 50(F)-equivariant
embedding TT* : V* M- A2W* if e = - 1 or TT* : V* <-» V2W* if e = +1. To find all
such embeddings it is sufficient to determine all submodules isomorphic to V* in A2W*
and V2PF* or, equivalently, all vector submodules V in A2W and V2W. Tables 2 and 3
reduce this problem to the cases N = 1 or 2.

Table 2. Decomposition of the symmetric square of W

W:

V2W

Npo

NS=S®RN

iV+p+ + iVr_p_

N+S++NS- =

V25+ (8) v2R^+ + V2S~ ® v2R^-+

A25+ 0 A2R*+ + A 25- 0 A2RN-+

5+<8>5-®RN +^-

DeiMe 3. Decomposition of the exterior square of W

p-

W:

A2W^

Npo

NS=S®RN

A2S ®V2RN + V2S <8) A2R*

N+p++N-p-

iV+5++iV_5- =

5*0R^ + 5-0R^-

A 25+ (8) v2RN+ + A 2 5 - <8> V 2 R^-+

V 25+ (8) A 2 R ^ + V 2S~ (8) A 2 R^-+

5+<8>5-(8)R i sr+jv-

If p+ and /?_ are equivalent then p = iV+p+ + iV_ p_ = />o - p±»

» V 2 5 0 A 2 5 0

where So = S± andiV = JV++iV_. Table 2 shows that the classification of all equivariant
embeddings V «-> V2W (case € = +1) reduces to finding all equivariant embeddings
V <-> V25 and V <^ A25 if 5 is irreducible and equivariant embeddings V <-+ V 25*,
V ^> A 2 5 ± and V ̂  S+ <g) S~ if 5 = 5 + + S~. Table 3 shows that the same reduction
applies to the case e = — 1, i.e. to the problem of finding all equivariant embeddings
V <-+ A2S. We see that e.g. the classification of N-extended Poincar6 algebras for
N > 0 (i.e. super algebra extensions) reduces to the classification of N = ±1-extended
Poincar6 algebras in case there is only one irreducible spin 1/2 representation of $0(V).
The same is true for N < 0, i.e. for Lie algebra extensions.

To illustrate this reduction we consider the case e = +1 and p = Npo in more detail.

Lemma 1.1. Assume c = +1 and p = Npo, where po is an irreducible spin 1/2 repre-
sentation on So- Then any SO(V)-equivariant embedding
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j:V<-> V2W = V250 0 V2RN + A250 0 A2RN

is given by

j(v) = ] T <j)a(v) 0 Aa + ̂ 2 ^b(V>> ® Bb '
a b

where <f>a : V ->• V25o a n J V>6 • V ->• A25o are equivariant embeddings, Aa E V 2 ! ^
¥

/ Choose bases (Aa) and (Bb) of V2!!^ and A2RN respectively. Then j(y) can
be decomposed as above and the coefficients <f>a and V>& are equivariant embeddings or
zero. •

1.4. Equivariant embeddings V* 4 5* ® S* , modified Clifford multiplications
and Dirac operators. We reduced the problem of the classification of N -extended
Poincare algebras to the description of SO(V/)-equivariant mappings V* —>• 5* 0 5*,
where S is the spinor module of $0(V). We will denote by J the vector space of all
such mappings.

Now we will show that this space is closely related to two other vector spaces:

- the space B of all SO(F)-invariant bilinear forms on 5, and
- the space M of SO (VO-equivariant multiplications j / : V* 0 S —> S.

Denote by C the Schur algebra of SO(Vr)-invariant endomorphisms of S. We define
two natural anti-representations of C on B and J and also a representation and an
anti-representation of C on M by:

where ^ E C, v* E F*, /? € 6, j E J and /i 6 X C Hom(V*,EndS). Remark that
a non zero equivariant mapping j : V* —> 5* 0 5* is automatically an embedding.

Definition 1.5. An equivariant embedding j : V* ->• 5*05* is called non-degenerate,
ifJ(V*)S = 5* and j(S) = S, where we consider j as mapping j : S —>• V 0 5*. An
equivariant multiplication fi :V* 0 5 -> 5 w ca//^d non-degenerate, iffi(V*)S = 5.

Using the following identifications, we define mappings from two of the spaces B,
J and M into the third:

B = ( 5 * 0 5*)SO(V),

J = if om(^*, 5* 0 5* ) S 0 ( V ) ^ tf om(5, V* 0 5* ) S 0 ( V ) ,

0 5, S)soiV) S
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At (*) we used the metric identification V* = V. The mappings are defined as follows:

BxM ->• J

>, s,t€S;

BxJ -*• M

* » EndS,

where < •, • > denotes the natural duality pairing 5* x 5 -» R and for the last mapping
we have used that j(v* )eS* ®S* * Hom(S*, 5).

Theorem 1.1. The choice of a non-degenerate element /?o, jo or HQ in any of the spaces
By J and M defines vector space isomorphisms between the two others:

j 0 a :M -> J

t*Po

Pjo-

No

Jno

0»o

j *-*
M ->

// ^

:B ->

P *+
:B ->

P •->

i »->

t*(PoJ)
B

P(j*,jo)
M

l*(PJo)

J

J(P, A«o)

B

P(po,j)

= Po o j ;

= ̂  ° io,

= /? o j o ;

= /? O / i 0 ,

= A*o o j .

/ The statement is trivial for J ^ and /i/?0, because these mappings amount to
"raising and lowering" indices of tensors via the non-degenerate form /%.

It is clear that /iJ0 and j ^ Q are injective, since jo and A*o are non-degenerate. Hence,
it is sufficient to prove that /3JO and (3^ are injective.

Consider first /3^0(j) = /ioo j , where j : 5 -* V* 0 5* and /i0 : ^* 0 5* -+ 5*.
The kernel of/?At0 equals

Arer/?^ = {j G J\j(S) C Arer^o}.

If 0 ^ j E Arer ̂ 0 , then Arer /i0 contains the non-trivial submodule j(S). This is impossi-
ble, because Arer po does not contain spin 1/2 submodules. Indeed, after complexification
the SO(Vc)-module (V*)€ 0 (5*) c has the decomposition

(V*f 0 (S*)c = i7 0 (5*) c = (Arer/i^) 0 (S*)c ,

where 17 = ker /i J contains only spin 3/2 modules, i.e. Kronecker product of the vector
module V€ = (V*)€ (spin 1) and an irreducible spin 1/2 module.
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Consider now /?JO(/i) = fio j 0 , where jo : S -»• V* 0 5* and / i : P ( g ) S * - > S * .
As before we have the decomposition (V* ) c 0 (S*)c = E ® (S*)c, where E has no
submodules isomorphic to submodules of (S*)c. If /JL ^ 0, Arer/ic = 17 0 Sf, where
Sf ^ (S*)c is a proper submodule of (5*)c . Since jo is non-degenerate jo(S) = S
cannot be contained in her /i. D

Lemma 1.2. Let S be the spinor module ofB0(V). There always exists a non-degenerate
$0(V)-invariant bilinearform ft on S.

Proof. The existence of /? is equivalent to the self duality of 5, i.e. to the condition
S* « S as50(V0-modules.

The self duality of the complex $0(V€) spinor module § follows from the criterion
of self duality given in [O-V], p. 195.

Now we discuss the real case. Assume first S^ has the same number of irreducible
summands as S. Then the self duality of S follows from that of Sc

9 see [O-V], p.
291. In the opposite case S admits an invariant complex structure J and (5, J) = S
(complex spinor module of $0(Vc)). Then the real part of a non-degenerate complex
50(Fc)-invariant bilinear form on S = § gives a real 50(V0-invariant bilinear form on
5 and it is easy to check that this form is non-degenerate. U

From Theorem 1.1 and this lemma we now derive an important consequence. Recall
that by definition the spinor module S is an irreducible module over the Clifford algebra
a(V). The restriction of the multiplication mapping CX(V) x S ^ StoV x S defines
a non-degenerate 50(y)-equivariant multiplication p : ^ 0 5 = 7 * 0 5 - > S , which
is called Clifford multiplication (as above V and V* are identified using the pseudo-
Euclidean scalar product of V). The composition j(/?, p) = ft o p with a non-degenerate
50(V0-invariant form j3 gives a non-degenerate 50(V)-equivariant embedding V* ^
5* 0 5*. Using the lemma and this remark, we obtain the following corollary from
Theorem 1.1.

