Tohoku Math. J.
46 (1994), 367-391

CLASSIFICATION OF PLURIHARMONIC MAPS FROM
COMPACT COMPLEX MANIFOLDS WITH POSITIVE
FIRST CHERN CLASS INTO COMPLEX
GRASSMANN MANIFOLDS

Dedicated to Professor Masaru Takeuchi on his sixtieth birthday

SEncHI UnpaGawa

(Received April 1, 1993, revised October 12, 1993)

Abstract. We prove that any pluriharmonic map from a compact complex manifold
with positive first Chern class (defined outside a certain singularity set of codimension
at least two) into a complex Grassmann manifold of rank two is explicitly constructed
from a rational map into a complex projective space. Under some restrictions on
dimension and rank of the domain manifold and the target manifold, respectively, we
also prove that similar results hold for other complex Grassmann manifolds as targets.

Introduction. Let ¢: M — N be a smooth map from a complex manifold into a
Riemannian manifold. Then, ¢ is said to be pluriharmonic if the (0, 1)-exterior covariant
derivative D"d¢ of the (1, 0)-differential d¢ of ¢ vanishes identically. Let V¢ be the
pull-back connection on the pull-back bundle ¢~ TN. We have

(0.1) (D"09)X, Y)=V30p(Y)—00(0xY), X,YeC™(TM"),

where TM'° is the holomorphic tangent bundle of M. If ¢ 'TN® has the
Koszul-Malgrange holomorphic structure, that is, the (0, 1)-part of V? coincides with
the J-operator, we may say that ¢ is pluriharmonic if and only if ¢ sends any
holomorphic section of TM*-° to a holomorphic section of ¢ ~!TNE. It is easily seen
that if ¢ is holomorphic and N is a Kdihler manifold then ¢ !TN'° has the
Koszul-Malgrange holomorphic structure, hence any holomorphic map is pluri-
harmonic. Note that an anti-holomorphic map is also pluriharmonic if N is a Kihler
manifold. Conversely, the existence of the Koszul-Malgrange holomorphic structure
on ¢ *TN€ is ensured if ¢ is pluriharmonic and N has nonnegative or nonpositive cur-
vature operator. In this case, if N is a Kahler manifold, then ¢ 'TN'° has the
Koszul-Malgrange holomorphic structure (cf. [O-U2]). From the point of view of
Riemannian geometry, the most interesting property of pluriharmonic maps is that it
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is a harmonic map with respect to any Kéhler metric on M. Therefore, the concept of
pluriharmonic maps generalizes that of harmonic maps for Riemann surfaces. Moreover,
when one restricts a pluriharmonic map from M to any holomorphic curve C of M, it
induces a harmonic map from C into N. A natural question is: Which class of pluri-
harmonic maps comes from holomorphic maps? This question is treated in [O-U1]. As
a special case, if the target is a complex Grassmann manifold G,(C") of k-dimensional
complex linear subspaces in C", any pluriharmonic map ¢ from a Kahler manifold M
is +-holomorphic provided the rank of dp over R is greater than or equal to
2n—k—1)(k—1)+3, where a map is said to be +-holomorphic if it is holomorphic or
anti-holomorphic. In the case of an M with ¢,(M)>0 and b,(M)= 1, the rank condition
on ¢ may be replaced by dimcM >(n—k—1)(k—1)+2 and this dimension estimate is
best possible. In fact, there are so many examples of pluriharmonic maps which are
not t-holomorphic (see [O-Ul]). Then, the following problem arises: Classify all
pluriharmonic maps which are not +-holomorphic. In the following, we restrict our
attention to the complex Grassmann manifolds as the target manifold. In the case where
the domain is the Riemann sphere, this problem was treated and solved by several
authors [Rm], [C-W], [B-W], [B-S], [Wol], [Wd1], who proved that any harmonic
map from the Riemann sphere S? into G, (C") may be consiructed from a holomorphic
map S - G,(C) for some 1 <t<k. This result originates from the work of Burns [Bn],
Din-Zakrewski [D-Z], Glaser-Stora [G-S] and Eells-Wood [E-W] with a complex
projective space as target. Given a map ¢: M — G(C"), we may identify ¢ with the
pull-back of the universal bundle over G,(C") by ¢, denoted by V{¢), which is a complex
subbundle of the trivial bundle M x C". We have a sequence of the ¢'-Gauss bundles by
taking the image of the (1, 0)-part of the second fundamental form of each subbundle.
Wolfson proved that this sequence must terminate if M =52 In general, ¢ has
intersection with certain @’-Gauss bundle, say the (r+ 1)-th Gauss bundle, and the least
such integer r is called the &'-isotropy order of ¢. A holomorphic map has infinite
J'-isotropy order, hence one tries to increase the ¢'-isotropy order of a given map by
certain algebraic replacement, which is called the forward replacement. It is known that
Wolfson’s harmonic map sequence can be obtained by a successive application of the
forward replacements (for details, see Section 2). This is the method of Burstall-Wood.
In particular, they proved that any harmonic map of finite d'-isotropy order from S?2
into G,(C") with k=2, 3, 4, 5 may be obtained by a successive application of the backward
replacement from a holomorphic map S? - G,(C") with 1 <t <k — 1, where the backward
replacement is the inverse procedure of the forward replacement (see Section 2). Note
that the case of infinite isotropy order is rather easy to treat for any k. For higher
dimensional domains, we assume that M is a compact complex manifold with positive
first Chern class, denoted by ¢,;(M) > 0. However, there are many difficulties. For example,
the &’-Gauss bundle of ¢ has non-removable singularities, and its rank may be greater
than that of V(¢). Therefore, it seems to be impossible to generalize Wolfson’s method
to higher dimensional case. On the other hand, Ohnita and the present author [O-U2]
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treated a part of the problem using Burstall-Wood’s method and proved that any
pluriharmonic map ¢ from M\ S, with M as above into G,(C") may be obtained from
a rational map f: M — G,(C") for some ¢ provided (1) k=1, or (2) k=2,3 and n<12,
where S, is a certain singularity set of codimension at least two (see Section 2). As in
the case of harmonic maps from the Riemann sphere, a pluriharmonic map with infinite
isotropy order is easier to treat (see Proposition 4.3). Note that any pluriharmonic map
from M\ S, with M and S, as above-into a complex projective space CP"~' with the
Fubini-Study metric has infinite isotropy order, which is the reason why there is no
restriction on n for G,(C")=CP" ! in the result stated above. Moreover, in this case,
the uniqueness of the sequence of pluriharmonic maps is also ensured. Even if a
pluriharmonic map ¢: M — G, (C") has singularities, the nilpotency of certain
End(V(g))-valued holomorphic differentials is preserved, hence we may apply their
method to increase the 0'-isotropy order by one, that is, the first step of the procedure
is the same as in the case of M =S2. However, in higher dimension, the next step of
the procedure cannot be applied because the situation rank G’(¢) > rank V(¢) may occur.
This is the main reason for the restriction on z in the result stated above.

The main  purpose of this paper is to prove that amy pluriharmonic map
@: M\S,— G,(C") with finite 0"-isotropy order may be obtained by a successive
application of the forward replacement and extension from a pluriharmonic map
@°: M\ S,0— CP"~! (Theorem 4.2). This technique is partially applied to the case
where the target is G, (C") with k=3, 4, and similar results with restriction on »n are
also true (see Section 6).

In Section 5, we give some examples of pluriharmonic maps of CP? which has
finite J'-isotropy order.

