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Abstract

In this paper we classify all semisimple tensor categories with the same fusion rules as Rep(SO(4)), or
one of the associated truncations. We show that such categories are explicitly classified by two non-zero
complex numbers. Furthermore we show these tensor categories are always braided, and there exist
exactly 8 braidings.

1 Introduction

In this note we continue the program to classify tensor categories with fusion rules the same as Rep(G) for
G a semisimple Lie group (or of the associated fusion categories). Classification is currently known for the
majority of the classical Lie groups. The known results are for: SU(2) [FK93], SU(N) [KW93], O(N) and
Sp(N) [TW05], and SO(N) (N 6= 4) [Cop20]. The latter two results apply to ribbon categories, while the
first two do not require any assumption of braiding and provide a classification for pivotal tensor categories.
Our technique for SO(4)-type categories also does not require a braiding assumption.

The standard technique for attacking these classification problems is to identify the endomorphism al-
gebras of tensor powers of the “vector representation” in an arbitrary tensor category with the same fusion
rules of Rep(G), and to show that this algebra must agree with the known examples. In the case of SU(N)
this gives well-known quotients of the Hecke algebras [Wen88], and in the O(N) and SO(N) cases we find
quotients of BMW algebras [BW89]. For SO(N) with N 6= 4 the endomorphism algebras also afford repre-
sentations of the BMW algebra, but the image of the BMW algebra does not generate the endomorphism
algebra for SO(2n) for n > 2.

The gap at SO(4) is due to the fact that the tensor square of the vector representation splits into four
simples, rather than three (as is the case for every other SO(N) with N ≥ 3). This means that a braid
element on X⊗2 need not satisfy the cubic BMW skein relation, which was required for the method of
[Cop20].

There is another important distinction between SO(4) and SO(2n) with n > 2, which is that the root
system for SO(4) is not irreducible (its root system is the product A1 ×A1). As we shall see, this manifests
in categorifications of SO(4) fusion rules being described by two independent parameters q1, q2, rather than
a single parameter q.

In this paper we close this gap by studying a known SO(4)-type category and identifying the monoidal
subcategory whose objects are tensor powers of the vector representation. This subcategory is essentially a
planar algebra, and we describe it by generators and relations in a planar algebraic way, although we do not
use that language. The planar algebras we describe can be seen as natural extensions of the Fuss-Catalan
planar algebras [BJ97]. We then show that the corresponding subcategory of any category with SO(4)-type
fusion rules must have the same presentation. We then obtain the classification of tensor categories with
SO(4) fusion rules from standard reconstruction arguments.

We say a tensor category has SO(4) fusion rules if its Grothiendieck ring is isomorphic to K(Rep(SO(4))),
or isomorphic to the Grothendieck ring of one of the associated fusion categories. We label these fusion rings
by Kn1,n2

where ni ∈ N ∪ {∞} (see Definition 2.2 for a precise definition). The fusion graph of Kn1,n2
for
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the vector representation is given by (shown here with n1 = 5 and n2 = 8):

n1 + 1

n2 + 1

1

The classification of such categories is given in our main theorem.

Theorem 1.1. Let C be a pivotal tensor category with K(C) = Kn1,n2
where n1, n2 ∈ N≥2 ∪∞. We have

the following:

1. The category C is monoidally equivalent to Cq1,q2 where q1, q2 ∈ C× with the order of q2
i equal to ni + 1

(or possibly q2
i = 1 if ni =∞). Further we have the monoidal equivalences

Cq1,q2 ' Cq2,q1 ' Cq1,q−1
2
' Cq−1

1 ,q2
' C−q1,−q2 .

2. The category Cq1,q2 is braided, and the possible braidings on these categories are parameterised by the
set

{(s1, s2) : s2
1 = −q±1

1 and s2
2 = −q±1

2 }/{(s1, s2) = (−s1,−s2)}.

When both n1, n2 > 2, these eight braidings are all distinct. If either n1 or n2 are equal to 2, then
four of these braidings are distinct. If both n1 and n2 are equal to 2, then two of these braidings are
distinct.

Constructions of these categories are given in Definition 2.1.

Remark 1.2. The above classification is up to equivalences which preserve the distinguished objects f (1) �
f (1) in the categories Cq1,q2 . The equivalences given in Theorem 1.1 are all the possible equivalences which
preserve f (1)�f (1). There can exist additional equivalences between the categories Cq1,q2 which don’t preserve
f (1) � f (1).

An illustrating example is seen in the case when q2
2 is a root of unity of even order n2 + 1 such that

[n2]q2 = −1. For these parameters, we have that Cq1,q2 is monoidally equivalent to Cq1,−q2 with the map
sending f (1) � f (1) to f (1) � f (n2−1).