Corollary 1.1. The spaces B of S0(V)-invariant bilinear forms on 5, J of S0(V)-
equivariantmappings V* -» S*<g>S* andM of$O(V)-equivariantmultiplications V*<&
S —> S are isomorphic. In particular, Clifford multiplication p defines the isomorphism
jp : B —> J and hence any SO(V)-equivariant embedding V* °-» 5* 0 5* is of the
form

B, v*eV*.

Remark 2. Using an 50(10-equivariant multiplication / i : V* <g> 5 ->• S one can define
a Dirac type operator D** on a pseudo-Riemannian spin manifold M as follows. Let
fix : T*M 0 Sx -> 5a; be a field of equivariant multiplications, where S(M) =

M is the spinor bundle. Then

e1' 0 V e , s ) ,

where (e,-) is a basis of Tx M, (e*) the dual basis of T* M and V is the spinor connection
induced by the Levi Civita connection.
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1.5. Zrgraded type and Schur algebra C. It is well known (see [L-M]), that every
Clifford algebra C£(V\ V = W•«, is isomorphic to K(0 or to 2K(Z) = K(/) 0 K(/),
where K(l) is the full matrix algebra over K of rank / depending on (p, q) and where
K = M,CorlL

Definition 1.6. We say that a Clifford algebra OL(V) has type rK, r = 1 or 2, if
a(V) S rK(l) for some I G N.

Recall that the Clifford algebra CX(7) has a natural Z2-grading Ct(V) = ( 0
al(V). If V̂  = M™ # 0), then the even part Ofi(V) is isomoiphic to the Clifford
algebra Of(V) of V = M^"1^ if p > 1 and V = M*"1 if p = 0. Remark that
dh&QP(V) = dimC?(K)/2. By the preceding remarks, the following definition makes
sense.

Definition 1.7. 77ie pair t(Ct(V)) = (roKo, rK) = (type O°(V0, type CZ(V)) is called
the Z 2 graded type o / r ^ Clifford algebra CC(V).

The following proposition describes the periodicity of the type t of the Z^graded
Clifford algebras O?p><? = a(Mp>q).

Proposition 13. The Zx-graded type tp^q = t(C£Piq) depends only on the signature
s = p — q modulo 8 and t(s) = t(p— q) = tVA is given in the table.

s

t(s)

1

R,C

2

C,H

3

H,2H

4

2H,H

5

H,C

6

C,K

7

M,2M

8

2M,M

Proof The proof reduces to the investigation of [L-M], Table II. D

Corollary 1.2. The ̂ -graded type tp%q = t(s = p — g) fa mirror symmetric with respect
to the diagonal {p + q = 0}: ̂ j 9 = t-q,-P; in other words, t(CtP}q) = *(<%*_9,8*_p),
8*>p,g.

Moreover, the ^-graded type tPiq = ̂ (5) =
with respect to the axis {s = p — g = 3.5}, i.e.

), tl(&)) is mirror super symmetric

The type rC and Z2-graded type t m = (r0C, rC) of a complex Clifford algebra C£m =
d{Qn) are defined by putting V = C71 in Definition 1.6 and 1.7, where C"1 is equipped
with a non-degenerate (complex) bilinear form, e.g. the standard one: < z,w >=

Proposition 1.4. The ILt-graded type tm = t(Qm ) depends only on the parity ofm:

tm =
2, C) if m is even

(C,2Q // mis odd

Let 5 = 5p>g be an irreducible Ofp^-module. Recall that by definition the Schur
algebra C = CPtq of S is the algebra of all its 50(V/)-invariant endomorphisms; it is
the algebra of endomorphisms which commute with O ^ g . Analogously, we define the
Schur algebra Cc

m of the complex spinor module §; it is the algebra of endomorphism
of § commuting with O£,.
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Corollary 13 . The Schur algebra CPiq = C(p — q) depends only ons-p — q modulo 8
and is given in the table. In particular, it admits the mirror symmetry (p, q) K-> (—q, —p).

s

C(s)

1

R(2)

2

Q2)

3

m

4

lei

5

H

6

C

7

R

8

lei

Proof. Remark that if t((Xptq) = (roKo,rK), and hence CPpq S roKo(/o), Otp,q =
rK(/), then / is completely determined by /o and vice versa; / = /o or 2/o. This follows
from dimQLVA = 2dimC^ q.

Using this remark, Proposition 1.3 shows that the pair (Cl® q, ClPiq) is isomorphic
to one of the following:

(K(0,

(2K(0, D = T2/

where K = M,C or H and M' = C, C =HL

In the first case the K(/)-module S = K*' is a sum of two irreducible equivalent
modules S* = K* and hence the Schur algebra C = K(2).

In the second (respectively third) case 5 = K? (respectively K2') is irreducible as
K(/)- (respectively K'(/)-) module and hence C « K (respectively K7).

In the last case C = IK 0 K, which follows from the next lemma. •

Lemma 13. Let S = IK2' be the irreducible module of the algebra K(2/) and A =
2K(/) a subalgebra ofK(2l), then the A-module S is decomposed into a sum of two
nonequivalent submodules 5* .

Proof. It is clear that the .4-module 5 is the sum of two irreducible submodules S+ and
S~. They are not equivalent because A\S* and A\S~ have different kernels, namely
the two ideals K(/) C A. U

Remark that the algebras C 0 C and H(2) do not occur as Schur algebras of the real
spinor module S.

Corollary 1.4. The Schur algebra C^ of the complex spinor module § depends only on
the parity of m:

c _ J C 0 C if mis even
m 1 C if mis odd

The proof of Corollary 1.3 shows that the structure of the matrix algebra C contains
the following information about the C^°(F)-module S.

Proposition 1.5. C is a simple IK-matrix algebra (respectively a sum of two isomorphic
K-matrix algebras) if and only ifC0°(V) is a simple K-matrix algebra (respectively a
sum of two isomorphic such algebras). S is an irreducible &?(V)-module if and only
if C =• K(= M, C or M). S is decomposed into a sum of two equivalent (respectively
inequivalent) Ct°(V)-modules if and only ifC = K(2) (respectively C = K 0 K).
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The corresponding statement in the complex case is given for the sake of complete-
ness:

Proposition 1.6. If m is even, then the spinor module § = § m is the sum § = § + + §~
of two inequivalent irreducible O ^ -modules. In this case, Q ^ and the Schur algebra
C^ are the direct sum of two isomorphic simple (complex) matrix algebras.

Ifm is odd, then the spinor module is an irreducible module of the simple matrix
algebra O ^ and its Schur algebra is also simple.

Since, due to Lemma 1.2, 5 admits a non-degenerate SO(p, g)-invariant bilinear
form, by Schur's Lemma the dimension bPiq of the space B = BPA of$0(p, g)-invariant
bilinear forms on S equals

= dimBPiq =

Hence we have:

Corollary 1.5. bpq = b(p — q)isa periodic function of s = p — q with period 8. In
particular, it admits the mirror symmetry (p, q)»->• (—q, —p). Its values are given in the
following table:

s

Ks)

1

4

2

8

3

4

4

8

5

4

6

2

7

/

8

2

Denote by bm the (complex) dimension of the space of 50(m, Q-invariant bilinear
forms on the complex spinor module §, then bm = dime Cm and we have:

J 2 if mis even

1 if mis odd.

2. Fundamental Invariants r , a and i and Reduction to the Basic Signatures

2.1. Fundamental invariants. As before let V denote a pseudo-Euclidean vector
space and 5 its spinor module. In Corollary 1.1 we have established that every SO(V)-
equivariant embedding j : V* -̂> 5* 0 5* is of the form

j = jpW : v* -> /?(/>(i;*)-, •), v* eV\

where p is Clifford multiplication and /? G B. The dimension of the space B of 50(V)-
invariant bilinear forms on S was given in Corollary 1.5.

Now we will concentrate on a class of bilinear forms ft E B for which jp(l3)V* C
V25* or jp(l3)V* C A2S* and define fundamental invariants r, a and i for this class.

Definition 2.1. A bilinear form /3 on the spinor module S is called admissible if it has
the following properties:

1) Clifford multiplication p(v), v G V, is either (3-symmetric or j3-skew symmetric. We
define the type r of/3 to be r(/?) = +1 in the first case and r(j3) = — 1 in the second.

2) The bilinear form ji is symmetric or skew symmetric. Accordingly, we define the
symmetry a of/3 to be a(/3) = ±1 .
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3) If the spinor module is reducible, S = S+ + 5"", then S± are either mutually
orthogonal or isotropic. We put t((3) = +1 in the first case, i(/3) = — 1 in the second
and call i(/3) the isotropy of/3.