We refer the reader to [E-L] for recent developments on harmonic map theory,
to [B-B-B-R], [B-B], [0-Ul1,2], [Ud] for the stability and complex-analyticity of
pluriharmonic maps, and to [B-R], [Uh], [V], [Wd2] for the construction of harmonic
maps from the Riemann sphere to Lie groups. Finally, we mention that Ohnita and
Valli [O-V] generalized the results of [Uh], [V] to the class of meromorphically
pluriharmonic maps. Their assumption on the domain manifold M is slightly weaker
than that of ours. On the other hand, when ¢,(M)>0, our class of pluriharmonic maps
is slightly wider than that of theirs. In the case of Lie groups as targets, there is a
similar concept called basic transform corresponding to our forward (or backward)
replacement. We remark that the method using the basic transform is not established
yet, and that even if it is established our results are not covered by it (cf. [Wd1]).
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1. Preliminaries. Let E be a unitary vector bundle over a complex manifold M,
that is, E is endowed with a Hermitian fibre metric 4 and a connection VE compatible
with A. Let F be a complex subbundle of £ and let S be the Hermitian orthogonal
complement of F in E with respect to A. Then, F and S also become unitary vector
bundles with respect to the induced Hermitian structures. The second fundamental
forms, ASF and A"S, are defined by

(1.0) VEv=VEu+AES0),  VEw=Viw+ A¥F(w)

for any X e C*(TM), ve C*(F), we C*(S), where VE, V¥ and V5 are the Hermitian
connections of E, F and S, respectively, and A" (resp. ASY) is regarded as a
Hom(F, S)-valued (resp. Hom(S, F)-valued) 1-form on M. We easily obtain

(1.2) AFS = —(A5Fy*

where ( )* denotes the adjoint of ( ) with respect to 4. By the complex structure of
M, we may decompose A" as ATS=AfS) + ALS,,. Let D be the exterior covariant
differentiation defined by the induced connection on Hom(F, S), and D', D” the (1,0)-
and (0,1)-parts of D, that is, D=D'+D". The (0,1)-exterior covariant derivative
D" AfS,, of A%, is defined by

(1.3) (D" Ao NZ, W)=V5o ApS — Ay oV — Al

where Z, We C*(TM*'°). D'A{S,, is defined similarly. Now, assume that E has the
Koszul-Malgrange holomorphic structure, that is, a holomorphic structure compatible
with the Hermitian structure of E, and that F is a holomorphic subbundie of E. We
may endow S with a holomorphic vector bundle structure by the isomorphism S= E/F,
which is, in fact, nothing but the Koszul-Malgrange holomorphic structure (cf. {B-SJ).
Then, Hom(F, S) also has the Koszul-Malgrange holomorphic structure and a smooth
section 4 of T*M!° ® Hom(F, S) is said to be holomorphic if D"A=0.

Let ¢: M - G,(C") be a smooth map from a complex manifold into a complex
Grassmann manifold of k-dimensional complex linear subspaces in C". Then, we may
identify ¢ with a complex subbundle ¥(¢) of rank k of the trivial bundle V(C*)=M x C”,
of which the fibre at xe M is given by ¢(x). Note that V(gp) is the pull-back of the
universal bundle T over G,(C") by o.

For any complex subbundle E of V(C"), we denote by E* the Hermitian orthogonal
complement of E in V(C") with respect to the standard Hermitian fibre metric on V(C").
Moreover, for any complex subbundle F of E, we denote by E© F the Hermitian
orthogonal complement of F in E, thatis, EQF=En F*.

Set

¢ _— AV@)V(e} ot _ AV Vie)
(1.4) A*=A ., A=A ,
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where ¢* is a map from M into G,_,(C") and V(¢*)=V(p)*. Then, by (1.2) we obtain
(1.5) Afp1,0)= _(A?’ol,m)* , Al.ny= —(Afpf,m)* .
The property of ¢ may be interpreted in terms of the property of 4. In fact, we have:

ProrosiTioN 1.1 (cf. [O-U2]). (1) The following statements are mutually equivalent:
(1) ¢ is holomorphic (resp. anti-holomorphic).

(2) V(o) is a holomorphic (resp. an anti-holomorphic) subbundle of V(C").

(3) AY.1,=0 (resp. Af 4,=0).

(I1) @ is pluriharmonic if and only if D" A{, 0, =0, or equivalently D'A%, ,,=0.
(1L o is pluriharmonic if and only if ¢* is pluriharmonic.

In fact, we may say that if ¢ is pluriharmonic then Af, ,, is a holomorphic section
of T*M*°® Hom(V(¢), V(¢*)) by Proposition 1.1, (IT) and the following fact:

ProrosITiON 1.2 (cf. [0-U2]). If ¢ is pluriharmonic, each of V(@) and V(p') has
the Koszul-Malgrange holomorphic structure. In particular, any holomorphic subbundle
of V(@) or V(e?l), and its Hermitian orthogonal complement in V() or V(pt) have the
Koszul-Malgrange holomorphic structures.

It follows from Propositions 1.1 and 1.2 that if ¢ is pluriharmonic, then A ¢, is
also a holomorphic section of T*M"° ® Hom(V(¢?t), V(e)).

2. A general construction of pluriharmonic maps. Let ¢: M - G, (C") be a
pluriharmonic map from a complex manifold. A general theory for the construction of
pluriharmonic maps is quite similar to the one of harmonic maps for Riemann surfaces

except that non-removable singularities appear. Here, we review the construction (cf.
[Wdl], [B-W], [O-U2]).

ProrosiTioN 2.1.  Define ¢ by

2.1) V@)=(V(o)ou®f,

where o and f satisfy the following conditions (1), (2):
(1) o and B are holomorphic subbundles of V(p) and V(@*), respectively,
(2) Af o) < T*M'"°®p, A?f,m(ﬁ) cT*M"Y Q.

Then, ¢ is also a pluriharmonic map from M into G(C") for some t.

REMARK. We may use A% ;, and A%, in place of Af o, and Af ,, respectively.
In this case, « and f§ are chosen to be anti-holomorphic subbundles of V(¢p) and V(e?l),
respectively.

To give the examples of « and § which satisfy the conditions (1), (2) of Proposition
2.1, we consider A, o, as a bundle homomorphism Af, o,: TM'°® V(p)— V(e*) and
set Im Af o=, ., Im(A8 o), ImAE o, is a holomorphic subbundle of V(p*) over
M\ W, where W is an analytic subset of M. It can be observed that Im 4§, ,, extends
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to a holomorphic subbundle, denoted by Im Af, o, of V(¢*) over M\ S, where S is an
analytic subset of codimension at least 2. Similarly, considering Af, 4, as another
homomorphism Af, o,: V(g)— T*M'° ® V(p*) we set Ker A, o)=J . p KeI(A4f o)), In
the same way as above, Ker Af, ,, extends to a holomorphic subbundle, denoted by
Ker Af o), of V(p) over M\ S', where §' is an analytic subset of codimension at least
2. When we construct a new pluriharmonic map from an old one, we have a new
singularity set, hence we give the following definition:

DEFINITION.  Denote by S, the singularity set of M with codim¢S,>2 such that
@ is a pluriharmonic map from M\S,,. S, is of the form S,=J%_, S; for some positive
integer kand each §;(i=1, ..., k)isan analytic subset of M\ U;; 1S;with codimS;>2.

The following lemma enables us to use the method of Burstall-Wood even if the
singularity set appears:

LemMMA 2.1 (cf. [O-U2])). Assume that M is a compact complex manifold with
positive first Chern class c,(M)>0. Let E be a Hermitian holomorphic vector bundle over
M\ S, where S is as in the Definition with or without the assumption on @, and let A be
a holomorphic multi-differential with values in End(E). Then, A is nilpotent, that is, A" =0

as a holomorphic multi-differential with values in End(E) for some positive integer
m<rankE.

For example, A{"ﬁo)oA;"l,o) is a holomorphic quadratic differential with values in
End(V(e)) over M\ S, hence nilpotent by Lemma 2.1 if M is compact and c,(M)>0.
In particular, A% ¢y°A¢ o has the non-trivial kernel. In this case, any non-zero
holomorphic subbundle a of V(¢) contained in Ker(A;’ll,O,oA{PI,o)) satisfies the condi-

tions (1) and (2) of Proposition 2.1 with f=Im(Ag ,|) (see Lemma 2.2 below for
the holomorphy of 4§, o)|,).

LemMa 2.2 (cf. [B-W], [O-U2]). Let t and u be Hermitian vector bundles over
M with the Koszul-Malgrange holomorphic structures and let A be a holomorphic
multi-differential with values in Hom(z, u). Then, the following statements are true:

(1) If « is a holomorphic subbundle of 1, then Ala is holomorphic.

(2) If B is an anti-holomorphic subbundle of y and n : u— B is a Hermitian orthogonal
projection, then mo A is holomorphic.

(3) Ify is a subbundle of t with t©y < KerA and if y has the Koszul-Malgrange
holomorphic structure with respect to the connection induced from 1, then A|y is a
holomorphic multi-differential with values in Hom(y, ).

@ If 6 is a subbundle of u containing the image of A and if 6 has the
Koszul-Malgrange holomorphic structure with respect to the connection induced from p,
then A is a holomorphic multi-differential with values in Hom(z, 3).

