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Medical imaging techniques like 
uorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the
di�erential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of
subjects with Parkinsonian syndromes (Parkinson’s disease,multiple system atrophy, and progressive supranuclear palsy) compared
to healthy controls. 	e scaled subpro�le model/principal component analysis (SSM/PCA) method was applied to FDG-PET
brain image data to obtain covariance patterns and corresponding subject scores. 	e latter were used as features for supervised
classi�cation by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classi�er performance.
We carried out a comparison with other types of classi�ers. 	e big advantage of decision tree classi�cation is that the results are
easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very
important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training
data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

1. Introduction

Neurodegenerative brain diseases like Parkinson’s disease
(PD), multiple system atrophy (MSA), or progressive supra-
nuclear palsy (PSP) are dicult to diagnose at early disease
stages [1]. It is important to develop neuroimaging tech-
niques that can di�erentiate between the various forms of
Parkinsonian syndromes and stages in progression. Early
disease detection is aided by brain imaging techniques like
[18F]-
uorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) and magnetic resonance imaging (MRI) to
obtain image data and derive signi�cant patterns of changed
brain activity. Several techniques have been developed to
identify disease-related network patterns of cerebral glucose
metabolism.

Covariance techniques like principal component analysis
(PCA) can be used to extract signi�cant patterns from brain

image data. PCA is known for its capability to identify
patterns in high-dimensional data like brain image data. A
possible approach to biomarker identi�cation is the scaled
subpro�le model/principal component analysis (SSM/PCA)
method [2, 3]. SSM/PCA is a feature extractionmethodwhich
enhances identi�cation of signi�cant patterns in multivariate
imaging data. 	is method has been extensively applied to
positron emission tomography data to identify brain patterns
which display signi�cant di�erences between healthy con-
trols and Parkinsonian conditions. 	e SSM/PCA method
helps to reduce data dimensions and to reveal the brain
patterns characteristic for a certain Parkinsonian syndrome.
Resting state metabolic networks obtained from FDG-PET
scans were used to identify disease-related metabolic brain
patterns of PD, MSA, and PSP [4–7]. In a previous study by
Tang et al. [8], it was demonstrated that by using an image-
based classi�cation routine, it was possible to distinguishwith
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high speci�city between PD and MSA/PSP and in a second
step between MSA and PSP as compared to controls.

In a recent study byHellwig et al. [9], the diagnostic accu-
racy of FDG-PET in discriminating Parkinsonian patients
was investigated. FDG-PET scans were analyzed by visual
assessment including individual voxel based statistical maps
(a 3D stereotactic surface projection technique; 3D-SSP).
	ese studies compared only two classes at a time or on two
levels (healthy and patient group, or two patient groups).	is
puts forward a research challenge to improve the SSM/PCA
method to be able to distinguish di�erent neurodegenerative
brain diseases from each other in one analysis.

For this reason we consider machine learning approaches
like decision tree methods to be able to compare more
than two patient groups at the same time and possibly
detect subtypes within patient groups.	e C4.5 decision tree
classi�cation algorithm by Quinlan [10] is used to classify
Parkinsonian conditions from FDG-PET imaging data. 	is
algorithm uses a feature selection criterion known as infor-
mation gain to induce decision trees from training data. 	e
subject scores derived from the SSM/PCAmethod are used as
input features for theC4.5 algorithm.A�er the training phase,
the decision trees can then be used as predictors for unseen
cases with unknown disease type. Decision trees are known
to be intuitive and easily understandable by humans [11]. In
other words, they can be easily visualized and interpreted by
the clinicians.

In this paper, we combine the SSM/PCA method in a
novel way with the C4.5 decision tree classi�cation algorithm
which classi�es Parkinsonian disorders according to their
respective disease types. We also compare the decision tree
method with a number of other classi�ers with respect to
di�erent criteria, such as performance and interpretability by
humans.

2. Materials and Methods

	e extraction of patterns and classi�cation involves four
main steps: data acquisition, feature extraction, feature selec-
tion, and classi�cation (see Figure 1).