Due to 1) every admissible form /? is SO(Vr)-invariant and hence defines an SO(V>
equivariant embedding jp(/?) : F ^ ^ ^ S * 0 S M n addition, jp(f3)V C V2S*
if r(/3M/3) = +1 and jp(J3)V C A25* if r(/?M£) = - 1 . If 5 = 5 + + 5 " , then for
every bilinear form 7 G jP(/3)V the semi spinor modules S± are either 7-isotropic (if
t(y) = —i((5) = — 1) or mutually 7-orthogonal (if i(j) = —1(/3) = +1).

Given an admissible form (J G B and A G C, the composition f3 o A = /3(A-, •) G B
is in general not admissible. However, if A is ^-admissible (see Definition 2.2 below)
then j3 o A is admissible.

Definition 2.2. Let ft E B be admissible. An endomorphism A of S is called (3-
admissible if it has the following properties:

1) Clifford multiplication p(v), v G V, either commutes or anticommutes with A. We
define the type r of A to be r(A) = + l m the first case and T(A) = - l / n the second.

2) A is ^'Symmetric or /3-skew symmetric. Accordingly, we define the ^-symmetry <r
ofAtobe<Tp(A) = ±l.

3) If the spinor module is reducible, S = 5 + + S~, then either AS± C S± or AS± C
S*. We put i(A) = +1 in the first case, i(A) = - 1 i/i the second and call t(A) the
isotropy of A.

Due to 1) every /?-admissible endomorphism A isSO(V>invariant and hence /3oAe B.
Moreover, (3 o A is admissible and the fundamental invariants are multiplicative:

a(/3oA) = <T((3

I(/3OA) = i(/3)i(A).

In Sect. 3.1 (see Definition 3.1), for every pseudo-Euclidean space V, we will
construct a canonical non-degenerate S0(lO-invariant bilinear form h on the spinor
module 5. We will define that an endomorphism A of S is admissible of symmetry
<T(A) = ± 1 , if A is /i-admissible and <Th(A) = ± 1 .

Remark 3. The complete classification of admissible forms /? G B, which we will give
in this paper, implies the following. Let 7 G B be non-degenerate and admissible. Then
a 7-admissible endomorphism A G C is /?-admissible for every admissible (3 £ B.In
particular, admissibility (i.e. /i-admissibility) implies /?-admissibility.

2.2. Reduction to the basic signatures. Let V\ and V2 be pseudo-Euclidean spaces
and V = V\ + V2 their orthogonal sum. We recall (see [L-M] I. Prop. 1.5) that there is a
canonical isomorphism of Z^-graded algebras

where ® denotes the Z2-graded tensor product of Zrgraded algebras.
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Proposition 2.1. Let M\ = Aff + M{ be a 7L2-graded Ct(V\)-module and M2 a (not
necessarily TLfgraded) d(V2)-module. Then M = M\ 0 M2 carries a natural structure
ofCt(Y)-moduley V = V\ + V2, given by:

(ax 0 o2)(mi 0 m2) = (~l)dcg(a2)deg(mi)a1mi 0 a2m2 ,

t- 6 G?(K), m, G Mt-, i = 1,2. 7/M2 = M£ + M^ w a Z2-graded Ct{V2)-
module, then this formula defines on M the structure of ^-graded C£(V)-module:
M° = Af ? 0 M2° + M 1

1 0 M 2 U 1 = M? 0 Af21 + M/ 0 M2°.

Corollary 2.1. i>r 5, be an irreducible C£(Vi)-module, i = 1,2, anJ assume that
S\ = Sj" + Sf w reducible as C(P(V\)-module. Then S = 5i 0 S2 is an irreducible
(Ct(V) = Ce(Vi)®a(V2))-module. The 0°(V)-module S is reducible, S = S+ + 5 " , if
and only ifS2 is reducible as CP(V2)-modulet S2 = S£ + SJ .

/ Let 5i be an irreducible O?(Vi)-module which is reducible as C?°(Vi)-module
and let S\ be an irreducible G^(Vi)-submodule. Then

is an irreducible G£(Vi)-module, hence without restriction of generality S\ = S{ as
Of(yi)-modules. Moreover, 5J is a Z2-graded «(Vi)-module (see [L-M] I. Prop. 5.20):

S[ =5{ o +5 /
1

1 ,5 /
1

o 1 °

Therefore, we may assume (as usual) that S\ = 5J" + Sj is a Z2-graded
module: 5? = 5J", S\ = 5 f = C?1(l/i)5'i', reducing the first statement to Proposition 2.1.
The remaining statements also follow from the structure of Z2-graded Clifford module
on S\ and on S2 (in the reducible case). •

Now we investigate the algebraic properties of the fundamental invariants with
respect to Z2-graded tensor products.

Proposition 2.2. Under the assumptions of Corollary 2.1 let /?, be admissible bilinear
forms on Si, i = 1,2.

Ifr(/3i) = A(/?I)T(/?2), then /? = /?i 0 fa is admissible and

*(/?) a/u/1(/?2) ane defined if and only ifS2 (and hence S) is reducible as a module
of the even part of the corresponding Clifford algebra.

Let A{ be fa-admissible endomorphisms ofSi, i = 1,2. If r(Ai) = i(Ai)r(A2)f then
A = Ai 0 A2 is admissible and

r(A) = r U O = L{AX)T{A2),

= aPl(Ai)(Tp2(A2),

where t(A) and i(A2) are defined if and only ifS2 is reducible as C(°(V2)'module.
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Proof. The only non-trivial statements are the ones concerning the type r . For Si,ti £ Si
and Vi E VJ we compute:

and

we obtain

(1)

Otherwise, both sides of (1) vanish. Hence, Eq. (1) is always true.
Similarly we have:

0 «2)) = T(AI)(AI 0 A2)((vi 0 l)(«i 0 s2))

and

(1 0 v2)((A\ 0 A2)(*i 0 S2» = (1 0 v2)(AiSi 0 A2«2) =

0 «2)(*i 0

Now we point out that every pseudo-Euclidean space V can be decomposed as the
orthogonal sum V = V\ + V2 such that the assumptions of Corollary 2.1 are satisfied,
i.e. such that the spinor Q£°(Vi)-module S\ is reducible. In fact, we can decompose V
into V\ = Mm 'm and V2 = M*'aor R°>k.

Proposition 23 . Lef V = V\ +V2be the orthogonal sum of the pseudo Euclidean
spaces V\ = M m m am/ V2. Let S\ be an irreducible CX(Y\)-module. Then S\ = S? + Sf
w a 5wm of two inequivalent irreducible Cf°(V\)-submodules S^ and an irreducible
(C£(V) = GKYi )®C£(V2))'module S is given byS = S\® S2, where S2 is an irreducible
C£(V2ymodule. S is reducible as CX°(V)-module if and only ifS2 is reducible as GP(V2)-
module.

Proof The first statement follows from the fact that the Schur algebra of S\ is C m m =
C(s = m - m = O) = R 0 R . Now all other statements follow immediately from
Corollary 2.1. •
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3. Case of Signature (m, m) and Complex Case

3.1. Signature (m, m). Let U and U* denote two complementary isotropic subspaces
of V = M m ' m , s o 7 = U+U*. Wedenoteby < -, • > the scalar product of ^ and identify
U* with the dual space to U by

ti'(ti) = 2<u,u*>, u* eU* , t i e 17.

Proposition 3.1 • The following formulas define an irreducible Cim m-module on S =
At/:

p(ti*)« = - u * Z s , * G At/ , u £ U , u* G *7* ,

H>/iere Z ij r/i^ interior multiplication.

Proof This follows from the obvious identities p(u)2 = p(u*)2 = 0 and p(u)p(u*) +
p(u*)p(u) = - 2 < ti, u* >Id. D

For any a G AJ7 and a G A(7* we define nilpotentendomorphisms ea and ia of 5 = AC/

by:

fa=flAs,

Aa = a/.s.

Proposition 3.2. 77ie Lie algebra SO(m, m) «-> End S of the spinor group admits the
following graded decomposition:

50(m,m) = ST2 + 0° + fl2 = LA2V. +sl(U) + eA2u ,

[tc7*,ef/], [0f',£p] C fli+i ffll+i = 0/or |t + j | > 2J. In particular, iA2V. and
are Abelian subalgebras.

It is very easy to describe the semi spinor modules S± in our model of the spinor
module 5.