In summary, we state the following:
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ProrosiTiON 2.2.  Let ¢: M\ S, G(C") be a pluriharmonic map. Then, the
Sollowing map ¢ defines a pluriharmonic map M\ S ; — G (C™) for some t:
(2.2) V((Z’):IQA&O) ifA;”LO);—éO.
(2.3) V(@)=V(p)OKer A7 o, if Ker A% 4 #0.
(2.9) V((i))=(V((p)@a)@IQ(A{”1,O)|a), where « is a holomorphic subbundle of V(@) con-
tained in Ker(A;"f,o)oA?’l,o)), if a#0, which is satisfied if M is compact and ¢,(M)>0.

However, (2.3) may be considered as a special case of (2.4) because Ker A, ,, is
contained in Ker(A4% o 0 Af o). Moreover, if M is compact and ¢,(M)>0, then (2.2) is
also obtained by successive application of the procedure of type (2.4), which follows
from more general Proposition 2.3 below. For notational simplicity, we give:

DEerRINITION (cf. [B-W]). Set GY(¢)=G'(9)=Im A, ,, and inductively define the
r-th &'-Gauss bundle G"(¢) of ¢ by

G+ )= G(GY(g)) for i=1,2,....
Similarly, define the r-th 8”-Gauss bundle G~ "(¢) by
G @) =G ) =Im fy), G NQ=G'(GNg)  for i=12,....

In particular, set G,(«) =Im(Af, 4,|,) and G (y)=Im(A4§ ,, ,) for a holomorphic sub-
bundle a of V(¢) and an anti-holomorphic subbundle y of V{(¢), respectively.

PROPOSITION 2.3.  Assume that M is compact and c¢,(M)>0. Let ¢: M\S,—
G(C") be a pluriharmonic map and define @ by V(¢)=(V(p) O a)® B, where o and B
satisfy the conditions (1) and (2) of Proposition 2.1. Then, there is a finite sequence {@;}\-
of pluriharmonic maps such that (1) p=¢,, (2) g=¢y, (3) for i=0,1,..., N=2, each
@i+ is obtained from @; by V(¢;.,)=(V(p) Qa)® G, (a;), where «; is a holomorphic
subbundle of V(p,;) contained in Ker(Afl"l, 0)° Af o), and @y is obtained by either of the
following:

(1) If B= G, (a), @y is also obtainedfrom @y _ | by the procedure (3) fori=N —1,

(I)  If B+# G, (), there is a holomorphic subbundle By _, of (V(py_1)® G (oy- )"
so that @y is obtained from @yn_,; by V{py)=V(On_1)® By—1-

ProOF. By Lemma 2.2, A% o)° A o], is @ holomorphic quadratic differential with
values in End(x). It follows from Lemma 2.1 that Afpf,O)OAﬁ,O)Ia is nilpotent. The rest
of the proof proceeds in the same way as the one for Proposition 2.12in [Wdl]. q.e.d.

DeriNiTION (cf. [Wd1]). We call the procedure (2.4) the forward replacement of
¢ by a, and call the procedure like (II) in Proposition 2.3 the forward extension of ¢y _,
by By_;. When, we use the (0, 1)-part of the second fundamental form and an
anti-holomorphic subbundle, we call the corresponding procedures the backward
replacement and backward extension.

To better understand Proposition 2.3, a certain diagram called Salamon’s diagram
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in [B-W1] is useful.

Let hy be the standard Hermitian fibre metric on V(C")=M x C". Let t,,..., 7,
be a set of mutually orthogonal subbundles of V(C") with respect to h, such that each
7; (i=1,..., k) has the Koszul-Malgrange holomorphic structure compatible with the
Hermitian structure induced from 4, and V(C")= @:; 7 Denote by A%, the
(1, 0)-second fundamental form of 1, in ;@ 1; for 1 <i#j<k.

DeFiNITION (cf. [B-W1). By a diagram {1, Ajy%,} we mean the directed graph
with vertices 74, ..., 7, and for each pair (i, j) and edge from 1, to 7; representing A%,
The absence of an edge in the graph indicates the vanishing of the corresponding
(1, 0)-second fundamental form.

Some statements of Lemma 2.2 are expressed by this diagram as follows:

LemMa 2.3 (cf. [B-W]). Given a diagram {t;, A{{%)}, A% : @ TMY0 —1; is
holomorphic if the diagram contains no configurations of the forms in Figure 1.

If Afi%;'(1<i<k—1) and Afy) are all holomorphic, we see that the composite
Ao Ak ™o - -0 A% is a holomorphic section of ®* T*M™° ® End(t,) by Leibniz’
rule, hence nilpotent. We often refer to it as a holomorphic circuit and denote it by
{14, T3, ..., T4y T, } for notational simplicity.

Let ¢ : M — G(C") be a pluriharmonic map from a complex manifold.

DerFmiTioN (cf. [BD-W1, 2], [B-W]). We say that ¢ has J'-isotropy order r if
V(o) is orthogonal to each G¥(¢) (1 <i<r) and not orthogonal to G * 1(¢) with respect
to hy. Moreover, we say that ¢ has finite (resp. infinite) 0'-isotropy order if r < oo (resp.

r=o0). Similarly, the corresponding notion of ¢”-isotropy order for the ¢”-Gauss bundle
is defined.

Note that V(p)LG'(¢) and V(p)LG"(p) always hold, so that any ¢ has ¢'- and
0"-isotropy order >1.

LeMMA 2.4 (cf. [O-U2)]). If ¢ has &-isotropy order >r, then GY(¢) LG o) for
any i, j such that 0<|i—j|<r.

M @ 3

where 1 </<k with I#1,j.
FIGURE 1.
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If ¢ has J'-isotropy order >r, then, by Lemma 2.4 we may set
R=V(¢")© ( ® G""(w)) -
ji=1

It follows from Proposition 1.2 and Lemma 2.2 (3) that V(¢), GP(¢) (1<i<r) and R
all have the Koszul-Malgrange holomorphic structures compatible with the Hermitian
structures induced from hg, and A9 and AG ¢ "@ (1 <i<r—1) are all holo-
morphic. We often use this fact, w1thout any comment, in the sequel.

If ¢ is a holomorphic map, then A% ;,=—(Af ,)*=0, so that 4% =0 and
V() LGY(@) for any i> 1. Therefore, a holomorphic map has infinite &'~isotropy order.
In the same way, we see that an anti-holomorphic map has infinite &'-isotropy order.

Given a pluribarmonic map ¢ of infinite @'-isotropy order, we see by Lemma 2.4
that there is a positive integer s such that G¥(¢)=0. Therefore, G* V(¢) defines an
anti-holomorphic map. When the target manifold is a complex projective space CP* !
with the Fubini-Study metric, it turns out that any pluriharmonic map from a compact
complex manifold M with ¢,(M)>0 has infinite ¢'- and §"-isotropy order:

THEOREM 2.1 (cf. [O-U2]). Assume that M is compact and c,(M)>0. Let
@: M\S,— CP""! be a pluriharmonic map. Then, G*(¢)=0 for some positive integer
s<n—1. Moreover, if ¢ is non-holomorphic, each G (@) (0<i<s—1) defines a pluri-
harmonic map into CP"™ ', and G*~ @) defines an anti-holomorphic map.

3. Pluriharmonic maps into G,(C"). In this section, we give a method of
constructing a pluriharmonic map ¢ : M\ S, - G,(C"), where M is a compact complex
manifold with ¢;(M)>0. We may assume that ¢ has finite ¢'-isotropy order.

Let r (=1) be the ¢'-isotropy order of a pluriharmonic map ¢ : M\ S, — G,(C").
Set

A

= AGTUPV @) GO P@COD) o gHOLG @)

Lemma 3.1, AZ SV is holomorphic and A} ,=0. Define ¢, from ¢ by the for-
ward replacement of a3, where a3 =Im A5 §**"® = Ker A, , and rank «§ =rank V(¢)—1.
Then, either ¢, is a pluriharmonic map into CP"™' or, ¢, has J'-isotropy order r+1 and
has the following properties:

(1) A&, @V is holomorphic and A}, | ,, =0.

(2) Set ay=Im AZ"y @V @) cKer A,,, ,, and set af =G,(ag). Then, rank ay=
rank V(p,)—1 and the Hermitian orthogonal projection P : af—af is a holomorphic
isomorphism.

(3) SetR= V(qol) @(Q—) . ,Gp)) and set ol =G8(ag). Then, A(1 & is holomorphic.
Set R,=R @lmAf‘{ &) Then, G Yp,) = Ry ®al.

(4) Set al =GP(ad) for j=1,...,r+2. Then, &}, = R, and o4y, , < Ry @ ag.