2.1. Data Acquisition. FDG-PET scans selected from a pre-
vious study [12] describing 18 healthy controls (HC), 20 PD,
21 MSA, and 17 PSP patients were included for the present
analysis. At the time of referral for imaging, the clinical
diagnosis of most patients was uncertain. 	e �nal clinical
diagnoses according to established clinical research criteria
[1, 13, 14] were made a�er a follow-up time a�er scanning of
4 ± 3 years (y) in PD, 2 ± 1 y in MSA, and 3 ± 2 y in PSP.
Included PD patients were 9 male (M) and 11 female (F), 6
right body side a�ected and 14 le� side a�ected, with mean
age of 63±9 y andDisease Duration (DD) at scanning of 3±2
years. Fourteen probable MSA and 7 possible MSA patients
(10 M and 11 F, age 64 ± 10 y; DD 4 ± 2 y) and 13 probable and
4 possible PSP patients (9 M and 8 F, age 68± 8 y; DD 2± 1 y)
were included.

2.2. Feature Extraction. We reimplemented the SSM/PCA
method in MATLAB based on the description by Spetsieris

and Eidelberg [6, 15–17]. First, the FDG-PET images are
loaded in a data matrix ��V, and a mask is applied to each
subject image in ��V (�[1, . . . ,�] refers to subjects and the
column index V refers to voxels) to remove all voxels with
intensity value less than 35% of the whole brain volume
maximum. 	en the subject matrix is log-transformed and
doubly centered to create a subject residual pro�le (SRP)
matrix SRP�V. PCA is then applied to the matrix SRP�V to
obtain its eigenvectors. 	ese eigenvectors are called Group-
Invariant Subpro�le (GIS) patterns (GIS�, � = 1, 2, . . . ,�)
and represent characteristic disease-related brain patterns.
Furthermore, subject scores are computed as the contribution
of each subject image to a disease-related pattern GIS�.

	e SSM/PCAmethod was applied to several data groups
(disease group(s) compared to healthy controls) in train-
ing set(s) from which disease-related patterns (GIS�) were
extracted with positive and negative loadings (voxel weights)
[18].	e brain images from the training set are weighted onto
the patterns to obtain subject scores, which depict howmuch
each subject image contributes to a pattern.

Subject Scores as Features for Classi	cation. Features are
usually derived as characteristics of an object such as texture,
color, or shape [19], which can be computed for each subject
(data set) separately. 	e use of PCA-based subject scores
as features deviates signi�cantly from the standard situation
through the fact that features now depend on the whole
dataset. Also, the number of features is, at least initially, equal
to the number of data sets. So when a subject is removed
or added to the data collection the scores of all the other
subjects change as well. 	erefore, there is a need to redo the
SSM/PCA procedure once the dataset changes to obtain new
scores.

2.3. Decision Tree Classi	cation. 	e C4.5 decision tree
method [20] is a supervised learning strategy which builds a
classi�er from a set of training samples with a list of features
(or attributes) and a class label. 	e algorithm splits a set
of training samples into subsets such that the data in each
of the descending subsets are “purer” than the data in the
parent subset (based on the concept of information gain
from information theory). Each split is based on an optimal
threshold value of a single feature. 	e result is a tree in
which each leaf carries a class name and each interior node
speci�es a test on a particular feature. 	e tree constructed
in the training phase of a decision tree classi�er can be
drawn easily to understand graphical representation which
shows the successive features and threshold values which the
algorithm has used to separate the data set in nonoverlapping
classes. Once a tree has been obtained from the training
samples, it can be used for testing to classify unseen cases
where the class label is unknown.

	e C4.5 decision tree algorithm [10] has been used in
many previous studies, ranging from diatom identi�cation
[21] to classi�cation of anomalous and normal activities in
a computer network to curb intrusions [22]. 	e method
has also been applied to improve accuracy in multiclass
classi�cation problems. For example, Polat and Güneş [23]
applied a novel hybrid classi�cation system based on the C4.5
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Figure 1: Classi�cation steps.

decision tree classi�er and one-against-all approach, obtain-
ing promising results. In addition, Ture et al. [24] analysed
several decision treemethods (CHAID, CART, QUEST, C4.5,
and ID3) together with Kaplan-Meier estimates to investigate
their predictive power of recurrence-free survival in breast
cancer patients. In summary, decision trees are considered
to be powerful for classi�cation and are easy to interpret by
humans. Not only are they simple and e�ective but also they
work well with large datasets [25].