Lemma 3.1. 5 = At/ is the sum of the two inequivalent irreducible 50(m, m)-
submodules S+ = AevU and S~ = AoddU.

Proof. It is clear that AevU and AoddU are irreducible SO(m} m)-submodules and we
already know that they are inequivalent, see e.g. Proposition 2.3. D

Remark 4. The statement that AevU and AoddU are inequivalent SO(m, m)-modules
follows also from the fact that these are eigenspaces of the volume element u;m)m =
ei • • e2m € CS^,m , (e.) an orthonormal basis of M m m .

We can define an 50(ra, m)-invariant endomorphism E of 5 by

E\S±=±Id.

To construct an admissible bilinear form / on 5 = All we fix a volume form vol G Am U
on U* and define

/(Al't/,AJ'[/) = O, if i + j i m ,

f(s, t)vol = c,-8 A t , s G A'C/ , t G A1""1'?/ ,

where e, = (- l) i ( l + 1 ) /2 . Remark that eJ+i = (-l)f"+1c,-.
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Proposition 3.3. The space B of$0(m, m)-invariant bilinear forms on S = Sm,m is
spanned by the admissible elements f and JE = /(#*, )• Their fundamental invariants
(r, a, t) depend only on m (mod 4) and are given in the next table:

f

m :

+ + -

1

+

+ - +

2

- + -

+

3

- + +

+ + +

4

An f- and /# -admissible basis for the Schur algebra C = Rf f i lw given by the
endomorphisms Id and E ofS:

T(E) = - 1 , *f(E) = afs(E) = ( - l ) m , i(E) = +1.

Proof We first check that p(v), v G U + U*,is /-skew symmetric. For v = u G U,

(f(p(u)s, t) + /(s, p(u)t))vol = e,+i

For v = tx* 6 17*, s 6 AfJ7, * E f\m~MU:

)s, t) + /Os, p(u*)t))vol =

A s) A / + e,-s A (w A t) = 0 .

-Kii^Zs) A t + eiS A (ii*

A ̂ ) - (i/*Z5) A t) =

The symmetry properties of / follow from the computation

f(t, s)vol = €jt

where s £ A%U,t € A^U and t + j = m.
Finally, /(Aevi7, Aodd?7) = 0 if m is even and /(Aev*7, Aev) = f(AoddU, AoddU) = 0
if m is odd. This proves all the statements about / . It is immediate to see that E
is /-admissible with fundamental invariants given above. Since / is admissible and
E is /-admissible, fs is admissible and its fundamental invariants are computed by
multiplicativity:

T(JE) = r(f)r(E), a(fE) = <r(f)<rf (E), i(JE) = *(/)*(^) •

This proves the proposition. •

Proposition 3.3 implies the following theorem:

Theorem 3.1. Every SO(ra, myequivariant embedding V* H 5* 0 5*, where S =
Sm.m is the spinor$0(m, m)~module, is a linear combination of the embeddings jp(f)
and jp(fE)- Their image is contained in the dual of the subspaces indicated in the table
depending on m (mod 4).

;„(/)
MfE)

m

V25* + V25"

V25+ + V25"

1

5 + V5"

5 + A5"

2

A25+ + A25~

A2S+ + A2S~

3

S+AS~

5+V5"

4
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Now put V\ = M m m ^ 0 and let V2 be an arbitrary pseudo-Euclidean space. Denote
the spinor module of SO(VJ) by 5», t = 1,2.

Proposition 3.4, Let fa be an admissible bilinear form on Si. Then there is a unique
{up to scaling) admissible form fa on S\ such that rife) = i(fa)r(fa). In particular,
fa ® fa is an admissible bilinear form on the spinor SO(V\ + Vi)-module S\ <g> £2.

If moreover, Ai is a fa-admissible endomorphism of Si, then there is a unique
/3\-admissible endomorphism A\ of S\ such that T(AI) = i(A\)r(A\), in particular,
A\ <g> A2 is a/3\® fa-admissible endomorphism ofS\ <g> S2.

The fundamental invariants of fa 0 fa and A\ ® A2 are easily computed using the
rules given in Proposition 2.2.

Proof This follows from L(JE)T(JE) = - * ( / M / ) , i(E)r(E) = -t(Id)r(Id) and Sect.
2.2. a

If we assume that V2 is of definite signature, i.e. V2 = M*'° or E0 / c , then there is a
unique (up to scaling) Pm(V2)-invariant symmetric bilinear form /i2 on the irreducible
module 52 of the compact group Pin(V2).

Lemma 3.2. The Piniy^-invariant scalar product hi is admissible: r(hi) = — 1 if

V2 = Rk>°andT(h2) = +1 ifV2 = M0/c; a(h2) = +1 andifS2 is reducible, S2 = SJ+SJ,
52" = al(V2)Sl then i(h2) = +1.

Proof Let p(v) denote Clifford multiplication by a unit vector v E V2. Then h2 is
/>(v)-invariant and p(vf = -Id if V2 = Rk>° and p(v)2 = +/d if V2 = M0'*. This implies

To see that t(/i2) = +1 in the reducible case, consider the scalar product h'2 on 52
defined by

&'2(SJ, 52") = 0, h'2\Sf = ftalS* ( ^ 0 ) .

It is easy to check that h!2 is invariant under Clifford multiplication by unit vectors
v E V2 using that 5~ = vS+. This implies h'2-h2. •

By Proposition 3.4 for every V\ = K m m ^ 0 there is a unique admissible bilinear
form ft 1 on the spinor module S\ of SO(Vi) such that r(/i2) = ft/

Definition 3.1. The canonical bilinear form on the spinor module S = 5i 0 52 of
$0(V\ + V2) w h = Ai ® /i2» wAefi? A2 w rt^ canonical bilinear form on the spinor
module S2 of $0(V2) == S0(fc), i.& the Pin(yi)-invariant scalar product. In line with
this definition we say that an endomorphism A ofS (respectively A2 of Si) is admissible
of symmetry <r(A) = ±1 (respectively (r{Ai) = ±1) if A is h-admissible (respectively
hi-admissible) and <rh(A) = ±1 (respectively <T

Remark 5. For V\ = M m m we have two (non-degenerate) admissible bilinear forms /
and JE on S\ = 5 m , m . If we want to choose a canonical one, which is not necessary
for our purpose, we can consider on S\ the structure of irreducible C?mm+i-module
defined in Sect. 3.2. Then only one of the forms remains admissible for the C?m)m+i-
module S\ = 5m>m+i, it is in fact the canonical bilinear form on this module. Moreover,
its complex bilinear extension is the unique (up to scaling) 50(2m + 1, Q-invariant
complex bilinear form on the irreducible Q?2m+i -module §2m+i = 5mjfn+i ® C s.
Corollary 3.1.
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3.2. Complex case. Case of even dimension. The following theorem follows im-
mediately from the fact that an irreducible module §2m of Q?2m can be obtained as

C and that §2m splits as &2m -module: §2n = §2m + §2m» where

® C

Theorem3.2. EveryS0(2m,Q-equivariantembeddingC?m *-» §2m®§2misalinear
combination of the embeddings i p ( / ) c tfwd J P ( / E ) C - 7%«r image is contained in the
dual of the subspaces indicated in the table depending on TO (mod 4), where we have

JPUBF

m

v2s++v2§-

V2§+ + V2§"

1

§ + v § -

§ + A § "

2

A2S+ + A2§-

A2S+ + A2§-

3

§ + A § -

§ + V § "

4

Case of odd dimension. The odd dimensional complex case can be obtained from the
real case of signature (TO, TO + 1) by complexification.

We fix the orthogonal decomposition (Mm m + 1 ,< , » = Me0 + Mm>m, where
< eo, eo > = — 1, and denote by p the irreducible representation of CXm>m on 5m>m

constructed in Proposition 3.1.

Proposition 3.5. An irreducible representation p ofCXmim+\ on Sm>m+i = Sm ,m is
defined by

^m is the volume element of'Cl?m>m. The CKĵ  m+1 -module 5m>m+i is irreducible
and has Schur algebra Cm>m+i .= M I d

Proo/ It is sufficient to check that {/5(e0), />(x)} = 0 for x E M m m and that p(e0)
2 = /d.

This follows from the next lemma. •

Lemma 33 . The volume element u; = o;m>m = e\ei • • • e2m f(^») an orthonormal basis
ofRm>m) ofCtm,m satisfies {w, ar} = 0 for all x E Mm 'm and a;2 = +1.

