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Abstract

This paper demonstrates the feasibility of recovering

fine-scale plant structure in 3D point clouds by leverag-

ing recent advances in structure from motion and 3D point

cloud segmentation techniques. The proposed pipeline is

designed to be applicable to a broad variety of agricul-

tural crops. A particular agricultural application is de-

scribed, motivated by the need to estimate crop yield during

the growing season. The structure of grapevines is clas-

sified into leaves, branches, and fruit using a combination

of shape and color features, smoothed using a conditional

random field (CRF). Our experiments show a classification

accuracy (AUC) of 0.98 for grapes prior to ripening (while

still green) and 0.96 for grapes during ripening (chang-

ing color), significantly improving over the baseline perfor-

mance achieved using established methods.

1. Introduction

Precision agriculture deals with characterizing spatial

variation in the production of crops, which increases effi-

ciency by reducing inputs such as fertilizer and more accu-

rately predicting crop yield. Although extensive work has

been based on remote sensing from satellite and airborne

platforms, ground-based sensing is increasingly in demand

because of its lower cost, ease of data acquisition, ability

to observe smaller structures such as fruit that may not be

visible from above, and potential for characterization at the

level of individual plants.

Information about plant structures is useful in a variety

of ways. Estimates of crop yield allow adjustments to be

made during the growing season, and drive business de-

cisions such as planning logistics for harvest and market

preparation. Measurements of foliage provide an estimate

of a plant’s ability to intercept sunlight (and thereby ma-

ture a crop), and its water requirements [42]. The amount

and condition of foliage can indicate water stress, nutrient

excess or deficiency [34]. Other structures such as stem
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Figure 1. Reconstruction of grape vine from uncalibrated image

data, and automatic classification using the proposed method into

leaves (green), branches (blue), and fruit (red). Obtaining better

non-destructive measurements of foliage and crop enables more

accurate crop yield estimates.

length and branching can also indicate plant stress [26].

Current practice for obtaining these measurements often

involves destructive sampling — for example, removing

all of the fruit from a small percentage of plants to esti-

mate crop weight. Work in agricultural sensing seeks to

make such measurements non-destructively and automati-

cally, with greater coverage of the crop, at multiple times

during the growing season.

A variety of sensing modalities have been used to obtain

measurements of plant structures, including LIDAR and ul-
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trasonic sensing for 3D information [12, 27, 28, 32, 40, 41,

43]. Recent improvements in digital camera technology and

structure from motion algorithms allow detailed 3D struc-

tures to be recovered from uncalibrated images at relatively

low cost [18, 37]. Compared to analyses of 2D imagery,

these reconstructions ameliorate the effect of occlusions and

provide data registration. Compared to LIDAR, which is

limited by spot size in the detail that can be sensed, image-

based reconstructions use a lower cost sensor and provide

both color and the potential to recover finer grained struc-

tures. Once a reconstruction is obtained, the next task is to

automatically classify the content into semantically mean-

ingful structures, such as leaves and fruit.

The main contributions of the paper are listed below:

• We propose a general vision-based processing pipeline

for classification of plant structures that leverages re-

cent advances in structure from motion and 3D point

cloud segmentation.

• Our pipeline, which operates on uncalibrated images,

replaces the need for expensive outdoor LIDAR and

complicated data acquisition efforts with affordable

commodity cameras and the ease of collecting data in

a point-and-shoot manner.

• The plant structures are identified using both color and

local 3D shape, which makes proposed the method

robust to lighting and inevitable color changes as the

crop matures.

• We describe an example application on real world

datasets, motivated by the need to estimate crop yield

during the growing season. Grapes are detected on

vines at two different times during the growing sea-

son – before and after the start of ripening.

• Experiments show a classification accuracy as mea-

sured by area under the ROC curve of 0.98 for grapes

prior to ripening (while still green) and 0.96 for grapes

during ripening (changing color). These results are a

significant improvement over standard techniques.