This paper is outlined as follows.
In Section 2 we define the categories Cq1,q2 which are examples of categories with SO(4) fusion rules.

We define what it means to give a semisimple presentation of a pivotal tensor category, and give such a
presentation for the categories Cq1,q2 .

In Section 3 we use planar algebraic inspired techniques to completely presentation for an arbitrary pivotal
tensor category with SO(4) fusion rules. These techniques were inspired by similar results in [BJ00, Liu16].
The presentation we describe is exactly the same as the category Cq1,q2 , hence reconstruction techniques
allow us to deduce that the arbitrary pivotal tensor category must be Cq1,q2 . Our methods to describe the
arbitrary presentation rely heavily on the SO(4) fusion rules for objects appearing in the tensor square, and
the tensor cube, of the “vector representation”. By working in the idempotent basis, we are able to use
these fusion rules to pin down a large number of relations in our arbitrary category. The hard part of the
argument is determining the Fourier transformation of our generators. By playing off the standard algebra
multiplication in End(X ⊗ X) against the special convolution algebra structure, we are able to fully pin
down the Fourier transform, and finish our presentation.
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We finish the paper with Section 4, where we classify all the braidings on the monoidal categories Cq1,q2 .
The key idea to classify these braidings is to consider the adjoint subcategory Cad

q1,q2 , which we know is
equivalent to a product of SO(3) type categories. The braidings on the SO(3) type categories are fully
classified [TW05], and we can leverage this information up via some technical computations to classify all
braidings on the full category Cq1,q2 .

2 Preliminaries

We refer the reader to [EGNO15] for the basics on tensor categories.

2.1 Tensor categories with SO(4) fusion rules

In this subsection we present a family of pivotal tensor categories with SO(4) fusion rules. We build these
categories using Deligne products of SU(2) categories.

Categories with SU(2) fusion rules (and their truncations) are known as type A categories. In the
generic case there are infinitely many simple isotypes labeled 1 = X0, X1, X2, . . . and the fusion graph for
multiplication by X1 is

In the fusion case there are finitely many simples 1, X1, X2, . . . , Xn−1 and the fusion graph for multipli-
cation by X1 is the truncated graph

Fusion categories with these fusion rules are known as An categories.
Type A and An categories are classified up to monoidal equivalence [FK93] by the dimension of the object

X1, which can be expressed as
dim(X1) = [2]q = q + q−1 (1)

where q is a non-zero complex number which is not a root of unity in the generic case, and is a primitive root
of unity in the fusion case. These categories are spherical and there is a unique choice of spherical structure
such that X1 is symmetrically self-dual. We denote a type A or An category with parameter q by Aq. Note
that Aq = Aq−1 .

The categories Aq are all braided. The A and An are classified up to braided equivalence (which fixes
distinguished object X1), by the two eigenvalues of the braid σX1,X1

. These eigenvalues are s and −s−3

where s is a solution to either s2 = −q or s2 = −q−1. Hence there are four distinct braidings on each of the
monoidal categories Aq.

With the categories Aq in hand, we can define the categories Cq1,q2 which appear in our main theorem.

Definition 2.1. Let Cq1,q2 denote the sub-tensor category of Aq1 �Aq2 generated by X := X1 � Y1 (we use
X1, resp. Y1, to denote the generating object of Aq1 , resp. Aq2).

The categories Cq1,q2 inherit 16 braidings from the four braidings on each of Aq1 and Aq2 . These are
parameterised by solutions to s2

1 = −q±1
1 and s2

2 = −q±1
2 . The braided categories corresponding to the

solutions (s1, s2) and (−s1,−s2) are braided equivalent. Hence we get 8 distinct braidings on the categories
Cq1,q2 .

We say a category has SO(4) type fusion rules if its Grotheindeick ring is isomorphic to the Grotheindeick
ring of a category Cq1,q2 .

Definition 2.2. For n1, n2 ∈ N ∪ {∞} we define the fusion ring Kn1,n2
by

Kn1,n2
:= K(Cq1,q2)

where each qi is a non-zero complex number with order 2(ni + 1).
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Let us expand on the fusion rules Kn1,n2 further, as an explicit description is useful later on in this paper.
The simple elements of Kn1,n2 are those Xi � Yj with 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1 and i+ j ∈ 2 Z.

From the fusion graphs we see that all the fusion rings are Z2-graded (since 1 only appears in even powers
of X). The adjoint subcategories have fusion rules of SO(3) × SO(3) type, an important fact we will use
later.