Proposition 3.6. If m is even, then every 50(m, TO + \)-invariant bilinear form on
S - Sm)m+\ is a multiple of the admissible (canonical) form / # -(see Proposition
3.3) and hence every SO(TO, TO + \)-equivariant embedding M m m + 1 4 ( S 0 5)* is
proportional to the embedding J X / E ) , which maps M m m + 1 into V2S* ifrn = 0 (mod4)
and into A2S* ifm = 2 (mod4). Ifm is odd, then every 50(m, m+1)-invariant bilinear
form on S' = 5mjm+i w a multiple of the admissible (canonical) form f (see Proposition
3.3) and hence every 50(TO, TO + l)-equivariant embedding ]Rm»m+1 c_» (5 0 5)* /$
proportional to the embedding jp(f), which maps fl£m>m+1 into V2S* ifm=l (mod 4)
and into A2S* ifm = 3 (mod 4).

Proof If TO is even, then p(eo) = p(cc;mm) is /^-symmetric and T ( / E ) = +1. If TO is
odd, then p(eo) is /-skew symmetric and r( / ) = — 1. D

Corollary 3.1. If m is even, then every SO (2m + 1, Q-invariant bilinear form on§ =
§2m+i = Sm,m+\ 0 Cis a multiple of the form f% and every S0(2m + 1, Q-equivariant
embedding £?m + 1 <^ (§ 0 §)* is proportional to the embedding j>( /^) c . If m is odd,
then every $0(2m + 1, Q-invariant bilinear form onS = §2m+i = 5m,m+i <g> C is a
multiple of the form f^ and every S0(2m + 1, C)-equivariant embedding C?m+1 c-̂ .
(§ 0 §)* is proportional to the embedding ip ( / ) c .
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4. Case of Signature (fe, 0)

4.1. Case of even dimension. We fix the orthogonal decomposition R2m = Rm+IRm,
where ~: E m -» Rm is an isometry. Denote by a the involution of G£m (respectively
Q?m) extending x H* -X on Rm (respectively C™).

Proposition 4.1. Ifm = Qor3 (mod 4) the following formulas define onS = S2m,o =

C3fm fne structure of irreducible C%2m-module:

p(x)s = zs,

/p(£)s = usx if m = 0 (mod 4),

p(x)s = WQ(S)I */ m EE 3 (mod 4),

where x G Mm, s G 5 an Jo; is fAe volume element ofC£m, i.e. LJ = ei • • -em /or an
orthonormal basis (e,) o/]Rm. 77ie S0(2m)-module S is the sum S = S++S~ of the two
inequivalent irreducible modules 5 + = Cf^ and S~ = Ctx

m ifm = 0 (mod 4) and is
irreducible ifm = 3 (mod 4).

Ifm = 1 or 2 (mod 4) f/*e structure of irreducible C£2m-module on S = 52m,o =

§2m = O

= xs,

p(x)s = ia(s)x , x G Mm , s G S.

As SO (2m)-module S = S+ + S" is the sum of the two irreducible modules S+ = C2^
and 5 " = G ^ , which are equivalent for m = 1 (mod 4) ana* inequivalent for m = 2
(mod 4).

Pmo/ It is sufficient to check the identities p(x)2 = —< x, x >Id,p(x)2 = —< ar, a? >/cf
and {/>(ar), p(y)} = 0 for ar, y G Mm. This is straightforward using the following lemma.

•

Lemma 4.1. The volume element u = ujm = e\ • • • em ofOLm satisfies {w, x} = 0 */m
w even ana* [a;, x] = 0 r/m is odd, x G Mm C O?m. Moreover,

2 _ f +1 if m = 0 or 3 (mod 4)

" \ - 1 if m = l or 2 (mod 4) .

Now we describe the Pm(2m)-invariant symmetric bilinear form honS using the
canonical identification AMm —> C?m of Z2-graded vector spaces given by

€ j j A . . . A Cj f c ^~r Cjj • • • €ik

with respect to an orthonormal basis (e,), i = 1 , . . . , m, of Mm.
The standard scalar product < •, • > on AMm induced by the scalar product on Rm is

invariant under exterior x A • and interior xZ- multiplication with unit vectors x G Mm.

Lemma 42 . Using the identification C£m = ARm, Clifford multiplication of x G Mm

ana1 (j> G C3fm w given by:

x<j> = x A <j> — x/L<f>,
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Proof. The proof is similar to [L-M] I. Prop. 3.9. •

Corollary 4.1. The standard scalar product < •, • > on AMm = dm is invariant under
left and right multiplications by unit vectors x E Mm. In particular, if m = 0 or 3
(mod 4), h = < , • > is the (admissible) Pin(2m)-invariant scalar product on the
irreducible dim-module S = dm-

If m = 1 or 2 (mod 4), we extend the standard scalar product on AEm to a
symmetric complex bilinear form < •, • > c on S = AC71. Using the operator c of
complex conjugation, we define a symmetric real bilinear form h = Re < c •, • > c on
5.

Lemma 43. Let m = 1 #r 2 (mod 4). Then h = Re< c r >c is the (admissible)
Pin(2m)-invariant scalar product on the irreducible dim-module S = O m .

/ We check that p{x) and p(z), a? G Mm, are < c -, • >c-skew symmetric and
hence A-skew symmetric. By Corollary 4.1 left and right multiplication, Lx and Rx, by
x E Mm are < •, • >c-skew symmetric endomorphisms of 5 = GPm, in particular, p(x)
is < •, • >c-skew symmetric. It is easy to see that a and the operator / of multiplication
by i are < •, • >c-symmetric endomorphisms. Moreover,

and hence p(x) = / o Rx o a is < •, • >c-symmetric. From the relations

[c, Lx] = [c, i i x] = [c, a] = {c, / } = 0

we obtain that [p(x), c] = {p(x), c} = 0, which implies that p(x) and p(x) are < c •, • > c -
skew symmetric. D

Now we construct admissible, i.e. h-admissible, bases of the Schur algebra C = Cim,o
for all the values of m (mod 4).

Proposition 4.2. Ifm = 0 (mod 4), an admissible basis of the Schur algebra Cim,o ^
M © K fc g/ven by the endomorphisms Id and E = a of S = C£m: T^E1) = - 1 ,

Ifm = 3 (mod 4), an admissible basis ofCim# = C w ^/v^/i fej r ^ endomor-
phisms Id and J = L w o a o / 5 = C£m: r(«^) = — 1, "̂(«/) = — 1.

77i£ 5pace B of $0(2m)'invariant bilinear forms on S is spanned by admissible
elements:

B = span {/*,/*£;} i/ m = 0 (mod 4),

B = span{/i,/ij} if m = 3 (mod 4).

The fundamental invariants (T, cr, i) are given by (r, a, t)(h) = (—1, +1, +1), (r, <r, iXhs) =
(+1,+1,+1) i /m = 0 (mod 4) and (r,(r)(/i) = (-1,+1), (r,<r)(fcj) = (+1,-1) i/
m = 3 (mod 4).

Proof We show that J is admissible and r(J) = cr(J) = — 1. All other statements are
immediate.

Let m = 3 (mod 4). From [Lx, Lw] = [E^, Lw] = { I x , a } = {Rx, a} = 0 (see
Lemma 4.1) it follows that {£*,</} = {RX1J} = 0. Since p(x) = Lx and p(x) = Rx o J,
we conclude {/>(x), J} = {p(x), J} = 0.
The operator J is skew symmetric as the product of two anticommuting symmetric
operators, namely Lw and a (the scalar product is Lw -invariant and L^ = +/rf). D
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If m = 1 or 2 (mod 4), we consider the following operators on 5 = Q?m:

I: s *-+ is, J = Lw o c, K = IJ and E = a ,

where a; = e\ • • • em E C?m C CEm is the volume element.

Proposition43. Letm=lor2 (mod 4). 77u?SchuralgebraC2m,o(= Q2) ifm = 1
(mod 4) and = 1 0 1 ifm = 2 (mod 4)j is generated by the admissible operators I,
J and E satisfying the following (anti) commutator relations:

I2 = J2 = Ll = - l , E2 = c2=+l,

{J,E} = {Lu,,E} = 0 if m=l (mod 4),

[J,E] = [Lu,E] = 0 if m = 2 (mod4).

