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Abstract

Cameron, Manna and Mehatari investigated the question of which finite groups
admit a power graph that is a cograph, also called power-cograph groups (Journal
of Algebra 591 (2022)). They give a classification for nilpotent groups and par-
tial results for general groups. However, the authors point out number theoretic
obstacles towards a classification. These arise when the groups are assumed to be
isomorphic to PSL2(q) or Sz(q) and are likely to be hard.

In this paper, we prove that these number theoretic problems are in fact the only
obstacles to the classification of non-solvable power-cograph groups. Specifically,
for the non-solvable case, we give a classification of power-cograph groups in terms
of such groups isomorphic to PSL2(q) or Sz(q). For the solvable case, we are able
to precisely describe the structure of solvable power-cograph groups. We obtain
a complete classification of solvable power-cograph groups whose Gruenberg-Kegel
graph is connected. Moreover, we reduce the case where the Gruenberg-Kegel
graph is disconnected to the classification of p-groups admitting fixed-point-free
automorphisms of prime power order, which is in general an open problem.

1 Introduction

A classic reoccurring approach to investigating the structure of groups is by associating
the groups with graphs and then studying their graph theoretical properties. Prominent
examples include Cayley graphs, capturing the structure of groups relative to the ac-
tion of a specified generating set, or orbital graphs, capturing primitivity properties of
permutation groups.
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an earlier draft of this paper.
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A central example in the context of the present work is the Gruenberg-Kegel graph,
also called the prime graph of a group. Rather than describing actions of groups, the
prime graph π(G) of a group G is built from abstract structural aspects of the group:
the vertices are the primes dividing the order of the group and two primes are joined by
an edge if and only if their product is realized as the order of some group element. The
prime graph was first investigated by Gruenberg and Kegel (see [15], some results were
later published by Williams in [38] based on an unpublished manuscript by Gruenberg
and Kegel) in the context of augmentation ideals of integral group rings. The structure of
the prime graph has deep connections with the structure of the group itself. For instance,
if π(G) is disconnected, then the structure of G is quite restricted (cf. [24, Theorem 14])
and if G is solvable, then π(G) does not contain an induced coclique of size 3 [23].

A recent, active branch of research studies graphs whose vertex sets are themselves
groups. A basic but important example in this scope is the power graph of a group, which
was first studied in the context of building graphs from semigroups [20]. The vertices
are given by an underlying semigroup and arrows are drawn from elements to all their
powers. Power graphs have been frequently studied throughout the literature, see for
example [1, 2].

A comprehensive overview of various graphs defined on groups including many key
results and open problems can be found in [7]. There, Cameron points out that many
commonly investigated graphs defined on groups fit into a hierarchy of subgraphs. The
hierarchy includes the (directed) power graph and the enhanced power graph, the com-
muting graph and the deep commuting graph and the generating graph. An extension of
this hierarchy into a second dimension has been studied in [3]. A particular focus lies on
the interactions between different graphs. For instance, it is known that all graphs from
the hierarchy uniquely determine the prime graph [7, Theorem 2.9].

The work of Cameron et al. has spawned a number of intriguing problems relating the
structure theory of graphs and groups as well as problems of classifying groups in terms of
restrictions on their graphs, often resulting in new characterizations of interesting known
group classes. There has been ongoing research to determine the groups for which two
of the graphs in the hierarchy coincide, and various conditions and results have been
proven and summarized in [1, 7]. While investigating groups that are unrecognizable by
their prime graph, Cameron and Maslova recently gave a classification of non-solvable
EPPO-groups [9]. EPPO-groups are groups in which every element has prime power
order. The study of such groups was initiated by Higman in [16], and later extended and
generalized by numerous authors, see for example [6, 31], including the famous work of
Suzuki [34, 35] on doubly transitive groups.

In the present work we are concerned with generalizing the classification of EPPO-
groups by extending it to a classification of groups whose power graph is a cograph (in
the following called power-cograph groups). The class of power-cograph groups indeed
contains all EPPO-groups by an argument of Cameron [7]. A cograph is a graph that
does not contain a path on four vertices as an induced subgraph. Cographs are frequently
studied in structural graph theory and have been rediscovered numerous times, see for
example [19, 30, 33, 11]. An important theme in structural graph theory is the study of
hereditary graph classes which can be defined via forbidden induced minors [4]. After
cluster graphs (defined by forbidding induced paths on three vertices), cographs form a
basic and natural class of graphs to consider, as they are defined by a single forbidden
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induced subgraph.
The problem of classifying power-cograph groups goes back to [24], where the authors

investigate general forbidden substructures in power graphs. They also point out that
classifying such groups when isomorphic to PSL2(q) is equivalent to a number theoretic
problem that is likely to be hard. Further investigations in [8] show that the classification
of simple power-cograph groups completely reduces to similar number theoretic problems
for groups isomorphic to PSL2(q) or Sz(q) (see [8, Theorem 1.3] and the discussion after).
Nilpotent power-cograph groups are fully classified and partial results are available for
the solvable case in [8]. To this end, the best we can expect is a classification of non-
solvable power-cograph groups, relative to the evident number theoretic obstacles, which
is what we provide in this paper. Given a solution to these problems, our results reveal
a complete classification of non-solvable power-cograph groups. In particular, for the
non-solvable case we prove the following theorem.

Theorem 1.1 (Non-solvable power-cograph groups). Let G be a finite group that is not
solvable. The power graph of G is a cograph if and only if one of the following holds:

1. G is a simple power-cograph group isomorphic to one of PSL2(q), Sz(q) or PSL3(4).
The admissible values of q are precisely characterized in [8], see Theorem 3.6 below.

2. G is one of PGL(2, 5), PGL(2, 7), PGL(2, 9) or M10.

3. T := G/ Soc(G) ∼= PSL2(2
n) with n ≥ 2 and T is a power-cograph group. Further-

more, Soc(G) = O2(G) and each minimal normal subgroup of G is isomorphic to
the natural module over the group ring F2n[SL2(2

n)] as a T -module.

4. T := G/ Soc(G) ∼= Sz(22e+1) with e ≥ 2 and T is a power-cograph group. Further-
more, Soc(G) = O2(G) and each minimal normal subgroup of G is isomorphic to
the natural module over the group ring F22e+1 [Sz(22e+1)] as a T -module.

Moreover, our techniques also yield new insights for the solvable case. We obtain a
complete classification of solvable power-cograph groups with connected prime graph. In
the disconnected case one problem remains, and it already arises in the case of solvable
EPPO-groups. In general, much is known about the structure of such groups since they
are always Frobenius or 2-Frobenius groups. However, to date there is no complete
classification of solvable Frobenius groups available. In particular, the question of which
p-groups admit fixed-point-free automorphisms is still open. However, this is the only
remaining obstacle and we precisely describe the structure of solvable power-cograph
groups in terms of the following theorem.