Decision Tree Classi	cation of Parkinsonian Syndromes.Using
the C4.5 machine learning algorithm, we trained classi�ers
on subject scores of extracted patterns for healthy subjects
and subjects with known types of neurodegenerative disease.
	e result is a pruned decision tree showing classi�ed subject
images. 	e goal of pruning is to obtain a tree that does not
over�t cases. Note that it would be possible to obtain 100%
correct classi�cation in the training phase by using a less
stringent pruning strategy. However, this would come at the
expense of generalization power on unseen cases.

In contrast to applications of the SSM/PCA method
whichmake a preselection of principal components (GIS vec-
tors) on which the classi�cation will be based, the C4.5 algo-
rithm uses all principal components and the corresponding
subject scores as input.	e algorithm itself determines which
principal components aremost discriminative to separate the
data set into classes. More discriminative components appear
higher in the decision tree, that is, closer to the root; refer to
Figure 2 for an example, where the subject score SSPC5 is the
most discriminative feature.

In order to apply the C4.5 classi�er to unseen cases,
the required subject scores for testing are �rst computed by
projecting the SRP of the new subject on the GIS pro�les of
the training set. 	e computation of the SRP for the unseen
case involves centering along the subject dimension, that is,
subtracting the GMP (group mean pro�le). 	e assumption
is that this GMP can be obtained from the reference group

only, that is, the group used for training the classi�er; see the
discussion in Spetsieris et al. [17, page 1244].

2.4. Other Classi	ers. We also applied a number of other
classi�ers: nearest neighbors; linear classi�ers: linear dis-
criminant analysis and support vector machines; random
forests, which is an extension of decision trees; classi�cation
and regression trees (CART) for predicting real/continuous
variables; and naive Bayes, a probabilistic classi�er. Linear
classi�ers in particular are simple to implement. 	ey are
known to work better in situations where the data is uni-
formly distributed with equal covariance.

Nearest Neighbors (NN).NN is a classi�cation method which
assigns a class to a new data point based on the class of
the nearest training data point(s). In the �-NN (�-Nearest
Neighbors) method, distances to the neighbors are computed
�rst. 	en, a new data point receives the majority label of the
� nearest data points.

Linear Discriminant Analysis (LDA). LDA, like PCA, is used
for data classi�cation and dimensionality reduction. 	is
classi�er maximizes the between-class variance and mini-
mizes the within-class variance to ensure a clear separation in
datasets. Accordingly, the training data are �rst transformed;
then the data in the transformed space are classi�ed as
belonging to a class which minimizes the Euclidean distance
of its mean to the transformed data [26].

Support Vector Machine (SVM). SVM performs classi�cation
by generating an optimal decision boundary in the form of a
hyperplane which separates di�erent classes of data points in
the feature space. 	e decision boundary should maximize
the distance between the hyperplane and support vectors
called the margin [27].

Random Forests. Random forests is a machine learning
method for classi�cation of objects based on a majority
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Figure 2: 	e decision tree built from the PD-HC dataset. Oval-shaped interior nodes: features (subject scores) used to split the data.
	reshold values are shown next to the arrows. Rectangular leaf nodes: the �nal class labels (red = PD, blue = HC).

vote of a multitude of decision trees. 	is method combines
bagging (random selection of cases) and random selection of
features (at each node) during the training phase. Also, the
trees are not pruned.

Classi	cation and Regression Trees (CART). CART, just like
C4.5, is a decision tree learningmethod.However, in addition
to using decision trees as predictors, CART includes regres-
sion trees for predicting continuous variables.

