
 1

  
Abstract—Better software and hardware for automatic 

classification of power quality (PQ) disturbances are desired for 
both utilities and commercial customers. Existing automatic 
recognition methods need improvement in terms of their 
capability, reliability, and accuracy. This paper presents the 
theoretical foundation of a new method for classifying voltage 
and current waveform events that are related to a variety of PQ 
problems. The method is composed of two sequential processes: 
feature extraction and classification. The proposed feature 
extraction tool, time-frequency ambiguity plane with kernel 
techniques, is new to the power engineering field. The essence of 
the feature exaction is to project a PQ signal onto a low-
dimension time-frequency representation (TFR), which is 
deliberately designed for maximizing the separability between 
classes. The technique of designing an optimized TFR from time-
frequency ambiguity plane is for the first time applied to the PQ 
classification problem. A distinct TFR is designed for each class. 
The classifiers include a Heaviside-function linear classifier and 
neural networks with feedforward structures. The flexibility of 
this method allows classification of a very broad range of power 
quality events. The performance validation and hardware 
implementation of the proposed method are presented in the 
second part of this two-paper series [1].  

 
Index Terms--Power Quality, Classification-Optimal TFR, 

Time-Frequency Ambiguity Plane, Fisher’s Discriminant 
Function, Linear Classifier, Neural Networks. 

I.  INTRODUCTION  
HE proliferation of highly sensitive computerized 
equipment places increasingly more stringent demands on 

the quality of electric power supplied to the customer [2]. 
Today, power quality (PQ) has become a very interesting 
cross-disciplinary topic, coupling power engineering and 
power electronics with digital signal processing, software 
engineering, networking, and VLSI.  

Voltage disturbances are the most frequent cause of a broad 
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range of disruption in industrial and commercial power supply 
systems. These disturbances, often referred to as power 
quality problems, significantly affect many industries. Major 
causes of PQ-related revenue losses are interrupted 
manufacturing processes and computer network downtime. 
The examples abound in semiconductor industry, chemical 
industry, automobile industry, paper manufacturing, and e-
commerce. A report by CEIDS (Consortium for Electric 
Infrastructure to Support a Digital Society) shows that the 
U.S. economy is losing between $104 billion and $164 billion 
a year due to outages and another $15 billion to $24 billion 
due to PQ phenomena [3].  

The conventional methods currently used by utilities for 
power quality monitoring are primarily based on visual 
inspection of voltage and current waveforms. Highly 
automated monitoring software and hardware is needed in 
order to provide adequate coverage of the entire system, 
understand the causes of these disturbances, resolve existing 
problems, and predicting future problems. Several research 
institutions and companies are conducting PQ research and 
development. Software and hardware products, such as 
PQSoft by Electrotek Concepts and PQNode by Dranetz-BMI 
have demonstrated benefits of the PQ monitoring 
methodology to utility companies. Signature System, a web-
based power information system recently developed by 
Drantetz-BMI, Electrotek Concepts, EPRI, and TVA, 
integrates a network of monitoring software and hardware. It 
incorporates many internet-related features and motivates 
multiple future directions in PQ monitoring. 

Built-in event diagnosis and assessment modules are the 
key to these monitoring systems. One way to improve the 
performance of a monitoring system is to incorporate a more 
reliable and accurate waveform recognition algorithm, which 
recognizes a broader range of PQ events. The traditional 
method is based on RMS measurements and constrained by its 
accuracy. Approaches for automated detection and 
classification of PQ disturbances proposed recently are based 
on wavelet analysis, artificial neural networks, hidden Markov 
models, and bispectra [4-8]. These techniques have been 
successfully employed in other pattern recognition and signal 
processing applications, such as speech recognition, audio 
processing, communications, and radar and sonar applications. 
While PQ waveform recognition processes voltage and 
current signals and speech recognition processes audio 
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signals, these two problems are very similar in nature. Recent 
development in the speech processing area has shown us the 
potential of designing more accurate and more intelligent PQ 
monitoring algorithms, with advanced signal processing 
techniques. The potential improvement on monitoring 
capability implies significant economic values to utilities and 
PQ-sensitive energy customers.  