Theorem 1.2 (Solvable power-cograph groups). Let G be a finite solvable group. The
power graph of G is a cograph if and only if one of the following holds:

1. G has prime power order.

2. G = (Cp ⋊ Cqn) × Cq, and if n > 0 then Cqn acts fixed-point-freely on the Cp-part
of Fit(G).

3. G = Cpq⋊Crn, and if n > 0 then Crn acts fixed-point-freely on Cpq. Thus r
n divides

q − 1 and p− 1.
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4. G = Crs ⋊ Cpq, where pq divides r − 1 and s− 1 and Cpq acts fixed-point-freely on
Crs.

5. F := Fit(G) is an r-group for some prime r and H := G/F is in one of three cases:

(a) H is a generalized quaternion 2-group acting without fixed points on F .

(b) F admits a group of fixed-point-free automorphisms P ∼= Cpk for a prime p 6= r
and H is a subgroup of P ⋊Crm. The action of Crm on P is fixed-point-free if
m > 0.

(c) F admits a group of fixed-point-free automorphisms C ∼= Cpq for primes p 6= q
with p, q 6= r. Here, H is a subgroup of C ⋊ Crm. The action of Crm on C is
fixed-point-free if m > 0.

Note that the groups in Case 5a have been fully classified, see [26]: F is necessarily
abelian and F admits a fixed-point-free action by a generalized quaternion group of order
2n if and only if 2n divides pk − 1 for every cyclic direct factor of F of order pk [26,
Proposition 6.24]. More generally, [26] contains a classification of all groups in Case 5
when F is assumed to be abelian. In the non-abelian case there is an extensive body of
research concerned with bounding the Fitting-length of G as a function of the order of a
fixed-point-free automorphism of prime order [17, 37, 36], but no general classification is
available.

Techniques Regarding our techniques, we first exactly characterize power-cograph
groups in terms of properties of centralizers of their group elements. This relates back to
the classification of CN-groups (groups with nilpotent element-centralizers, see [12]) and
CIT-groups (groups in which involution centralizers are 2-groups, see [34, 35]). The latter
includes the discovery of the famous Suzuki-groups. In these works, certain restrictions
on element centralizers are shown to have strong influence on the overall structure of the
ambient group. In a similar fashion, the centralizer restrictions we obtain allow for non-
nilpotent centralizers but are otherwise severely limiting. We are able to employ results
from [25] and [32] (building on work of Suzuki in [34, 35]) in dealing with extensions of
2-groups by non-abelian simple groups. We point out that same results are also employed
in the classification of non-solvable EPPO-groups in [9].

Outline of the paper We give some preliminary information about notation and the
relevant theory of finite groups in Section 2. Then we discuss power-cograph groups in
Section 3 and we go into detail about centralizers in Section 4. For the classification,
we consider power-cograph groups in terms of the solvability of the group. We discuss
solvable groups in Section 5 and non-solvable ones in Section 6. The proofs of the main
theorems can be found in Section 7.

2 Preliminaries

In the following we collect some necessary group theoretic basics. Readers familiar with
finite group theory might want to skip this section. As a general reference for basics on
group theory, we refer to [14] and [27].
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Notation Given a set of primes π, we say a π-element in a group G is an element whose
order is only divisible by primes in π. Similarly a π-group is a group that entirely consists
of π-elements. We say that an automorphism of a group H is fixed-point-free if it only
fixes the identity element in H . Given a normal subgroup N of a group G, then G/N acts
fixed-point-freely on N if the induced action by conjugation is fixed-point-free for every
non-trivial element in G/N . General extensions of H by N , i.e., groups with normal
subgroup isomorphic to N and corresponding quotient isomorphic to H , are denoted by
N.H . We use U . G to denote that U is isomorphic to a subgroup of G.

Group structure The following theorems fundamental to group structure theory are
invoked throughout this paper.

Theorem 2.1 (Schur-Zassenhaus, see [14]). Let G be a finite group admitting a normal
subgroup N E G, such that |N | and |G/N | are coprime. Then N has a complement in
G, that is, G is isomorphic to the semidirect product N ⋊G/N .

Theorem 2.2 (Burnside’s paqb-Theorem, [5]). If a finite group G is of order paqb with
primes p and q, then G is solvable.

As a consequence, the order of every finite non-abelian simple group is divisible by at
least three distinct primes.

Fitting-subgroup and socle Recall that the Fitting-subgroup Fit(G) of a group G is
the (unique) largest normal nilpotent subgroup in G. Furthermore, let Fit2(G) denote
the subgroup of G that satisfies Fit2(G)/Fit(G) = Fit(G/Fit(G)). Given a prime p, we
denote the (unique) largest normal p-subgroup of a group G by Op(G) (also called the
p-radical). In case that G is a finite group, it holds that

Fit(G) =
∏

p||G|

Op(G)

is a direct product over all p-radicals in G. If G is furthermore solvable, then Fit(G)
is self-centralizing, i.e., CG(Fit(G)) = Z(Fit(G)), and then G/Fit(G) is isomorphic to a
subgroup of Aut(Fit(G)).

The socle of G, denoted Soc(G), is the subgroup generated by all minimal normal
subgroups of G. The socle of a finite group is a direct product of simple groups and if
Fit(G) is trivial, then all direct factors of Soc(G) are non-abelian simple.

Frobenius groups Let H be a proper nontrivial subgroup of G such that H ∩Hx = 1
for all x ∈ G \ H . Then K = G \ ⋃x∈G(H \ 1)x is a normal subgroup of G such that
G = K⋊H . In this case, we say that G is a Frobenius group, with Frobenius complement
H and Frobenius kernel K.

Let G be a finite Frobenius group with kernel K and complement H . Then the
following hold (for proofs see for example [27, 36, 39, 40]):

1. K is nilpotent and in fact K = Fit(G).

2. For all k ∈ K, we have CH(k) = 1.
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3. If H has even order, then K is abelian.

4. If G is solvable, then the Sylow p-subgroups of H are cyclic if p > 2 and cyclic or
generalized quaternion if p = 2.

5. If a Frobenius complement H is not solvable, then it has a normal subgroup of
index 1 or 2 that is the direct product of SL(2, 5) and a metacyclic group of order
coprime to 30.

A group G is said to be a 2-Frobenius group if there exist two normal subgroups F and
L of G such that G/F is a Frobenius group with kernel L/F and L is a Frobenius group
with kernel F . Finally, let us point out the following well known fact about 2-Frobenius
groups.

Lemma 2.3 ([10, Theorem 2]). All 2-Frobenius groups are solvable.