2.2 Presentations for semisimple tensor categories.

We recall some basic facts regarding presentations of semisimple spherical tensor categories, before providing
a presentation of the categories Cq1,q2 .

In this note a based tensor category will be a pair (C, X) where X is a chosen tensor generator of a spherical
tensor category C. The An categories are conventionally based by picking a simple object corresponding to
the vector representation of SU(2). Likewise, we consider any SO(4)-category based by a simple object X
corresponding to the vector rep of SO(4).

Given a spherical tensor category C, let N (C) denote the tensor ideal of negligible morphisms in C. It is
well-known that the quotient C /N (C) is a semisimple spherical tensor category, called the semisimplification
of C [EO18].

A presentation of a (small) spherical based tensor category (C, X) is a set of morphisms F between tensor
powers of X, and a set of relations R satisfied in C such that

C ∼= C(F )/R

where C(F ) is the free (based, strictly pivotal and strict monoidal) spherical C-linear monoidal category
generated by one object and the morphisms F , R is the smallest tensor ideal of C(F ) containing R, and the
notation C denotes the Cauchy completion (additive and idempotent completion) of a category C.

For instance, an An category has a presentation with no generators and the relations

= [2]q and f (n) = 0

where q is a primitive 2(n + 1)-st root of 1 and f (n) denotes the n-th Jones-Wenzl projection. Note that
here we have chosen a spherical strucure which makes the generating object symmetrically self-dual. This
allows us to draw unorientated strands.

Definition 2.3. A semisimple presentation of a based semisimple spherical tensor category C is a set of
morphisms F and a set of relations R satisfied in C such that

C′ = C(F )/R.

is a tensor category (in particular its tensor unit is simple), and

C ∼= C′ /N (C′).

A semisimple presentation generally contains less information than a presentation (since we do not need
to provide relations for the negligible ideal). For example, an An category has a semisimple presentation
with no generators and the single relation

= [2]q

where q is a primitive 2(n + 1)-st root of 1. The relation f (n) = 0 is not necessary since the element f (n)

gets sent to 0 when we quotient by negligibles.
The condition that C(F )/R (or equivalently C(F )/R) has a simple tensor unit is often summarized as

“having enough relations to evaluate closed diagrams”. The following well-known fact states that having
enough relations to evaluate closed diagrams is a sufficient condition to produce a semisimple presentation.
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Lemma 2.4. [BPMS12, Proposition 3.5] Suppose a semisimple spherical tensor category C is generated
by morphisms F and satisfies relations R such that C(F )/R has a simple tensor unit. Then (F,R) is a
semisimple presentation for C.

We can outline our argument for classifying SO(4)-type categories:

Step 1. Provide a semisimple presentation for the categories Cq1,q2 (the presentation depends on q1, q2).

Step 2. Given an arbitrary category D with SO(4)-type fusion rules, find parameters q1, q2 and mor-
phisms in D which satisfy the relations for Cq1,q2 from Step 1.

Step 3. Conclude that D ∼= Cq1,q2 , as follows. Let C′ = C(F )/R where (F,R) is the semisimple
presentation of Cq1,q2 from Step 1. Observe that Step 2 provides a tensor functor

Φ : C′ → D.

The kernel of Φ is a tensor ideal of C′, which must be contained in N (C′) since N (C′) is the unique maximal
tensor ideal of C′. Let Im(Φ) denote the image of Φ, a tensor subcategory of D. If X⊗i and X⊗j are any
objects of C′, then we may also consider them objects of Cq1,q2 and D (through mild abuse of notation), and
the previous two sentences give inequalities

dim HomCq1,q2
(X⊗i, X⊗j) ≤ dim HomIm(Φ)(X

⊗i, X⊗j) ≤ dim HomD(X⊗i, X⊗j).

On the other hand,
dim HomD(X⊗i, X⊗j) = dim HomCq1,q2

(X⊗i, X⊗j)

since D and Cq1,q2 have the same fusion rules. Hence both inequalities above are equalities and in particular
Im(Φ) ' D. Since D is semisimple, all negligible morphisms are zero so the kernel of Φ must be equal to
N (C′). In conclusion, this shows D ' C′ /N (C′) ' Cq1,q2 .

With the above ansatz in mind, let’s give a semisimple presentation for the categories Cq1,q2 . To reduce
clutter, we abbreviate the quantum numbers

[n]q1 by [n]1, and [n]q2 by [n]2.

