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Classification of pulmonary neuroendocrine tumors: new insights
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Abstract: Neuroendocrine tumors of the lung (Lu-NETs) embrace a heterogeneous family of neoplasms 

classified into four histological variants, namely typical carcinoid (TC), atypical carcinoid (AC), large cell 
neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC). Defining criteria on resection 
specimens include mitotic count in 2 mm2 and the presence or absence of necrosis, alongside a constellation 

of cytological and histological traits including cell size and shape, nuclear features and overall architecture. 

Clinically, TC are low-grade malignant tumors, AC intermediate-grade malignant tumors and SCLC/

LCNEC high-grade malignant full-blown carcinomas with no significant differences in survival between 

them. Homologous tumors arise in the thymus that occasionally have some difficulties in differentiating from 
the lung counterparts when presented with large unresectable or metastatic lesions. Immunohistochemistry 

(IHC) helps refine NE diagnosis at various anatomical sites, particularly on small-sized tissue material, in 
which only TC and small cell carcinoma categories can be recognized easily on hematoxylin & eosin stain, 

while AC and LCNEC can only be suggested on such material. The Ki-67 labeling index effectively separates 

carcinoids from small cell carcinoma and may prove useful for the clinical management of a metastatic 

disease to help the therapeutic decision-making process. Although carcinoids and high-grade neuroendocrine 

carcinomas in the lung and elsewhere make up separate tumor categories on molecular grounds, emerging 

data supports the concept of secondary high-grade NETs arising in the preexisting carcinoids, whose clinical 

and biological relevance will have to be placed into the proper context for the optimal management of these 

patients. In this review, we will discuss the selected, recent literature with a focus on current issues regarding 

Lu-NET nosology, i.e., classification, derivation and tumor evolution.
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Introduction

Neuroendocrine tumors of the lung (Lu-NETs) make 

up a heterogeneous family of neoplasms ranging from 

quite indolent lesions with long-term life expectancy to 

extremely aggressive tumors with very poor prognosis. 

The 2015 WHO classification has grouped the four 

histologic variants of Lu-NETs, namely typical carcinoid 

(TC), atypical carcinoid (AC), large cell neuroendocrine 

carcinoma (LCNEC) and small cell lung carcinoma 

(SCLC), into a unique box of neuroendocrine (NE) cell 

proliferations to facilitate their taxonomy and improve 

diagnostic recognition (1,2). Behaviorally, TC are low-

grade tumors with good prognosis usually cured by 

surgery alone, AC intermediate-grade tumors with a more 

aggressive clinical course benefitting from multimodality 
therapy, and LCNEC and SCLC high-grade full-

blown carcinomas with dismal prognosis usually treated 

by chemo-radiotherapy (1). Although tumor grading 

is included into the current classification scheme, as 

considerable clinical and epidemiologic data have been 

validating a pathologic four-tier, clinical three-tier 

spectrum of NE-differentiated tumors (1,3), a grading 

system independent of histology could prove useful in 

the setting of a metastatic disease and/or small-sized 

diagnostic material, where morphology alone could not 

match adequately with the pathologic and clinical grade to 

support the best therapy choices (4,5).

Tumors homologous with Lu-NENs arise in the 

thymus (T-NENs) and gastro-entero-pancreatic tract 

(GEP-NENs), likely due to their common origin from 

endoderm-derived precursors/stem cells of the foregut 

according to specific molecular gene pathway alterations 

(6-11). Significant differences, however, in the biological 

characteristics of these tumors make a direct comparison 

with Lu-NETs clinically unwarranted (12-23). Suffice it to 
say that a backbone observation regarding NENs is that 

they behave diversely according to the different anatomical 

sites (23,24), associated risk factors and underlying 

molecular mechanisms (24-29). However, differences in 

cell lineage or the diverse application of defining criteria 

may cause some inconsistency to arise in the diagnostic, 

prognostic and predictive interpretation (8-11). This 

bewildering situation becomes even more challenging and 

frustrating when dealing with metastatic NENs of unproven 

or uncertain origin and/or small-sized diagnostic material, 

where morphology alone may be a major pitfall in the 

management of tumor patients (5,30-36).

The classification of Lu-NETs is a stepwise process 

based on a constellation of cytological and histological 

traits alongside the evaluation of mitotic count and necrosis 

extent (1,2). At variance with its established role in GEP 

NENs according to existing guidelines (37,38) and the 

forthcoming 2017 WHO classification on non-pulmonary 
neuroendocrine tumors, immunohistochemistry (IHC) for 

NE markers is not strictly required to render an ultimate 

diagnosis of Lu-NETs. Nonetheless, it is recommended 

to confirm their NE nature and, particularly, to separate 

LCNEC from other histologic mimickers, such as large cell 

carcinoma with NE morphology (LCC-NEM) and basaloid 

carcinoma, or to identify combined variants with non-small 

cell carcinoma (NSCC) components (1,2).