Outer automorphisms of PSL2(q) and Sz(q) We just give a brief summary here, for
more details see [39]. The outer automorphisms of the classical groups generally come in
three different flavors: diagonal, field and graph automorphisms.

For PSL2(q), the diagonal automorphism corresponds the the action of PGL2(q) on
PSL2(q). It is induced by conjugation with

(

1 0
0 ǫ

)

, where ǫ is a non-square in F
∗
q .

In particular, diagonal automorphisms only exist for odd q. In case of PSL2(q), the graph
automorphisms appear as inner automorphisms.

The field automorphisms are induced by automorphisms of the underlying field Fq of
order q = pf , whose automorphism group is cyclic of order f , generated by the Frobenius
automorphism x → xp. The induced group of field automorphisms acts on PSL2(q) by
mapping each matrix entry to its p-th power (for any matrix representing the respective
element of PSL2(q)).

In the case of Sz(q), the simple Suzuki groups only have field automorphisms as outer
automorphisms, acting on the natural representation of Sz(q) in GL4(q).

The Gruenberg-Kegel graph (or prime graph) The Gruenberg-Kegel graph or the
prime graph of G, denoted π(G), has vertex set the prime divisors of |G|, and two primes
p and q are adjacent if and only if there exists an element of order pq in G. We refer to
the following result as Lucido’s Three Prime Lemma:

Lemma 2.4 ([22, Proposition 1]). Let G be a finite solvable group. If p, q, r are three
different primes dividing |G|, then G contains an element whose order is the product of
two of these primes.

In [38], Williams classified the number of connected components of the prime graph
for the simple groups of Lie type over fields of odd characteristic, alternating groups, and
the 26 sporadic simple groups. The case of simple groups of Lie type in even characteristic
has been treated in [21, 18]. The following result for prime graphs of solvable groups is
due to Gruenberg and Kegel (published by Williams in [38] and slightly modified in [24]):
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Lemma 2.5 ([24, Theorem 3.4]). The prime graph of G is disconnected only if G satisfies
one of the following:

1. G is Frobenius;

2. G is 2-Frobenius;

3. |G| is even and G is an extension of a nilpotent π1-group by a simple group by a
π1-group. Here π1 denotes the component of 2 in π(G).

3 Power graphs and power-cograph groups

Throughout this work we only consider finite groups. The following section collects basic
definitions and some known results on power-cograph groups.

Definition 3.1. The power graph Pow(G) of a group G is the undirected graph defined
over the vertex set G with an edge joining g, h ∈ G if and only if gn = h or hn = g holds
for some n ∈ N.

Definition 3.2. A graph is a cograph if it does not contain P4 (i.e., a path with four
vertices) as an induced subgraph. We say a group G is a power-cograph group if Pow(G)
is a cograph.

The power graph of a subgroup H ≤ G is an induced subgraph of Pow(G). In
particular, the class of power-cograph groups is closed under taking subgroups.

Lemma 3.3. Let G be an arbitrary finite group.

1. Let g, h ∈ G such that 〈g〉 = 〈h〉 holds, then g and h form twins in Pow(G), i.e.,
they are joined by an edge and have identical sets of neighbors.

2. If G is a cyclic p-group, then Pow(G) is a clique.

In special cases the power-cograph property also propagates to quotients.

Lemma 3.4. Let G be a finite group, g1, . . . , g4 ∈ G and N E G. Assume that
(g1N, . . . , g4N) induces a P4 in Pow(G/N) and that (w.l.o.g.) g2N is a power of both
g1N and g3N . If gcd(|N |, |CG/N(g2N)|) = 1, then (g1, . . . , g4) induces a P4 in G.

Proof. We assume that gcd(|N |, |CG/N(g2N)|) = 1 holds. By the Schur-Zassenhaus The-
orem, G contains a subgroup that is a split extension N ⋊ CG/N(g2N). In particular,
there exists a subgroup of G that is isomorphic to CG/N (g2N) and the latter contains all
the giN .

Finite nilpotent power-cograph groups are characterized in [24] as follows:

Theorem 3.5 ([24, Theorem 12]). Let G be a finite nilpotent group. Then Pow(G) is a
cograph if and only if either |G| is a prime power, or G is cyclic of order pq for distinct
primes p and q.
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Recent work of Cameron, Manna and Mehatari [8] investigates several graph classes
in an attempt to determine groups whose power graph is a cograph. Their main result
on the class of finite simple groups states the following:

Theorem 3.6 ([8, Theorem 3.2]). Let G be a non-abelian finite simple group. Then G
is a power-cograph if and only if one of the following holds:

1. G = PSL2(q), where q is an odd prime power with q ≥ 5, and each of (q− 1)/2 and
(q + 1)/2 is either a prime power or the product of two distinct primes;

2. G = PSL2(q), where q is a power of 2 with q ≥ 4, and each of q − 1 and q + 1 is
either a prime power or the product of two distinct primes;

3. G = Sz(q), where q = 22e+1 for e ≥ 2, and each of q−1, q+√2q+1 and q−√2q+1
is either a prime power or the product of two distinct primes;

4. G = PSL3(4).

The discussion that follows this theorem in [8] acknowledges the difficulties of solv-
ing the number-theoretical problems, but they provide some small values for which the
theorem surely holds. However, the problem of determining if there are infinitely many
such groups in the first three cases remains open.

4 Centralizers in power-cograph groups

Centralizers in power-cograph groups turn out to be quite restricted, which forms the
basis of our analysis.

Lemma 4.1. Consider commuting group elements x, w ∈ G with |x| = p and |w| = q for
two distinct primes p and q. If Pow(G) is a cograph, then all q-elements in CG(x) are
contained in 〈w〉. Furthermore, x is not a p-th power in G.

Proof. Assume that there is another element of order q in CG(x), z say, such that z 6∈ 〈w〉.
Then

zp ←− xz −→ xq ←− xw

is an induced P4 in Pow(G) (we draw directions for clarity), contradicting the assumption
that Pow(G) is a cograph. Thus, 〈w〉 is the unique subgroup of order q in CG(x). Again
using the assumption that Pow(G) is a cograph, we note that, by the classification of
nilpotent power-cograph groups (Theorem 3.5) and due to subgroup-closedness of power-
cograph groups, there are no elements of order q2 in CG(x).

Similarly, if x has a p-th root, say gp = x for a suitable g ∈ G, then

wp ←− xw −→ xq ←− gq

is an induced P4 in Pow(G).

Lemma 4.2. Consider commuting group elements x, w ∈ G with |x| = p and |w| = q for
primes q < p. Assume Pow(G) is a cograph. Then

8



1. CG(x) = 〈w, x〉 ∼= Cp × Cq, and

2. CG(w) = 〈x〉 ⋊ Q, where 〈x〉 ∼= Cp and Q ∼= 〈w〉 × Cqn for some n ∈ N0. If n > 0
then Q/〈w〉 acts without fixed points on 〈x〉, so qn divides p− 1.