Given a morphism f ∈ End(X⊗2), we let ρ(f) denote the Fourier transform, or one-click rotation of f :

ρ(f ) = ρ(f ) = ρ(f )

The second equality expresses that we assume our categories are strictly pivotal and that every object is
self-dual (this is also equivalent to ρ2(f) = f). Our presentation for Cq1,q2 will use two generators P and Q
in End(X⊗2). They are defined by

P =
1

[2]2
f (2) � and Q =

1

[2]1
� f (2), (2)

where f (2) denotes the second Jones-Wenzl projection in the respective factors. With these definitions, P is
the projection with image X2 � 1 ⊂ X⊗2 and Q is the projection with image 1 � Y2 ⊂ X⊗2.

Lemma 2.5. The morphisms P and Q generate Cq1,q2 as a spherical tensor category.
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Proof. This has been proved in greater generality using planar algebra language by Liu [Liu16, Corollary
3.2]. We provide a proof in our case for the reader’s convenience. We will show that the simpler morphisms

g = � and h = � generate Cq1,q2 . Since P and Q are related to g and h by the equations

P =
1

[2]2

(
g − 1

[2]1

)
and Q =

1

[2]1

(
h− 1

[2]2

)
,

the result will follow.
To show that g and h generate, it suffices to check they generate all the morphisms in the full tensor

subcategory of Cq1,q2 with objects 1, X,X⊗2, X⊗3, . . . (since X tensor generates Cq1,q2). Furthermore, Cq1,q2
is Z2-graded, so by Frobenius reciprocity it’s enough to show that g and h generate the endomorphism
algebras End(X⊗k). We have

End(X⊗k) ∼= EndAq1
(X⊗k1 )⊗C EndAq2

(Y ⊗k1 ).

The subalgebra EndAq1
(X⊗k1 ) � idk is generated (as an algebra) by the cup/cap elements g1, g2, . . . , gk−1

where
gi = idi−1⊗g ⊗ idk−i−1 .

Similarly, idk�EndAq2
(Y ⊗k1 ) is generated (as an algebra) by the corresponding hi’s. Hence g and h generate

End(X⊗k) (as a Hom space in a spherical tensor category).

Now that we know P and Q generate Cq1,q2 , we can give a semisimple presentation generated by these two
elements. This presentation is closely related to the Fuss-Catalan algebras of [BJ97]. By choosing spherical
structures on the categories Aq1 and Aq2 , we can ensure that Cq1,q2 is generated by a symmetrially self-dual
object.

Proposition 2.6. For q1, q2 non-zero complex numbers, the pivotal category Cq1,q2 is tensor generated by
the symmetrically self-dual object X = X1 � Y1, and has a semisimple presentation with two generators
P,Q ∈ End(X⊗2) and the following relations:

(a) = [2]1[2]2

(b) P 2 = P,Q2 = Q and PQ = QP = 0

(c) Fourier equation:

ρ(P ) =
−1

[2]1[2]2
+

1

[2]22
+

[2]1
[2]2

Q.

(d) Bubble popping:

P = P = Q = Q = 0

P = P =
[3]1

[2]1[2]2
, Q = Q =

[3]2
[2]1[2]2

(e) Triangle popping:

P

P

P

= − 1

[2]1[2]2
P +

P

P
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Q

Q

Q

= − 1

[2]1[2]2
Q +

Q

Q

Q

P

Q

=

P

Q

P

= 0

Furthermore, for (s1, s2) solutions to s2
1 = −q±1

1 and s2
2 = −q±1

2 , we have a braiding on Cq1,q2 defined by

= s1s2 +

q1s
2
1

q21+1
+

q2s
2
2

q22+1
+ 1

s1s2
+

(
q2
2 + 1

)
s1

q2s2
P +

(
q2
1 + 1

)
s2

q1s1
Q.

Remark 2.7. Note that the Fourier equation (c) implies

ρ(Q) =
−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P.

Proof. By Lemma 2.5, the morphisms P and Q generate the category. Checking that they satisfy the given
relations we leave as an exercise in type A skein theory.

We must check that we have enough relations to describe the category Cq1,q2 . By Lemma 2.4, it suffices
to show that we can use the provided relations to evaluate any closed planar diagram made from P ’s and
Q’s to a scalar. We can represent such a diagram as a planar 4-valent graph with vertices labeled by P ,
Q, ρ(P ) or ρ(Q). A simple modification of [MPS17, Lemma 6.15] shows that a planar 4-valent graph must
contain either a loop, bigon, or triangle. We prove by induction on the number of vertices that the diagram
can be reduced to a scalar using the relations. If there are no vertices, then relation (a) reduces any diagram
(made of cups/caps) to a scalar. For the inductive step, note that if the graph contains any self-loops then
the bubble popping relations allow one to reduce the number of vertices. If there are no self-loops, then the
graph must contain a bigon or a triangle. The relations (b) and (c) imply that any diagram with a bigon
can be reduced to a sum of diagrams with fewer vertices. Finally, any triangle can be reduced in a similar
way using the triangle popping relations and relation (c) (possibly after applying a 2 or 4-click rotation to
the triangle).