An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E,
El, EJ, EK. Their fundamental invariants (r, cr, i) are given in the next table, where
the value ofm is modulo 4.

m:

1

2

Id

+ + +

+ + +

/

+ - +

+ - +

J

+

+

K

+

+

E

- + +

- + +

El

+

+

EJ

- + -

+ - +

EK

- + -

+ — +

The fundamental invariants of the corresponding admissible basis of B are also
listed for convenience:

m:

1

2

h

- + +

- + +

hi

+

+

hj

+ - +

hK

+ - +

hE

+ + +

+ + +

h>El

+ - +

+ — +

h>EJ

+ + -

+

+ + -

+

Proof The proof is similar to the proof of Proposition 3.3 and 4.2. One uses the
multiplication rules for the invariants and also that Lw is skew symmetric, c is symmetric
and they commute. D

Theorem 4.1. Every B0(2m)-equivariant embedding R2m

a linear combination of the embeddings
(5 ® S)*, S = S2m,o, is

(S+AS^T and jp(hE) :

ifm = 0 (mod 4) and a linear combination of

jp(h) : WL2m and 2m
A2S*

ifm = 3 (mod 4).
If m = 1 or 2 (mod 4) every $0(2m)~equivariantembedding R2m <-> (S ® 5)* is

a linear combination of the embeddings j A = Jp(hA)> A EC admissible, whose image is
contained in the dual of the subspaces indicated in Table 4 depending on m (mod 4).
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Table 4.S0(2m)-equivariantembeddingsjA = jp(hA): R 2 m <-• (5 <g> 5)*

3ld

31

3J

3K

JE

3EI

3EJ

3EK

m:

5+A5-

s+vs-

V2S++V2S-

V25+ + V 2 5-

S+v S~

S+AS~

V2S+ + V25"

v 2 5 + + v 2 5 "

1

S+AS-

S+vS~

S+AS~

S+AS~

S+VS~

5 + A 5 "

S+vS~

S+vS~

2

4.2. Case of odd dimension. To reduce the odd dimensional case to the even dimen-
sional, we consider the orthogonal decomposition M2m+1 = Meo + M2m, where eo is
a unit vector. Let p denote the irreducible representation of Of 2m on S2m,o defined in
Sect. 4.1. We will extend p to an irreducible representation p of Of 2m+i on 5 = 52m+i ,o>
where 52m+i,o = 52m,o if m = 1, 2 or 3 (mod 4) and 52m+i,o = S2m,o ® C = § L
if m = 0 (mod 4). If m = 1 or 2 (mod 4), Sim.o = ^2m admits the CS?2m-invariant
complex structure / . For m = 0 (mod 4) multiplication by i is a Of2m-invariant
complex structure on S2m,o 0 C and will also be denoted by / .

Proposition 4.4, The following formulas define an irreducible representation p of

2m —

• { . . m=0

or

or

3 (mod 4)

2 (mod 4),

where, in the case m = 0 (mod 4), /? fau Z?̂ en extended complex linearly to a rep-
resentation on S2m,o 0 C denoted by the same symbol. S = S2m+i,o is irreducible as
O^m+rmodule ifm^O (mod 4) and the sum S = S+ + S~ of the two equivalent
irreducibleaP2m+x-modulesS+ = S£m o + ^ m o = °$n +*Cfm andS' = i 5 + (fm = 0
(mod 4).

Proof It is sufficient to check that p(e0)
2 = -Id and {/5(e0), p(x)} = 0 for x G K2"1,

since all other information can be extracted from the Schur algebra, see Corollary 1.3.
These identities follow immediately from Lemma 4.1 and the fact that / is a O?2m-
invariant complex structure. D

Now we describe the Pin(2m + l)-invariant scalar product h on S = Sim+i.o- ^
/*2m,o denote the Pm(2ra)-invariant scalar product on S2m+i,o = ^2m,o if m = 1,2 or 3
(mod 4) and by h%m0 the complex bilinear extension of the Pin(2m)-invariant scalar
product on 52m,o to a Pin(2m)-invariant complex bilinear form on S^m+i.o = §>2m -
S2m,o 0 C if m = 4 (mod 4).

Lemma 4.4. The Pin(2m + \yinvariant scalar product h = A^+i.o on S = S2m+i,o
15 given by h = /i2m,o iftn = 1, 2 or 3 (mod 4) and by h = Re A^m>o(c •> ) (fm = 4
(mod 4), w/ier^ c w complex conjugation with respect to S2m,o C £2m,o ® ^
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Proof. If m ^ 4 (mod 4), the statement follows from Schur's Lemma, since ftm+i ,o =

S2m,o- If m = 4 (mod 4), the Hermitian form h%m 0(c •, •) is /-invariant and hence

invariant under p(eo) = / o p(u2m) and the same is true for h = Re hfm0(c •, •). D

If m ^ 3 (mod 4), we have on S2m+i,o = &m = OLm + iC£m the operator c of
complex conjugation. Hence, we can define an endomorphism J of S2m+i,o = Q?m by
the formulas

Lw o c if m = 1 or 2 (mod 4)

a o c if m = 0 (mod 4),

where Lw is left multiplication by the volume element a; = wn

J : =

Proposition 4.5. Let m £ 3 (mod 4). An admissible basis of the Schur algebra
C = C2m+i,o *5 ̂ 'vcw ^y r/ie endomorphisms Id, I, J and K = 13 ofSim+x^ = Q?m. /f
m = 1 or 2 (mod 4), tfww I2 = J 2 = - Jd , {/, J} = 0 and C2m+i,o = EL / / m = 0
(mod 4), then I2 = - J 2 = - / d , {/, J } = 0 and C2m+\,o = M(2). 77î  space B of
S0(2m+l)-invariantbilinearforms on S2m+\,o has the admissible basis (h, hj, hj, fix)-
Ifrn = 3 (mod 4), then the Schur algebra C2m+i,o = M /d tf/*d B = R A.

Straightforward, cf. Proposition 4.2. D

Theorem 4.2. Tfm = 3 (mod 4), every$0(2m-k'l)-equivariantembeddingM2m+l <̂->
5* ®S*,S = 52m+i,o, « a multiple ofjp(h) : R2m+l *-* A25*. Ifm£3 (mod 4),
every $0(2m + \)-equivariant embedding M2m+1 -̂> (5 ® 5)* 15 a linear combination
of the embeddings JA = jp(hA)> A = /d, /, J or Kt whose image is contained in the
dual of the subspaces indicated in Table 5 depending on m (mod 4).

TftWe S.$0(2m + l)-equivariantembeddings j A : R2m+ 1 ^ (5 <g> 5)*

m:

1

2

4

A 25

A25

5 + A 5 -

j j

V25

V25

V25+ + V25~

ij

V2S

A25

5+v5"

V25

A25

V25++V25~

5. Case of Signature (0, k)

Now we discuss the case of signature (0, k). The proofs are similar to the proofs in the
case of signature (fc, 0) and will mostly be omitted.

5.7. Ca^e of even dimension. As in the positively defined case, we fix the orthogonal

decompositionM02m = MOm +MO m , where": MOm -^ W&™ is an isometry.

Lemma 5.1. The volume element u> = u;o,m = ^i * • • £m ((?%) <w> orthonormal basis of

MO m)ofd^rn satisfies {u/,x) = 0 i /m weven anJ[w,x] = 0 i /m wodtf, x € MOm C
CS?o,m. Moreover,

or 1 (mod 4)

or 3 (mod 4) .
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The next proposition is checked using Lemma 5.1.

Proposition 5.1. Ifm = 0orl (mod 4) the following formulas define onS = So,2m =

the structure of irreducible do^m-

p(x)s = xs,

p(x)s = u)sx if m = 0 (mod 4),

p(x)s = wa(s)x if m = 1 (mod 4),

x G M0>m, s G S and u> is the volume element ofCE0fm. The 50(0,2m)-module

S is the sum S = S+ + S~ of the two inequivalent irreducible modules S+ = Ct% m and

S~ = C?o>m */m = 0 (mod 4) and is irreducible ifm = 1 (mod 4).
7f m = 2 or 3 (mod 4) rAe structure of irreducible C£o,2m~module onS = So,2m =

§2m = O m w given ̂ y:

p(x)s - xs,

p(x)s = ia(s)x , x G M° ' m C O m = a o , m 0 C , s G 5 = C E m .

A5 50(0,2m)-module S = S+ + S~ is the sum of the two irreducible submodules
S+ = (Q^ and S" = Q?^, ivAicA ar<? inequivalent for m = 2 (mod 4) and equivalent
for m = 3 (mod 4).