Proof. 1. By Lemma 4.1, 〈w〉 is normal in CG(x). Since q < p, there is a unique normal
Sylow p-subgroup P of CG(x) by the Sylow Theorems. Hence, CG(x) = 〈w〉 × P is
nilpotent and thus P = 〈x〉 ∼= Cp via Theorem 3.5.

2. As in the first case, 〈x〉 E CG(w) and then CG(w) = 〈x〉 ⋊ Q for a q-group Q
by the Schur-Zassenhaus Theorem. Again using Lemma 4.1, we note that, up to
powers, w is the unique q-element in CG(x). So CQ(x) = 〈w〉 and thus Q/〈w〉 ≤
Aut(〈x〉) ∼= Cp−1. By definition, w ∈ Z(Q) which implies that Q/Z(Q) is cyclic,
hence Q is abelian. The lemma further gives us that w is not a q-th power and thus
Q . 〈w〉 × Cqn.

Lemma 4.3. If Pow(G) is a cograph and {p, q} is an edge of π(G) with q < p, then the
Sylow p-subgroups of G are isomorphic to Cp and Sylow q-subgroups of G are of the form
Cq × Cqn with n ∈ N0 or have cyclic center.

Proof. By the previous lemma, there exists a p-element x ∈ G with CG(x) ∼= Cp × Cq.
Consider a Sylow p-subgroup P of G containing x. Then 1 6= Z(P ) ≤ CG(x), so Z(P ) =
〈x〉. But then even P ≤ CG(x) holds, thus P = 〈x〉.

Now consider w ∈ G with |w| = q and assume p divides |CG(w)|. In this case the
previous lemma still implies CG(w) ∼= Cp ⋊ Q, where Q is isomorphic to 〈w〉 × Cqn for
some n ≥ 0. Let H be a Sylow q-subgroup of G containing Q. If w ∈ Z(H), then
H . (Cq × Cqn). If w 6∈ Z(H), then Z(H) . Cqn.

Lemma 4.4. Consider a semidirect product G ∼= Q⋊Cp where Q is a q-group for some
prime q 6= p. If Pow(G) is a cograph and π(G) is not the null graph, then G ∼= Cq ×Cp.

Proof. The Sylow p-subgroups ofG are isomorphic to Cp and in particular, two p-elements
in G always generate conjugate cyclic subgroups. Let x be an element of G of order p.
Since π(G) is non-trivial, there must be some element w ∈ Q of order q with w ∈ CG(x).
Assume there is some q-element y ∈ CG(w) \ 〈w〉. Then yx ∈ CG(w) and due to the
semidirect structure, p divides |yx|. But up to powers, x is the only p-element in CG(w),
so (yx)d = x for an appropriate integer d. In particular it follows that yx ∈ CG(x) holds.
On the other hand, by Lemma 4.1, w is the only q-element in CG(x), so x does not
commute with y ∈ G \ 〈w〉 and thus, x does not commute with yx, a contradiction.

Hence, CG(w) = 〈w〉× 〈x〉 and, as before, this implies Q = 〈w〉 due to Z(Q) 6= 1.

Lemma 4.5. Let G be a group and Pow(G) a cograph. Consider a connected component
K of π(G). Then K is a star with center q, where q is the smallest prime in K.

Proof. Let q < p be primes that form an edge in π(G). Then CG(x) ∼= Cp × Cq for some
element x of order p and furthermore, 〈x〉 is a Sylow p-subgroup of G. Since Sylow p-
subgroups are all conjugate in G, it follows that all primes adjacent to p in π(G) already
appear in |CG(x)| and then the lemma follows by repeating the argument for all primes
in K \ {q}.
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We can actually give a full characterization of power-cograph groups in terms of
centralizer properties. We want to point out that [8, Theorem 3.1] contains a character-
ization of possible induced P4’s in a finite group in terms of element orders and this is
essentially the same argument we repeat in the following proof. We combine this with
our restrictions on centralizers to turn it into a characterization in terms of centralizer
structure.

Lemma 4.6. G is a power-cograph group if and only if for each prime p and for each
element g ∈ G of order p the following hold:

1. if a prime q < p divides |CG(g)|, then CG(g) ∼= Cq × Cp.

2. if a prime q > p divides |CG(g)|, then there exists a normal subgroup N E CG(g),
N ∼= Cq, and CG(g)/N ∼= 〈g〉 × Cpn with n ∈ N0.

In particular, if CG(g) is not a p-group, then g is not a p-th power in G.

Proof. If G is a power-cograph group then centralizers of prime order elements behave as
claimed according to Lemma 4.2. For the other direction, assume that Pow(G) is not a
cograph. Then there exists an induced P4 in Pow(G), given by (g1, g2, g3, g4), say. Note
that any two consecutive vertices cannot be of the same order, since elements generating
the same cyclic group form a twin class in Pow(G). So without loss of generality we may
assume that |g2| > |g3| holds. If |g2| is a power of some prime q, then either Condition
2 is violated or all of g1, . . . , g3 are q-elements in 〈g2〉, contradicting the assumption that
the induced subgraph is a path. Thus, we may further assume that |g2| = pq with primes
p 6= q. Then g1 and g3 need to be of order p and q, respectively. In particular, |g4| > |g3|
holds. Say |g3| = q. If |g4| = pq, then g3 commutes with two different elements of order
p, contradicting our assumptions in any case. Otherwise |g4| is a power of q, but then g
is a q-th power, again contradicting our assumptions.

5 Solvable groups

We focus on the case of solvable power-cograph groups first. Combining Lucido’s Three
Prime Lemma with our observations on centralizers in power-cograph-groups yields ef-
fective restrictions on the prime graph.

Lemma 5.1. If G is a solvable power-cograph group, then π(G) is an induced subgraph
of either 2K2, the graph consisting of two disjoint edges, or P3, a path on 3 vertices.

Proof. By Lucido’s Three Prime Lemma, π(G) has at most two connected components
and if it does admit two components, then they can have at most two vertices each, since
they are star graphs by Lemma 4.5 and there cannot be an induced coclique of size 3 by
Lucido’s Three Prime Lemma.

If π(G) is connected, then Lemma 4.5 implies that π(G) is a star with some central
vertex p and π(G)− {p} can not have more than two vertices.

Lemma 5.2. Let G be solvable and assume Pow(G) is a cograph. If π(G) is connected
then one of the following holds:
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1. G is a group of prime power order.