Lung TC and AC as a whole are pragmatically equated 

to well-differentiated neoplasms in opposition to SCLC 

and LCNEC, which are collectively poorly differentiated 

tumors closest to the NE carcinoma (NEC) category of 

GEP NENs (3,8-11). This dichotomy of morphologic 

classification is consistent with the current assertion that 

TC and AC in the lung are molecularly distinct from 

SCLC and LCNEC (1,2,39-43). Major differences in the 

somatic mutation rate and engagement of diverse gene 

pathway alterations have been observed in these two main 

groupings of Lu-NETs (31,42-52); while there is some 

inter-tumor heterogeneity of molecular events within a 

category, particularly AC and LCNEC (39,40,53-55). 

These observations support the view that different patient 

subsets exist within each variant of Lu-NETs as defined 

upon histology, with some degrees of overlap among the 

categories (25,27), suggesting some commonality in their 

origin, developmental mechanisms, prognosis or treatment 

options (5,8,9,53-57).

Browsing the recent literature, this review is focused 

on current Lu-NETs nosology, immunophenotyping, 

proliferation indices and molecular alterations, trying 

to place into context all current information for the best 

management of the patients.

Diagnosis and classification of pulmonary 

neuroendocrine tumors

TC and AC in the lung retain morphologic criteria of 

well-differentiated NETs (1,3,58). They are close to the 

normal NE elements present in the respiratory mucosa, 

hyperplastic NE cells as seen in chronic inflammation 

and the diffuse idiopathic pulmonary NE cell hyperplasia 

(DIPNECH), a pre-invasive lesion with a potential 
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towards the development of carcinoids (1,59-61). Defining 
criteria of these tumors include organoid growth patterns 

(rosettes, trabeculae, ribbons, festoons, lobular nests, 

palisading), absent to focal punctate necrosis (not just 

apoptotic bodies), up to 10 mitoses per 2 mm2 and a 

consistent labeling for pan-NE IHC markers, sometimes 

less intense and uneven in AC (1,3,58,62,63). On the 

contrary, SCLC and LCNEC are clustered into poorly 

differentiated tumors showing trabecular to solid to 

diffuse growth patterns, extensive/geographic necrosis, 

mitotic count higher than 10 mitoses per 2 mm2 with no 

theoretical upper limit and uneven cell decoration for 

pan-NE markers, especially those based on dense-core 

granules (1,3,62-65). Tumor architecture and cytological 

details serve further to separate LCNEC from SCLC, 

even though inter-observer reproducibility remains 

disappointingly low (66-70). LCNEC is a tumor category 

defined upon pan-NE IHC markers to exclude histological 
mimics such as LCC-NEM and basaloid carcinoma, or 

identify non-NE components in combined variants (1,71). 

The diagnosis of SCLC in turn relies primarily upon 

morphology in both the lung and elsewhere, although 

IHC has been recommended to either reduce the rate of 

misdiagnosis in challenging cases for technical reasons or 

to increase the diagnostic confidence of pathologists for 

complex differential diagnoses (65).

In surgical as well as in biopsy/cytology specimens, 

general markers of NE differentiation provide a reliable 

profile for all histologic variants of Lu-NETs, while single 
hormones are less useful even in the metastatic setting 

or when facing with unknown origin lesions because 

of the lack of specific substances produced in the lower 

respiratory tract (72). Current guidelines and longstanding 

experience recommend using a couple of well-established 

pan-NE markers to cross the entire spectrum of Lu-NETs  

(1-3,65,73). Among plentiful pan-NE markers, the most 

currently used are cytoplasm-based molecules contained 

in dense core granules, such as chromogranin A, whose 

presence closely parallels the biogenesis of secretory 

granules and hence cell differentiation (74), or small clear 

synaptic vesicles, such as synaptophysin, which regulates 

the kinetics of synaptic vesicle endocytosis (75) and 

whose expression is still retained in high-grade Lu-NETs  

(1-3,65,73). As poorly differentiated Lu-NET down-

regulate chromogranin A, its expression should be evaluated 

at high-power magnification to appreciate even faint 

granular signals in scattered tumor cells (1). Embryonic 

nuclear determinants of NE differentiation in the lung, 

such as human achaete-scute homolog 1 (hASH1), are 

usually lost or poorly expressed in carcinoids but retained 

by high-grade tumors, especially SCLC (76,77), whereas 

membrane-based NCAM/CD56 is sensitive but less specific 
for NE differentiation (1,78). The latter is expressed in all 

Lu-NETs, especially SCLC (40,77-79), but can turn out 

positive also in conventional NSCC (80), various sarcomas 

(81,82) and malignant mesothelioma (83). High molecular 

weight keratins (CK), such as those recognized by the clone 

34βE12 (CK1, CK5, CK10 and CK14), are consistently 

negative in Lu-NETs (84). The squamous differentiation 

determinant DeltaNp63/p40 is unreactive in all variants 

of Lu-NETs (85), although its expression is found rarely 

in some LCNEC exhibiting morphology and molecular 

alterations more akin to SCLC (40). These tumors with 

focal (≤10% tumor cells) positivity for DeltaNp63/p40 but 

no overt squamous differentiation harbor a high prevalence 

of KEAP1-NFE2L2 alterations, suggesting that they are 

somewhat linked to squamous cell carcinoma rather than 

conventional SCLC (40).

