Classification of objects by means of attributes

Zdzisław Pawlak
Zdzisław Pawlak

CLASSIFICATION OF OBJECTS BY MEANS OF ATTRIBUTES

An approach to inductive inference

429

Warsaw, January 1981
Abstract. Streszczenie. Содержание

Many problems of artificial intelligence are connected with classification of objects. A new approach to classification, based on informationsystems theory, is given in this paper and application to the automation of inductive inference is outlined. This approach leads to a new formulation of the notion of fuzzy sets (called here the rough sets). The axioms for such sets are given, which are the same as axioms of topological closure and interior.

Klasyfikacja obiektów za pomocą atrybutów

Wiele problemów sztucznej inteligencji związanych jest z klasyfikowaniem obiektów. Podana tu próbę nowego spojrzenia na problemy klasyfikacji w oparciu o teorie systemów informacyjnych, oraz zastosowanie jej do automatyzacji rozumowania indukcyjnego.

Próba ta prowadzi między innymi do nowego sformułowania pojęcia zbioru rozmytego (zwane tu zbiorami przybliżonymi). Podano aksjomaty takich zbiorów, które są identyczne z aksjomatami topologicznego domknięcia i anętrz.
INTRODUCTION

Many problems of artificial intelligence are based on classification of objects. We propose here somewhat new approach to classification inspired by results of Michalski [2].

Departure point of the approach is the notion of an information system introduced by Marek, Pawlak in [1] and modified by Pawlak [3], which is called here Knowledge Representation System. We show here that if we classify objects by means of attributes exact classification is often impossible. We propose in this case approximate (upper and lower) classification, by means of two relations "x surely belongs to X" (x ∈ X) and "x possibly belongs to X" (x ⊇ X). The method leads to very simple classification algorithm, which is outlined at the end of the paper. Application of this method to medical diagnosis is briefly discussed.

1: KNOWLEDGE REPRESENTATION SYSTEM

By a knowledge representation system (KRS) we shall mean a 4-tuple

\[S = \langle X, A, V, \delta \rangle \]

where:

\[\delta \]

These two relations \(\delta \), \(\mathcal{E} \) can be assumed as a basis for "rough sets" theory, the problem however will be discussed elsewhere. In the appendix we give only axioms for such theory.
2. APPROXIMATIONS IN KRS

Let \(S = \langle X, A, V, S \rangle \) be a knowledge representation system and let \(Y \subseteq X \). By \(\overline{Y} \) we shall mean the smallest composed set of \(S \) containing \(Y \), and by \(\underline{Y} \) we denote the greatest composed set of \(S \) contained in \(Y \). Set \(\overline{Y} \) will be referred to as upper approximation of \(Y \) in \(S \), and \(\underline{Y} \) as lower approximation of \(Y \) in \(S \).

If system \(S \) is selective then obviously \(\overline{Y} = \overline{Y} \) for any \(Y \) \(\subseteq X \) in \(S \).

Let \(S = \langle X, A, V, S \rangle \) be a knowledge representation system and let \(C(X) \) be any classification of \(X \); i.e.,
\[
C(X) = \{ X_1, X_2, \ldots, X_k \}, \quad k \geq 1, \quad \bigcup_{i=1}^{k} X_i = X, \quad \text{and} \quad X_i \cap X_j = \emptyset, \quad \text{for} \quad i \neq j, \quad i,j = 1, \ldots, k.
\]

By upper approximation of \(C(X) \) in \(S \) we shall mean the family \(\overline{C(X)} = \{ \overline{X_1}, \overline{X_2}, \ldots, \overline{X_k} \} \), and lower approximation of \(C(X) \) in \(S \) is the family \(\underline{C(X)} = \{ \underline{X_1}, \underline{X_2}, \ldots, \underline{X_k} \}. \) Of course if \(S \) is selective then \(\overline{C(X)} = \overline{C(X)} = C(X) \). Otherwise \(\overline{C(X)} \neq \overline{C(X)} \) and neither \(\overline{C(X)} \) nor \(\overline{C(X)} \) are classifications.

Our main task is connected with the problem how to express given classification \(C(X) \) by means of classification \(\overline{C} \) or in other words - how to express classification \(C(X) \) by means of attributes of the system \(S \).