The braidings described in the final statement come from the known braidings on Aq1 �Aq2 .

3 Monoidal Classification

In this section we classify pivotal categories C with K(C) ∼= Kn1,n2
. We may identify the Grothendieck ring

of C with that of Cq1,q2 thus use the symbols Xa � Yb to denote simple objects in C.
The subcategories tensor generated by X2 � 1 and 1 � Y2 have SO(3)-type fusion rules. A result of

Etingof and Ostrik ([EO18], Thms. A.1, A.3 and Remark A.4) states that any pivotal category with SO(3)
type fusion rules is monoidally equivalent to Rep(SO(3)q) ∼= Aad

q where q is not a root of unity or q2 = ±1

7



(if there are infinitely many simples) or q is an appropriate root of unity in the fusion case. 1

〈X2 � 1〉 ∼= Aad
q1 and 〈1 � Y2〉 ∼= Aad

q2

where

• In the K∞,∞ case, q1 and q2 are not roots of unity and/or q2
1 = 1 and/or q2

2 = 1.

• In the Kn1,n2
case, q2

1 is a primitive (n1 + 1)-st root of 1 and q2
2 is a primitive (n2 + 1)-st root of 1.

• In the Kn1,∞ case, q2
1 a primitive (n1 + 1)-st root of unity, and q2 is not a root of 1 (or q2

2 = 1).

In particular we have
dim(X1 � 1) = [3]1 and dim(1 � Y1) = [3]2 (3)

again using the convention [n]i = [n]qi . Since Aad
qi ' A

ad
−qi we are free to replace qi by −qi.

Lemma 3.1. By possible replacing q1 with −q1 and/or modifying the spherical structure, we may assume
X = X1 � Y1 is symmetrically self-dual and

dim(X) = [2]1[2]2.

Proof. By changing the pivotal structure by an element of Hom(Z2 → C×) we can assume that X is sym-
metrically self-dual.

The fusion rules for C dictate

X⊗2 ∼= 1⊕X2 � 1⊕ 1 � Y2 ⊕X2 � Y2. (4)

Taking dimensions we find
dim(X)2 = 1 + [3]1 + [3]2 + [3]1[3]2.

Hence
dim(X) = ±[2]1[2]2.

By possibly replacing q1 with −q1 we can ensure that dim(X) = [2]1[2]2

Remark 3.2. We note some small degenerate cases, which will allows us to restrict q1 and q2. If either of
n1 or n2 is equal to 2, then Kn1,n2

has either type A or type An fusion rules. Classification is already known
in these cases [FK93], so we can assume both q2

1 and q2
2 have orders larger than three. If both n1 and n2 are

equal to 3, then Kn1,n2
is a Tambara-Yamagami fusion ring with group G = Z2 × Z2, which is another case

where classification is known [TY98]. Hence we can assume that the order of q2
2 is greater than four.

3.1 Planar calculations

We now wish to obtain a semisimple presentation for the category C. To do this we first need to find
generators. Using the fusion rule Eq. (4) we can define morphisms P and Q:

Definition 3.3. Let P and Q in EndC(X
⊗2) denote the minimal idempotents with images isomorphic to

X2 � 1 and 1 � Y2, respectively.

Note that {P,Q, , } forms a basis for EndC(X
⊗2).

Our goal will be to show that P and Q generate a category with the same semisimple presentation as
Cq1,q2 . As mentioned previously, this will show that C must be monoidally equivalent to Cq1,q2 .

Note that relation (a) is true from our choice of normalization and (b) follows from the fact P and Q are
orthogonal idempotents. We show the rest of the relations hold in a series of lemmas.

1This is only true when q is not a primitive eight root of unity. When q is a primitive eight root of unity we have
K(Rep(SO(3)q) ∼= K(Vec(Z2)), and there is an additional category coming from the twisting of the associator. However, in
our situation we have that (X1 � Y1)⊗ (X1 � Y1) is an algebra object which contains the simple object X2 � 1. Hence we can
not have that 〈X2 � 1〉 ' Vecω(Z2). Hence we can still assume that 〈X2 � 1〉 ' Aad

q .

8



Lemma 3.4. The bubble popping relations are satisfied in C.

Proof. If we cap off P or Q on the top or bottom, we must get 0 since P and Q are projections onto nontrivial
objects of C. Capping the sides of P or Q must result in a scalar times the identity of X, and taking traces
yields the result.