 In this paper, the technique of designing an optimized 
time-frequency representation (TFR) from a time-frequency 
ambiguity plane is applied to the PQ classification problem for 
the first time. Because the proposed method is entirely new to 
the power engineering field and many new concepts are 
introduced, we present the material with a two-paper series: 
Part 1 -- Theory (i.e., this paper) and Part 2 – Application [1]. 
A significant classification application with this algorithm and 
its DSP-based real-time hardware implementation are 
presented in Part 2, to validate the presented method.  

II.  OVERVIEW OF PQ CLASSIFICATION ALGORITHMS 
Although recently proposed PQ classification algorithms 

provide improved recognition rates, they are not yet sufficient 
for supporting a robust PQ monitoring system. The described 
algorithm offers an additional step towards this goal. 

Wavelet transform on a PQ signal produces a multi-
resolution decomposition (MRD) matrix, which contains time 
domain information of the signal at different scales. This 
property has made wavelets a promising tool for detecting and 
extracting disturbance features of various types of PQ events 
[5,7,8]. However, there are still some issues to be resolved in 
wavelet-based methods. First, while PQ disturbances cover a 
wide frequency range, a very small subset of the MRD matrix 
(e.g., five scales in [8]) may not be a sufficient or optimized 
selection for capturing features of all different types of PQ 
events. This feature selection scheme may filter some 
important information for classification and potentially 
degrade the recognition rates. Second, the wavelet-based 
methods require more training examples than the algorithm 
proposed in this paper. It results in more efforts or difficulties 
when adapting the algorithm onto a new system.  

The method using a wavelet packet-based hidden Markov 
model provides improved recognition rates [4], however, it is 
the post-processing procedures that make a significant 
contribution to the final results (overall classification rate on 
507 testing waveforms: 83.2% without post-processing; 
95.5% with post-processing). In [4], the post-processing steps 
are not very exactly defined in terms of implementation. The 
ambiguity makes it hard to judge whether this method can 
achieve comparable performance on other power quality data. 
The method proposed in this paper does not require a post-
processing procedure.  

The wavelet transform (WT) or short-time Fourier based 
methods are good in terms of time domain localization of an 
event or relatively accurate representation of the time-scale 
(time-frequency) structure of a waveform. On the other hand, 
accurate representations often include redundant information 
that confuses the classification process. For example, two 

capacitor high-frequency switching waveforms have wavelet 
coefficient peaks or Fourier coefficient peaks centered at 
different time locations, if taken WT or STFT. Smoothing 
procedures are usually applied in the wavelet domain or the 
spectrogram to remove redundancies. However, it has not 
been proved that the smoothing procedures adopted can 
significantly remove redundant information for classification. 
It has not been proved either that a wavelet or Fourier 
spectrum is an optimal starting point for generating 
classification features. In this paper, the proposed statistical 
smoothing and explicit TFR design techniques has an 
optimization goal of classification.  

To build an ideal PQ monitoring system, the following 
issues have to be addressed in the classification algorithm. 
First, new algorithms need to be able to classify voltage or 
current transient events due to different power system events, 
such as motor starting, transformer inrush currents, capacitor 
switching, and high impedance faults. Transient identification 
problems, which require higher frequency waveform 
recording devices and more robust classification methods, are 
rarely addressed in the literature, with the exception of [9]. 
Second, new methods need to be capable of implementing 
cause-based classifications, in addition to phenomenon-based 
classifications. For example, for a voltage sag event, it is 
desirable to know not only that it is a voltage sag, but also 
whether it is caused by the switching of a large load, a line-to-
ground fault, or other reasons. Third, new methods should be 
able to localize a PQ event, which indirectly leads to a 
solution for the detected PQ problem. Decisions may be made 
according to the measurements from multiple monitoring 
nodes. The number of PQ monitors and their layout in a power 
system need to be optimized. Fourth, the new methods should 
also have the reduced computational complexity mode to 
support real-time on-line monitoring.  

None of these issues has been resolved perfectly in existing 
classification methods. We are not even close to an ideal PQ 
monitoring system. Sustained efforts in exploring better 
solutions become crucial for improving the overall quality of 
services of energy providers and rescuing energy customers 
from expensive PQ-related losses.  