If \(\overline{Y} \) is the upper approximation of \(Y \) in \(S \) then \(\overline{Y} \) is to mean accuracy of this approximation which is defined as
\[
\overline{Y} = \frac{\text{card}(Y)}{\text{card}(\overline{Y })},
\]
and similarly
3. REDUCTION OF ATTRIBUTES

Let \(S = \langle X, A, V, \mathcal{S} \rangle \) be a knowledge representation system and \(C(X) = \{X_1, \ldots, X_k\} \) classification on \(X \). The smallest set \(B \subseteq A \) will be called \(\bar{C}(X) \) - reduct of \(A \) in \(B \) if lower approximation of every class \(X_i \) of \(C(X) \) is union of some equivalence classes of the relation \(\mathcal{S} \). Similarly \(\bar{C}(X) \) - reduct of \(A \) in \(S \) is the smallest set \(B \subseteq A \) such that upper approximation of every class \(X_i \) in \(C(X) \) is union of some equivalence classes of the relation \(\mathcal{S} \).

Thus if \(B \) is \(\bar{C}(X) \) - reduct of \(A \) in \(S \) it means that we can obtain the same upper and lower approximations of the classification \(C(X) \) using only the set \(B \) of attributes instead the original set \(A \). So some attributes in the system are superfluous from that point of view.

\(\bar{C}(X) \) - reduct of \(A \) will be denoted by \(A_{\bar{C}(X)} \); and similarly \(\bar{C}(X) \) reduct of \(A \) is denoted by \(A_{\bar{C}(X)} \).

4. DESCRIPTION LANGUAGE OF KRS

In order to describe knowledge about objects with each system \(S \) a description language \(L_S \) will be associated.

Expressions (terms) of the language \(L_S \) are built up from constants \(0, 1 \), descriptors \(\{a,v\} \), \(a \in A, v \in V \), combined by symbols of boolean operations \(+, -, \cap, \cup \) in the usual way.

Terms of the language \(L_S \) are denoting subsets of objects of the system \(S \). Constants \(0, 1 \) are denoting the empty set \(\emptyset \), and the whole set \(X \) of objects in the system \(S \) respectively. Descriptor \(\{a,v\} \) is to mean the set of all objects \(x \) in \(S \) such that \(f_x[a] = v \). Boolean operations \(+, -, \cap, \cup \) are interpreted as set theoretical operations union, intersection and complement respectively.
If t is a term in L_S, then the set of objects denoted by t will be written as $\varrho_S(t)$.

Term t will be called description of the set $\varrho_S(t)$.

If $Y \subseteq X$ and there exists a term t in L_S such that t is description of Y in S (i.e., $\varrho_S(t) = Y$) then Y will be called describable set in S. Two terms t, s in L_S are semantically equivalent in S if $\varrho_S(t) = \varrho_S(s)$.

Term t will be called elementary in L_S (or short elementary) if it is of the form $(a_1x_1)(a_2x_2) \cdots (a_nx_n)$ where $A = \langle a_1, \ldots, a_n \rangle$, X_1, \ldots, X_n.

If t is an elementary term in L_S then $\varrho_S(t)$ is an elementary set in S. So elementary terms in L_S are "names" of elementary sets in S.

Term t is in normal form if $t = t_1 + t_2 + \cdots + t_k$, where t_i are elementary terms. For every term t in L_S there exists term s in L_S in normal form semantically equivalent to t. So describable set in S are union of same elementary sets in S. So the notion of an elementary set and the notion of composed set are exactly the same.

To transform terms of the language L_S preserving its semantics we can use axioms of Boolean algebra and the following specific axioms:

A1. $\neg (a, v) = \sum_{w \in V_a} (a, w)$,

A2. $\sum_{a \in V_a} (a, v) = 1$

A3. $(a, v) \land (a, w) = 0$ for $v, w \in V_a$ and $v \neq w$.

Terms t, s are syntactically equivalent in S if one of them can be obtained from another one by means of axioms of Boolean algebra and specific axioms of the system. (Rules of transformation).

Terms t, s are semantically equivalent in S if and only if they are syntactically equivalent in S.

This property is known as the completeness properly of the language.

5. MAIN PROBLEMS

We are interested in this paper with the following problems:

(i) Characteristic description. Given knowledge representation system $S = \langle X, A, \varrho, \beta, \gamma \rangle$ and classification $C(X) = \langle X_1, \ldots, X_k \rangle$. Find description in L_S of each class X_i of classification $C(X)$. Because in general case the system S is not selective then classes of the classification are not describable sets in S. So we are unable to give description of them in L_S. We can have only descriptions of lower and upper approximations of each class X_i of $C(X)$.