Recall (see Corollary 4.1) that the standard scalar product on AMm = CEm = Cem,o
is invariant under left and right multiplications by unit vectors x G Mm = Mm'°. We can
consider M°»m as subspace

Then «0 ,m = CK§jm + O?o,m = ° ^ + ^ m - W e d e f i n e ^ isomorphism of Zrgraded
vector spaces >̂ : O?m - ) U o m o n elements a G CS?m of pure degree deg(a) = 0 or 1
by:

A scalar product < •, • > on C£o,m is defined by the condition that <p : Cim ->• C?o,m
is an isometry for the standard scalar product on ARm = C?m . The following lemma is
true by construction.

Lemma 5.2. The scalar product < •, • > on C?o,m is invariant under left and right
multiplications by unit vectors x G E0>m. In particular, if m =.. 0 or 1 (mod 4),
h = < •, • > is the (admissible) Pin(0,2m)'invariant scalar product on the irreducible

C%0,2m-module S = 50,2m =

If m = 2 or 3 (mod 4), we extend the scalar product < •, • > on C?o,m to a
symmetric complex bilinear form < -, • > c on S = AC71. Using the operator c = co,m
of complex conjugation with respect to the real form C£o,m = OPm

 + 2^m °f ^m, we
define a (real) scalar product ft = Re < c •, • > c on S.

Lemma S3. Let m = 2 or 3 (mod 4). Then h = Re< c •, • > c is the (admissible)
Pin(0,2m)'invariant scalar product on the irreducible Cl^^

Now we construct (A-)admissible bases of the Schur algebra C = Co,2m for all the
values of m (mod 4).
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Proposition 5.2. Ifm = 0 (mod 4), an admissible basis of the Schuralgebra C^m -
R 0 R is given by the endomorphisms Id and E = a of S = C?o,m* T(E) = — 1,
<r(E) = <rh (E) = +1, i (£) = +1.

Ifm=l (mod 4), an admissible basis ofCo,2m - C w g/ven fey tfte endomor-
phisms Id and J = L w o a o / S = Gfo m (where u; is a volume element of (XQ m):
r(J) = - l , (7(J) = - 1 .

77*e 5pace B of$0(0,2m)-invariant bilinear forms on S is spanned by the admissible
elements h and hE ifm = 0 (mod 4) and by h and hj ifm = 1 (mod 4). Their fun-
damental invariants (r, <r, t) are (r, <r, t)(/i) = (+1, +1, +1), (r, cr, i)(h£) = (—1, +1, +1)
i/m = 0 (mod 4)and(r, <r)(h) = (+1, +1), (r, cr)(/ij) = ( - 1 , -1) i fm = 1 (mod 4).

If m = 2 or 3 (mod 4), we consider the following operators on 5 = Q?m:

/ : s i-> i s , J = L& o c, K = IJ and E = a (u; = u;o,m) •

Proposition 5 3 . Let m = 2 or 3 (mod 4). 77w? Sc/iwr algebra Co^m f = H 0 H i/
m = 2 (mod 4) and = Q2) ifm = 3 (mod 4)j w generated by the admissible
operators /, J and E1, wnicn satisfy the following identities:

[7,^] = [La,, £"1 = 0 if m = 2 (mod 4),
{J,£'} = {Lw,£t} = 0 if m = 3 (mod 4).

An admissible basis of the Schur algebra is given by the endomorphisms Id, I, J, K, E,
El, EJ, EK. Their fundamental invariants (r, <r, i) are given in the next table, where
the value ofm is modulo 4.

m:

2

3

Id

+ + +

+ + +

+ - +

+ - +

J

+

+

K

+

+

E

- + +

El

+

+

EJ

+ - +

_ -1- _ _

EK

+ - +

- + -

The fundamental invariants of the corresponding admissible basis for the space
B = Bo,2m (of $0(0,2m)4nvariant bilinear forms on So,2m) are as follows:

m:

2

3

h

+ + +

+ + +

hi

+ - +

+ - +

hj

+

+

hK

+

+

hE

- + +

hEi

+

+

h>EJ

+ - +

h>EK

+ - +
I

Theorem 5.1. Every 50(0,2m)-equivariantembeddingR°>2m <-> (5® 5)*, 5 = S0,2m>
is a linear combination of the embeddings

jp(h): M°'2m <-> (5+ V 5 " )* and jp(hE): M°'2m *-> (S+ A 5~ )*

ifm == 0 (mod 4) and a linear combination of

jp(h)andjp(hj):m°>2m^V2S* if m = 1 (mod4).

Ifm = 2or3 (mod 4) every 50(0,2m)-equivariant embedding M°'2m ^ ( 5 0 5 ) *
is a linear combination of the embeddings JA = 3p(hA)> A £ C = Co,2m admissible,
whose image is contained in the dual of the subspaces indicated in Table 6 depending
on m (mod 4).



506 D.V. Alekseevsky, V. Cortes

Table 6.50(0,2m)-equivariantembeddings j A : R ° ' 2 m <-> ( 5 <g> 5)*

3ld

31

JJ

3K

JE

JEI

3EJ

3EK

m:

5+V5"

S+AS-

S+VS~

S+VS~

S + A 5 ~

S+VS~

S+AS~

S + A S -

2

s+vs-

S+AS~

A2S++A2S~

A25++A2S"

S + AS~

S+VS~

A 2 5 + +A 2 5-

A2S++A25-

3

5.2. Case of odd dimension. Consider the orthogonal decomposition
(M02m+1, < , . > ) = Reo+M°>2m, where < e0, e0 > = - 1 . Let p denote the irreducible
representation of C?o,2m on So,2m defined in Sect. 5.1. We will extend p to an irreducible
representation p of CS?o,2m+i on 5 = Sb,2m+i, where Sb,2m+i = So,2m if m = 0, 2 or 3
(mod 4) and So,2m+i = So,2m <S> C = §2m if ro = 1 (mod 4). If m = 2 or 3 (mod 4),
So,2m = §2m admits the G?o,2m-invariant complex structure / . For m = 1 (mod 4)
multiplication by i is a G£o,2m-invariant complex structure on Sot2m ® C and will also
be denoted by / .

Proposition 5.4. The following formulas define an irreducible representation p of

C? on So,2m+h
= n|TTb0,2m

• (

if m = 0

1/ m =: 1
or

or

2

3

(mod 4)

(mod 4),

where, in the case m = 1 (mod 4), p /wi5 fceen extended complex linearly to a repre-

sentation on So,2m+i = 5b,2m 0 C 5 = 5o,2m+i w irreducible as a 0% lm+x-module if

m£3 (mod 4) a/zrf the sum S = S* + S~ of the two equivalent irreducible Q% 2m+\'

modules S+ = SJ and S~ = iSJ ifm = 3 (mod 4), where S** is the fixed point set
of a 50(0,2m + \)-invariant real structure J onS (the explicit expression for J will be
given below).

Next we describe the Pin(0,2m + l)-invariant scalar product h = Ao,2m+i on S =
So,2m+i • L ^ *o,2m denote the Pin(0,2m)-invariant scalar product on 5o,2m+i = Sb,2m if
m = 0,2 or 3 (mod 4) and by h^2m ^ e complex bilinear extension of the Pin(0,2m)-
invariant scalar product on So,2m to a Pin(0,2m)-invariant complex bilinear form on
So,2m+\ = §2m = 50|2m ® C if m = 1 (mod 4).

Lemma 5.4. The Pm(0,2m + X)-invariant scalarproduct h = Ao,2m+i on S = 5b,2m+i
w giv^n byh- Ao,2m (f »w = 0, 2 or 3 (mod 4) and by h = Re ftj2m(c *»') f / m = ^
(mod 4), where c is complex conjugation with respect to So,2m C 5b,2m ® C

If m ^ 0 (mod 4), we have on Sb,2m+i = ^ m = C ô,m + «C5?o,m the operator c =

co m of complex conjugation. Using it we define an endomorphism J of So 2m+i = Q m

J := Zo, o a o c,

where a; = wo,m is a volume element of O?o,m and a = +/d, a | O m = —Jd.
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Proposition 5.5. Let m £ 0 (mod 4). The Schur algebra C = Co,2m+i is generated

by the endomorphisms I and J of 5 = 5o,2m+i = ^m> which satisfy the following

relations: I2 = - 1 , {/, J } = 0. Moreover, J 2 = +/rf and Co,2m+i - M(2) i /m = 3
(mod 4) anJ J2 = —Id and Cb,2m+i - H (Tm = 1 #r 2 (mod 4). An admissible basis

ofCo^m+i is given by the endomorphisms Id, I, J and R = IJ. Their fundamental

invariants (r, <x, i) together with the invariants of the associated admissible basis for the

space B of "50(0,2m + \y invariantbilinearforms are given in Table 7 (t is only defined

ifm = 3 (mod 4)j. Ifm = 0 (mod 4), C0,2m+i =

Table 7. Fundamental invariants of admissible endomorphisms and bilinear forms of 5o,2m+

TO:

1

2

3

/<*

++

++

+ + +

/

H—

+—

+

J

+ -

- + +

—

+ -

- + -

h

++

++

+ + +

hi

+ -

+ -

+

—

- + +

—

+ -

— + —

Theorem 5.2. Every 50(0,2m + \)-equivariant embedding M°>2m+1 c-> (5 <g) S)* is

proportional to jp(h): M°'2m+ <̂-> V25* ifm = 0 (mod 4) and a linear combination

of the embeddings JA = JPOIA), A = Id, I, J and K ifm £ 0 (mod 4). The image of

the JA is contained in the dual of the subspaces indicated in Table 8.