2. Related Work

Jiménez et al. [20] summarize the early progress on com-

puter vision methods for locating fruit on trees. Moreda et

al. [29] discuss methods for non-destructive estimation of

fruit and vegetable volume using a broad range of sens-

ing modalities, including but not limited to computer vi-

sion. McCarthy et al. [27] provide a review of current

computer vision approaches (monocular, stereo, range and

multi-spectral) for automated farming. Taylor et al. [39]

present a survey of methods for incorporating new sensor

information into viticultural practice. We organize the dis-

cussion of related work in two main categories: (1) fruit

detection and yield estimation, and (2) canopy and foliage

reconstruction.

Work on fruit reconstruction primarily explores the

imaging of individual pieces of fruit under controlled con-

ditions, such as Forbes et al. [13], Chalidabhongse et al. on

mango volume estimation [6] and Chaivivatrakul et al.’s on

pineapple reconstruction [5]. While our proposed method is

motivated by similar high-level goals, our applications de-

mand robust fruit detection and yield estimation in natural

settings, where the fruit must be segmented from nearby fo-

liage. Swanson et al. [38] face similar challenges in yield

estimation for citrus groves but their approach employs a

combination of laser sensing to estimate canopy density

and computer vision for fruit detection, while we require

only a single commodity camera. The majority of recent

computer vision approaches for yield prediction, such as

Aggelopoulou et al. [2], employ straightforward image pro-

cessing approaches (e.g., thresholding) by exploiting visual

characteristics of their domain (e.g., white flowers against

a dark background). Unfortunately, color is not a sufficient

feature in our domain since green grapes and foliage are

similar in color space. Nuske et al. [31] detect grapes us-

ing 2D techniques on artificially illuminated images taken

at night using multiple flashes. In contrast, our approach

can use but does not require specialized lighting.

Aguilar et al. [3] present early results on 3D model-

ing of tomato plant canopies to non-destructively estimate

leaf area index, with applications in determining correct

pesticide dosage. Bienert et al. [4] build a 3D represen-

tation of forest areas as input for a numerical wind flow

simulation model. Although applied to different domains,

their eigenvector analysis of 3D point clouds is structurally

similar to the features we propose for classification (Sec-

tion 3.2.1). Fleck et al. [12] recover the branch system

and leaf-mass area of apple trees using 3D data obtained

using a laser scanner, while Henning et al. [19] build 3D

models by merging multiple calibrated laser scans. Sev-

eral recent systems propose LIDAR for modeling canopy

structure [32], assess fuelbed characteristics of trees [24],

leaf area index estimation [28], branch modeling [16], fruit

harvesting [21], and tree structure derivation [41]. There

are only a few examples of vision-based systems related to

3D foliage reconstruction. Shlyakhter et al. [36] build 3D

model of foliaged trees from instrumented (rather than un-

calibrated) photographs with the goal of generating realistic

trees in computer graphics applications. Phattaralerphong et

al. [33] showed encouraging results (in simulation) that sil-

houette voxel carving could be used to reconstruct foliage.

Zhang et al. [44] present preliminary work on recovering

a 3D model of a corn stalk. Dandois and Ellis [9] acquire

photos using an aerial kite platform and argue that recon-

struction using imagery is competitive with LIDAR. Finally,

Haala et al. [17] combine laser scanning with panoramic
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Figure 2. Overview of proposed pipeline for recovering fine-scale

plant structure. We analyze local 3D geometry in the recovered

point cloud to label plant structures, such as leaves and fruit.

imaging for classifying tree species; they acquire position

and diameter of trees using the laser data and use visual

texture parameters from images. In our proposed method,

classification is used to segment the 3D scene into seman-

tically meaningful structures (branches, leaves and fruit)

rather than classifying whole trees by species.

Point cloud classification has recently been studied for

applications such as object map construction in indoor set-

tings [35], urban environment reconstruction [15, 30] and

robot navigation in forested terrain [23]. Our approach is

motivated by that of Lalonde et al. [23], where the tree

trunks are identified by exploiting their locally linear struc-

ture. However, we focus on classifying finer-grained plant

structures such as twigs, individual leaves and berries.