(5) Set Ry=((Ry@a2) O G *Y(¢,))Oal,,. Then, RyLal and ARI3 =0.
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Proor. By Lemma 2.4 we have a diagram as in Figure 2, where R=
V(o) ©(D'_, G™(¢)). First, we show that A5 """ @ is holomorphic. If r=1, then
G"(p)isa holomorphlc subbundle of V(¢) and AG"’(“” Y@ = A )| 6o is holomorphic
by Proposition 1.1 and Lemma 2.2. If r>2, then, by Lemma 2.3, A&7V is holo-
morphic. Therefore, 4, , is a holomorphic differential with values in End(V(@)). Then,
by Lemma 2.1 we have A2 =0, so that oco =Im AG V@ cKer 4, , < Ker(A;”f’o) o AE’1,0))
and rank ag=1. Set o = GP(a§) fori= .7, and setyd=V(p)© ozo, 72 =Gp) © « for
i=1,...,r. Then, we have a d1agram asin Flgure 3. By Lemma 2.3, we see that A“' ’“'“
AV' y'“ (0<z<r 1), A(V1 ;‘;; and A(1 o) are all holomorphic. Further, set a2, , —Im A(1 0)
and set R,=RO, ;. Agam we have a diagram as in Figure 4. By Figure 4 and
Lemma 2.3, we see that A"’{*O‘)”" is also holomorphic. We have a holomorphic circuit
{0, af, ..., 0% 1,73, 79, ..., y,, «3}, which must vanish by Lemma 2.1. However, since
A’?'V9+’ (0<i<r— 1) and A(V;" o are all surjective and rank yJ=1, we obtain A""+1 =y,
Hereafter if o) =0 for some 1<i<r+1 we understand that A""“ B=0 is trivially
satisfied. Set V(g,)=(V(9)Oad)@®a?. If «?=0, then rank V((pl)— 1 and ¢, is a

7 7
Vie) G'(o) G"(o) R

AN AN AN
7 7

Yo Yo
AN
7
R
N
N N e e e e e —
7 7 o 0
ad a? o, %o
FIGURE 3
0 1] 0 ’ (]
Yo A Yr Ry Yo
N
> I - e > va 7
A /N N AN N
N S
> = - > ? 7
0 0 0 o 0
ao (11 ar (Xr +1 aO

FIGURE 4.
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7
Viey) G'{opy) G"* p,) R,
FIGURE 5.

pluriharmonic map into CP"~*. Therefore, we assume that a9 0. Then, by Figure 4 we
have

Vig)=70@a, Go,)=y) @l (1<i<r), G" Yo, =R,®0af,

so that ¢, has J'-isotropy order r+1. Further, we investigate the properties of ¢,.
Setting R, =(R, @ a3) © G"*)(¢,), we have a diagram as in Figure 5. By Figure 5 and
Lemma 2.3, we see that A5 g, @@ is holomorphic. We have a holomorphic circuit
{V(@1), G(@,), ..., G""N@y), V(ey)}. Setting

A

— AGU*D(p1).V(p1) G gpy),Gr ¥ D V(@1),G'(p1)
r+1,(p1_A(1,0) @1 moA(l,o()m) (@1) , OA(I(,%‘)) (01

we see that 4., ,,, is nilpotent. Set ab=Im AG g @V @) Then, rank a) <rank V(p,)
—1. Let P': G"*Y¢,)—>al and P,;: a} »af be the Hermitian orthogonal projec-
. . - . 0

tions. It follows from the surjectivity of AZ{;‘(;‘? and the fact that G"’((pg) =92@®af, , that

P! is surjective. Since (R @ ad)Lad, G"* (@) = Ro@®af and AFE =0 by Figure 4,

we obtain

3.1) Pyo A8 o0V e(y) = 4G en8) = 4B P(),

where ve C(G"" (g,)), which, together with the surjectivity of P* and Aff’f)(‘;, implies
that P, is surjective. There, we have rank a§ >rank a9 =rank V((pl)— 1, which, together
with the opposite inequality above, implies that rank «f =rank ¢ =rank V(¢,)—1 and
P, is an isomorphism. P, is holomorphic by Lemma 2.2. Now, we show that A2, ; , =0.
Set ! =G@(ag), which is a holomorphic subbundle of G¥(¢,), for i=1,...,r+1. If
P, e s o}, | >0 is surjective, it follows from (3.1) that P,(Im(4& " @ Vion )=

P,(a}), hence Im(A5 g, @@V 1 )=ag, which contradicts the nilpotency of A4, ,,.
Therefore, P*|,; =0 by rank oco—l and hence o}, , = Ker A&7, @)@ by (3.1) and
the isomorphy of P,. Thus, we have proved that A%, , =0. Moreover, we obtain

al,; =Ry and ol , —IQ(AG(’r+ Yenl . )= R = Ry@ag. Finally, set

1=R, 0}, =(Ro @) ©G" Y (¢)O0,, .
Then, by Figure 4 we see that R 1o and AR} (‘;‘; =0. g.e.d.

REMARK. When dim¢M =1, 42, , =0 is trivially satisfied. However, when
dim¢M >2, A%, ,,=0is far from trivial since there is no assurance that rank V(g,)=2.
When we prove A2, , =0, we fully used the fact that rank Im A4S " ®@=1. On the
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other hand, there is no longer assurance that rank Im A&"g, @Y @) = 1. Therefore, when
we repeat this procedure, we again encounter difficulty at the next step. However, we
can prove the following:

PROPOSITION 3.1. Set @po=¢. For i=0,1,..., if @; has 0'-isotropy order r+i,
Af' @@ g holomorphlc and Al,;, =0, then define ¢, from @, by the forward
replacement of o, where aly=Im AG',"@?Y @) — Ker 4, ,, ., and rank oy =rank V(¢p;)— .
Then, either @, , is a pluriharmonic map into CP" ! or, ¢, , has @'-isotropy order r+i+1
and has the following properties:

(1) A& VeV s holomorphic and A%, 4 ,,,,=0.

(2) Setoyt'=ImAG ) V@ V@) cKer A, ;11 ,,,, and set o =G, (ah). Then,
rank ab" ! =rank V(¢,;, ,)—1 and the Hermitian orthogonal projection P, : ait! — o is
a holomorphic isomorphism.

() G g )R- Doy ' (1<s<i+]1).

(4) Set o'*! —Gf;l)ﬂ(a‘“) for j=1,...,r+i+42. Then, dit!cR,_, (1<s<i+1)
and 05}, , < R' @ ap.

(5) Set Riy =((Ri@®at)© G " Npis1) ©titlss Then, Riy Lo and Affopt™
0.

Proor. For i=0, Proposition 3.1 holds by Lemma 3.1. Assume that Proposition
3.1is true for 0<i<k and ¢;,, (0<i<k) is not a map into CP""!, so that each ¢, ,
(0<i<k) has the properties (1)«5). Then, we may define ¢,,, from ¢,,, by the
forward replacement of af*!. If oX*! =0, then rank V(¢,,,)=1 by (2) for ¢,,,, and
@k + 2 18 a pluriharmonic map into CP"~ . Hence, we may assume that a£** #0. Now, we
draw the diagram for ¢, , (0<i<k). Set y5" ' =V(p;,,) Oy and y{* ' =GY(p;,,) O

ot for j=1,...,r+i+1. By the properties (1)«(5) for ¢;,,, we have a diagram as
in Figure 6. In particular, when i=k, we have a holomorphic circuit

k+1 k+1 k+1 K+l  k+1 k+1 K+ 13
fag o s LA e o 3,

which is mlpotent Since rank y5*1 =1 by (2) for Pict 1 and AV{ 0 W (0<j<r+k) and
A{;j’;“ " are all surjective, we obtain A°‘*+"+2 % =0, Consequently, it follows from
Figure 6 that

i+1 i+1 i+1 i+1 ' i+1
Yo Y1 Yert PYetit1 R, Yo
N,

N
7.

A\ 4
Y
|
|
|
1

rd 7

Ly > > >
- -2 re

i+1 i+1 it1
x reiv2 %o

\ 4
N
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V(o) G042 G Ny, 5) R

k+2

(B2 V)= @d", o=y @l (I<j<r+k+1),
G(r+k+2)(¢ +2)CRk+1®tZk+1 .

Therefore, @, , , has &'-isotropy order r + k+2. By (3) and (4) for ¢, ., and the definition
of R, we obtain

Pt €GN @) R Byt (I<s<k+1),
Bl cReR_ @ay ' (1<s<k), @i, cR®ag,
which, together with (3.2), yields
3.3) G N@pi)cR_ oyt (1<s<k+2).