Naive Bayes.	is is a method that classi�es data points based
on their likelihood and the prior probabilities of occurrences
of known classes. 	e �nal classi�cation is achieved by
combining the prior and the likelihood to form a posterior
probability using Bayes’ rule. Overall, the new data will
belong to a class which maximizes the posterior probability.

3. Results and Discussion

3.1. Results for Decision Tree Classi	ers. Decision tree clas-
si�ers were trained by applying the C4.5 algorithm to
individual (each disease group versus healthy controls) and
combined datasets of PD, PSP, andMSA patients and healthy
controls (HC) with known class labels, as listed in Section 2.1.
For the individual datasets, we were interested in identifying
features which best separate two groups (i.e., a disease
group from healthy controls). For the combined datasets we
compared all the groups, that is, PD, MSA, PSP, and HC to
each other to obtain feature(s) which can separate the four
groups. Tree pruning was carried out by using the default
values of the C4.5 algorithm [10].

3.1.1. Building Classi	ers for Individual Datasets. Decision
tree classi�ers were built in the training phase from the

individual datasets (PD, PSP, and MSA) compared to the HC
group of 18 subjects.

PD Group. 	e decision tree built from the PD-HC dataset
(18 healthy and 20 PD subjects) is illustrated in Figure 2.
	e subject scores derived from 38 principal components
(GIS vectors) are the attributes on which decisions are made.
	ey are represented as oval-shaped interior nodes in the
tree. Next to the arrows the threshold values that were used
to split the dataset are shown. Likewise, the leaf nodes,
represented as rectangles, show the �nal class or decision
made at that level of the tree (e.g., PD or HC in Figure 2).
Red and blue colors are used to indicate cases labeled as PD
and healthy, respectively. 	e numbers between brackets in
the rectangles show the total number of cases classi�ed at
that leaf. Additionally, the number a�er the slash (if present)
represents the number of misclassi�ed cases at that leaf.

As can be seen in Figure 2, the classi�er chooses the
subject score based on component 5 (SSPC5) to make the
�rst split. In the right subtree, nine PD subjects > 254.14
are identi�ed. 	e classi�er goes on to test the rest of the
subjects based on component 26, where nine subjects (subject
score > 29.684) are identi�ed as HC, and so forth. Only one
PD subject is misclassi�ed as HC, as can be seen in Figure 2
in the lower le� rectangle.

MSAGroup.	edecision tree built from theMSA-HCdataset
(18 healthy and 21 MSA subjects) is illustrated in Figure 3(a).
	e attributes are subject scores derived from 39 principal
components. Again, one HC subject is misclassi�ed.

PSP Group. 	e decision tree built from the PSP-HC dataset
(18 healthy and 17 PSP subjects) is illustrated in Figure 3(b).
	e attributes are subject scores derived from 35 principal
components.
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Figure 3: 	e decision trees built from the MSA-HC (a) and PSP-HC (b) datasets. For details, refer to Figure 2.

3.1.2. Building Classi	ers on Combined Datasets. We also
applied the C4.5 classi�cation algorithm to the combined
datasets consisting of all four groups. 	erefore, the dataset
consisted of 76 subjects, 18 HC, 20 PD, 21 MSA, and 17
PSP. Subject scores were obtained by applying the SSM/PCA
method to the combined group. 	e resulting decision tree
is shown in Figure 4. 	ree PSP subjects are classi�ed erro-
neously, two as PD and one as MSA.

3.1.3. Leave-One-Out Cross Validation. In leave-one-out
cross validation (LOOCV), a single observation from the
original dataset is used as the validation set (also known as
test set) and the remaining observations form the training set.
	is procedure is repeated� times where each observation is
used once as a validation set.

	e LOOCV method was applied to individual and
combined datasets, that is, PD-HC, MSA-HC, PSP-HC, and
the combined dataset PD-MSA-PSP-HC to estimate classi�er
performance on unseen cases. Here performance is de�ned
as the percentage of correct classi�cations over the� repeti-
tions. To ensure that attributes of the training set, and thus the
trained classi�er, are independent of the validation sample,
the test subject was removed from the initial dataset before
applying the SSM/PCAmethod to the training set (with�−1
samples) for obtaining the subject scores needed to train the
C4.5 decision tree classi�er. 	e classi�er was then used to
determine the label for the test subject. 	is procedure was
applied for each of the � subjects in the original dataset.
Table 1 shows the classi�er performance.