3. Overview of Processing Pipeline

Figure 2 shows an overview of the proposed vision-based

processing pipeline. The input to the pipeline is a sequence

of images acquired from a relatively inexpensive commod-

ity digital camera. The data collection is simple and does

not require time consuming calibration of the camera intrin-

sics. Furthermore, complicated setup procedures required

for other sensors (e.g., LIDAR) are obviated. The sequence

of images is processed using a structure-from-motion mod-

ule to recover a dense, colorized 3D reconstruction of the

scene. In the next stage, local features are extracted from the

point cloud and used to independently classify each point.

The classified point cloud is smoothed in a post-processing

step that uses generic spatial constraints and domain spe-

cific knowledge to reduce false positives. The fine-grained

plant structure of interest is recovered at the end.

We briefly outline each module in the following sections

with respect to the specific problem of estimating crop yield

in grapevines.

3.1. 3D Reconstruction

Given an uncalibrated sequence of images, we first em-

ploy structure-from-motion to obtain a dense, colorized 3D

point cloud. This is accomplished in a two stage procedure:

• obtaining a sparse 3D reconstruction of the scene using

a scalable bundle adjustment algorithm [37];

• converting this representation into a dense, colorized

3D point cloud using recent progress in multi-view

stereopsis [14].

These stages are detailed below.

Snavely et al. [37] propose a structure-from-motion al-

gorithm suitable for internet-scale photo collections which

has enabled Photosynth [1] and similar applications. We

chose this particular algorithm for structure-from-motion

because of its proven, robust performance on large scale im-

age datasets with wide variations in viewpoint, illumination

and scale. Bundler proceeds by extracting local features

like SIFT [25] on each input image. Features are matched

across pairs of images followed by finding tracks which are

matches across multiple images. An initial pair of images

which are well conditioned (large baseline, non-degenerate)

is chosen. The fundamental matrix and camera parameters

are estimated between the initial pair, and the locations of

the sparse 3D points are estimated by bundle adjustment. To

this initial 3D reconstruction other images are added and the

expanding 3D reconstruction refined in an iterative fashion.

This procedure is continued until no other suitable images

are feasible to be added to the reconstruction. This results

in a sparse 3D scene reconstruction.

The sparse 3D scene reconstruction from Bundler is in-

put to the dense, robust, multi-view stereopsis software by

Furukawa et al. [14]. This algorithm initializes rectangu-

lar 3D patches and iterates between an expansion step and

a filtering step. In the expansion step, photometric consis-

tency is used to spread the match to nearby pixels while in

the filtering step visibility constraints are used to eliminate

incorrect matches. The output at the end of this stage is a

dense, colorized 3D reconstruction of the scene. An exam-

ple reconstruction of a grape vine is shown in Figure 1.
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Next, we extract shape and color features in the local

neighborhood of each point and train a classifier to label

each point into semantic categories, such as foliage, branch

and fruit.

3.2. Classifying Grapevine Structures

The dense 3D point cloud generated from the uncali-

brated image sequences captures the overall shape of the

scene. Our goal is to recover the fine-grained plant struc-

ture, e.g., to determine which points correspond to berries,

foliage or branches. We formulate this as a supervised clas-

sification problem and leverage recent work in robot obsta-

cle detection [23] to segment the scene using the statistics

of local spatial point distribution in conjunction with ap-

pearance information, such as color. Although color can

be a useful cue (even for distinguishing unripe grapes from

foliage), it is unreliable due to illumination conditions and

variability within plants. Therefore, we focus primarily on

classification based on shape features. Since classifications

based solely on local information can be noisy, we spatially

smooth the results using a conditional random field (CRF).

The key aspects of our approach are the choice of lo-

cal features, the classifier and the spatial smoothing, all of

which are detailed below.

3.2.1 Feature extraction

The features we employ to model plant structure can be do-

main specific. For the grapevine structures application, our

features employ both color and shape information, since

color alone cannot reliably discriminate foliage from un-

ripe or green grape varieties. For color features, we use the

(R,G,B) value of the 3D point (as obtained from appropri-

ate images).

For shape, we employ a variant on the “saliency fea-

ture” proposed by Lalonde et al. [23] for traversability anal-

ysis of point cloud data in outdoor ground mobile robots.