Another nuclear determinant of NE differentiation, 

i.e., insulinoma-associated protein 1 (INSM1), has 

recently been proposed to stain consistently all variants 

of Lu-NET regardless of histology, but not conventional 

adenocarcinoma or squamous cell carcinoma (86,87). This 

marker is potentially expected to work better than the usual 

pan-NE antigens because of its wide range of expression 

across the entire spectrum of Lu-NETs, and could become 

a reference molecule for NE differentiation in the near 

future. In general, nuclear markers are less likely affected 

by cellular damage, thus remain intact on small-sized and/

or crushed tissue samples, while organelle- or membrane-

associated markers may suffer from non-specific staining 

due to extracellular extravasation or may not consistently 

reflect their own locations in the cytoplasm (88). Albeit rare 

in the lung but less in the mediastinum, nuclear in testis 

(NUT) midline carcinoma (NMC) (88,89), Ewing sarcoma 

family (ESF) (90) and desmoplastic small round cell 

tumor (DSRCT) (91) should also be accounted for in the 

differential diagnosis of high-grade NETs especially when 

facing with large unresectable or metastatic lesions, due 

to close similarities in histologic appearance and striking 

overlap of IHC markers with more conventional thoracic 

NETs. In this regard, an appropriate IHC for NUT protein 

in NMC and specific molecular investigation for diagnostic 
translocations in ESF and DSRCT allow the correct 

diagnosis to be rendered in most cases with high rate of 

confidence.
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Identifying the origin of neuroendocrine tumors

The identification of thoracic NEN origin plays an 

important role in adopting the most appropriate terminology, 

correctly classifying metastatic tumors and offering the 

best therapeutic options (1,2,92), given that lung and 

thymus NETs differ in tumor presentation (7,12,14), 

associated endocrine syndromes (12,13,16,18,19,21,93,94), 

underlying risk factors (1,15) and molecular alterations 

(1,95). The differentiation of Lu-NETs from T-NETs 

proves to be particularly challenging in the setting of low- 

to intermediate-grade tumors displaying large unresectable 

or metastatic lesions at the time of diagnosis (96). Whether 

IHC is able to play some role in this task is outlined below.

Thyroid transcription factor-1 (TTF-1) is a useful 

marker of pulmonary lineage only when positive in 

the group of well-differentiated NETs. Of note, only 

a minority of well-differentiated Lu-NETs, especially 

those composed of spindle cells arising from peripheral 

bronchioles, are TTF-1 positive (1,97-102), so as some 

of DIPNECH or NE cell hyperplasia of the lung (103). 

The main limitation to the use of this marker in high-

grade NECs as a descriptor of lung origin is that most of 

them demonstrate a diffuse reactivity regardless of their 

pulmonary or extra-pulmonary derivation (1,102,104). 

Moreover, some T-NETs (93) may be reactive for TTF-1  

even when using the most specific clone 8G7G3/1, 

thus TTF-1 may not be a reliable maker to confirm 

the pulmonary origin in thoracic NETs. Many other 

nuclear transcription factors, which are frequently used to 

differentiate well differentiated NETs in diverse organs, 

namely Islet-1 (103,105,106), PAX-8 (101,105) and  

CDX2 (106),  can be aberrantly and il legitimately 

expressed in high-grade NETs regardless of their 

anatomical locations (31,107). Similarly, CD117 does 

not separate reliably lung from thymic NETs because 

is often expressed in both anatomical compartments, 

especially less differentiated lesions (1,108,109) as well as 

conventional NSCC (110) and thymic carcinoma (1,92). 

Conversely, CD5 expression is exceedingly rare in NETs 

of either anatomical site (23), while CD5 reacts with about 

a half of thymic squamous cell carcinomas (1,92,111) and 

a non-negligible fraction of NSCLC (112). Potential 

confounding factor is represented by combined variants of 

NETs not only at the level of the IHC characterization (due 

to co-expression of unexpected profiles and lack of protein 
expression characteristic of either tumor type), but also at 

the molecular level (113). It has recently been noted that 

mixed NE/non-NE carcinomas are molecularly different 

from their pure NE and non-NE counterparts in the lung 

and a variety of extra-pulmonary sites when analyzed for 

cDNA quantification of ribonucleotide reductase, large 

subunit 1, excision repair cross-complementation group 

1 and thymidylate synthase (114). In this setting of a 

predominant non-NE component, the administration 

of adjuvant therapy in addition to surgery and a high 

thymidylate synthase expression in non-NET components 

were significantly associated with a lower risk of patient 

death, thereby improving the clinical strategies for the 

treatment of these rare and underestimated tumors (114).