As seen in Table 1, the C4.5 classi�er performs highest
with the PSP group at 80% and lowest with the PD group
at 47.4%. 	e feature at the root of a decision tree is most
signi�cant in classi�cation, since it has the highest informa-
tion gain (see Section 2.3). As seen in Figure 3, feature 1 (i.e.,
the subject score on principal component 1) is chosen by the

Table 1: Classi�er performance for the di�erent data sets (patients
versus healthy controls, number of cases in brackets) in the LOOCV,
without feature preselection. 	e column Perf. (%) indicates the
percentage of subject cases correctly classi�ed per group, Sensitivity
(%) indicates the percentage of correctly classi�ed healthy controls,
and Speci�city (%) indicates the percentage of correctly classi�ed
patients.

Feature set (size) Perf. (%) Sensitivity (%) Speci�city (%)

PD-HC (38) 47.4 50 45

MSA-HC (39) 71.8 83.3 61.9

PSP-HC (35) 80.0 77.8 82.4

classi�er in making a �rst separation between healthy and
PSP/MSA subjects. Moreover, we observed that for the PSP-
HC group feature 1 occurs as the root for all LOOCV trees.
	is behaviour is strongly linked to the high performance
of the PSP group, since the classi�er is utilizing the relevant
feature(s) for the separation of the groups.

	e MSA-HC dataset has the second best performance
and we observed that the feature at the root of the MSA-HC
tree in Figure 3(a) also appears as root in 32 out of 39 trees in
LOOCV. On the contrary, for the PD group, di�erent features
were chosen by the classi�er as root nodes of the di�erent
LOOCV trees. Apparently, the di�erent features contain only
weakly relevant information to separate the healthy group
from the PD group. In this case, application of the decision
tree method with all features included leads to a form of
over�tting. We attribute this to the fact that the PD group
is quite similar to the HC group, at least with respect to the
features we havemeasured.	e early PD groupmight contain
other disease subtypes which need to be identi�ed.

For the combined dataset (see Figure 4), feature 3 occurs
as the root node, so it is the best at separating the four
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Figure 4: 	e decision tree built from the combined PD-PSP-MSA-HC dataset.

groups (HC, PD, MSA, and PSP). Furthermore, the same
feature occurs as the root node in 63 out of 76 LOOCV
trees, implying consistency of the classi�er. However, the
performance for the combined group is low, that is, 53.9% (the
number of correctly classi�ed healthy controls, PD, PSP, and
MSA subjects is equal to 55.6%, 35%, 58.5%, and 66.7%, resp.).
Our explanation is that the number of subjects per class is
quite low given the large variability in each group. In addition,
the combined group is not well balanced in view of a relatively
small size of the healthy subject group versus the combination
of the three disease groups.

Permutation Test. In order to determine the signi�cance of
the performance results we ran a permutation test on the PD-
HC, MSA-HC, and PSP-HC groups [28, 29]. 	e steps of the
procedure are as follows:

(1) for each group, perform a LOOCV on the original
subject labels to obtain a performance ��;

(2) repeatedly permute the labels and then do a LOOCV
to obtain performances �� for � = 1, . . . , �perm (we
used�perm = 100);

(3) compute the 	 value as the total number of all ��
greater or equal to ��, divided by�perm.

If 	 < 0.05, the original LOOCV result is considered to be
statistically signi�cant.

	e results of the permutation test were as follows. For the
PSP-HC group, 	 = 0.00; for the MSA-HC group, 	 = 0.01;

for the PD-HC group, 	 = 0.62. So we can conclude that for
the PSP-HC and MSA-HC groups the performance results
are signi�cant. However, for the PD-HC group this is not
the case. 	is is consistent with the lack of robustness of the
LOOCV trees we already noted above. 	e healthy and PD
groups are very similar and hard to separate, given the small
number of datasets.