Set Ry, =V(9i+2)© (@'“‘+2 G9(¢,.,)). We have a diagram as in Figure. 7.
By Figure 7 and Lemma . 3, we see that AZ g 7@+ @x+2 js holomorphic. Set
oat2=Im AG g Ve DVl and o 2= Gfg,{+2(ao+2) for j=1,...,r+k+2. Define an
End(V(p, . 2)) Valued holomorphic dlﬂ'erentlal Ay +k+2.00,, as before. Then, this is
nilpotent. Therefore, rank af*? <rank V(g,,,)—1. Let P**2: G**** (g, ;) »ag™!
and P, ,: okt2 > ak*! be the Hermitian orthogonal projections. It follows from the
surjectivity of A" 6"" and the fact that G**** Vg, , ) =y5Fl, @ ok T}, , (see Figure
6 and (3.2)) that P"+2 is surjective. Since (Rj,,; @ ol ) Lok* 1, GE** g, ) e Ry @
ok*1 and ARk5-*1" =0 by Figure 6 for i=k, we obtain

(3 4) P.., oA(Gl(r(;k+2)(‘Pk+2) V(¢k+2)(v) AG(r+k+2)((Pk+2) afft! (U) A(;‘:)I aft! "’k+2(v) ,

k+1

where ve C®(G" ¥+ 2 (g, , »)), which, together with the surjectivity of P**? and A 0;' ,
implies that P, , is surjective. Therefore, we have

k+1

rank o5 2 >rank o * ! =rank V(¢ ;) —rank y§" ' =rank V(@,.2)—1

where the last equality follows from (2) for ¢,.;. Consequently, we see that
rank of*2 =rank of* ! =rank V(¢,,,)—1 and P, is an isomorphism.

Now, we show that 42, ,,..,=0. By (3.3) we have
(3.5 ¥ F2 < G (@r12) < R l@as ! (1<s<k+2).
First, we must show that o¥f2c R,_; (1<s<k+2). Let p: ofI2—ay ™', ¢*: il >
R._,(1<s<k+2) and 7%:off2, ooy 1 (1<s<k+1) be the Hermitian orthogonal
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projections. Take any ve C*(af} 2). By (3.5), we may set v=p*(v)+¢°(v). For 1 <s<k+1,
we have

3.6) T AFHETH @ =ATo P)+ AT @)= AT o ep0)

where we have used the facts (R,_, @ a}~ ') Lo~ (see Figure 6) and (5) for ¢,_,. If p°
is surjective, then, since A% 01,’ si™! is surjective, (3.6) implies that 7* is also surjective,
where we note that of 1#0 and o5 !#0 (1 <s<k+1) because neither ¢,_; nor ¢,
defines a map into CP"~! by assumption. Since R,La5 !, rankof=ranke}"' and
P,: of—a3” ! is an isomorphism by (2), (5) for ¢,, the surjectivity of ° implies that

piiakl2 | -« is also surjective. Now, suppose that p! is surjective. Then, each p°
(1<s<k+2) is surjective. In particular, p**2: «¥¥2, , > ak*! is surjective. Note that

pAri=Pt2| x:2, - Then, it follows from the surjectivity of p**2 and (3.4) that Py,
(—_(AG(r+k+2)(¢k+2) WV (@ +2) iz, 2)) Py 2(0( + 2) so that Im(A(Gl(er+ U@k +2),V (P +2) e 2) =
a’(‘,” which contradicts the nilpotency of 4,4, ,,.,- Therefore, we have proved that
p' cannot be surjective, which, together with the fact rank a =1, implies that p'=0.
For any fixed s (1 <s<k+1), if p*=0, then by (3.6) and the surjectivity of A{ffosz"’"‘:sz“
for 1 <s<k+1, we see that =0, where we note that if «*} 2, ; =0 then =0 is trivially
satisfied. Since P, is an isomorphism, it follows from 7°=0 that p**! =0. Thus, we have
proved that p*=0 (1 <s<k+2), which, together with (3.5), yields

3.7 wt2cR,_, (1<s<k+2).
Moreover, the fact p**2=0, the isomorphicity of P,,, and (3.4) imply that

akf2,, = Ker A V@D Vioea) g0 that A2, 5., ., =0.
Finally, set

k+ G
o {es 3 =Im(Af,

k+1
212, ) SR 2 SR 1 Dog™
and set

k2= R 202 3 =((Rhy 1 © ) O G M, ) O fides .
Then, by Figure 6 for i=k, we see that R, ,la%*! and Af‘l’j(,f'“‘ =9, g.ed.
Now, we have the following:

THEOREM 3.1. Let ¢: M\ S,— G,(C") be a pluriharmonic map. Assume that ¢
has finite 0'-isotropy order r. Then, there is a sequence {p;}1-, of pluriharmonic maps
such that

M) @o=0, 2) ox: M\S,,—»CP*"', (3) for i=0,1,...,N—1, each ¢; has
0'-isotropy order r+i, and @, is obtained from @; by the forward replacement of
Im AG )@Y, which is a holomorphic subbundle of V(,) contained in Ker(A o)0 A o).

PrROOF. Let N be any positive integer such that each ¢; (0<i<N) is not a map
into CP"~!'. Then, by Proposition 3.1 we see that ¢y has @-isotropy order r+N.
However, this is impossible because the &-isotropy order r+ N must be less than n.
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Therefore, there exists a positive integer N such that @y is a pluriharmonic map from
M\S,, into CP"~ !, which, together with Proposition 3.1, yields the assertions (1)~(3)
of Theorem 3.1. g.ed.

4. A construction of pluriharmonic maps from rational maps. In this section, we
give the procedures inverse to those in Theorems 2.1 and 3.1. For this purpose, we
review the following propositions which are higher dimensional versions of Proposition
2.3 and the following Remark and Theorem 4.1 of [B-W], respectively.

ProPOSITION 4.1 (cf. [O-U2]). Let ¢: M - G,(C") be a pluriharmonic map from
a complex manifold. Let a Ker(A{”f,o,oA}”lyo)) be a holomorphic subbundle of V(p) and
let ¢ be defined from ¢ by the forward replacement of «. Then, G,(a) is an anti-holomorphic
subbundle of V(¢), G,(a) = Ker(A("?,f”oA(“;’,,l)) and, if Ker A? 4,=0, then ¢ is obtained
from § by the backward replacement of G,(«).

ProrosiTION 4.2 (cf. [O-U2]). Let ¢: M — G (C") be a pluriharmonic map from
a complex manifold. Assume that Ker Af o,#0. Then, there exists a pluriharmonic
map Y : M\ S, = G(C") for some 0<t<k—1 and a non-zero anti-holomorphic sub-
bundle B of (VW)®G W) such that V(p)=V(y)@®B over M\S,. Conversely,
given a pluriharmonic map : M — G(C") and a non-zero anti-holomorphic subbundle
B of V() ® G'(Y))* then ¢ defined by V(p)=V(y)® B gives a pluriharmonic map ¢ :
M\ S,— G(C") with Ker Af, ,,#0, where k=t+rank .

Recall that we called the procedure V(i) —» V(i) @ B in Proposition 4.2 the backward
extension. We remark that if we reverse the orientation of M we may use the concepts
of ¢"-isotropy order and the backward replacement in place of those of ¢'-isotropy
order and the forward replacement, respectively. For example, given a pluriharmonic
map ¥ and a non-zero holomorphic subbundle g of (V(yy) ® G"(y))*, we can produce a
new pluriharmonic map ¢ with Ker 4% ;,#0 by V(p)=V(y)® B, and called this
procedure the forward extension (cf. Section 2).

First of all, we treat the case of infinite isotropy order.

PROPOSITION 4.3.  Let ¢: M\ S, — G (C") be any non-holomorphic pluriharmonic
map with infinite 0" -isotropy order, where M is a complex manifold. Then, there is a unique
sequence {@'}I_, of pluriharmonic maps such that

(1) o"=0, (2) ¢°: M\ S,0—> G(C") is a pluriharmonic map for some teN, (3)
for i=0,1,...,N—1, Ker A% (=0, and each ¢'** is obtained from ¢' by V(¢'*!)=
G(¢p")D o, where o is a holomorphic subbundle of (G'(¢")® V(p'))*.

Ramark. (1) Since G"(G'(¢Y)=V(¢’) by the condition @Ag’;,oﬁo, the pro-
cedure G'(¢") - V(g'*?) is the forward extension.
(2) A similar result where M is a Riemann surface is already proved in [Wd1].