Lemma 3.5. The triangle popping relations are satisfied in C.

Proof. The relations that include both P and Q follow from the fusion rules. Let us prove the triangle relation
involving three P ’s. By the fusion rules, HomC(P ⊗X⊗2, P ) is 2-dimensional if n1 > 3, and 1-dimensional
if n1 = 3, and spanned by the following diagrams:

P and

P

P

By turning the lower right strand upwards, it is seen that these diagrams are linearly independent if
n1 > 3 (as P ⊗X � X). Therefore the triangle with 3 P’s is a linear combination of these two diagrams. By

precomposing with idX⊗2 ⊗P and idX⊗2 ⊗ , the coefficients are determined and give the triangle popping
relation.

The case of a triangle with three Q’s is very similar.

The trickiest relation to prove is the Fourier transform equation (c). In order to do this we need to study
the convolution algebra of EndC(X

⊗2). This is the algebra obtained by taking horizontal multiplication,
which is denoted by ∗. Note that we have x ∗ y = ρ(ρ(x)ρ(y)).

First observe we can compute the structure coefficients of the convolution algebra of EndC(X
⊗2) in the

{P,Q, , } basis. The convolution of anything with or is easy to figure out, so it suffices to compute
P ? P , P ? Q and Q ? Q. At this point it’s useful to name another element of End(X⊗2):

Definition 3.6. Denote by R the minimal projection of End(X⊗2) of type X2 � Y2.

The element R has the expression

R = − 1

[2]1[2]2
− P −Q

since the set { 1
[2]1[2]2

, P,Q,R} form a complete set of minimal idempotents of EndC(X ⊗X).

Lemma 3.7. We have the following relations in C:

P ? P =
[3]1

[2]21[2]22
+

[3]1 − 1

[2]1[2]2
P

Q ? Q =
[3]2

[2]21[2]22
+

[3]2 − 1

[2]1[2]2
Q

P ? Q =
1

[2]1[2]2
R =

1

[2]1[2]2

(
− 1

[2]1[2]2
− P −Q

)
.

Proof. First consider the diagram for P ? P . It must be contained in the span of and P (this follows
from the fusion rules). The coefficients are determined by applying caps to the bottom and side (and using
dim(P ) = [3]1 and dim(X) = [2]1[2]2).

The equation for Q ? Q is verified similarly. To derive the equation for P ? Q, note that P ⊗ Q is a
minimal idempotent of EndC(X

⊗4) whose image is a simple object of type X2 � Y2. Since X2 � Y2 appears
with multiplicity 1 in X ⊗X and P ? Q factors through P ⊗Q, we see that P ? Q is a scalar multiple of R.
The scalar is computed by taking traces.

9



Remark 3.8. The above lemma shows that the structure constants of the convolution algebra in the

P,Q, , basis depend only on q1 and q2.

Now that we know the multiplication structure on the convolution algebra, it is routine to compute the
minimal idempotents.

Lemma 3.9. A complete set of minimal idempotents for the convolution algebra (EndC(X ⊗X), ?) is given
by {

1

[2]1[2]2
,

−1

[2]1[2]2
+

1

[2]22
+

[2]1
[2]2

Q,

−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P,

1

[2]1[2]2
+ (1− 1

[2]21
− 1

[2]22
) − [2]2

[2]1
P − [2]1

[2]2
Q

}
.

Proof. This can be checked directly using the structure constants given in the previous lemma.

As the Fourier transform preserves minimal idempotents, we can now pin down the Fourier transform of
P (and hence Q) to one of two possibilities.

Lemma 3.10. We have have two possibilies for the Fourier transform of P . Either

ρ(P ) =
−1

[2]1[2]2
+

1

[2]22
+

[2]1
[2]2

Q

or

ρ(P ) =
−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P

with the latter case only occuring when q1 = ±q2.

Proof. The Fourier transform ρ intertwines the standard product and convolution product in EndC(X ⊗X),
so ρ(P ) must be a minimal idempotent with respect to the convolution product. Hence it must belong to
the set listed in the previous lemma. A simple computation shows that

ρ

(
1

[2]1[2]2

)
=

1

[2]1[2]2

in the space EndC(X ⊗X), and thus

ρ(P ) ∈ { −1

[2]1[2]2
+

1

[2]22
+

[2]1
[2]2

Q,

−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P,

1

[2]1[2]2
+ (1− 1

[2]21
− 1

[2]22
) − [2]2

[2]1
P − [2]1

[2]2
Q}.