3.1.4. Preselection of Features. In the hope to improve the
classi�er performance, we varied the number of features used
to build the classi�er in the LOOCV. 	is was done in two
di�erent ways: (i) by choosing the subject scores of the 
 best
principal components according to the Akaike Information
Criterion (AIC) [30] and (ii) by choosing the �rst 
 principal
components arranged in order of highest to lowest amount
of variance accounted for. 	e classi�er performance at the
varying numbers of features is shown in Table 2.

As shown in Table 2, the performance of the PD group
improves from 47.4% to 63.2% when the number of features
is reduced from 100% to 70% and 5%. Also the performance
improves when only one best feature according to AIC is
used to build the classi�er. Likewise the performance of the
MSA and PSP groups improves from 71.8% to 74.4% and
80% to 82.9%, respectively, when the number of features is
reduced. Notable is that the number of features at which
distinct groups perform best may di�er. Speci�cally, when
using the AIC for preselection, not always one feature is
good enough to separate groups. 	is can be seen for
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Table 2: Classi�er performance with preselection of features
(patients versus healthy controls, number of cases in brackets). 	e
percentage of principal components is arranged in order of highest
to lowest variance accounted for and best number of PCs according
to AIC. Highest performances are in bold.

%/number
of PCs

In order of amount of variance According to AIC

3% 5% 50% 70% 100% 1 3 5

PD-HC
(38)

55.3 63.2 57.9 63.2 47.4 63.2 50 47.4

MSA-HC
(39)

71.8 74.4 69.2 71.8 71.8 66.7 69.2 74.4

PSP-HC
(35)

82.9 80 77.1 77.1 80 82.9 80 80

the MSA group where �ve best features were required to
obtain the best performance. Overall, preselection/reduction
of features to include relevant features can boost classi�er
performance.

3.1.5. Disease Groups versus Each Other. Disease groups were
compared to each other in a binary classi�cation, that is to
say, the PD group of 20 subjects versus the MSA group of 21
subjects, PD group of 20 versus PSP group of 17, and MSA
group of 20 versus PSP group of 17.

As seen in Table 3, PD versus MSA has the highest
performance with a relatively high sensitivity and speci�city;
consequently PD can be separated rather well fromMSA. For
the PD versus PSP and MSA versus PSP groups the perfor-
mance is slightly lower.	e performance of all groups slightly
increases when features are reduced to only 5 according to
AIC. In spite of the high performance of the PSP group versus
the healthy group as seen in Table 1, PSP performs relatively
low when compared to the other disease groups (PD and
MSA). Apparently, the PSP features look more like those of
PD or MSA patients than those of healthy controls.

3.1.6. Combined Disease Groups. Our main interest is to
distinguish the Parkinsonian syndromes from each other.
	erefore, we combined all disease groups (i.e., PD, PSP, and
MSA) without the healthy controls in a decision tree mul-
ticlassi�cation and applied LOOCV (at 100% features used).
	e performance of the classi�er is 65.5%, with 75% correctly
classi�ed PD subjects, 47.1% correctly classi�ed PSP subjects,
and 71.4% correctly classi�ed MSA subjects. Altogether the
PSP group has the lowest number of correctly classi�ed
subjects, which is in agreement with the previous observation
that it has similarities to PD and MSA. Figure 5 shows the
decision tree diagram obtained a�er training the classi�er
with all features. Only one PD subject is misclassi�ed as PSP.

Varying the Number of Features for Classi	cation. Several
LOOCV experiments were carried out while varying the
number of features used to build the classi�er. 	e highest
performance was achieved when including 25% of all fea-
tures. Results for 100, 50, and 25% of all features are shown
in Table 4.

Table 3: Performance for binary classi�cation of disease groups in
the LOOCV. 	e number of cases per group is in brackets. 	e
column Perf. indicates the percentage of subject cases correctly
classi�ed (all features included), Sensitivity indicates the percentage
of correctly classi�ed �rst disease group, Speci�city indicates the
percentage of correctly classi�ed second disease group, and Perf.
(AIC-5) indicates the performance when features are reduced to the
best 5 PCs according to AIC.