The role of IHC becomes particularly relevant in the 

scenario of small biopsy or cytology samples, where it is 

clinically warranted to separate NE from other non-NE 

tumors or unrelated malignancies mimicking NETs in 

either the lung or thymus. In a recent international study 

carried out on biopsy samples, the rate of agreement on 

SCLC diagnosis was increased from 64.7% obtained by 

the solely morphology to 77.5% with a judicious use of a 

variety of IHC markers, such as cytokeratin cocktail, pan-

NE markers, TTF1, p16 (expressed by high-grade NETs, 

especially SCLC), retinoblastoma protein and Ki-67  

antigen, with Cohen’s kappa coefficient scores on IHC 

being 0.60 and 0.64 in resected specimens and biopsy 

samples, respectively (65). While the differentiation of 

SCLC from other unrelated mimics (undifferentiated 

carcinomas, small cell sarcomas or lymphomas) requires 

further IHC markers and molecular assays, the single most 

reliable marker in NETs to get insights into their clinical 

behavior remains the Ki-67 antigen (1,30,115). This marker 

is particularly reliable on small biopsy or cytology samples 

in the presence of scarce material or crush artifacts (32).

Identifying the clinical aggressiveness of 

neuroendocrine tumors and the role of Ki-67 

antigen

Ki-67 antigen has been extensively evaluated in Lu-NET 

with several diagnostic, prognostic and grading implications 

[reviewed in (115)]. Since the Ki-67 antigen identifies 

proliferating cells spanning from G1 to M phase (116-118), 

Ki-67 nuclear expression is proportional to the mitotic 

count, but reveals more proliferating tumor cells than the 

latter, which remains the backbone of defining criteria in 

Lu-NETs and T-NETs according to existing guidelines (1).  

The method to quantify Ki-67 expression and that 

to count mitoses are different; a percentage of Ki-67  
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positive cells (labeling index, LI) is usually obtained in 

hot spot regions with highest staining, while the mitotic 

count is based on the number of mitotic figures in pre-

defined tumor areas of highest activity (high power fields or 
square millimeters). The difference may account in part for 

inconsistent results between these proliferation indexes (4).  

Indeed, once mitoses are expressed as mitotic index 

rather than mitotic count (119), the correlation rate with  

Ki-67 LI increases considerably (120,121). Furthermore, 

another source of inconsistency is the alleged lack of 

inter-observer reproducibility of Ki-67 LI, which is likely 

attributed to the differences in regions (randomly selected 

fields; hot spot areas of highest labeling; entire tumor 

area) and methods (few hundreds to thousands of tumors 

cells; eyeball, manual or picture-based count evaluation or 

automated analysis system adoption) for counting Ki-67  

positive tumor cells, once pre-analytical issues (fixation, 

staining systems, reagents) are equated (8,115,122-124). 

Another conundrum is the intra-tumor heterogeneous 

distribution of Ki-67 antigen likely due to the unpredictable 

occurrence of differentially regulated tumor cell subsets in 

tumors (115,120), but the consistent assessment of labeling 

indexes in hot spot regions will lead to more reproducible 

results (115). This biological phenomenon becomes 

particularly challenging on biopsy/cytology specimens in 

comparison with resection specimens (30,33,125) because 

of unpredictable sampling issues (the so-called tip-of-the-

iceberg effect or the part of the whole). Therefore, the 

reproducibility and clinical usefulness of Ki-67 LI in Lu-

NETs have been seriously argued, with alleged superiority 

of mitotic count, which has remained the only proliferation 

criterion in tumor classifications over time (1,126,127), 

with no current diagnostic role for Ki-67 (1). However, 

reproducibility of results for Ki-67 LI is not worse than any 

other IHC markers when tested for quantification (128,129) 

and even mitotic count shows large inter-observer variability 

in Lu-NETs classification of either carcinoids (130)  

or high-grade tumors (66-70). The only obvious difference 

is that mitotic count is traditional, largely known by 

pathologists everywhere and carried out simultaneously 

with hematoxylin-eosin diagnosis, whereas Ki-67 antigen 

evaluation requires additional IHC on new paraffin sections 
and a numeric quantification. Hopefully, the localization 

of the same tumor areas as those assessed for mitotic count 

will make results biologically more reasonable (115). Last 

but not least, the unavailability of IHC in some pathology 

laboratories would prefer mitotic count over Ki-67 LI 

in the daily practice. In any event, Ki-67 LI should not 

be used as a surrogate of mitotic count, since it is not a 

current defining criterion, but rather a complementary 

tool. In contrast, Ki-67 LI is a backbone of the grading 

system of GEP tract NENs, once tumors are split into well 

differentiated and poorly differentiated categories based on 

morphological grounds (8-11,37,131).

