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Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese
pulse diagnosis (TCPD). Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse
waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP) and the
recent progress in k-nearest neighbors (KNN) classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of
the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into
difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental
results show that the proposed classifiers are effective for accurate classification of pulse waveform.

1. Introduction

Traditional Chinese pulse diagnosis (TCPD) is a convenient,
noninvasive, and effective diagnostic method that has been
widely used in traditional Chinese medicine (TCM) [1]. In
TCPD, practitioners feel for the fluctuations in the radial
pulse at the styloid processes of the wrist and classify
them into the distinct patterns which are related to various
syndromes and diseases in TCM. This is a skill which
requires considerable training and experience, and may
produce significant variation in diagnosis results for differ-
ent practitioners. So in recent years techniques developed
for measuring, processing, and analyzing the physiological
signals [2, 3] have been considered in quantitative TCPD
research as a way to improve the reliability and consistency
of diagnoses [4–6]. Since then, much progress has been
made: a range of pulse signal acquisition systems have been
developed for various pulse analysis tasks [7–9]; a number
of signal preprocessing and analysis methods have been
proposed in pulse signal denoising, baseline rectification
[10], segmentation [11]; many pulse feature extraction
approaches have been suggested by using various time-
frequency analysis techniques [12–14]; many classification

methods have been studied for pulse diagnosis [15, 16] and
pulse waveform classification [17–19].

Pulse waveform classification aims to assigning a tradi-
tional pulse pattern to a pulse waveform according to its
shape, regularity, force, and rhythm [1]. However, because
of the complicated intra-class variation in pulse patterns
and the inevitable influence of local time shifting in pulse
waveforms, it has remained a difficult problem for automatic
pulse waveform classification. Although researchers have
developed several pulse waveform classification methods
such as artificial neural network [18, 20, 21], decision tree
[22], and wavelet network [23], most of them are only tested
on small data sets and usually cannot achieve satisfactory
classification accuracy.

Recently, various time series matching methods, for
example, dynamical time warping (DTW) [24] and edit
distance with real penalty (ERP) [25], have been applied
for time series classification. Motivated by the success of
time series matching techniques, we suggest utilizing time
series classification approaches for addressing the intraclass
variation and the local time shifting problems in pulse
waveform classification. In this paper, we first develop an
ERP-induced inner product and a Gaussian ERP (GERP)
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Figure 1: Schematic diagram of the pulse waveform classification modules.

kernel function. Then, with the difference-weighted KNN
(DFWKNN) framework [26], we further present two novel
ERP-based classifiers: the ERP-based difference-weighted
KNN classifier (EDKC) and the kernel difference-weighted
KNN with Gaussian ERP kernel classifier (GEKC). Finally,
we evaluate the proposed methods on a pulse waveform
data set of five common pulse patterns, moderate, smooth,
taut, unsmooth, and hollow. This data set includes 2470
pulse waveforms, which is the largest data set used for pulse
waveform classification to the best of our knowledge. Exper-
imental results show that the proposed methods achieve an
average classification rate of 91.74%, which is higher than
those of several state-of-the-art approaches.

The remainder of this paper is organized as follows.
Section 2 introduces the main modules in pulse waveform
classification. Section 3 first presents a brief survey on
ERP and DFWKNN, and then proposes two novel ERP-
based classifiers. Section 4 provides the experimental results.
Finally, Section 5 concludes this paper.

2. The Pulse Waveform Classification Modules

Pulse waveform classification usually involves three modules:
a pulse waveform acquisition module, a preprocessing mod-
ule, and a feature extraction and classification module. The
pulse waveform acquisition module is used to acquire pulse
waveforms with satisfactory quality for further processing.
The preprocessing module is used to remove the distortions
of the pulse waveforms caused by noise and baseline wan-
der. Finally, using the feature extraction and classification
module, pulse waveforms are classified into different patterns
(Figure 1).

2.1. Pulse Waveform Acquisition. Our pulse waveform acqui-
sition system is jointly developed by the Harbin Institute
of Technology and the Hong Kong Polytechnic University.
The system uses a motor-embedded pressure sensor, an
amplifier, a USB interface, and a computer to acquire pulse
waveforms. During the pulse waveform acquisition, the
sensor (Figure 2(a)) is attached to wrist and contact pressure
is applied by the computer-controlled automatic rotation of

motors and mechanical screws. Pulse waveforms acquired by
the pressure sensors are transmitted to the computer through
the USB interface. Figure 2(b) shows an image of the scene of
the pulse waveform collection.

2.2. Pulse Waveform Preprocessing. In the pulse-waveform-
preprocessing, it is necessary to first remove the random
noise and power line interference. Moreover, as shown in
Figure 3(a), the baseline wander caused by factors such as
respiration would also greatly distort the pulse signal. We
use a Daubechies 4 wavelet transform to remove the noise
by empirically comparing the performance of several wavelet
functions and correct the baseline wander using a wavelet-
based cascaded adaptive filter previously developed by our
group [10].

Pulse waveforms are quasiperiodic signals where one or
a few periods are sufficient to classify a pulse shape. So we
adopt an automatic method to locate the position of the
onsets, split each multiperiods pulse waveform into several
single periods, and select one of these periods as a sample
of our pulse waveform data set. Figure 3(b) shows the result
of the baseline wander correction and the locations of the
onsets of a pulse waveform.