Group Perf. (%) Sensitivity Speci�city
Perf.

(AIC-5)
(%)

PD versus
MSA (41)

73.2 70 76.2 78

PD versus
PSP (37)

67.6 80 52.9 70.3

MSA versus
PSP (38)

68.4 76.2 58.8 71.1

Table 4: Performance for binary classi�cation of disease groups
(number of cases in brackets) in the LOOCV with feature pres-
election. 	e columns Feat. and Perf. indicate the percentage of
features used and the corresponding performance. 	e remaining
columns show confusionmatrices and class accuracies.	e number
of subjects correctly classi�ed for each class is in bold.

Feat. % Perf. % Class PD (20) PSP (17) MSA (21)

100 65.5

PD 15 5 3

PSP 4 8 3

MSA 1 4 15

Accuracy 75 47.1 71.4

50 67.2

PD 15 5 2

PSP 4 9 4

MSA 1 3 15

Accuracy 75 52.9 71.4

25 69

PD 15 5 2

PSP 4 9 3

MSA 1 3 16

Accuracy 75 52.9 76.2

3.2. Results for Other Classi	ers. We used “scikit-learn” [31], a
so�ware package that includes a variety of machine learning
algorithms, to obtain classi�cation results for a number
of other classi�ers. 	e classi�ers used were described in
Section 2.4. In principle, we should test on subject scores
obtained from the leave-one-out method before applying
the SSM/PCA method. However, this would lead to a very
time-consuming procedure. Since our goal is to obtain an
impression of the improvements possible by using other
classi�ers, we instead applied LOOCV on subject scores
obtained from applying the SSM/PCA method to the whole
training set (all subjects included).

Performances of PD,MSA, andPSP groups versus healthy
controls are shown in Table 5. No preselection of features was
applied.

3.3. Discussion. 	e LOOCV performance shown in Table 5
is highest for the SVM and NN classi�ers. 	ese classi�ers
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PSP (13) MSA (3)

MSA (13)

MSA (5) PSP (2)PD (2)

PD (17)PSP (3/1)

SSPC3

SSPC2

SSPC5

SSPC55

SSPC5 SSPC43

SSPC14

≤41.19 >41.19

≤63.227 >63.227

≤419.62 >419.62

≤541.39 >541.39

>−110.44≤−110.44

>−23.796≤−23.796

>−52.757≤−52.757

Figure 5: 	e decision tree built from the disease groups compared to each other, that is, PD-PSP-MSA dataset.

perform better than C4.5, especially for the PD-HC group.
We attribute this to the fact that SVM and NN only have
one decision boundary. On the other hand, C4.5 has several
decision boundaries, one for each internal node of the
decision tree. 	us a subject is tested more than once and
may become vulnerable to misclassi�cation in the case where
the features depict noise or are irrelevant. CART is quite
similar to C4.5; for the PD and PSP groups it has a higher
performance but for MSA it is considerably lower.

Decision tree methods are faced with the problem of
over�tting, which causes all training cases to be correctly
classi�ed but with limited generalizability; that is, the learned
tree tends to be so perfect that it is prone tomisclassify unseen
cases. Also, providing many features to the decision tree
inducer can cause a low performance due to irrelevant and
redundant features, especially when the number of subjects
is relatively small. Moreover it has been observed that C4.5’s
feature selection strategy is not optimal, so having irrelevant
and correlated features can degrade the performance of
the classi�er [25]. In addition, the C4.5 classi�er has been
reported to perform lower when it comes to continuous
attributes, which is the case in our study (as subject scores
are continuous) [32]. However, with preselection of features
and pruning decision trees a�er construction, these problems
can be reduced. Indeed, we found an increase in performance,
especially for the PD-HC group (see Table 2).