A recent standardization of Ki-67 LI on biopsy 

samples and the corresponding surgical specimens of 

Lu-NETs have demonstrated that results were quite 

superimposable with minimal deviation, even among 

different observers, provided that precise methodology 

rules were a priori established and used in either type of 

material (30). In keeping with other comparative studies 

(33,125), it was important to start identifying hot spot 

regions in either type of material in order to obtain 

overlapping results when counting 2,000 cells, 2-mm2-

spanning areas or the entire biopsy fragment(s) (30).  

In this way, it was possible to attribute to unpredictable 

sampling, tissue sizing, intra-tumor heterogeneous 

distr ibution of  Ki-67 antigen and inter-observer 

discordance when Ki-67 LI were discrepant between 

biopsies and the corresponding resection specimens (30).  

This study also suggests that different methods for the Ki-67 

LI assessment but not an inherent unreliability of the marker 

as a biological predictor affect its clinical meaning (30).  

Recent reproducibility studies in Lu-NET have revealed 

that there is less than 1.5% of variability when evaluating 

Ki-67 LI, with an out-performance over mitotic count with 

regard to inter-observer agreement (132,133). 

Although Ki-67 LI is not currently accredited with Lu-

NET subtyping due to some overlap of cut-off thresholds 

among biologically adjacent tumors (TC vs. AC, AC vs. 

LCNEC, LCNEC vs. SCLC), its differential distribution 

between low- to intermediate-grade and high-grade tumors 

has made it an irreplaceable discriminator especially on 

biopsy/cytology samples, and recommended even on 

surgical specimens (1,32,115). A Ki-67 LI up to 20–25%  

has the highest specificity and sensitivity for low- to 

intermediate-grade versus high-grade tumors, whilst other 

IHC markers or a combination of necrosis and mitotic count 

have lower specificity and sensitivity (1,30,32,115). Given 

the reported prognostic role of the Ki-67 LI within the same 

group, such as TC and/or AC, Ki-67 LI has emerged as a 

reliable criterion for clinical decision-making (132,134-137),  

in particular, in the setting of metastatic disease. It is 

important to note that Ki-67 LI closely reflects tumor 

biology, while the role of the more fallacious morphology 

is limited in small-sized and/or crushed diagnostic  
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materials (138). Such an advantage holds particularly 

true for AC and LCNEC, the most clinically challenging 

categories of Lu-NETs likely due to the large range 

of diagnostic criteria (2–10 mitoses in AC; no upper 

limit over 10 mitoses alongside a wide spectrum of 

morphology for LCNEC) (1,40,66,67,69,139). Conversely, 

diagnostic criteria for TC (virtual absence of mitosis 

and necrosis) and SCLC (undifferentiated morphology, 

plentiful mitoses, extensive/geographic necrosis) are 

consistent with biologically and behaviorally more 

homogeneous categories that occupy the ends of the 

Lu-NET spectrum (1,73). Not unexpectedly, Ki-67  

is typically 5% or less in TC and usually 80% or more in 

SCLC (118). Our recent observations showed that AC with 

Ki-67 LI of 10% or more consisted of tumors with more 

prominent proliferation activity within the allowed range of 

mitotic count and necrosis, and are associated with worse 

prognosis than predicted within the tumor category (140). It 

has also been noted that LCNEC with molecular alterations 

akin to NSCLC or AC feature the mean Ki-67 LI lower 

than that of LCNEC with molecular alterations similar to 

SCLC (i.e., SCLC-like LCNEC), which in turn feature 

cytomorphology in the SCLC spectrum (40). Other studies 

have revealed that AC behaviorally can overlap with either 

TC, SCLC or LCNEC when using Ki-67 LI thresholds 

specifically designed for the lung (4).

As necrosis and mitoses are unreliable criteria on biopsy 

samples (1,3,30,58), the differentiation of TC from AC or 

the diagnosis of LCNEC is usually not permissive on the 

morphologic basis alone or can only be suggested in these 

samples (1,141). In Lu-NETs, the main clinical question 

concerns the need of the patient risk stratification on the 

basis of tumor aggressiveness, especially in the setting of 

metastatic disease where the morphology on small-sized 

diagnostic materials could be misleading (5,138). Therefore, 

together with the overall clinical profiles (radiology and 

nuclear medicine imaging, tumor burden, symptoms 

and individual risk for evolving disease) Ki-67 LI could 

potentially be a decisional factor to stratify patients into 

more defined clinical categories for precision medicine (5).

Accordingly, metastatic Lu-NETs can be stratified into 

four main clinical groups by integrating Ki-67 LI and 

traditional histology (5).

(I) The first group consist of completely indolent 

tumors showing Ki-67 LI of 5% or less, which 

biologically correspond to either TC or AC with 

a low mitotic count and could be treated with 

biological drugs (somatostatin analogues or m-TOR 

pathway inhibitors), if any (3,58).