2. π(G) consists of a single edge {q, p} with q < p. Then G ∼= (Cp ⋊Cqn)×Cq, and if
n > 0, then qn divides p−1 and Cqn acts fixed-point-freely on the Cp-part of Fit(G).

Conversely, all such groups are power-cograph groups.

Proof. By the previous lemma, π(G) is a star with center, say, q. Also all other primes
dividing |G| are larger than q and divide |G| exactly once. Assume from now on that G
is not a q-group.

Case 1: π(G) = {{q, p}}. Set F := Fit(G). Define F2 ≤ G implicitly via F2/F :=
Fit(G/F ). If F is a p-group then F ∼= Cp is the unique subgroup of order p in G and self-
centralizing, contradicting the fact that π(G) is connected. Thus q divides |F |. Moreover
the Fitting-group of a finite group is the direct product over all maximal normal prime
power subgroups. Thus, if we assume F to be a q-group, we obtain that gcd(|F |, |F2|) = 1.
By the Schur-Zassenhaus Theorem this implies that F2

∼= F ⋊Cp is a semidirect product.
Since G is solvable, it holds that CG/F (F2/F ) ≤ F2/F and then for π(G) to be non-trivial,
π(F2) must be non-trivial. But then F2

∼= Cp × Cq by Lemma 4.4, a contradiction.
In conclusion, it must hold that F is a nilpotent group whose order is divisible by

pq, so F ∼= Cq × Cp. Then it holds that G . (Cp ⋊ Q) × Cq, where Q ≤ Aut(Cp) is a
q-subgroup of the cyclic group Aut(Cp) acting fixed-point-freely on Cp. The fact that F
has a complement can be seen as follows. Let w ∈ F be an element of order q. Then w is
centralized by each Sylow q-subgroup of G for q does not divide |Aut(〈w〉)|. By Lemma
4.2, the Sylow q-subgroups of CG(w) are isomorphic to 〈w〉 × Cqn for some n.

Case 2: π(G) = {{q, p}, {q, r}}. As before, F cannot be of order p or r, since then the
respective prime would have to be isolated in π(G) and F cannot be a q-group for the
exact same reason we gave in Case 1 (note that the Fitting series of G does not contain
a quotient of order pr). Then we have F ∼= Cq × Cp (or F ∼= Cq × Cr which is just a
matter of renaming) and G/F ≤ Aut(Cp×Cq). Now there is a unique subgroup of order
q in F and thus elements of order r in G have to act fixed-point-freely on this subgroup
(otherwise its centralizer would be divisible by q, p and r). But then r must divide q− 1,
contradicting the fact that q is the minimal prime in its component of π(G). Thus, this
case does in fact not occur.

The converse statement: Recall that groups of prime power order are always power-
cograph groups by Theorem 3.5. In the second case, the cograph property can be deduced
from Lemma 4.6.

In particular, if G is a solvable power-cograph group and Fit(G) is of prime power
order, then π(G) is disconnected. Here we should point out that in [8, Example 4.6.] the
authors claim that the non-trivial semidirect product H3⋊C2 is an example of a solvable
power-cograph group whose socle is a 3-group (here, H3 denotes the Heisenberg group of
order 27). Since its prime graph is connected, our classification actually shows that the
group is not a power-cograph group. Since the group contains centralizers isomorphic to
C3 × S3, the example already disagrees with Lemma 4.1.
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Lemma 5.3. Let G be solvable and assume Pow(G) is a cograph. If π(G) is disconnected,
then one of the following holds:

1. the graph π(G) is the empty graph on two vertices. Here Fit(G) is a p-group and
G/Fit(G) is a generalized quaternion 2-group or a subgroup of Cqk ⋊ Cpm for a
prime q 6= p and if m > 0 then Cpm acts fixed-point-freely on Cqk. In any case,
Fit2(G)/Fit(G) acts fixed-point-freely on Fit(G).

2. the graph π(G) consists of an edge {p, q} together with a third, isolated vertex r.
Then G is in one of two cases:

(a) G = Cpq⋊Crn with n ≥ 1 and Crn acts fixed-point-freely on Cpq (in particular,
rn divides q − 1 and p− 1).

(b) Fit(G) is an r-group and Fit2(G) ∼= Cpq acts fixed-point-freely on Fit(G).
Moreover, G/Fit2(G) is either trivial or Crn acting as a fixed-point-free sub-
group of Aut(Cpq).

3. the graph π(G) consists of two disjoint edges {p, q} and {r, s} where pq divides r−1
and s − 1. Then G is of the form Crs ⋊ Cpq with Cpq acting fixed-point-freely on
Crs.

Conversely, all groups described above are power-cograph groups.

Proof. 1. If π(G) is the empty graph, then Fit(G) has prime power order. Moreover,
Fit2(G)/Fit(G) is of prime power order coprime to |Fit(G)|. By [29, 10.5.6], the
group Fit2(G)/Fit(G) is cyclic or a generalized quaternion 2-group. In the first
case, G = Fit2(G) or otherwise G is a 2-Frobenius group where G/Fit2(G) is a
cyclic group of prime power order acting fixed-point-freely on Fit2(G)/Fit(G). In
the second case, Fit2(G)/Fit(G) contains a unique element of order 2 so it does not
allow fixed-point-free extensions, i.e., G = Fit2(G).

This leaves us with two more options for π(G) according to Lemma 5.1.

2. Case π(G) = ({p, q, r}, {{p, q}}): If Fit(G) ∼= Cpq holds, then G/Fit(G) acts as
a fixed-point-free subgroup of Aut(Cp) and Aut(Cq) simultaneously, in particular,
G/Fit(G) is cyclic.

Otherwise, Fit(G) is either a p-group or a q-group. Without loss of generality,
assume that Fit(G) is a q-group. Then there is an element of order pq in G and
together with Fit(G) it spans a semidirect product of a q-group with Cp, having non-
empty prime graph. Thus, Lemma 4.4 implies that Fit(G) is trivial, a contradiction.

We established that the only case left to consider is the case where Fit(G) is an
r-group. Then Fit2(G)/Fit(G) ∼= Cp × Cq, otherwise we can repeat the argument
from above, since G/Fit(G) now has to contain elements of order pq. If it holds that
G = Fit2(G), we are done. Otherwise G/Fit2(G) acts on Fit2(G)/Fit(G) ∼= Cpq

as a subgroup of Aut(Cpq), where the latter is an abelian group. Without loss
of generality assume that q < p, so p divides |G| exactly once by Lemma 4.3. If
G/Fit2(G) contains elements of order q, then by Lemma 4.2, G/Fit(G) contains
a subgroup isomorphic to Cq × Cq, acting on Fit(G) without fixed-points. This
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is not possible, see [29, 10.5.3]. Thus, G/Fit2(G) is an abelian r-group acting on
Fit2(G)/Fit(G) as a fixed-point-subgroup of Aut(Cp) and Aut(Cq) simultaneously.