More exactly, if $C(X) = \langle X_1, \ldots, X_k \rangle$, then the family of terms $\langle \varrho_S(t_i) \rangle$ will be called lower description of $C(X)$ if $\varrho_S(t_i) = X_i$ for $i = 1, \ldots, k$, and similarly the family of terms $\langle \varrho_S(t_i) \rangle$ such that $\varrho_S(t_i) = X_i$ for $i = 1, \ldots, k$, is called upper description of $C(X)$.

If terms t_i are built up from the set of attributes $A_0(X)$ ($A_S(X)$) then we shall call corresponding families of terms reduced lower description of $C(X)$ or reduced upper description of $C(X)$ respectively.
The problem of finding lower and upper descriptions of C(X) is rather simple, and the corresponding algorithms will be given in the next section. The algorithm for computing the lower and upper description of the set of attributes is somewhat more difficult and will be discussed here.

(iii) Classification. The classification problem is formulated as follows:

Given system \(S = \langle X, A, V, y \rangle \), classification \(C(X) = \langle X, \ldots, X_k \rangle \), lower and upper description of \(C(X) \) and an elementary term \(t \) in \(L_0 \). Find term \(t_1 \) such that \(C_0(t) \subseteq C_0(t_1) \); if such term does not exist - find all terms \(t_j \) such that \(C_0(t) \subseteq C_0(t_j) \).

The classification algorithm is very simple and it is based on the fact that in order to check whether \(C_0(t) \) (\(t \) is elementary) is included in \(C_0(s) \) or not, it is enough to translate \(s \) to normal form and check whether \(s \) contains \(t \) as an elementary term or not.

The classification algorithm says how to classify objects, given by description (corresponding elementary term) - according to assumed classification and knowledge classification. If the system \(S \) is selective, we can classify objects exactly, i.e. to each object we can find exactly one class to which it belongs. If the system \(S \) is not selective, exact classification of objects is impossible and we can find only approximate classification, i.e. we are able to find only lower or upper approximations of class to which considered objects belong.

We can reformulate the situation also in a different manner. If we know that \(x \in X \) we shall say "\(x \) belongs surely to \(X \)" \(\{x \in X\} \) if we know that \(x \in X \), we shall say "\(x \) belongs possibly to \(X \)" \(\{x \in X\} \). So if the system \(S \) is not selective

first we ask whether given object surely belongs to some class. If the answer is positive the classification process is finished; if not - we ask about classes to which the object belongs possibly, obtaining classes to which considered object may belong.

(iii) Characteristic sets (Samples). In many areas of artificial intelligence e.g. machine learning, inductive inference, automatic hypothesis generation etc., we want to infer some general properties of objects from a finite sample (finite number of examples). The question how to find a sample of a given set of objects is of main importance for this kind of problems. Solution of this problem in our model is very simple.

Let \(t_Y, t_Z \) denote description of describable sets \(Y, Z \) in system \(S \). If \(Y \subseteq Z \) and \(t_Y = t_Z \), then \(Y \) will be called a sample (or characteristic set) of \(Z \) in \(S \). If \(Y \) is minimal set such that \(Y \) is sample of \(Z \) in \(S \) then \(Y \) will be called a proper sample (or proper characteristic set) of \(Z \) in \(S \).

Thus if \(Z = \langle Z_1, \ldots, Z_k \rangle \), is a describable set in \(S \) and \(Z_1, \ldots, Z_k \) are elementary sets, then any set consisting of some elements of all elementary sets \(Z_1, \ldots, Z_k \) is sample of \(Z \). If we take one element from each elementary set \(Z_1, \ldots, Z_k \) we obtain proper sample of \(Z \). Thus if we have system

\(S = \langle X, A, V, y \rangle \) and classification \(C(X) = \langle X, \ldots, X_k \rangle \) we can find proper samples of each describable class \(X_i \) as shown before. If class \(X_i \) is not describable in \(S \) we can find proper samples only of it upper or lower approximations (which are describable) in the same manner as before. Conversely, if we are given set \(Y \) supposed to be a sample of some set \(Z \) in system \(S \) we have to be sure that \(Y \) contains representatives.
of all elementary sets occurring in 2. Otherwise we do not obtain description of set 2 on the basis of set 1.

6. THE ALGORITHM

As mentioned before main problem connected with classification in the proposed model is to find upper and lower description of each class of the classification. We shall outline in this paragraph an algorithm which gives upper and lower description of each class of the classification.