Table 8 .50(0 ,2m + l)-equivariantembeddings j A : R°>2m+1 <-+ (S ® 5 ) '

jld

jj

h

TO:

V25

A25

V25

V25

1

V2S

A2S

A2S

A 2 5

2

S+vS-

S+AS-

A 25+ + A 2 5 "

A 25+ + A 2 5~

3

6. Complete Classification

Every pseudo-Euclidean space V admits a (unique up to an isometry) orthogonal de-
composition V = V\ + V2, where V\ = M m m and the scalar product of V2 is positively
or negatively defined. Now we consider the case when Vi ^ 0 and V2 ̂  0, the other
cases were treated in Sects. 3.1, 4 and 5. We denote by S,-, i = 1,2, the irreducible
O?(Vi)-module constructed in Sects. 3.1 and 4,5 respectively. Then S = S\ 0 52 carries
the structure of irreducible module for the Clifford algebra Ct(V) = C£(V\)® G?( V2), see
Proposition 2.3. By Proposition 3.4, to every admissible bilinear form #2 (respectively
endomorphism Ai) on 52 we associate an admissible bilinear form f) = /?i 0 /% (respec-
tively endomorphism A\ 0 A2) on 5. In Sects. 4 and 5 we have conducted admissible
bases for the space B2 of 50(^-invariant bilinear forms on 52 and for the Schur algebra
C2 of 52- Therefore, this explicit correspondence defines an injective linear mapping
<t> ' Ih. »-*/? = </>(02) (respectively ip : A2 »->• A = ^(^2)) from B2 into the space B of
50(F)-invariant bilinear forms on 5 (respectively from £/> into the Schur algebra C of
5). Moreover, <j> and V> are actually isomorphisms, because the Schur algebras of 5 and
52 are isomorphic, due to the fact that V and V2 have the same signature 5, see Corollary
1.3. So we have essentially proved:
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Theorem 6.1. There exist natural isomorphisms <j> : B2 -> B of vector spaces and
ip : C2 -» C of algebras mapping admissible elements onto admissible elements. Under
these maps, the fundamental invariants of admissible elements transform according to
the rules given in Proposition 2.2. In particular, ifm = 0 (mod 4), then <j> and ift
preserve the fundamental invariants ((4,4)-periodicity>).

Proof We recall that by Proposition 3.3 the Schur algebra Cm,m of S\ = 5 m > m has the
admissible basis (Id, E) and E2 = +Id. This implies that the vector space isomorphism
xp is actually an isomorphism of algebras. The (4,4)-periodicity follows from

<r(fE) = WE) = <Tf(E) = crfE(E) = i(E) = +1. •

Recall that Bp>q denotes the space of SO (p, g)-invariantbilinearformsontheSO(p, q)
spinor module SPiq and CPyq is the Schur algebra of SPiq.

Corollary 6.1. ((8,0)- and (098)-periodicity) There exist natural isomorphisms

<^8,o • BPiq

of vector spaces and

^8,o • CPiq -> Cp+stq and

of algebras mapping the admissible elements onto admissible elements preserving their
fundamental invariants.

Proof By Theorem 6.1 BPA and CPtq have admissible bases. Now we recall from
Sect. 4 and 5 that if Ar = 0 (mod 8), then Ck,o = Co,* has an admissible basis,
which was denoted by (7d, E), such that (r, <r, i)(E) = (—1, +1, +1) and, of course,
(r, <r, i)(Id) = (+1,+1,+1). The existence of the maps ^8,0 and ^0,8 follows from
r(Id)i(Id) = —T(E)I(E). They preserve the fundamental invariants, because <r(Id) =
t(Id) = <T(E) = L(E) = +1. The existence and properties of <j>%$ and <£o,8 are proved
similarly. •

Corollary 6.2. Every 50(V)-equivariant mapping j : V -> (S <8> 5)* is a linear
combination of the embeddings JA = jP(hA)> where h is the canonical bilinear form on
the spinor module S qf$0(V) and A are admissible elements of the Schur algebra C of
S.

To obtain an overview over all possible TV-extended Poincare algebras p(V) + 5,
N = ± 1, ±2, it is useful to define the invariants <r and 1 for embeddings j : V «->• (S®S)*
having special properties. More precisely, we put <r(J) = +1 if jV C V25* and <r(j) =
- 1 if jV C A2S\ US = S+ + S~, we define i(j) = +1 if jV C ( 5 + 0 5 + + 5 " ®S~)*
and t(j) = - 1 if jV C (5+ ® 5")*.

Note that the fundamental invariants of J'A = jp(hA\ A € C admissible, are easily
computable:

<T(JA) = T(hA)<T(hA) = T(h)T(AMhMA) and i(jA) = -i(hA) = -i(h)i(A).

Recall that J denotes the space of 50(Vr)-equivariant mappings j : V -> (S ® S)*.
We define the subspaces

Jao:={je J K O = <ro}U{O} and
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and put
La° := dim Jao, La°l° := dim Ja°l°.

We shall write L+, £+~,. . . instead of the more cumbersome L+l, i + 1 ~ l ,
Remark that L+ (= L ^ + L+~ if 5 = 5+ + S~) is the maximal number of linearly

independent super algebra structures on p(V) + 5 and that L~ (= L~+ + L ) is the
number of Z2-graded Lie algebra structures on p(V) + S.

Theorem 6.2. The numbers (L+, L~) and (L++, IS", L~+, L—) depend only on the
dimension n = dim V = p + q and the signature s = p — qofV = Wlp>q modulo 8.
Moreover, they admit the mirror super symmetry n*-t —n. More precisely,

L + ( -n , s ) = L~(n,s) and

Tfeir values are given in Table 9.

Table 9. Numbers of extended Poincare" algebras p(p, q) + SPtq of different types depending on n = p + q

and s = p — q modulo 8

s:

4

3

2

1

0

-1

-2

-3

n:

1,3

0,1,2,1

0,1

1,3

-3

2,0,6,0

0,2,4,2

0,0,2,0

0,2

-2

1,3

0,1,2,1

0,1

1,3

-1

~M<—)
0,4,0,4

2,2,2,2

0,1,0,1

1,1

0

3,1

2,1,0,1

1,0

3,1

1

6,0,2,0

4,2,0,2

2,0,0,0

2,0

2

,*)

3,1

2,1,0,1

1,0

3,1

3

0,4,0,4

2,2,2,2

0,1,0,1

1,1

4

Proof. This follows from Theorem 6.1 and the tables of Sects. 3.1,4 and 5 by straight-
forward computation. •

In the complex case we consider the space Jc of S0(m, Q-equivariant mappings
C7* -» (§ m 0 Sm)* and define the invariants <r, t and the spaces J+, J+~, etc. as in
the real case (t is only defined if the complex S0(m, Q spinor module Sm is reducible
§ m = § ^ + §^). Their dimensions are denoted by L£, L^T, etc.

Theorem 6 3 . The numbers (L\, L~) and (L^ , L+~, £~+, L " ) depend only on m
(mod 8). Moreover, they admit the mirror super symmetry m *-+ —m. More precisely,

L£(-m) = L~(m) and

7%e/r values are given in

m:

0,1

- 3

0,0,2,0

- 2

the next

0,1

- 1
o,

table.
1,0,1

0

1,0

1

2, 0,0,0

2

1,0

3

0, 1,0,

4

1



510 D.V.Afckseevsky, V.Cortes

Proof. Follows from Sect. 3.2. D
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