Intuitively, we characterize the local neighborhood around

each 3D point in terms of its “point-ness”, “curve-ness” and

“surface-ness”. In other words, we examine whether the

local neighborhood is like a point (compact and spatially

isotropic), a line (a distribution with a single dominant axis

of spatial variation), or a thin flat sheet (two axes of vari-

ation). These mathematical concepts map directly to se-

mantic categories of plant structures, such as berries (which

tend to be round and compact), branches (roughly linear)

and leaves (largely flat). The analysis of point cloud neigh-

borhoods can be efficiently performed using singular value

decomposition.

For computational efficiency, we store the point cloud in

a kd-tree, which enables fast lookup of the local neighbor-

hood around each point. For each point x in the data set,

we perform the following operations. First, we retrieve the

set of points in its neighborhood N = {xi : ||xi −x||< d},

where d specifies the support region. Next, we compute the

covariance matrix for this neighborhood as:

∑
xi∈N

(xi − x̄)(xi − x̄)⊤, (1)

where x̄ denotes the mean of the 3D points in the neighbor-

hood x̄ = ∑xi∈N xi.

We perform Singular-Value Decomposition on this co-

variance matrix to identify the principal components of

N ’s spatial distribution. Specifically, we analyze the rel-

ative magnitudes of the top three eigenvalues λ0 ≥ λ1 ≥
λ2. For isotropic spatial distributions (corresponding to

berries), we expect λ0 ≈ λ1 ≈ λ2; for predominantly lin-

ear distributions (branches), λ0 ≫ λ1 ≈ λ2; and for roughly

planar distributions (leaves), λ0 ≈ λ1 ≫ λ2.

We represent the shape of the local neighborhood N

(specified by d) around a given point x using the following

feature vector:

saliencyx =





point-ness

curve-ness

surface-ness



=





λ2

λ0 −λ1

λ1 −λ2



 . (2)

For each point in the point cloud we compute this

saliency at 3 spatial scales (d), concatenate these and

append x’s color, (R(x),G(x),B(x))⊤ to obtain a 12-

dimensional feature vector for each point in the cloud.

3.2.2 Classification

Our grapevine data set was manually labeled into three se-

mantic classes (berry, branch and leaf). Using a portion of

this data, we trained a multi-class support vector machine

(SVM) classifier [8] to classify points. Section 4 presents

classification results on a separate test set using a variety of

parameters.

For completeness we investigated the Gaussian Mixture

Model (GMM) classifier as used by Lalonde et al. [23] but

found that SVM consistently outperforms GMM.

The output of the SVM generates an independent classi-

fication for each 3D point based solely upon its local spa-

tial neighborhood. As confirmed in our experiments, such

a classification can be quite noisy since it ignores the labels

of surrounding 3D points.

3.3. Spatial smoothing

We address the classification noise induced by indepen-

dent 3D point classification by spatially smoothing the la-

bels generated by the SVM. Specifically, we formulate this

task as an energy minimization problem using a conditional

random field (CRF) framework with discrete labels [22].

Each 3D point is treated as a node in the CRF, initialized
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(a) Before ripening

(b) During ripening

Figure 3. Grape image examples

with the output generated by the SVM. Each node is con-

nected to those 3D points in its spatial neighborhood and

we employ a simple pairwise term that penalizes adjacent

nodes with differing labels. The size of the spatial support

region should be selected using domain knowledge; using

too small a volume does not significantly change the labels,

while employing too large a volume can result in the loss of

desirable small objects (such as individual berries) because

they are treated as outliers. In practice, we smooth over re-

gions that are similar in size to the support region of our

spatial features. We use the algorithm by Delong et al. [10]

to solve the minimization problem. Spatial smoothing sig-

nificantly improves the accuracy of the point classification

system as shown in Section 4.

Figure 4. ROC curves for green Gewürztraminer grapes using

SVM classification prior to spatial smoothing.

4. Evaluation

We present a selection of experiments on recovering fine

structure from uncalibrated image sequences of grapevines

bearing unripe and ripe berries.