(II) The second group includes low-to-moderate 

malignant tumors showing Ki-67 LI up to 20–25%, 

which biologically correspond to rare TC, most AC 

and even some LCNEC with a molecular profile 

similar to that of carcinoids (40). They are probably 

managed still with biological drugs and/or peptide 

receptor radionuclide therapy alone (142-144), 

though no official guidelines yet exist for them 

(3,58,145,146).

(III) The third group consists of moderate to higher 

malignant tumors with Ki-67 LI ranging from 

25% to 50–60%, biologically corresponding to 

more uncommon aggressive AC or LCNEC with 

a molecular profile similar to that of NSCLC (40).  

They can be treated with alkylating drugs or 

others but not with platinum/etoposide-based 

chemotherapy, such as gemcitabine, paclitaxel or 

vinorelbine (93,144).

(IV) The last group is composed of highly malignant 

tumors with Ki-67 LI ranging from 60% to 100%, 

biologically corresponding to aggressive SCLC and 

SCLC-like LCNEC on molecular grounds (41), 

which should be treated with platinum/etoposide-

based chemotherapy (1,144).

Phenotypic/genotypic correlations in Lu-NET showed 

that a Ki-67 LI over 10% predicts poor prognosis within the 

AC category outperforming necrosis and mitotic count (140) 

and that there is a close relationship between proliferation 

activity and molecular subcategorization of LCNEC (40). 

For the latter, LCNEC exhibiting a molecular profile 

similar to that of SCLC had the highest Ki-67 LI (on average 

90%), LCNEC harboring NSCLC-like mutations displayed 

an intermediate value around 60% and those bearing 

MEN1 mutations presented with the lowest Ki-67 LI  

around 35% (40). This peculiar distribution of Ki-67 LI as 

a function of cell morphology and differentiation levels is 

similar to what has recently been described in the digestive 

system under the new classification of GEP NEN tumors, 
which, along with NET G1 and G2, now includes NET G3,  

distinct from (poorly differentiated) NEC (144).

Neuroendocrine tumors and molecular 

alterations

It is widely accepted that Lu-NETs and T-NETs consist 

of biologically distinct groups but not a continuum of 

neoplasms with common pathogenesis (1,50,92). In both 
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anatomical sites, TC/AC on the one hand and LCNEC/

SCLC on the other prove separate malignancies when 

molecularly dissected, with recurrent and non-random 

alterations of cell cycle checkpoints, chromatin remodeling 

and recurrent chromosomal alterations (1,50,92,95). 

Whether genetic traits are better than morphology or IHC 

markers to distinguish lung from thymus NENs, especially 

in the setting of large tumors occupying both anatomical 

regions and metastatic sites, still remains as an unanswered 

question due to the lack of organ-specific profiles.
TC and AC in the lung (42,44-46,48,50,55,115,147) and 

the homologous G1-G2 NETs in the GEP tract (24,148) (data 

thus far are largely unavailable for T-NETs) display lower 

somatic mutation rates (<1 per million base pairs) compared to 

the high-grade counterparts likely due to substantial differences 

in risk factors (1,149-151), gene pathway activations, levels 

of differentiation and purported cell derivation (42,44-

46,48,50,55,115,147). In the lung, defined candidate driver 

alterations are identifiable in up to 73% of TC and AC (42). 

Briefly, RB1 and TP53 mutations are quite uncommon in TC 

and AC (152), whereas inactivation of genes affecting histone 

methylation (MEN1) by multiple mechanisms and SWI/SNF 

complex subunit mutations (ARID1A, SMARC1, SMARCA2, 

SMRCA4) are found in up to one third of cases (42,50-52,55). 

Additional alterations include mutations of CBX6, EZH2, 

EIF1AX and E3 ubiquitin ligases (52).

Among high-grade Lu-NETs, LCNEC constitute a 

heterogeneous family of tumors, with some of them being 

classified SCLC-like LCNEC accounting for about 40%, 

NSCLC-like LCNEC (either adenocarcinoma or squamous 

cell carcinoma) accounting for about 50% and carcinoid-

like LCNEC accounting for about 5% on the basis of the 

different sets of altered genes (40). SCLC-like LCNEC 

share molecular alterations with SCLC and show RB1, 

TP53, CREBBP, EP300 and MLL gene mutations (40,42,49) 

alongside MYCL1 and FGFR1 amplifications. NSCLC-like 
LCNEC exhibit CDKN2A deletion, TTF1 amplifications 