The new approach presented in this paper is composed of 
two sequential processes: feature extraction and classification. 
The main contribution of this paper is in the area of feature 
extraction. The essence of the feature exaction is to project a 
PQ signal onto a low-dimension time-frequency 
representation (TFR), which is deliberately designed for 
maximizing the separability between classes. A distinct TFR 
is designed for each class. Standard classifiers are adapted in 
this method, including a Heaviside-function linear classifier 
and neural networks with feedforward structures. The 
proposed algorithm has been successfully tested with 860 real 
world power quality events. A recognition rate of 98.0% has 
been achieved in the experiment that covers five classes; a 
DSP-based hardware system, which is capable of processing a 
five-cycle (83.3 ms) PQ waveform within 11.2 ms, has 
verified the real-time computing capability of this algorithm 
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[1].  

III.  POWER QUALITY EVENTS 
Power quality problems are caused by many different 

system events. PQ disturbances cover a broad frequency range 
and significantly different magnitude variations, which makes 
the identification of PQ events often difficult. This section 
presents five major power quality related waveform events in 
our study: harmonics, voltage sags, capacitor high frequency 
switching, capacitor low frequency switching, and normal 
voltage variations. 

Fig. 1 shows sample waveforms of these events recorded 
from real world power systems. Fig. 1(a) represents the 
waveform affected by harmonics. Harmonics distortion is the 
most frequently encountered power quality problem [10]. 
Because of the increasing popularity of electronic and other 
non-linear loads, such as adjustable-speed drives, arc 
furnaces, and induction furnaces, perfect sinusoid waveforms 
often become distorted by both even and odd harmonics. 
Transformer core saturation is another cause of harmonic 
distortion. Major consequences of harmonics include 
equipment overheating, excessive currents and voltage, and 
tripping of protective relays.  

 

Time [ms]  
Fig. 1. Five classes of PQ signals for classification. 

(a) harmonics; (b) voltage sag; (c) normal voltage variations; (d) capacitor 
high frequency switching; (e) capacitor low frequency switching. 

 

A momentary voltage dip that lasts for less than one minute 
and more than eight milliseconds is classified as voltage sag 
[11]. It is caused by faults, the start of large loads (e.g. 
motors), and brown-out recovery [10]. Fig. 1(b) shows an 
example of voltage sag. Major consequences of voltage sag 

include short circuits, process interruptions, and loss of data. 
Process industry equipment is particularly sensitive to voltage 
sag problems, because conveyor-like machinery is 
interconnected and temporary failure of any component in the 
process can cause system downtime.  

Fig. 1(c) shows a waveform of normal voltage variations. 
A normal variation signal is a sinusoidal voltage waveform 
with electrical system noise on a normal level. 

Transients caused by capacitor switching are also among 
common sources of power quality degradation in utility 
systems [10]. Two sample signals that correspond to high and 
low frequency capacitor switching are shown on Fig. 1(d) and 
Fig. 1(e), respectively. The low frequency range is usually 
defined as 500 Hz to 2 kHz, and the high frequency range is 
usually defined as greater than 2 kHz. The frequency of a 
transient is determined mostly by the capacitance and 
inductance of system components. Capacitor banks are 
commonly used in power systems for power factor correction. 
Major consequences of capacitor switching events include 
insulation breakdown or sparkover, semiconductor device 
damage, short circuits, accelerated aging, and loss of data or 
stability. 

These five types of PQ events were used to validate the 
proposed new classification algorithm, in the Application Part 
of this paper [1]. The case study tested a total of 860 real-
world waveforms. 

IV.  THEORETIC BACKGROUND 

A.  Classification-optimal TFR 
The solution for a pattern recognition problem usually 

includes two sequential processes: feature extraction and 
classification. For waveform recognition problems, given a 
time series, features are often extracted from some forms of 
TFRs. To gain more understanding of a given signal, it is 
often advantageous to study the signal in a different time-
frequency representation, based on a different weighting 
function. From a mathematical point of view, there is an 
infinite number of ways this can be done. In other words, 
there is an infinite number of possible TFRs corresponding to 
a signal [12].  