PrROOF. Since G'™9(p)=0 for some se N, set V(¢)=G' "1+ (p) for i=0,1,...,
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s—1. Since G'(G'**1*Xp)) =G **2*¥p), we have G'(p)c V(p'*'). Set ai=
Ker A%})*, then by (1.2) and Proposition 4.2 we see that V(p'*')=G'(¢))@a’ and
of is a holomorphic subbundle of (G'(¢)® G"(G'(¢"))*. Note that the condition
Ker Af, 4,=0 is equivalent to the surjectivity of the map 4%7)*": V(¢'*!) = V(¢') (cf.
(1.2)). Now, N=s—1 and the existence is established. For the uniqueness define the
sequence {@'}., as in (3), where ¢° is as in (2). We show that each « is uniquely
determined by the condition (1). Suppose that V(¢")< GV *(¢) for some 1 <i<N—1.
Set f'=G "N p)O V(¢p). Since, V(p'*!) is a holomorphic subbundle of V(¢’)*,
AG PO s surjective, and Ker A% 5,=0, it follows that V(¢'*!) cannot have
G\~ ¥ *i*1(p) as a direct factor and V(p'*')c GUNYi*(p)@ . Thus, either
V(' ") g G N () or V(p'*?) has a non-trivial projection into . The former case
may be treated in the same way, and the latter one yields @" # ¢ because Ker 4% ,=0
and Ker A% o '@ =0 for any 0<j<N — 1. Therefore, we have ¢" # ¢. Next, suppose
that V(¢)2G'™" "(¢) for some 1 <i<N—1. If ¥(¢) contains also G'~¥*!*1)(g), then
Gv +"(ga) < Ker A, ,), which is a contradiction. Thus, V(¢') has a proper holomorphic
subbundle of G"¥**Y(¢) as a direct factor, hence, again, we have ¢ # . Finally,
suppose that G'(¢'~')< G"¥*9(¢) and that o'~ ! has a non-trivial projection into both
of G ¥*i*1(p) and B for some 1 <i<N-1. This case also leads to the conclusion
that o™ # ¢. q.e.d.

THEOREM 4.1. Let ¢: M\S,— CP" ' be a pluriharmonic map which is not
+-holomorphic, where M is a compact complex manifold with ¢,(M)>0. Then, there is
a unique sequence {0}'_ o (N <n—1) of pluriharmonic maps into CP"~" such that

(1) ¢"=¢, (2) ¢°: M\ S,0o—>CP""' is a non-constant holomorphic map with
rankc0¢° <1, that is, a rational map f: M — CP"~! with rankc0f<1, (3) for i=0, 1, ...,
N—1, each ¢'** is obtained from ¢' by V(¢'*1)=G'(¢").

Proor. This follows from Theorem 2.1 and Proposition 4.3. q.ed.
For the case of finite isotropy order, we have the following:

THEOREM 4.2. Let ¢: M\S,— G,(C") be any pluriharmonic map with finite
J'-isotropy order, where M is a compact complex manifold with ¢,(M)>0. Then, there
is a sequence {@'}Y_q of pluriharmonic maps such that

(1) o" =0, (2) ¢°: M\ S,0—~CP""*, and ¢' is obtained from ¢° by the backward
extension of B°, which is so chosen that Im AS ¢V @) = B° for some re N, and that if ¢°
is non-holomorphic then rank f°=1, (3) for i=1,...,N—1, each ¢'*' has &'-isotropy
qrder r—i, and ¢'*! is obtained from @' by the backward replacement of & and the
backward extension of ', where & and ' are so chosen that rank o i=rank V(¢")—1 and
the Hermitian orthogonal projection P': Im AG"+1 YeDVeh  of is a holomorphic iso-
morphism and Im AZ ;"@" V@ D = G (d)) B B'

Proor. This follows from Theorem 3.1 and Propositions 4.1, 4.2, q.e.d.
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The uniqueness for the choice of f' may be expected if we assume that
Ker(A{ o)|,.)=0. However, in general, it seems to be difficult to determine o uniquely.

5. Examples of pluriharmonic maps with finite ¢'-isotropy order. In this section,
we give examples of pluriharmonic maps with ¢’-isotropy order 1 or 2, which are maps
of CP? into complex Grassmann manifolds.

Let [0, {1, {,] be a homogeneous coordinate system for CP2. In an open set U,

where {,#0, set z; ={,/{o, z,=0;/{o.

ExaMmpLE 1. Let @q: CP?3[1,z,,2,] > [1, /22y, 225, 23, /22,25, 23] € CP® be
the second Veronese embedding. A line bundle ¥(g,) is locally spanned by

60(215 22)=(1, \/2_21’ \/EZZa Z%a \/2—2122, Z%) ’

which extends to a global meromorphic section of V(¢,). Using the expression for &,
we find that V(g,)=Im A%, is locally spanned by £} and &2, where

L= (=22, 21— 2, P41 2,10, —2/27,2,, 22,(1 4| 2, ?),
V2z(l= 1z, P4z, ), —22,73),
E2=(—22,, —2/22175, /200 +12, P =12, ), —223%,,
V221121 2= 2517, 225(1+1 2, %) .
Again, using the expressions for £} and &7, we find that V(p,)=Im A%, is locally
spanned by &1, 2 and &2, where
8=, —222(1+|2,1%), 24/2 825, A1 +12, P, —2/22,7,(1 +] 2, %), 22323,
E=022,7,, —/25,(1~1z, 1 +12,1%), —/22,(1+]2, * —| 2,1, —22,5,(1 +] 2, ],
2+ 2, P25 42120 P2 2, —22,25(1+] 2, %),
E3=(22%,2/22,53, —2/27,(1+12, ), 22322, —2/22,2,(1+| 2, P, 2(1 +12, |??) .

Then, we see that A7 ,,=0, that is, ¢, is an anti-holomorphic map into G;(C®). Since

V(¢,) is an anti-holomorphic subbundle of (V(¢,) ® G'(¢,))*, the map i : CP? - G,(C*®)

defined by V()= V(o) @ V(p,) is pluriharmonic by Proposition 4.2. Moreover, y has

J'-isotropy order 1. For the purpose of producing a pluriharmonic map into G,(C®)

with 0'-isotropy order 1, we now look for an anti-holomorphic line subbundle of V{g,).
Let B° be spanned by

1=(0,0,0, —23,/27,2,, —73).

In fact,

1 1 1
n= "16262&:752615%: _Iaﬁﬁfg :
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Since 0C®(V(¢p,)) = C*(V(p,)) and dn=0, we see that B° is an anti-holomorphic line
subbundie of V(g,). Define ¢! by V(p!)=V(p,) ® °. Then, ¢! is a pluriharmonic map
of CP*\\S,: into G,(C®) with ¢"-isotropy order 1, where S, consists of the isolated
point z; =z, =0.

ExampLE 2. Let
P CPza[l, Zy, 23]

(, ﬁzl, ﬁzz, ﬁzf, ﬁz%, \/gzlzz, z3, ﬁzfzz, ﬁzlzg, z3)e CP®

be the third Veronese embedding. A line bundle V(g,) is locally spanned by

Eolze, 22)=(1, ﬁzl, ﬁzz, ﬁzf, \/?zg, \/gzlzz, z3, ﬁz%zz, ﬁz,z%, z3).
V(p;)=1Im A%, is locally spanned by ¢} and &, where
El=(=32,, /31 =21z, P+12, 1), —3/32,25, /32,212, P +2] 2,2,
~3/32,25, \/62,(1—21z, *+12, ), 3231 +1 2, ),
V3212, =12, P 4212, 1), /32201 = 212, 1P +12, 13, —32,2),
E3=(=32y —3/32:21, /3142, > =2] 2, D), —3./3232,,
3224212, P =1 2,13, /6211 4+ 2, P =21 2, %), — 32,23,
321412, P =212, /3212524212, P12, 1), 323(1 +12, 1) .
V(p,)=1Im Ag: ,, is locally spanned by &3, £} and &3, where

E3=(622, —2/32,2 |z, 1> +2|2, %), 6/ 3 73z,,

2/3(1+12, 1 =2) 2, P +12,12), 6/3 2323, —2,/6 2,52z, [*+2]2, ]2,
62,(1+]2, 1%, 24/ 3 25(1 4|2, 11— 2| 2y P +1 22 1%),
—2/3232,2~12, 1P +2|z, %), 62223,