3. Case π(G) = ({p, q, r, s}, {{p, q}, {r, s}}): If Fit(G) ∼= Crs then G/Fit(G) is abelian
with at least two prime divisors p and q, so G/Fit(G) ∼= Cpq and this group must
act on Fit(G) without fixed points. Otherwise Fit(G) must be of prime power order
(since it is a nilpotent power-cograph group) and then G cannot be a Frobenius-
group, where π(Fit(G)) would form a connected component in π(G). Thus, G is
2-Frobenius with corresponding normal subgroups K E N E G (cf. Lemma 2.5).
Then π(N/K) forms a component in π(G) which must be of size two by the as-
sumptions on π(G). Without loss of generality let N/K ∼= Crs and let K be a
q-group. By definition, G/K is a semidirect product with normal subgroup N/K
so we may choose some subgroup H ≤ G such that K ≤ H and H/K is a comple-
ment of N/K in G/K. If both p and q divide |H/K|, then H/K ∼= Cpq, since H/K
acts on N/K as an automorphism subgroup and Aut(N/K) is abelian. In this case,
H ∼= (K.Cq)⋊Cp with non-trivial prime graph, implying K = {1} via Lemma 4.4, a
contradiction. Otherwise, H/K is a p-group (because p must divide |H/K| at least
once) and then K ∼= Cq, again using Lemma 4.4 and the fact that some element of
order q must commute with an element of order p. But then CG(K) ∼= Cp × Cq is
normal in G, contradicting the fact that K = Fit(G) is a q-group.

Finally, we point out that all groups appearing in the lemma’s statement are indeed
power-cograph groups according to Lemma 4.6.

While it would be even better to have a list of possible Fitting-subgroups in Cases
1) and 2b), the restrictions we give precisely describe the structure of G. It remains
the question of which p-groups admit fixed-point-free automorphisms of prime order. For
abelian Fitting-subgroups the question can be answered in full generality [26], so we obtain
a classification under this extra assumption. For the general case, there is an extensive
body of research concerned with bounding the Fitting-length of groups admitting fixed-
point-free automorphisms of prime order, see for example [17, 37]. In particular, they are
always nilpotent by a result of Thompson [36], but no classification is available.

6 Non-solvable groups

To deal with non-solvable groups we first analyze the socle of a power-cograph group to
split up the classification task into smaller sub-problems. Since a high number of direct
factors in Soc(G) implies the existence of relatively large element centralizers, the socle
of a power-cograph turns out to be quite restricted.

Lemma 6.1. Let G be a non-solvable group whose power graph is a cograph. Set S :=
Soc(G). Then one of the following holds:

1. S is a non-abelian simple group and S E G ≤ Aut(S), so G is almost simple.

2. S ∼= Cn
p for some n ∈ N and G/C ≤GLn(Fp), where C := CG(S) is a p-group.

Proof. We can write
S = A× T1 × · · · × Tm
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where A is an abelian group and the Ti are non-abelian simple groups. If m ≥ 1 and A
is non-trivial, then there exists a ∈ A such that, without loss of generality, T1 ∈ CG(a)
holds. Since |T1| is divisible by at least three primes, the order of CG(a) is divisible by at
least three primes but by Lemma 4.2, this is impossible. An analogous argument applies
if m > 1 holds, even if A is trivial.

Thus S is either an abelian group or a non-abelian simple group. In the second case,
G is almost simple. In the first case A is nilpotent and so it is either a p-group or
isomorphic to Cp × Cq for primes p 6= q. Assume first that S ∼= Cp × Cq holds. Then
G/CG(S) ≤ Aut(S) and since the latter is abelian, CG(S) must have a non-abelian simple
factor, contradicting Lemma 4.2. Thus, S ∼= Cn

p for some prime p and it follows that
CG(S) is also a p-group. Otherwise there is a q-element centralizing S for some prime
q 6= p, forcing n to be 1 according to Theorem 3.5. In the same way as before, this
contradicts Lemma 4.2 through G being non-solvable.

6.1 The almost simple case

Recall that the class of power-cograph groups is closed under taking subgroups. This
means whenever G is an almost simple power-cograph group, the socle Soc(G) is a simple
power-cograph group. We refer to Theorem 3.6 for a characterization of non-abelian finite
simple groups that are power-cograph groups.

Lemma 6.2. If G is an almost simple power-cograph group, then G is either simple or
G = PGL2(q) for some prime power q or G = M10.

Proof. Let Soc(G) be a non-abelian simple group so that G is an almost simple group.
Note that Soc(G) must be a power-cograph group due to subgroup-closedness. Due to
Theorem 3.6, it suffices to check automorphisms of PSL3(4), PSL2(q) and Sz(q).

We can immediately exclude the first case via computations we performed in GAP [13].

Extensions of PSL2(p
f) by field automorphisms, p odd: SupposeG = PSL2(p

f )〈α〉
where p is an odd prime and α is a field automorphism whose order divides f . Then α
is a field automorphism of Ff

p which acts on PSL2(q) by acting on the respective matrix
representatives in SL2(q) entry-wise.

Case f even: Then p2 − 1 divides pf − 1 and thus there exist elements of order
(p−1)(p+1)/2 in PSL2(p

f). If p 6= 3, then (p−1)(p+1) can neither be a product of two
primes nor a prime power (since p > 3 is prime) so PSL2(p

f) is not a power-cograph group
by Theorem 3.6. If p = 3 and f > 2, then either 40 = (34 − 1)/2 divides (pf − 1)/2 or
32g−1 divides pf −1 for some odd number g. If the first case holds, then again PSL2(p

f )
is not a power-cograph group. In the second case, (3g − 1)(3g + 1) divides pf − 1. Then
(3g + 1) is divisible by 4 since g is odd, and 3g − 1 is not a power of 2, so (pf − 1)/2
is divisible by 4m, where m is an odd number. As in the first case, PSL2(p

f) is not a
power-cograph group. In conclusion, either f = 2 and p = 3 or f is odd.

In the case f = 2 and p = 3, it holds that G ∼= S6, and G is not a power-cograph.
Case f odd: Since α fixes elements of the base field Fp, in particular all matrices

defined over Fp are fixed. Therefore, PSL2(p) . CG(α). Then if p > 3, the order of CG(α)
must be divisible by at least three primes as the group PSL2(p) is a nonabelian simple
group, and by Lemma 4.2 this is impossible. If p = 3, then PSL(2, 3) ∼= A4 is centralized
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by α. If CG(α) fulfills the necessary conditions in Lemma 4.2, then the order of α must
be 2, but we assumed f to be odd here.