For example, for the high-frequency capacitor switching 
signal in Fig. 1(d), two TFRs, spectrogram and Rihaczek TFR, 
are shown in Fig. 2(a) and Fig. 2(b), respectively. Although 
the high frequency components due to the switching event 
around 43 ms can be roughly located on both TFRs, the 
matrices corresponding to these two TFRs show significantly 
different patterns. This is caused by their different underlying 
weighting functions. In real applications, one TFR may show 
its advantages over certain applications, but expose its 
disadvantages over other applications.  

To achieve good classification results, features need to be 
selected from a TFR that is optimal for the classification task. 
The spectrogram is traditionally used for PQ event 
classification. Recently, wavelet multi-resolution 
decomposition matrix (MSD) becomes dominant for this 
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purpose. However, a spectrogram or a wavelet MSD is 
defined to accurately describe the component frequencies 
(scales) of a signal over the time, while the classification 
problem requires a TFR that maximizes the separability of 
signals in different classes. There are no enough evidences 
showing that existing spectrogram or wavelet-based methods 
have generated such TFRs. Therefore, it is desirable to design 
a classification-optimal representation iTFR  that specifically 
emphasizes the differences between classes [13,14]. It is not 
necessary for the representation iTFR  to accurately describe 
the time-frequency information of the signal. Given the 
desired classification-optimal representation iTFR , features 
can be generated by mapping signals to iTFR , as illustrated in 
Fig. 3. The question here is how to find the iTFR .  

Time-frequency ambiguity planes have been an important 
tool in the radar field, in analyzing and constructing radar 
signals, formulating the performance characteristics of a 
waveform, and relating range and velocity resolution [15]. It 
has also been used extensively in the fields of sonar, radio 
astronomy, communications, and optics [16]. Gillespie and 
Atlas have recently proposed feature extraction methods based 
on designing class-dependant TFRs from time-frequency 
ambiguity plane. This class of new techniques has been 
successfully applied for tool-wear monitoring and radar 
transmitter identification [14,17,18].  

The important connection between the ambiguity plane and 
time-frequency representations has been recognized for a long 
time. Any bilinear (Cohen class) TFR ( , )P t f  can be 
expressed as the two-dimensional Fourier transform of the 
product of the ambiguity plane ( , )A η τ  of the signal and a 
kernel function ( , )ϕ η τ  [12]: 

 

2 2( , ) ( , ) ( , ) j t jfP t f A e e d dπη π τη τ ϕ η τ η τ
∞ ∞

−

−∞ −∞
= ∫ ∫      (1) 

 

where t represents time, f represents frequency, η  represents 
continuous frequency shift, and τ  represents continuous time 
lag. The ambiguity plane ( , )A η τ  for a given signal ( )s t  is 
defined as:  

 

* 2( , ) ( ) ( ) j tA s t s t e dtπηη τ τ
∞

−∞
= +∫      (2) 

Here s(t) represents the signal at time t, and ( )s t τ+  
represents the signal at a future time t τ+ , and the *( )s t τ+  
means the complex conjugate of ( )s t τ+ .  

The ambiguity plane is utilized in TFR design because of 
its desirable properties for classification. It can be interpreted 
as a joint time-frequency correlation function. Each location 
in this plane contains global time-frequency information about 
the signal. When evaluated along two axes, i.e. 0η=  and 

0τ= , it simplifies to either the time-domain or the frequency 
domain correlation function. If only the locations on the axis 

0η=  are considered and other locations are ignored, then the 
designed TFR only contains steady-state frequency 

information and all temporal information is smoothed. If only 
the locations on the axis 0τ =  are considered and other 
locations are ignored, then the designed TFR only contains 
temporal information and all spectral information is smoothed. 
Locations not on either axis correspond to a sloped 
representation of temporal and spectral information. Using the 
appropriate combination of weighted points, any TFR can be 
generated [14,16]. 
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(a) The log scale spectrogram of the PQ signal in Fig. 1-(d). 
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(b) The Rihaczek TFR of the PQ signal in Fig. 1-(d). 

 
Fig. 2. A PQ signal and its two TFRs. 