E3=(62,2,, —2/3%,(1-21z, *+12,13), =2/32,(1 +|2, =2 |z, |?)
—2/32,5,2~12, 24212, 13, —2/32,2,2+21z, >~ 2z, ),
SOz, 1z, [ +41 2, |2, D), — 62,251 +| 2, ),
23250 +1z, P= 1z, 1 +212, 212,13, 24/32,(1 + |2, P — | 2, [* +21 2, 2| 2, 1),
—6227,(1+1z, 1)),

E3=(673, 6y/3232;, —2/37,24 212, 1> —| 2,17, 6./3 2373,
231+ 2 PN+ 2, 2 =212, 2 — 24/ 62,2, +2| 2, P —| 2, 1?), 62373,
—2/3225,2 42|z, P2, 1, 2/ 32,1+ 2, Y1+ 2, P =2 2, ?),
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625(1+|z, 7))

V(ps)=Im A8, is locally spanned by &3, &3, &3 and &%, where

E =(~623, 6/3 741 +|2, %), —6/3 2325, —6/37,(1 +|2, 2%, —6,/3 7322,
61/ 6 2,22(1 4| 2, 1), 6(1 +1 2,17, —6./32,2,(1 +| 2, |22,
6\/3 22731+ z, |?), —62323),

— 62375, 2/32,2,2— 2, P 422,17, 2/3 51 +12, > =2 2z, %),
—2f22(1+I22I2)(1—2|21|2+|22|2),2f5122(2+2lzlIz—lzzll),
—2/62,(1 412, =2, |*+212, 2|2, ),
~62,5,(1+1 2,192, 2/3(1+12, YA+ 2, P+ 2,12+ 3| 2, | 2, 12),
~2/32,2,242]2, 2 +2] 2, 2+ 3 |2, 1| 2, %), 673251 + 2, 1),

B =(—62,23,2/3241-2|z, P +1 2,19, 2/ 32,52+ 2| 2, >~ | 2, %),
232,832z, P+21 2,13, —2/3Z5,(1 4z, Y1 +] 2, P =212, 2),
—2/62,(1 4|2, 12—z, [* 422, | 2,9,

62222(1 +| 2, 1?), —2lezz(2+2|zll2+2|22|2+3121|2|22|2)
2\f(1+|z1 P41z, 2+ 2, 12431 2, 12| 25 13), —62,2,(1+ |z, 7)),

—623, —6/323z2,, 6,/3 231 +2, %), —6./32273, —6/37,(1+|2, 7%
6f 2,551+ 2, %), —62323, 6/3 2373 (1 +]z, %),
—64/32,2,(1+12, )% 6(1+]2, 1)

Then, we see that A%, =0, that is, @5 is an anti-holomorphic map into G,(C*°). Since
V(¢3)is an anti-holomorphic subbundle of (V(¢,) ® G'(@,))*, the map y : CP? — G5(C*°)
defined by V()=V(pq) @ V(p;) is pluriharmonic and has ¢'-isotropy order 2. To give
a pluriharmonic map into G,(C!°) with &'-isotropy order 2, we now look for an
anti-holomorphic line subbundle of V(@;).

Let B° be spanned by

1°=(0,0,0,0,0,0, 23, —/32,23, /3732, —7})
In fact, #° =(1/36)0,0,0,E3 = —(1/12)0,0,0,E35=(1/12)0,0,8,&3 = —(1/36)0,0,0,&3. Since
0C®(V(@3)) = C*(V(p3)) and dn°=0, we see that B° is an anti-holomorphic line
subbundle. Define ! by V(p!)=V(p,)® B°. Then, ¢! is a pluriharmonic map of
CP2\S,: into G,(C'®) with ¢'-isotropy order 2.
Next, we construct a plurlharmonlc map @2 which has 6’-isotropy order 1 by the
backward replacement of ¢*. Since ° is a holomorphic and anti-holomorphic subbundle
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of V(p?'), we may take a'=p° A simple computation shows that G.(a') is locally
spanned by

n'=(0,0,0,0,0,0,3|z, 1?23, —/3 2|2, P—12, 192,25 /3 (12, 12 =2 2, )22, 3232,) .

Define ¢? by V(¢?)=V(pe) @ G:(a'). Then, ¢? is a pluriharmonic map of CP*\ S,
into G,(C'°) with @-isotropy order 1, where S,.=S5,:.

6. Pluriharmonic maps into other complex Grassmann manifolds. Let M be
compact complex manifold with ¢;(M)>0. The method and idea used to classify all
pluriharmonic maps from M into G,(C") are also partially applicable to the case where
the target is G,(C") or G,4(C™). There are many different cases to analyze, but the essence
of the analysis is just the same as in Section 3. Therefore, for the method to increase
the isotropy order of a given pluriharmonic map, we present only the algorithm.

LemMMA 6.1. Let ¢: M\ S, — G3(C") be a pluriharmonic map. Assume that ¢ has
0'-isotropy order r. Then, A} ,=0.

(I) If A2, #0, set «°=Im A2 . Then, a° = Ker(A¢ o)° A?, o)), and define ¢* from
@ by the forward replacement of a°. Then, ¢* has &'-isotropy order r and satisfies A?., =0.
Set f°=Im A, ,. and 5° =Tm ASes "FOV @9 Then, §° @ 6° < Ker(A 30 AL, o). Define
@, from @' by the forward replacement of B° ® 6°. Then, ¢, has 0'-isotropy order >r+1
and satisfies A}, ,,=0.

() If A2,=0, set o®=ImA,, and 6°=Im AGH "IV @OL Thep a0 §°c
Ker(Ag ¢y Af o), rank a®=1, 2, and rank §°=0, 1.

(II-1) If ranka®=2, then 6°=0 and define @, from ¢ by the forward replacement
of o°.

(I1-2) If ranka®=1 and 6° =0, then define ¢, from @ by the forward replacement
of «°.

(I1-3) If rank a®=rank 6° =1, then define ¢, from @ by the forward replacement
of a° @ &°.

Then, in any case, @, has 0'-isotropy order >r+1 and satisfies A}, ,,=0.

Moreover, for each ¢, in (), (11), the following are true:

(1) IfA,;q, =0, then ¢, is a pluriharmonic map into CP"~* or G,(C") (the latter
case occurs only for (I11-2)).

@ A1, =0and A, s, #0,setp' =Im A, ., and6' = Im AG#y P6V@nsut,
Then, p', 8' = Ker(A o) A8 o)) and rank 6' =0, 1 (the latter case occurs only for (11-2)).
Define @, from ¢, by the forward replacement of u* ® &*. Then, @, has &'-isotropy order
>r+2 and satisfies rank Im A, , ,, =rank V(@,)—m, where m=1,2 (the latter case
occurs only for (11-2)).

() If A%y, ,#0, set a'=Im A2, , .. Then, o' cKer(Afl o0 A% o), and define o}
Sfrom @, by the forward replacement of a*. Then, ¢} has &'-isotropy order r + 1 and satisfies

r+2) 1
A%, 1! =0. Set p'=Im 4, , 1,0 and 8! =I_m‘A(G1",’6) @Y @DOF Then, p*, 8! = Ker(AE‘f,}(’);o
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A}"ﬁo)). Define ¢, from @} by the forward replacement of B* ® 6*. Then, ¢, has &'-isotropy
order >r+2 and satisfies rank Im 4, , , ,, =rank V(p,)—1.

Using Lemma 6.1, we may prove the following:

PROPOSITION 6.1. Let ¢: M\ S ,— G3(C") be a pluriharmonic map. Assume that
@ has finite &-isotropy order and n < 15. Then, there is a sequence {@;}1- , of pluriharmonic
maps such that

M) po=0, (2) oy M\Sq,N—>CP"_1 or G,(CM), () for i=0,1,..., N—1, each ¢;
has finite 0'-isotropy order, and @, , is obtained from @; by the forward replacement of
o, where o is a holomorphic subbundle of V(@) contained in Ker(A‘(’l"i, 0° A% o).

Proor. Construct ¢, from @, using Lemma 6.1. Let r be the ¢'-isotropy order of
@,. Then, r>3. Set ag=Im A4, ,,, 1,=GY(a;) for i=1,...,r and y,=V(9,) O, y;=
G¢p,)O0q; for i=1,...,r. By Lemma 6.1, we have ranky,=m and ranko,=
rank V(p,)—m, where m=12. If 4, =0, then ¢, is a pluriharmonic map into CP""! or
G,(C"), hence we may assume that «,#0. Set R= V((pé)@(@Ez ,G9(9,)). We have
a diagram as in Figure 8.