Extensions of PSL2(p
f ) by diagonal-field automorphisms, p odd: Here G =

PSL2(p
f)〈α〉 where p is an odd prime and α = δσ is a product of a diagonal automorphism

δ and a non-trivial field automorphism σ. If |σ| is odd, then G contains a subgroup
PSL(2, pf)〈σ′〉 for some field automorphism σ′ of odd order, and the argument from
above implies that G is not a power-cograph group. So |σ| is even. If f is even, the
arguments from above leave us with the case of PSL(2, 9)〈α〉, where α has order 2. Then
G ∼= M10 which is an EPPO-group, and in particular, it has a power-cograph.

Extensions of PSL2(2
f) by field automorphisms Suppose now G = PSL2(q)〈α〉

where q is a power of 2. Then every outer automorphism is a field automorphism, and
each field automorphism fixes at least a copy of PSL2(2) ∼= S3. This can only happen if
the field automorphism is of order 2 and has no fixed field larger than F2, which implies
that q = 4. But PSL2(4) ∼= PSL2(5) has an automorphism group isomorphic to PGL2(5).

Extensions of Suzuki groups by field automorphisms: We use a similar argument
for the Suzuki group case as in the PSL2(q) case. Let G = Sz(2f)〈α〉 with α a field
automorphism whose order divides f , where f is odd and f ≥ 3. Then α fixes a subgroup
isomorphic to Sz(2) of order 20, and again the result follows by Lemma 4.2.

In conclusion, the only remaining cases are groups of the form G = PGL2(q) for an
appropriate prime power q.

Lemma 6.3. Let PSL2(q) E G ≤ PGL2(q) and assume G is non-solvable. Then G is a
power-cograph group if and only if one of the following holds:

1. q > 3 and G = PSL2(q)

2. q is 5, 7, or 9.

Proof. If q is even then PSL2(q) = PGL2(q), thus assume that q is odd. Then PSL2(q)
has index 2 in PGL2(q), so if G is not equal to PSL2(q) then G = PGL2(q) holds. In
the latter case, G has cyclic subgroups of order q− 1 and q + 1 and their orders must be
prime powers or a product of two distinct primes for Pow(G) to be a cograph. But one
of q − 1 and q + 1 is divisible by 4, so one of them is a 2-power and the other is 2r with
a prime r > 2.

We could be dealing with the unique solution to the Catalan Conjecture, i.e., q = 9 and
q− 1 = 8. Since q = 9 gives q + 1 = 10, PGL2(9) is indeed power-cograph. Furthermore,
q > 3 implies 2 < q − 1, q + 1, so this is actually the only possible case if q is not prime.

We are left with two cases, since q is a prime of the form 2a ± 1 now. If q = 2a + 1
then q+1 = 2(2a−1 +1), so 2a−1 +1 must be prime as well. A well-known result (see for
example [28, Page 1]) states that both a and a − 1 must be powers of 2 (including the
possibility 1 = 20) which is only possible if a = 2. This gives us PGL2(5), which is again
power-cograph. If q = 2a−1 then q−1 = 2(2a−1−1) and so 2a−1−1 is an odd prime. It is
well-known that then both a and a− 1 have to be primes (see for example [28, Appendix
B, Theorem B.1]), so a = 3. Indeed PGL2(7) is also a power-cograph group.
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6.2 The abelian socle case

Recall that 2-Frobenius groups are always solvable. We observe the following additional
restriction for non-solvable groups.

Lemma 6.4. If G is a non-solvable power-cograph group, then G is not a Frobenius
group.

Proof. Let G = K ⋊H be a non-solvable Frobenius group. Then the Frobenius comple-
ment H (and thus G) contains a subgroup isomorphic to SL2(5), which has non-trivial
center and more then 3 primes dividing its order. In particular, SL2(5) is not a power-
cograph group according to Lemma 4.2.

Lemma 6.5. If G is a non-solvable power-cograph group with an abelian socle, then 2 is
isolated in π(G). In particular, π(G) is disconnected.

Proof. Let S = Soc(G). If S = Cp, then consider the action of G on S via conjugation.
This induces φ : G→ Aut(S) with kernel CG(S). Since G is non-solvable, either kerφ or
Im φ contains a non-abelian simple composition factor. However, Aut(S) is abelian and
CG(S) cannot contain this factor by Lemma 4.2, so this is a contradiction.

Now either π(G) is disconnected and then all prime divisors of | Soc(G)| must be in
the component of 2 (Lemma 2.5) or π(G) forms a star with center 2 (Lemma 4.5). In
any case, odd primes divide | Soc(G)| at most once and since we can rule out cyclic socles
by non-solvability of G, we can assume that S = F

d
2 with d ≥ 1. Assume that 2 is not

isolated in π(G), so there exists g ∈ G such that |g| = p 6= 2 with |CG(g)| even. Suppose
w ∈ CG(g) such that w has order 2.

Let H be a Sylow 2-subgroup of G with w ∈ H . Since S E G and S is a 2-group, we
have S ≤ O2(G), where O2(G) denotes the largest normal 2-subgroup of G. Note that
O2(G) is the intersection of all Sylow 2-subgroups of G. Then S E H and S ∩ Z(H)
is non-trivial because H is a Sylow 2-subgroup and any normal subgroup intersects the
center non-trivially. So there exists z ∈ S ∩Z(H) such that |z| = 2 and z ∈ CG(w). Now
suppose z 6∈ CG(g). Since z centralizes w and w centralizes g, we have that z normalizes
〈g〉 E CG(w). Furthermore, zgz−1 = zgz = g−1 because z commutes with w and it has
order 2. Now g normalizes S so gzg−1 ∈ S \ 〈z〉 because g and z do not commute. Thus
〈z, gzg−1〉 ∼= V4 since it is a subgroup of Fd

2 and it is not cyclic. However, zgzg−1 = g−2 is
of order p and an element of V4, which is a contradiction. Thus z ∈ CG(g) and g ∈ CG(z).
By Lemma 4.2, CG(z) = 〈g〉⋊Q, where Q is a q-group of rank at most 2. As S ⊆ CG(z),
S ∼= F2 or S ∼= F

2
2. Then G/CG(S) ≤ Aut(S) (as above, by Lemma 4.2, CG(S) cannot

have non-abelian simple composition factors) must have a non-abelian simple composition
factor, which is impossible due to GL2(2) ∼= S3.

Lemma 6.6. If G is a non-solvable power-cograph group, then G has a normal subgroup N
that is either trivial or a 2-group, such that in any case G/N is almost simple. Moreover,
G/N is a power-cograph group.