and KEAP1 and STK11 mutations as observed in non-NE 

tumors (40,42,49) and carcinoid-like LCNEC bear MEN1 

mutations (40,153). SCLC has one of the highest mutation 

rates in cancers, with inactivating mutations of tumor 

suppressor genes (TP53, RB1) and chromatin remodeling 

genes (CREBBP, EP300, MLL) being more frequently found 

(42,46,154). Other recurrent gene aberrations include 

mutations of PTEN, SLIT2, COBL, EPHA7 and CDKN2A 

genes, along with amplification of FGFR1, MYCL1, MYCN, 

MYC, SOX2, KIAA1432, RICTOR, JAK2 and MAD1L1 

(42,44,46,48,154-157) and recurrent fusion transcript 

RLF-MYCL1 (44,48). Inactivation of NOTCH gene upon 

mutation with simultaneous ASCL1 and canonical WNT 

signaling engagement in addition to mutual bi-allelic RB1 

and TP53 lesions is at the basis of pulmonary and extra-

pulmonary small cell carcinoma developing as secondary 

tumors from preexisting non-NE carcinomas, either 

spontaneous or induced by therapy (158). Activation of 

epithelial-mesenchymal transition (EMT) via fascin-

induced E-cadherin/β-catenin system alterations that are 

responsible for nuclear shuttling of non-mutated β-catenin 

has been documented in a subset of LCNEC and SCLC 

(159-161). A further level of complexity in the molecular 

heterogeneity of Lu-NETs is unraveled by differences in 

gene expression profiling or diverse expression of functional 
biomarkers, such as CD44, orthopedia transcription 

factor, CEACAM and vitamin D-binding protein, which 

are able to identify patient subsets differentially at risk of 

progression within each histological variant or tumor group 

(52,54-56,97,159,162).

Molecular alterations of T-NETs are poorly understood 

and, in particular, only few next generation sequencing 

(NGS) studies have been conducted. In these tumors, 

MEN1 genotype/phenotype correlation is less significant 

than in Lu-NETs suggesting the involvement of other 

genetic factors (15,17,18,20,21). As a matter of fact, about 

one fourth of T-NETs are MEN1-related (20,163), whereas 

only 1–8% of patients with MEN1 syndrome develop 

T-NET during life (15,17,18,163-167). Most of MEN1-

related T-NETs correspond to carcinoids (163), but even 

poorly differentiated NE carcinomas (18,168) or purported 

carcinoids with gross areas of necrosis (15) have been 

reported. Interestingly, two T-NET cases have recently 

been reported, in which synchronous or metachronous 

LCNEC arose within a background of preexisting AC. All 

tumor components, either AC or LCNEC, presented with 

CTNNB1 mutations, which were likely responsible for 

cyclin D1-RB1 axis-dependent tumor growth, along with 

subsequent TP53 and JAK3 mutations in one case and EMT 

activation in the other case leading to de-differentiation and 

further tumor expansion (23). Chromosomal imbalances, 

whether loss or gain (95,169,170), and aneuploidy (171) 

are differentially distributed among the diverse subtypes 

of T-NETs, with the mean number of chromosomal 

imbalances being 0.8, 1.1 and 4.7 in TC (31% aberrant 

cases), AC (44% aberrant cases) and high-grade T-NET 

(75% aberrant cases), respectively. Gains of 8q24 mapping 

to MYC gene locus was the most frequent alteration and 

one of the overlapping features between carcinoids and 
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high-grade T-NENs (95).

Molecular alterations across Lu-NETs, T-NETs or 

GEP-NENs, yet with different prevalence rates, have 

recently been documented as mutations, copy number 

variations and microRNAs (24-27,95,157), thus supporting 

innovative insights into the developmental mechanisms of 

these tumors. The existence of combined variants of NETs 

in several anatomical locations (1,113) and experimental 

models on the development of secondary SCLC (158) reveal 

a high plasticity of cancer stem cells through the activation 

of multiple genetic and epigenetic mechanisms. It could be 

hypothesized that the occurrence of common genetic events 

among diversely classified tumors is functional to maintain 
shared biological, morphological or functional traits and/