We assume that elementary sets of system S are represented in computer memory as records structured as shown in fig. 1.

```
| OC | CC | ... | OC | CC | ET | CC | SC | ... | CC | SC |
```

- **OC** - object code
- **CC** - class code
- **ET** - elementary term
- **SC** - sort of class

![Fig. 1.](image)

Each object of a given elementary set is represented in the record by its code (object code - OC) and class code (CC) i.e. code of the class to which this object belongs. Next we have in the record an elementary term describing considered elementary set, and then each class of the classification is represented in the record by its code and sort of the class.

Sort of the class may have values $0, 1, 2$. Sort 0 of the class i is to mean that none of the object in the record is in the class i; 1 - is to denote that all object in the record belong to class i; 2 - is to mean that there are some object in the record belonging to class i.

Because sort of each class is computed from class codes of each object in the record - so they are superfluous in the record. However for simplification of the algorithm it is worthwhile to have this information directly in the record. So by means of list of such records we can represent each system $S = \langle X, A, V, S \rangle$ and classification $C(X)$ in computer memory.

In order to find lower description of a class we have to read out elementary terms from all records having in i-th class sort number 1; upper approximation of i-th class is the sum of all elementary terms occurring in records having in i-th class sort 1 or 2 ($\neq 0$).

Thus one run through the list of records give upper and lower description of each class.

We can also compute easily in the same run accuracy and dispersion of the classification.

7. APPLICATION TO MEDICAL DIAGNOSIS

Consider a medical data base concerning some patients. Each single patient in the data base is described diagnostically, pathogenetically, prognostically and therapeutically. Usually this description consist of sentences in ordinary English, however it can be easily replaced by attribute - value type description. Thus patient description can be treated as an elementary term in some description language.

Assume we are interested in classifying patients in two classes only, for example having heart disease or not. This information is given in the position CC in the record: 0 - for "not" and 1 - for "yes".
Organizing the data base as a file of records mentioned in the previous section we can easily find characteristic description (lower and upper) of ill patients, and solve the classification problem, which can be formulated as follows: given a data base as mentioned before, concerning some patient investigated for heart disease. So beside the description of the patient in the data base we have the information whether each patient is ill or not.

Now we can ask whether description of the class of ill patient is characteristic for the considered disease or not, possibly with some approximation. If so every new case can be decided on the basis of its description, i.e. having the description of a new patient we have to check only whether this description fits to the class of ill patients (or its lower or upper description).

In the case of approximate classification we can compute the accuracy of lower and upper approximation. If the accuracy is not good enough we can add new examples to the data base and compute whether they improve the accuracy essentially or not.

If it is the case we can use now the extended data base as a sample of ill patients - if not, we have to search for new examples improving the accuracy of the system. In this way we obtain a learning algorithm which gives better decisions with increasing number of examples accumulated in the data base.

To this end let us remark that the updating algorithm is very simple. Adding new example to the data base we have to check first whether such example already exists in the data base. If not, we have to add new record to the data base according to the rule given before. If such a case already exist in the data base we have then to add to the corresponding record, the new case and update "sort of the class" code of this record according to the rule:

<table>
<thead>
<tr>
<th>C</th>
<th>old SC</th>
<th>new SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

where:
CC = 0 means healthy
CC = 1 heart disease
APPENDIX. ROUGH SETS

In order to deal with situations in which the membership function is not defined univocal we propose here two membership functions \tilde{E} (surely belongs), and \underline{E} (possibly belongs). This can be considered as an alternative approach to fuzzy set theory introduced by Zadeh.

Let U be a fixed set. Subset of set U are denoted by X, Y, Z etc., \emptyset is to mean an empty set.

With each set X we associate its upper approximation \bar{X} and lower approximation \underline{X}. Then both membership functions \tilde{E}, \underline{E} are defined as

$$x \in \bar{X} \iff x \in X,$$

$$x \in \underline{X} \iff x \in X.$$

We assume the following axioms for approximations:

1. $\bar{\bar{X}} = \bar{X}$
2. $\bar{U} = \underbar{U} = U$
3. $\bar{\emptyset} = \underline{\emptyset} = \emptyset$
4. $\bar{X} \cup \underbar{Y} = \bar{X} \cup \overline{Y}$
5. $\bar{X} \cap \underbar{Y} = \bar{X} \cap \overline{Y}$
6. $\overline{\underline{X}} = \overline{X}$
7. $\underbar{\bar{X}} = \underbar{\bar{X}}$
8. $\bar{X} = \overline{\underbar{X}}$
9. $\bar{X} = \overline{X}$

It is easy to see that an upper approximation of set X satisfy axioms of topological closure, and axioms of lower approximation of X are due to axioms of interior operation. Thus in order to deal with approximate classifications we can use standard topological methods.
References