Proof. If N = 1, then the statement follows from the definition, so assume otherwise.
Combining Lemma 2.5 and Lemma 6.5, we may assume that G is an extension of a
nilpotent π1-group by a simple group by a π1-group, where π1 denotes the component
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containing 2 in π(G). We showed earlier that 2 is isolated in π(G) if Soc(G) is a 2-group,
and so G/O2(G) ∼= T.H , where H is a 2-group and T is simple.

To see that Pow(G/N) is a cograph, recall Lemma 3.4. Since 2 is isolated in π(G),
any induced P4 in Pow(G/N) would contain odd-order elements only and also the rele-
vant centralizer defined in Lemma 3.4 must be of odd order. Thus, all induced P4’s in
Pow(G/N) would lift to G.

We refer to Theorem 3.6 once again to deduce that T may only be one of PSL3(4),
PSL2(q) where q is a prime power, or Sz(q) where q is a power of 2.

Lemma 6.7. Let G be a non-solvable power-cograph group with abelian socle, then S :=
Soc(G) ∼= F

d
2 with d ≥ 1. Moreover, G/O2(G) has a non-abelian simple socle T and one

of the following holds:

1. T ∼= PSL2(2
n) with n ≥ 2. Then S = O2(G) and each minimal normal subgroup of

G is isomorphic to the natural F2n[SL2(2
n)]-module as a G/S-module.

2. T ∼= Sz(22e+1) with e ≥ 2. Then S = O2(G) and each minimal normal subgroup of
G is isomorphic to the natural [F22e+1 Sz(22e+1)]-module as a G/S-module.

In both cases G is a power-cograph group if and only if T is a simple power-cograph group
where 2 is isolated in π(G).

Proof. By the previous lemma and Lemma 6.1, G/O2(G) has a non-abelian simple socle
whose power graph is a cograph. According to [8, Theorem 1.3], T := Soc(G/O2(G))
is either PSL3(4), PSL2(q) or Sz(q) for appropriate values of q. We may further assume
that 2 is isolated in π(G) by Lemma 6.5 and in particular, all odd order elements in G
must act on S fixed-point-freely.

We checked with GAP [13] that we can exclude PSL3(4) by explicitly computing odd
order elements with fixed-points in all irreducible representations of PSL3(4) over F2.

We can exclude PSL2(q) for q > 5 and odd via [32, Proposition 3.2]. Recall that
PSL2(5) ∼= PSL2(4), so this leaves us with PSL2(q) and Sz(q) for q even.

Furthermore, by [32, Proposition 4.1] and [25, Theorem, Remark 1], it must be the
case that O2(G) is elementary abelian and forms a direct sum of copies of the natural
SL2(q)-module or the natural Sz(q)-module, respectively.

We now prove that under these assumptions, H := S.T ≤ G is a power-cograph group
whenever T is. The general approach is to apply Lemma 4.6.

Consider commuting elements of distinct prime orders in H , say x and y . Then
CH(x)S/S is either a p-group or isomorphic to Cp × Cq for appropriate primes p and q,
since this is the case for T whenever T is a power-cograph group, see Theorem 3.6. In the
first case, one of x and y has order 2 and since 2 is isolated in T the respective element,
y say, must be contained in S.

In the second case, CH(x) is either Cp ×Cq and thus admissible according to Lemma
4.6, or there is some non-trivial element in S that commutes with an element of order
p 6= 2. In any case, the only obstruction to CH(x) being admissible is the existence of an
element t ∈ T of prime order p 6= 2, such that CS(t) 6= {1} holds. We argue that such
elements cannot exist.
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Let q := 2n and let A ∈ SL2(q). If A has eigenvalue 1, then either A is diagonalizable
and det(A) = 1 forces A to be the identity matrix, or the minimal polynomial of A is
(X − 1)2 ≡2 X

2 − 1 and A is of order 2.
If A ∈ Sz(q), in the natural representation A is a 4-by-4 matrix over Fq. Odd prime

divisors of | Sz(q)| divide q− 1 or q2 +1. If A has an order dividing q2 +1 then A cannot
fix any non-zero vector in the natural representation, or otherwise the order of A would
also divide q3|GL3(q)| = q6(q−1)2(q2−1)(q2+ q+1) (this follows since with respect to a
suitable basis A would be a product of a block-diagonal matrix with blocks of size 1 and
3 with an upper triangular matrix). But q2+1 is coprime to both q2− 1 and q2+ q+1 if
q is even. Other elements of odd prime order must have their order divide q − 1. In the
natural representation, these elements are either diagonal (and only ever fix a non-zero
vector if they are the identity), or they are elements of order 5 coming from copies of
Sz(2) in Sz(q). However, these have irreducible minimal polynomials of degree 4 over F2

and in particular they do not admit eigenvalue 1 over any extension field of F2.
Finally, note that G/O2(G) cannot be a non-simple almost simple group, since other-

wise by Lemma 6.3, G/O2(G) would have to be isomorphic to PGL2(q) with q ∈ {5, 7, 9}
and then 2 is not isolated in π(G).

7 Proofs of the main theorems

We conclude this work by synthesising our results into proofs of Theorem 1.1 and Theorem
1.2.

The proof of Theorem 1.1. Let G be a finite non-solvable group. Suppose that G is a
power-cograph group. We reduce the case to almost simple groups or groups with an
abelian socle in Lemma 6.1. We consider the cases separately. In Lemma 6.2 we proved
that in the almost simple case either G is itself simple or isomorphic to PGL2(q) where
q is a prime power or isomorphic to M10. If G is a simple group, then [8, Theorem 1.3]
holds. Further, we showed in Lemma 6.3 that if G lies between PSL2(q) and PGL2(q)
then either G is PSL2(q) or one of PGL2(5), PGL2(7) or PGL2(9). This settles parts
(1) and (2) of Theorem 1.1. In the abelian socle case, we proved that π(G) is always
disconnected in Lemma 6.5. Finally, in Lemma 6.7 we established Parts (3) and (4)
of Theorem 1.1 by showing that the quotient space G/ Soc(G) is isomorphic to either
PSL2(2

n) with n ≥ 2 or Sz(22e+1) with e ≥ 2 and is itself a power-cograph group. For
the other direction, Lemma 6.3 and Lemma 6.7 also show that if G is one of the groups
in Parts (1–4) then G is a power-cograph group.

The proof of Theorem 1.2. Let G be a finite solvable group which is a power-cograph
group. If π(G) is connected, then it is a P3 by Lemma 5.1, and Lemma 5.2 proves
that one of Parts (1) or (2) of Theorem 1.2 holds. Otherwise, if π(G) is disconnected,
then by Lemma 5.1 it is an induced subgraph of 2K2 and Lemma 5.3 shows the rest of
Theorem 1.2 holds. For the other direction, let G be one of the groups in Parts (1–5).
Then G is a power-cograph group as shown in Lemma 5.2 and Lemma 5.3.
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