or that even low grade tumors with well differentiated 

morphology have a potential to evolve into high-grade 

NETs (23). Interestingly, Lu-NETs, T-NETs and even 

GEP NENs with dual components of high- and low-grade 

tumors in synchronous or metachronous lesions have been 

identified (23,40,171-178). Further, these tumors share 

molecular alterations indicative of an origin from common 

ancestors of lower grade, with additional gene mutations 

occurring in the high-grade components over time due to 

temporally delayed clonal evolution of tumor cells. This 

combination of low-grade and high-grade components 

has been documented in the thymus (23,173,174) as 

secondary high-grade NETs, in the lung as NE carcinoma 

with carcinoid morphology (172) or carcinoids with 

proliferation rate progression (179), and in the GEP tract 

as transformed NET, well differentiated NET featuring 

high-grade components or well differentiated NET with 

high-grade (G3) progression (180,181). This concept, 

which would represent a paradigm shift from accepted 

pathogenesis schemes, has not been included in the current 

WHO classification of Lu-NETs where carcinoids or 

NETs are not thought to be usual early forerunners of 

high-grade lesions (1) and is probably an under-recognized 

phenomenon in these tumors. The reverse, i.e., down-

grading of poorly differentiated NETs, is not supported 

by the clinical behavior of these tumors (usually more 

aggressive than lower grade counterparts but less lethal 

than high-grade tumors) and by the occurrence of the same 

molecular alterations in both tumor components alongside 

further aberrations in high-grade elements promoting 

tumor dedifferentiation, growth and invasion (23). The 

recently described categories of NET G3 within the GEP 

tract (113,180) with a preserved well-differentiated NE 

morphology yet showing a mitotic count above 20 mitoses 

per 2 mm2 and Ki-67 LI over 20%, the carcinoid-like 

LCNEC and NE carcinoma with carcinoid morphology 

(40,172), and synchronous or metachronous thymus 

LCNEC retaining AC components (23) are instances of 

secondary high-grade NETs (23) derived from preexisting 

G1/G2 GEP NETs or lung and thymus TC/AT. CTNNB1 

gene mutations could be one of the molecular alterations 

underlying the progression in the thymus (23) and GEP 

tract (26). Similar occurrences, however, have been 

documented in secondary glioblastoma from long-standing 

astrocytoma (182,183) or triple negative breast cancer from 

adenoid cystic carcinoma (184). 

The hallmark of such secondary high-grade NETs in the 

thymus (23) and GEP tract (NV, personal communication) 

is the presence of concurrent and variably intermingled areas 

with low or high Ki-67 LI/mitotic counts within a tumor. 

These evolving tumors would be usually associated with 

an intermediate clinical course (23,181), unless additional, 

adverse molecular alterations, such as TP53 inactivation, 

took place over time (23). An instance of such a tumor 

arising in the lung is depicted in Figure 1, which emphasizes 

once again the role of Ki-67 LI for diagnosis and biological 

interpretation. This heterogeneous intra-tumor distribution 

of Ki67 LI likely results from diversely tuned cell subsets 

causing hot and cold spot areas to appear within individual 

tumors. Heterogeneity of Ki-67 LI at metastatic sites and 

among different metastasis locations as compared with paired 

primaries was first described in pancreatic NETs (120), 

but has recently been indicated to occur in stage IV lung 

carcinoids only in an abstract form (179).

At this point, the clinical and biological questions are 

related to the frequency of this event and to the level of 

diagnostic awareness by pathologists. It has been observed 

that carcinoids and high-grade NE carcinomas in the 

lung share most of the altered genes, such as mutations, 

copy number variations and microRNA, even though at 

different prevalence (24-27,95,157), and that common 

mutations or chromosomal changes may unexpectedly 

cluster tumor regardless of histology. This supports a 

transition from low to high grade in a non-negligible 

fraction of Lu-NETs (GP, personal experience). To partly 

explain the apparent contradiction to the widely reported 

differential distribution of molecular events among diverse 

NETs in both the lung and elsewhere (1,50,92,95), it 

should be kept in mind that most of existing molecular 

data have been derived from the analysis of surgical 

specimens, where up to one fourth/one third of high-

grade NET patients experience longer survival (56).  
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Figure 1 An example of secondary high-grade neuroendocrine tumor of the lung is depicted according to conventional staining and IHC 

markers (×200). The lower grade component (A) is composed by carcinoid with no obvious mitoses or necrosis spots, whereas the high-

grade component (accounting for more than 50% tumor mass) featured small cells with numerous mitotic figures (yellow asterisks) (B). The 
lower grade component was positive diffusely for cytokeratin cocktail AE1-AE3 (C), chromogranin A (D), and showed low Ki-67 labeling 

index (about 15%) (E), with transition areas towards higher grade elements (E, inset). In turn, the high-grade component showed faint 

decoration for cytokeratin with paranuclear dot-like quality (F) and chromogranin A (G), while Ki-67 labeling index turned out to be very 

high (about 60%) (H). No differences were instead observed for synaptophysin labeling between the two cell components (D and G, insets). 

IHC, immunohistochemistry.

A B C

FD E

G H

This implies that histologically poorly differentiated 

neoplasms amenable of complete resection and running a 

more favorable clinical course could harbor these evolving 

secondary high-grade NE tumors. It will be essential to 

clarify if these tumors correspond to progressing lesions, 

which are in turn highlighted by heterogenous Ki-67 LI, in 

order to understand their pathological basis and explore the 

most appropriate clinical management.

Conclusions

Our understanding of Lu-NET is rapidly expanding, 
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especially regarding diagnosis, IHC marker choice 

and pathogenetic mechanisms, although adapting the 

morphology-based classification to the personalized and 

precision medicine is still challenging. This holds true 

in NETs of other organs as well. The assumption of 

differential genomic alterations between well-differentiated 

NE tumors and high-grade NE carcinomas of the lung 

and thymus is substantiated by multiple studies, but 

reassembling the existing data under the concept of 

secondary high-grade NETs has led to a possible paradigm 

shift in the pathogenesis of NETs.
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