We want to rule out the third listed solution. Indeed, if ρ(P ) was equal to that solution then taking traces
gives

[3]1 = [3]1[3]2,

which implies [3]2 = 1, a contradiction to Remark 3.2.
In a similar fashion, if ρ(P ) was equal to the second solution, then taking traces shows [3]1 = [3]2. This

can only happen if q1 = ±q±1
2 .
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Finally, by considering fusion of depth three objects, we can deduce the Fourier transform equation (c):

Lemma 3.11. In C we have the equation

ρ(P ) =
−1

[2]1[2]2
+

1

[2]22
+

[2]1
[2]2

Q.

Proof. It suffices to prove that the second solution for ρ(P ) and ρ(Q) in the previous lemma is not possible.
So assume for contradiction that

ρ(P ) =
−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P

To find a contradiction, consider (Q⊗1)(1⊗P )(Q⊗1). Note that Q⊗1 is a sum of two minimal idempotents,
one a projection onto a simple isomorphic to X and the other a projection onto a simple of type X1 � Y3.
Since X1 � Y3 does not occur in the image of 1 � P , we have (Q⊗ 1)(1⊗ P )(Q⊗ 1) must be a scalar times
the projection onto X. Taking traces, this proves that

Q

Q

P =
[3]1

[2]1[2]2
Q

Q

On the other hand, we have:

Q

Q

P =

Q

Q

ρ(P )

=
1

[2]21
Q − 1

[2]1[2]2
Q

Q

In the second equality we used our assumption about ρ(P ) and also the triangle popping relation to
remove a triangle with two Q’s and a P . These two expressions for (Q⊗ 1)(1⊗P )(Q⊗ 1) can only be equal
if n2 = 3. However by Remark 3.2 we can assume n2 > 3.

Remark 3.12. We remark that there do exist categories satisfying the relations of Proposition 2.6, except
with the different Fourier transformation

ρ(P ) =
−1

[2]1[2]2
+

1

[2]21
+

[2]2
[2]1

P.

This category is constructed as follows.
If q1 = q±1

2 , then the category Cq1,q2 has an order two monoidal auto-equivalence, which is the restriction
of the swap auto-equivalence on Aq1 � Aq2 . This auto-equivalence exchanges the minimal idempotents P
and Q. We claim that the subcategory of Cq1,q2 o Z2 generated by the object X in the non-trivial grading
gives the desired category. We leave the proof of this fact to an interested reader.

Note that this subcategory of Cq1,q2 o Z2 does not have SO(4)-type fusion rules. This differing of fusion
rules can first be seen in the third tensor power of X, which explains why we have to consider 3 box relations
in order to prove Lemma 3.11.

Putting everything together, we have given a semisimple presentation for a subcategory of C which is
equivalent to the semisimple presentation of Cq1,q2 for some q1, q2 ∈ C×. As explained in the preliminaries,
this implies that C is equivalent to Cq1,q2 as a pivotal tensor category.
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4 Braided Classification

In this section we classify all braidings on the fixed monoidal category Cq1,q2 . We will show that the eight
braidings given in Definition 2.1 and described in Proposition 2.6 are the only braidings on Cq1,q2 .

We begin by considering the two distinguished subcategories Aad
q1 and Aad

q2 . As these subcategories are
equivalent to SO(3) type categories, we know that if the order of q1 is greater than 8, then their braidings
are classified by a choice of q±1

1 and q±1
2

2

The next lemma shows that the braidings on these subcategories determine the braiding on their product
(which is the adjoint subcategory of Cq1,q2).

Lemma 4.1. Let C and D be semisimple tensor categories. Then braidings on C�D are determined by
braidings on C and D, together with a bicharacter

a : U(C)× U(D)→ C .

Proof. First we show how a braiding on C�D gives rise to braidings on C and D and a bicharacter. Clearly
the braiding on the product gives braidings on the factors. Now suppose X is an object of C and Y an object
of D. Then the braiding

c1�Y,X�1, : 1 � Y ⊗X � 1→ X � 1⊗ 1 � Y

describes a morphism aX,Y ∈ EndC�D(X � Y ). The naturality of the braiding on C�D implies aX,Y is an
automorphism of the identity functor of C�D. If we fix one of the factors (say fix an object X in C) then
the hexagon identity for the braiding implies aX,− is identified with a monoidal isomorphism of the identity
functor of D. In other words, the morphisms aX,Y for X fixed are described by a character of U(D). The
same considerations hold when fixing an object Y of D, and the conclusion is that aX,Y may be identified
with a bicharacter of U(C)× U(D).

Now we show that braidings cX1,X2 on C and dY1,Y2 on D together with a bicharacter a uniquely determine
a braiding on C�D. Suppose X1, X2 are in C and Y1, Y2 are in D. Then the braiding in C�D on (X1 �
Y1)⊗ (X2 � Y2) factors as

(cX1,X2
� dY1,Y2

) ◦ (1⊗ aX2,Y1
⊗ 1)

which shows how the braiding on the product is completely determined by c, d and a.