4.1. Dataset

Since there are no standard, publicly available datasets

for this domain, we collected two image sequences of

Gewürztraminer grapes in a research vineyard. The se-

quences were collected three weeks apart, before and af-

ter the start of ripening. In the first sequence, the grapes

were green, while in the second, they had begun changing

color. The vines were trained with vertical shoot position-

ing, a common cultural practice that places the fruit in a

predictable zone on the vine. In addition, the leaves had

been pulled from the fruit zone, making the fruit visible.

Leaf pulling is another common practice that increases sun-

light exposure and air circulation around the fruit, making

the vine less susceptible to certain diseases. Both image

sequences concentrated on the fruit zone.

Images were taken with a Canon PowerShot SX200IS

camera with a 5mm focal length lens and fill-in flash. A

total of 133 8-megapixel images were acquired of a 15 foot

section containing four vines. We ensured that consecu-

tive images in a given sequence overlap by at least 50%

to provide sufficient correspondences for the structure from

motion pipeline. Figure 3 shows sample images from both

sequences. The data was manually labeled and partitioned

into training and test sets.

4.2. Results

Figure 1 shows a snapshot of the reconstruction of the

green Gewürztraminer grapes. The reconstruction of the

green and purple grape data set had 839,000 and 933,000

total 3D points respectively. Of these, 87,900 and 73,308

points from the green and purple grape data set respectively

were used to train a support vector machine with the ra-
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Figure 5. ROC curves for purple Gewürztraminer grapes using

SVM classification prior to spatial smoothing.

dial basis kernel (σ = 1.0) using the LIBSVM implemen-

tation [7]. The training data contained equal numbers of

points from each of the three semantic classes to ensure

good performance on the grape class as grapes are only

approximately 10% of the points with the majority of the

points belonging to foliage and branches. The rest of the

points in the data set were held for testing.

Figures 4 and 5 show ROC curves for classification of

green and purple grapes, respectively, using the SVM prior

to spatial smoothing. The figures show the performance of

saliency features with and without color at three different

combinations of scales, as well as color alone.

The nominal scale was chosen by inspection of the point

cloud such that points within approximately a two inch

radius of the point under consideration contributed to the

computation of the saliency feature for that point. For fea-

tures using two scales, the second was half the nominal

scale. For features using three scales, the third was twice

the nominal scale.

The figures show that the multi-scale saliency features

with two scales performed better than either single scale or

three scales, with an area under the curve (AUC) of 0.92

and 0.94 for green and purple grapes, respectively. For

three scales, the highest scale incorporates contributions

from points which are far away from the point under con-

sideration, and provide distracting information about the lo-

cal shape around the point. Similarly the single scale alone

does not encapsulate all the necessary information about the

characteristic local shape around the point.

Saliency features alone did not perform as well for pur-

ple grapes compared to green grapes. Many of the pur-

ple grape images were taken from a greater distance from

the vines compared to the green grape images. This in-

creased distance resulted in a noisier reconstruction, which

made the local shape of leaf points similar to the spatially

isotropic local shape of grapes, instead of being predomi-

nantly flat. As a result, a large number of foliage points

were misclassified as grapes and vice versa. This problem

Figure 6. ROC curves for green Gewürztraminer grapes before and

after CRF-based spatial smoothing. Spatial smoothing improves

the AUC from 0.92 to 0.98.

Figure 7. ROC curves for purple Gewürztraminer grapes before

and after CRF-based spatial smoothing. Spatial smoothing im-

proves the AUC from 0.94 to 0.96.

can be fixed by ensuring that images are collected at a closer

distance to the vines.

As expected we observe that adding color features can

improve results, provided that the images were acquired

under similar illumination conditions. For purple grapes,

we see that color alone performs well, but combining color

with shape features further improves accuracy. For green

grapes, the improvement due to color can be explained by

the fact that under our illumination conditions, the camera

perceives the fruit and foliage as slightly but sufficiently dif-

ferent shades of green. As discussed earlier, the use of color

alone is to be avoided, particularly since the color of the

grapes changes as they ripen. Since the local 3D shape of

fruit and foliage is both invariant to lighting changes and

does not change (in terms of statistical properties) through

the season. Employing color in conjunction with shape en-

ables us to be more robust to color changes.