 

The infinite number of possible quadratic TFRs for a signal 
results from the infinite number of possible choices for the 
kernel. The kernel determines the representations and its 
properties. A kernel function is a generating function that 
operates upon the signal to produce the TFR. The 
characteristic function for each TFR ( , )P t f  is 

( , ) ( , )A η τ ϕ η τ . In other words, given a signal, a TFR can be 
uniquely mapped from a kernel.  

The relationships above provide two important 
implications. First, just like any other TFR, the classification-
optimal representation iTFR  can be obtained through 
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smoothing the ambiguity plane with an appropriate kernel iϕ , 
which is a classification-optimal kernel. The problem of 
designing the iTFR  becomes equivalent to designing the 
classification-optimal kernel ( , )iϕ η τ . Second, because of the 
characteristic (uniquely mapping) relationship between a TFR 

( , )P t f  and a kernel-smoothed ambiguity plane 
( , ) ( , )iA η τ ϕ η τ , features can also extracted directly from the 

( , ) ( , )iA η τ ϕ η τ , instead of the classification-optimal iTFR . 
This shortcut simplifies the computation complexity of feature 
extraction, by reducing the calculations described in Equation 
(1). 

 

Signal 
A

Signal 
B

Signal 
C
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D

(TFRi )A
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TFR1

TFR2

Signal
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TFRi

(TFRi )D(TFRi )C(TFRi )B

 
 

Fig. 3. Extract features by mapping signals to the classification-optimized 
representation TFRi. 

 

B.  Fisher’s discriminant function 
Fisher’s discriminant function (FDF), which was developed 

by R. A. Fisher in 1930s, is a method that projects high-
dimensional data onto low-dimensional space for 
classification. The projection maximizes the distances 
between the means of the different classes while minimizing 
the variances within each class. Equation (3) defines the 
Fisher’s discriminant function:  

 

                          
2

1 2
2 2

1 2

( )( )F
m mJ
D D

ω −=
+

                                (3) 

 

where m represents a mean, D2 represents a variance, and the 
subscripts denote the two classes. The Fisher’s criterion 
defines that the best ω ’s are the ones that maximize ( )FJ ω . 
The criterion is also known as signal-to-interface ratio.  

In this paper, with the dimension reduction capability, the 
Fisher’s discriminant function is adopted for the design of the 
classification-optimal kernel functions.  

V.  CLASSIFICATION ALGORITHM AND TRAINING TECHNIQUES 
In this study, all 860 real world voltage signals from five 

event classes were collected from industrial databases for the 
training and the testing of the algorithm. Each voltage signal 
to be identified consists of five cycles of voltage waveform 
sampled 128 times per cycle, and has a length of 640 sampling 

points. A window size of 83.3 ms (five sinusoidal waveform 
cycles in a 60 Hz system) is adopted because of the following 
two reasons. First, a five-cycle window is long enough for 
capturing the characteristics of all types of PQ events under 
our study. Second, a five-cycle window is short enough for 
generating real-time monitoring outputs. This window size is 
used in this paper to demonstrate the algorithm, and can be 
adjusted appropriately upon specific applications. For 
example, when this method is dedicated for discriminating 
different types of high frequency power system transients, the 
window size can be reduced to a fraction of a cycle.   

The classification algorithm is composed of two parts: the 
training algorithm and the implementation algorithm. In the 
training stage, four classification-optimal kernels are designed 
for separating four classes sequentially. The kernel design 
process selects nine locations from the time-frequency 
ambiguity plane. In the training stage, four different classifiers 
(linear or neural net classifier) are optimally selected and 
trained. In the implementation stage, nine feature points are 
generated directly from the signal and sent to four different 
classifiers.  

 

A.  Design of classification kernels 
 

According to the Fisher’s discriminant function, four 
classification-optimal kernels are designed for four classes: 
harmonics, voltage sags, normal variations, and capacitor 
high-frequency switching, respectively.  