Corollary 4.2. There exist four distinct braidings on the subcategory

Cadq1,q2 = Aad
q1 �Aad

q2 .

These are parameterised by the four choices of q±1
1 and q±1

2 .

Proof. The universal grading group of Aad
q is trivial, so by the previous lemma the braiding on Cad

q1,q2 is
determined by the braidings on the factors. By the classification of braidings on SO(3) type categories by
Tuba and Wenzl [TW05] there are exactly two braidings on Aad

q , parametrized by the choice of q or q−1.

Let us fix one of these four possible braidings. As the monoidal category Cq1,q2 is determined up to
q1 → q−1

1 and q2 → q−1
2 , we can freely choose q1 and q2 so that this braiding corresponds to the choice q+1

1

and q+1
2 in the above lemma. In particular this gives us the following twists in Cq1,q2 :

θ1 = 1, θP = q4
1 , θQ = q4

2 , and θR = (q1q2)4.

With these twists in hand, it is straightforward to determine all possible braidings on Cq1,q2 compatible with
the fixed braiding on Cad

q1,q2 .

2In the case of ni ∈ {3, 5}, there exist additional Tannakian braidings on the categories Aad
qi

. We can repeat the analysis of
this section for these special cases. We find that these Tannakian braidings can not lift to braidings of the categories Cq1,q2 .
Furthermore, in the case of n1 = 3, we have that only two of the braidings on the subcategory Aad

q1
�Aad

q2
lift to the category

Cq1,q2 . However in this case each of these two braidings on Aad
q1

�Aad
q2

has four extensions to Cq1,q2 . Hence these special cases
are still covered by Theorem 1.1. We leave the details to a motivated reader.
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Lemma 4.3. There exist two braidings on Cq1,q2 which restrict to a fixed braiding on Cadq1,q2 .

Proof. For this proof it is more convenient to work in the idempotent basis of EndCq1,q2
(X⊗X). The braiding

on Cq1,q2 is determined by

= α1
1

[2]1[2]2
+ αPP + αQQ+ αRR,

where α1, αP , αQ, αR ∈ C. As we know the twists on 1, P,Q, and R we can use the balancing equation to
find

1 = θ2
Xα

2
1, q4

1 = θ2
Xα

2
P , q4

2 = θ2
Xα

2
Q, and (q1q2)4 = θ2

Xα
2
R.

This allows us to determine αP , αQ and αR in terms of α1, up to sign. For some εP , εQ, εR ∈ {−1, 1} we
have

αP = εP q
2
1α1, αQ = εQq

2
2α1, and αR = εR(q1q2)2α1.

To determine α1 and the three signs, we solve for the inverse of the braiding being equal to its Fourier
transform. This gives us the following equations:

α−1
R =

1

[2]1[2]2
(α1 − αP − αQ + αR)

α−1
1 − α

−1
R

[2]1[2]2
=
αP

[2]22
+
αQ

[2]21
+ αR

(
1− 1

[2]21
− 1

[2]22

)
α−1
P − α

−1
R =

[2]2
[2]1

(αQ − αR)

α−1
Q − α

−1
R =

[2]1
[2]2

(αP − αR).

The last two equations yield

[2]21(2− εP εR(q2
2 + q−2

2 )) = [2]22(2− εQεR(q2
1 + q−2

1 )).

Solving this equation shows four cases:

εP = εQ = −εR for all q1 and q2,

εP = εQ = εR for q1 = ±q±1
2 ,

εP = −εQ = εR for q2
1 = −1, or q4

2 = −1,

εP = −εQ = −εR for q4
1 = −1, or q2

2 = −1.

Immediately we can disregard the latter two cases, due to Remark 3.2. In the second case we can use the
third equation to find

α2
1 =

{
±1 if q2 = ±q−1

1

∓q−6
1 if q2 = ±q1.

However we can now consider the first equation which tells us that either q4
2 = −1 or q2 is a primitive 6-th

root of unity, both of which have already been dealt with in Remark 3.2.
Finally we have the first case. Again we use the third equation to find

α2
1 =

εP
q3
1q

3
2

.

Comparing this to the first equation shows that εP = −1. Hence we have two possible solutions for the
braiding, corresponding to the two square roots of −1

q31q
3
2
. These two braidings exist as they are realised in

Proposition 2.6.

Putting everything together, we have classified all braidings on the categories Cq1,q2 . This completes the
proof of part 2 of Theorem 1.1.
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