When the number of subjects in the training set is large
enough, the decision tree classi�er will be capable of per-
forming subtype classi�cation of Parkinsonian syndromes.
Another important advantage of the decision tree method
over most other methods is that it provides an intuitive

Table 5: 	e LOOCV performance for various types of classi�er.
Features used were the subject scores obtained a�er applying the
SSM/PCA method on all subjects included in the datasets. (∗) Note
that for LDA only 90% of the features were considered because of
the classi�er’s restrictions while constructing the covariance matrix.
For easy reference, the feature preselection results for C4.5 already
presented in Table 2 are included.

Dataset PD-HC MSA-HC PSP-HC

Nearest neighbors 76.3 76.9 80.0

Linear SVM 78.9 92.3 88.6

Random forest 63.2 61.5 71.4

Naive Bayes 65.8 71.8 71.4

LDA (∗) 50.0 61.5 65.7

CART 57.9 53.8 85.7

C4.5 63.2 74.4 82.9

way to get insight in the behavior of the classi�cation algo-
rithm to physicians. Drawings of decision trees are human
understandable, and the way a decision tree algorithm takes
repeated decisions with respect to multiple criteria is close
to the way humans carry out multicriteria decision making.
Likewise, the signi�cance of a particular feature is recogniz-
able from the level in which the corresponding node appears
in the constructed tree. 	erefore, we have the opportunity
to use human intelligence in the decision tree method to
select those features (i.e., the corresponding disease-related
patterns) that best distinguish between healthy subjects and
patients.
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4. Conclusions

Using the SSM/PCA method, Group-Invariant Subpro�le
(GIS) patternswere extracted fromFDG-PETdata of patients
with three distinct groups of syndromes, that is, Parkinson’s
disease (PD), multiple system atrophy (MSA), and progres-
sive supranuclear palsy (PSP), always matched with a healthy
control (HC) group. 	e subject scores corresponding to
these patterns served as the feature set for the C4.5 decision
tree classi�cation algorithm. Classi�ers were constructed for
future prediction of unseen subject images. Validation of
classi�ers to ensure optimal results was performed using
the leave-one-out cross validation (LOOCV) method. A
permutation test was performed to assess the statistical
signi�cance of the results.

We also compared the C4.5 classi�er to various other
classi�cation algorithms, that is, nearest neighbors, linear
SVM, random forest, naive Bayes, LDA, and CART. Of all
classi�ers, the performance of nearest neighbors and linear
SVM was highest. We found that most classi�ers perform
relatively well for the PSP-HC and MSA-HC groups but less
well for the PD-HC group. 	is may be closely linked to the
fact that the FDG-PET activation pattern of (early stage) PD
patients is close to that of normal subjects, whereas there is
one distinctive feature which is present in MSA (low uptake
in putamen) and PSP (low frontal uptake), respectively, and
absent in controls.

In clinical practice, the main problem is not so much
to distinguish patients with Parkinsonian syndromes from
healthy controls but to distinguish between the di�erent
Parkinsonian diease types. For this reason, we also compared
disease groups to each other in a binary classi�cation with
promising results: in this case classi�er performance was
signi�cantly higher also when the PD group was involved.
In a recent study, Garraux et al. [33] used Relevance Vector
Machine (RVM) to classify 120 Parkinsonian patients on the
basis of either binary classi�cation (a single class of 3 atypical
Parkinsonian syndromes (APS) versus PD) or multiple clas-
si�cation (PD and the 3 APS separately versus each other).
	e performance achieved in the study of Garraux et al. was
higher than in ours. Note, however, that they had a larger
dataset and incorporated bootstrap aggregation (bagging) to
boost the performance. We plan to incorporate bagging in
future work to improve classi�er performance.

To achieve high-quality biomarker identi�cation, one
needs to accumulate large numbers of patient data in several
phases of disease progression. 	is is what we are cur-
rently pursuing in the GLIMPS project [34] which aims
at establishing a national database of FDG-PET scans in
Netherlands. Additionally, data could be generated from
other imaging modalities such as (f)MRI, ASL, and DTI to
enable the collection of a broad set of brain features needed
for distinguishing the di�erent disease types.
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