Figures 6 and 7 show the ROC curves obtained after spa-

tially smoothing the output of the independent classifier us-

ing the CRF, for the green and purple grape datasets, re-

spectively, as compared to the ROC curve obtained from
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SVM classification alone. For clarity, we only show re-

sults using the best set of features: saliency computed at

two scales along with color. These results show that our

CRF-based spatial smoothing produces a significant im-

provement in the true positive rate and a drop in false pos-

itive rate. For instance, on green grapes a nominal operat-

ing point of 84.8% true positive and 11.6% false positive

rate improves to 91.9% true positive and 2.7% false posi-

tive rate. Overall, for green grapes the area under the curve

(AUC) improves from 0.92 to 0.98 due to the CRF-based

smoothing. Similarly for purple grapes, the AUC is boosted

from 0.94 to 0.96.

As discussed in Section 3.3, the size of the support re-

gion can impact the effectiveness of spatial smoothing. For

these experiments, on the green grapes dataset we defined

the support region to be the same size as the larger of the two

spatial saliency features (corresponding to approximately 2

inches). Since the 3D point cloud reconstructions from the

purple grape dataset are less reliable, we find that a smaller

support region (corresponding to approximately 1 inch) re-

sults in a greater improvement on this dataset. Automati-

cally selecting the support region using cross-validation is

practical since the spatial smoothing procedure is not com-

putationally time-consuming.

5. Conclusion

This paper demonstrates the feasibility of recovering

fine-scale plant structure in 3D point clouds obtained from

uncalibrated image sequences using structure from motion.

The proposed method employs a combination of shape and

color features to model the local neighborhood around a

given 3D point in terms of its spatial distribution. This en-

ables us to label each point as either a fruit (isotropic dis-

tribution), leaf (planar) or branch (linear). Our experiments

on both unripe and ripe grapes show that an SVM classi-

fier using our features can detect fruit (for yield estimation)

with high accuracy, particularly when the labels are spa-

tially smoothed using a conditional random field.

We plan to build upon these results by extending our

work in several directions. First, preliminary experiments

show that we can obtain more accurate 3D reconstructions

by exploiting the sequential nature of the image data (e.g.,

using [11]). We will also continue to work towards a yield

estimate in grapes by counting either bunches or berries.

Finally, we will evaluate the generality of the proposed ap-

proach by applying it to a variety of other crops.
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[21] A. R. Jiménez, R. Ceres, and J. L. Pons. A vision system

based on a laser range-finder applied to robotic fruit harvest-

ing. Machine Vision and Applications, 11:321–329, 2000.

330

[22] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In ICML, 2001. 332

[23] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert.

Natural terrain classification using three-dimensional ladar

data for ground robot mobility. Journal of Field Robotics,

23(10):839–861, 2006. 331, 332

[24] E. L. Loudermilk, J. K. Hiers, J. J. O’Brien, R. J. Mitchell,

A. Singhania, J. C. Fernandez, J. Wendell P. Cropper, and

K. C. Slatton. Ground-based LIDAR: a novel approach

to quantify fine-scale fuelbed characteristics. International

Journal of Wildland Fire, 18:676–685, 2009. 330

[25] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 331

[26] C. McCarthy, N. Hancock, and S. Raine. On-the-go Machine

Vision Sensing of Cotton Plant Geometric Parameters: First

Results. In J. Billingsley and R. Bradbeer, editors, Mecha-

tronics and Machine Vision in Practice. 2008. 329

[27] C. McCarthy, N. Hancock, and S. Raine. Applied machine

vision of plants: a review with implications for field deploy-

ment in automated farming operations. Intelligent Service

Robotics, 3:209–217, 2010. 330

[28] I. Moorthy, J. R. Miller, B. Hu, J. A. J. Berni, P. J. Zareo-

Tejada, and Q. Li. Extracting tree crown properties from

ground-based scanning laser data. In IEEE International

Geoscience and Remote Sensing Symposium, pages 2830–

2832, 2007. 330

[29] G. P. Moreda, J. Ortiz-Cañavate, F. J. Garcı́a-Ramos, and
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