We have two possibilities: (1) «;=0 for some 1 <i<r, (2) any «; (1 <i<r)is non-zero.

() Set V(@)=(V(p,)Oap)@Da,. Then, by Figure 8 we see that either ¢ is a
pluriharmonic map into CP"~! or G,(C"), or ¢ has &'-isotropy order r+1 and
rank Im A8 (@ 1P =rank V(¢) —m, where m=1, 2.

(2) Since n< 15, one of V(¢,), G¢,) (1 <i<r) has rank <3 and ¢'-isotropy order
r. Hence, by Lemma 6.1, either we have a pluriharmonic map into CP*~! or G,(C"),
or we have a pluriharmonic map ¢ which has J'-isotropy order r+2 and satisfies
rank Im A4, , , ;=rank V($)—m, where m=1, 2.

Since the ¢'-isotropy order cannot be so large, repeating this procedure, we see that
¢ is reduced to a pluriharmonic map into CP"~?! or G,(C™), and each ¢; in the sequence
has the desired properties by Proposition 2.3. g.e.d.

Next, we present an algorithm to increase the isotropy order of a given pluri-
harmonic map into G,(C"). To state the algorithm, we need the following:

ProposITION 6.2 ([cf. O-U2]). Let ¢: M\S,— G(C") be a pluriharmonic map
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with &'-isotropy order r. Assume that A},=0 and rank Im A, ,=1. Then, there is a
holomorphic subbundle t of V(@) with 1 < Ker(A(1 0° A48 0) such that @, defined from ¢
by the forward replacement of T has 0'-isotropy order >r+1.

The method is to construct a pluriharmonic map ¢ satisfying the conditions in
Proposition 6.2 from a given pluriharmonic map ¢.

LEMMA 6.2. Let ¢: M\ S, — G4(C") be a pluriharmonic map. Assume that ¢ has
d'-isotropy order r. Then A},=0. There are three possibilities: (I) A}, #0, (I) A2,=0
and A2, %0, (IT) A2,=0.

In each case, we use the following notation for simplicity:

A=Af;',‘6o)°Af;:()l)’Er°' ) °A(1 0) > B=Af‘1r,+ol) OOA(lr o;HO' ) '°Af‘f,'5)l .

(I) Set a°=IQA,3,¢. Then, o cKer(A(fo)oA(1 o)), and define @' from @ by the
forward replacement of o°. Then, @' has &'-isotropy order r and satisfies A} o =0. Set
B°=Im A? .. Then, p°c Ker(A}‘fl(’,; ¢ o), and define ¢* from @' by the Sorward
replacement of B°. Then, ¢* has &'-isotropy order r and satisfies A?2,=0.Set p’=Im 4, ..
Then, p° < Ker(AZ} oA o), and set @i=GuO) for i=1,...,r+1, =V(pH)Ou°,
&=GNpH Oy for i=1,...,r, n=ImB and v=Im(A-B). Then, rankn=ranke®—1,
rank v=rank u°—1 and v = Ker B. Define ¢ from @? by the forward replacement of v.
Then, ¢ satisﬁes the conditions in Proposition 6.2.

(D) Set a®=ImA},, f°=ImA, ,0a° and y°=V(p) O (@’ ® B°). Then, there are
three possibilities: (I11-1) rank a® =rank B°=1, (II-2) rank a® =ranky°=1, (II-3) rank
B%=ranky’=1.

I-n QO rr A(Gl(r(;,”(“o’ =0, define ¢ from @ by the forward replacement of o°.

Then ¢ satisfies the conditions in Proposition 6.2,

(2) Otherwise, set 6°=Im AG"+ Y@ and define @' from ¢ by the forward
replacement of oc° Then o' has d'-isotropy order r and satzsﬁes A% ,1=0. Set
po=ImA, ., @=GAW°) for i=1,....r+1, =V(pHYou’, é¢=Gp") O U
fori=1,...,r,n=Im B and v=Im(A-B). Then rankn:rankso— 1, rankv=1
and v <= Ker B. Define & from @' by the forward replacement of v. Then &
satisfies the conditions in Proposition 6.2.

(I1-2) Define @* from ¢ by the forward replacement of a°. Then, @' has &'-isotropy
order r and satisfies A%, =0. Set p°=ImA,,, p'=Gh® for i=1,...,r+1,
=V(pHhoul, =GN YO ' for i=1,...,r and n=Im B. Then, rank n=rank ¢® — 1
and (4> BP =0.

() IfncXKenA,setv=p’@n. Then,v = Ker(A%}, 0 A o)), rank v=rank V(p") —

1, and @, defined from @' by the forward replacement of v has &'-isotropy order
>r+1 and satisfies rank Im 4, ., , =rank V(p,)—1.
(2) IfncKerA, set v=Im(A-B). Then, rankv=1 and v = Ker B. Define ¢ from

@' by the forward replacement of v. Then, & satisfies the conditions in Proposi-
tion 6.2.
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(I1-3) Define ¢ from ¢ by the forward replacement of o°. Then, ¢ satisfies the
conditions in Proposition 6.2.

(1)  Set p°=ImA,,. Then, u° cKerA,,. Set =GP for i=1,...,r+1,
2 =V(p)Ou® and =GN @)O i for i=1,...,r. Then there are three possibilities:

(III-1)  rank pu®=1, (111-2) rank u° =2, (I11-3) rank u®=3.

(HII-1) In this case, @ itself satisfies the conditions in Proposition 6.2. Set ¢ = .

(I1I-2) We have rank Im A% 4*°=0, 1.

(1) If A4 },;"OEO, then define @, from ¢ by the forward replacement of u°. Then
@, has 0'-isotropy order >r+1 and satisfies rank Im 4, , ; , =rank V(¢)—m,
where m=1, 2.

(2) Otherwise, set 11=IQA§‘1'});’5°. Then rankn=1 and (A-B)*=0. If AcB=0, set
v=u’®n. Then v Ker(A{"lfo)oAf’l,o)), rank v=rank V(p)— 1, and ¢, defined
from @ by the forward replacement of v has &'-isotropy order >r+ 1 and satisfies
rank ImA4,,, , =rank V(p,)—1. If Ao B#0, set v=Im(A-B). Then rankv=1
and v = Ker B. Define ¢ from ¢ by the forward replacement of v. Then, ¢
satisfies the conditions in Proposition 6.2.

(I11-3)  We have Al{ 4,*°=0. Define ¢, from ¢ by the forward replacement of u°.

Then @, has @'-isotropy order >r+1 and satisfies rank Im 4, , | ,, =rank V() —1.

Moreover, for each @, there is a holomorphic subbundle © of ¢ with t<

Ker(A§ 0,0 A& o) and rank t=rank V(¢)—m such that ¢, defined from & by the for-
ward replacement of t has 0'-isotropy order >r+1 and satisfies rank Im 4, ., , =
rank V(p,)—m, where m=1,2, 3.

Using Lemma 6.2, we obtain:

PROPOSITION 6.3. Let ¢ : M\ S,— G4(C") be a pluriharmonic map. Assume that
@ has finite 0'-isotropy order and n < 14. Then, there is a sequence {@;}"- , of pluriharmonic
maps such that

(M) @o=0, 2) oy: M\S,,— G,(C") with m=1,2,3, (3) for i=0,1,...,N—1,
each @; has finite 0'-isotropy order, and ¢, ,. | is obtained from @, by the forward replacement
of o, where o is a holomorphic subbundle of V(p,) contained in Ker(A% )0 A% o).

This follows from the arguments similar to those of Proposition 6.1. For the inverse
procedure, we have the following:

THEOREM 6.1. Let ¢: M\S,— G(C") be a pluriharmonic map with finite
d'-isotropy order, where M is a compact complex manifold with c,(M)>0. Assume that
k=3 (resp. k=4) and n<15 (resp. n<14). Then, there is a sequence {¢'}'_, of
pluriharmonic maps such that

(1) =0, (2) 9°: M\ S0 G(C") with 1 <t<k—1, and @' is obtained from ¢°
by the backward extension so that ¢ has finite &'-isotropy order, (3) for i=1,..., N—1,
each ¢'*! has finite &'-isotropy order, and @'**' is obtained from @' by the backward
replacement and the backward extension.
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ReMARK. If we do not require the result such as the one in (2) of Theorem 6.1,
the restriction on »n may be relaxed to the condition that n<20 for k=3 and n<1S5 for

k=4.
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