The discrete versions of equations (1) and (2) are [14]  
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where the function ()F  represents the Fourier transform, the 
function 1()−F  represents the inverse Fourier transform, n 
represents sample, k represents discrete frequency, η  
represents discrete frequency shift, and τ  represents discrete 
time lag. The instantaneous autocorrelation function [ , ]R n τ  is 
defined as 

 

       *[ , ] [ ] [mod( , )]R n x n x n Nτ τ= +              (6)  
 

where the function 1 2mod( , )p p  represents modulus after 

dividing the first parameter 1p  by the second parameter 2p . 
As stated in Section IV-A, features can be extracted directly 
from [ , ] [ , ]iA η τ ϕ η τ . The kernel [ , ]iϕ η τ  has the same 
dimensions as the ambiguity plane [ , ]A η τ . In this 
application, the kernel [ , ]iϕ η τ  is defined as a binary matrix 
(each matrix element is either 0 or 1), so,  
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   [ , ], [ , ] 1
[ , ] [ , ]

0, [ , ] 0
i

i
i

A if
A

if
η τ ϕ η τ

η τ ϕ η τ
ϕ η τ

 == =
       (7)  

 

Feature points are ambiguity plane points of locations ( , )η τ  
where [ , ] 1iϕ η τ = . Therefore, the process of feature extraction 
is to select points that are optimal for the classification task 
from the ambiguity plane.  

A total number of N-1 kernels need to be designed for a N-
class PQ classification system (N is the number of classes, 
here N=5). A kernel Ks works as either a single-class 
separator or a group-class separator. In the single-class 
separator case, kernel Ki is dedicated to discriminate class i 
from all remaining classes { 1, , }i N+ . In the group-class 
separator case, kernel Ki is dedicated to discriminate a class 
group { , 1, , }i i i m+ +  from all remaining classes 
{ 1, 2, , }i m i m N+ + + + . In the second case, additional 
kernels are needed in order to uniquely identify class i from 
the class group { , 1, , }i i i m+ + , and the total number of 
kernels required for a N-class classification is still N-1.  

In the algorithm presented in this paper, four kernels 
designed include: harmonic kernel, sag kernel, capacitor 
switching kernel, and capacitor high-frequency switching 
kernel. The harmonics kernel is to separate the class 
harmonics from all remaining classes {sag, capacitor high-
frequency switching, capacitor low-frequency switching, 
normal variations}. The sag kernel is to separate the class sag 
from all remaining classes {capacitor high-frequency 
switching, capacitor low-frequency switching, normal 
variations}. The capacitor switching kernel is to separate the 
class group {capacitor high-frequency switching, capacitor 
low-frequency switching} from the remaining class normal 
variations. The capacitor high-frequency switching kernel is 
separate the class capacitor high-frequency switching from the 
remaining class capacitor low-frequency switching.  

 

Fisher’s Discriminant
       Function

(Sig)i (AP)i

(Sig)i+1 (AP)i+1

(Sig)n (AP)n

Kernel i

 
 

Fig. 4. Kernel design. 
 

As shown in Fig. 4, after calculating ambiguity planes for 
all training signals, the Fisher’s discriminant function is 
applied for the kernel design. Assume there are n classes and 
totally Ni training examples for class i. The notation [ , ]ijA η τ  

represents the ambiguity plane of the jth training example in 
the ith class. 

With the Fisher’s criterion, locations on the ambiguity 

plane are ranked according to their importance for 
classification. A small amount of training data from each class 
is needed feature ranking in this statistical method. For 
example, when designing kernel i, a Fisher’s discriminant 
score is calculated for each location ( , )η τ on the ambiguity 
plane,  
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where [ , ]im η τ  and [ , ]i remainm η τ−  represent two means of 
location ( , )η τ ,  
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and 2[ , ]iD η τ  and 2 [ , ]i remainD η τ−  represent two variances of 
location ( , )η τ ,  
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Locations [ , ]η τ  that receive the highest discriminant score 

( , )FiJ η τ  are selected as feature locations. The factor of 
correlation is also considered. In this case, only one point is 
selected as a feature among a group of points that are highly 
correlated. Because the ambiguity plane of a signal is 
symmetric according to two dimensions, only points on a 
quarter plane are considered. 

Specifically, one feature point is selected for the harmonic 
kernel, two for sag kernel, three for normal variation kernel, 
and three for the capacitor high-frequency switching kernel. 
Therefore, only nine points on the ambiguity plane need to be 
calculated and sent to classifiers. The feature extraction 
process reduces the dimension by the factor of 71.1 (from 640 
to 9). The number of feature locations needed for each kernel 
is optimized by training experiments. 

B.  Training of classifiers 
 

Multiple classifiers are adopted in the presented method. As 
shown in Fig. 5, each classification node consists of a kernel 
function and a classifier. Heaviside-function linear classifier is 
used for the task of separating two classes that have a big 
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distance and are relatively easy to discriminate. Neural 
networks with small numbers of input nodes are used for all 
other classification tasks. The feedforward structure is 
selected for the following reasons: a) the feature extraction 
method does not emphasize the inter-window correlations; b) 
the feedforward structure is easier to implemented than 
recurrent structures.  Depending on the nature of the kernel, 
classification node i is to either discriminate signals that 
belong to class i from signals that belong to class {i+1, …, n}, 
as shown in Fig. 5(a), or discriminate signals in class {i, …, 
i+m} from signals in class {i+m+1, …, n}, as shown in Fig. 
5(b). 

Four classifiers are employed in this classification 
application for five types of PQ events. They are a Heaviside 
linear classifier (for the class of harmonics) and three 
feedforward neural network classifiers (for the other three 
classes) with simple structures. The Heaviside linear classifier 
is chosen for discriminating harmonics class from all other 
classes, because the distance between the harmonics class and 
all other classes is relatively big and the classification task is 
relatively simple.  

For a two-class classification problem and an input f, the 
Heaviside linear classifier is defined as,  

 

  1 ( 1), 0
( )

0 ( 2), 0
f belongs toclass if f t

H f t
f belongs toclass if f t

 − ≥− = − <
     (13)  

 

where t is a threshold value. Training this classifier is to 
determine the parameter t.   

                    1 min 2 max

2
f ft − −+=                       (14) 

 

where 1 minf −  represents the minimum input from class 1 

and 2 maxf −  represents the maximum input from class 2.  
Each of the three feedforward artificial neural network 

(ANN) classifiers adopted in this algorithm has three layers. 
Extensive classification experiments were conducted to 
determine the optimized neural network structures. The 
structure of the ANN for discriminating sags is 2-12-2 (input 
layer node number - hidden layer node number - output layer 
node number); the one for capacitor switching is 3-10-2; the 
one for capacitor high-frequency switching is 3-10-2. The 
transfer and training functions adopted for the ANN include: 
the hyperbolic tangent sigmoid transfer function as the 
transfer function for the hidden layer, the linear transfer 
function as the transfer function for the output layer, the 
Levenberg-Marquardt backpropagation as the network 
training function, the gradient descent learning function as the 
weight learning function, and the mean squared error function 
as the performance evaluation function. 

VI.  CONCLUSIONS  
Identification and classification of voltage and current 

disturbances in power systems is an important task in power 
system monitoring and protection. A new classification 
algorithm for power quality disturbances has been proposed 

and successfully validated. The proposed feature extraction 
tool, a time-frequency ambiguity plane with kernel techniques, 
is entirely new to the power engineering field. By designing a 
classification-optimal TFR, features are directly selected from 
the time-frequency ambiguity plane based on Fisher’s 
discriminant function. Four linear and neural network 
classifiers with simple structures are used for the final 
decision-making. This paper (the first part of a two-paper 
series) presents the background and theory of the proposed PQ 
classification method. An application of the proposed method 
to real world power quality data is presented on the second 
part of this paper. The proposed algorithm has been 
successfully tested with 860 real world power quality events. 
A recognition rate of 98.0% has been achieved in a 
classification experiment that covers five classes; a DSP-based 
hardware system, which is capable of processing a five-cycle 
(83.3 ms) PQ waveform within 11.2 ms, has verified the real-
time computing capability of this algorithm [1].  

 

signal

Kernel s

classifier i

belong to class toi n

i+1 n class i

signal

Kernel s

classifier i

belong to class toi n

i+m+1 n class {i, ..., i+m}  
                        (a)                                                      (b) 

Fig. 5. at each classification node i. 
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