2.3. Feature Extraction and Classification. TCPD recognizes
more than 20 kinds of pulse patterns which are defined
according to criteria such as shape, position, regularity, force,
and rhythm. Several of these are not settled issues in the
TCPD field but we can say that there is general agreement
that, according to the shape, there are five pulse patterns,
namely, moderate, smooth, taut, hollow, and unsmooth.
Figure 4 shows the typical waveforms of these five pulse
patterns acquired by our pulse waveform acquisition system.
All of these pulses can be defined according to the presence,
absence, or strength of three types of waves or peaks:
percussion (primary wave), tidal (secondary wave), and
dicrotic (triplex wave), which are denoted by P, T, and D,
respectively, in Figure 4. A moderate pulse usually has all
three types of peaks in one period, a smooth pulse has low
dicrotic notch (DN) and unnoticeable tidal wave, a taut pulse
frequently exhibits a high-tidal peak, an unsmooth pulse
exhibits unnoticeable tidal or dicrotic wave, and a hollow
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Figure 2: The pulse waveform acquisition system: (a) the motor embedded pressure sensor, and (b) the whole pulse waveform acquisition
system.
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Figure 3: Pulse waveform baseline wander correction: (a) pulse waveform distorted by baseline wander, and (b) pulse waveform after
baseline wander correction.
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Figure 4: Five typical pulse patterns classified by shape: (a) moderate, (b) smooth, (c) taut, (d) hollow, and (e) unsmooth pulse patterns.

pulse has rapid descending part in percussion wave and
unnoticeable dicrotic wave.

However, pulse waveform classification may suffer from
the problems of small inter class and large intraclass varia-
tion. As shown in Figure 5, moderate pulse with unnoticeable
tidal wave is similar to smooth pulse. For taut pulse, the tidal

wave sometimes becomes very high or even merges with the
percussion wave. Moreover, the factors such as local time
axis distortion would make the classification problem more
complicated.

So far, a number of pulse waveform classification
approaches have been proposed, which can be grouped into
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two categories: the representation-based and the similarity
measure-based methods. The representation-based methods
first extract representative features of pulse waveforms using
techniques such as spatiotemporal analysis [14], fast Fourier
transform (FFT) [12], and wavelet transform [13]. Then
the classification is performed in the feature space by using
various classifiers, for example, decision tree [22] and neural
network [18, 20, 21].

For the similarity measure-based methods, classification
is performed in the original data space by using certain
distance functions to measure the similarity of different pulse
waveforms. Our pulse waveform classification approaches
belong to the similarity measure-based method, where we
first propose an ERP-induced inner product and a Gaussian
ERP kernel, and then embed them into the DFWKNN and
KDFWKNN classifiers [26, 27]. In the following section, we
will introduce the proposed methods in detail.

3. The EDCK and GEKC Classifiers

In this section, we first provide a brief survey on related
work, that is, ERP, DFWKNN, and KDFWKNN. Then we
explain the basic ideas and implementations of the ERP-
based DFWKNN classifier (EDKC) and the KDFWKNN with
Gaussian ERP kernel classifier (GEKC).

3.1. Edit Distance with Real Penalty. The ERP distance is
a state-of-the-art elastic distance measure for time series
matching [25]. During the calculation of the ERP distance,
two time series, a = [a1, . . . , am] with m elements and b =
[b1, . . . , bn] with n elements, are aligned to the same length
by adding some symbols (also called gaps) to them. Then
each element in one time series is either matched to a gap or
an element in the other time series. Finally the ERP distance
between a and b, derp(a, b), is recursively defined as

derp(a, b)

=
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where Rest(a) = [a2, . . . , am] and Rest(b) = [b2, . . . , bn], | · |
denote the l 1-norm, and g is a constant with a default value g
= 0 [25]. From (1), one can see that the distance derp(a, b) can
be derived by recursively calculating the ERP distance of their
subsequences until the length of one subsequence is zero.

By incorporating gaps in aligning time series of different
length, the ERP distance is very effective in handling the local
time shifting problem in time series matching. Besides, the
ERP distance satisfies the triangle inequality and is a metric
[25].

3.2. DFWKNN and KDFWKNN. DFWKNN and
KDFWKNN are two recently developed KNN classifiers
with classification performance comparable with or better
than several state-of-the-art classification methods [26].
Let X be a data set of n samples {x1, . . . , xn}, and the
corresponding class labels are {y1, . . . , yn} with each element
from {ω j | j ∈ [1, . . . , c]}, where c denotes the number of
classes. For a test sample x, its k-nearest neighbors from X
are found using the Euclidean distance to form a matrix
Xnn = [xnn

1 , . . . , xnn
k ]. In DFWKNN, the weights of the k-

nearest neighbors are defined as a vector w = [w1, . . . ,wk]T,
which can be obtained by solving the following constrained
optimization problem:

w = arg min
w

1

2
‖x −Xnnw‖2

subject to
k
∑

i=1

wi = 1.

(2)

By defining the Gram matrix as

G =
[

x − xnn
1 , . . . , x− xnn

k

]T[

x − xnn
1 , . . . , x− xnn

k

]

, (3)

the weight vector w can be obtained by solving Gw = 1k,
where 1k is a k × 1 vector with all elements equal to 1. If the
matrix G is singular, there is no inverse of G and the solution
of w would be not unique. To avoid this case, a regularization
method is adopted by adding the multiplication of a small
value with the identity matrix, and the weight vector w can
be obtained by solving the system of linear equations:

[

G +
ηIk tr(G)

k

]

w = 1k, (4)

where tr(G) is the trace of G, η ∈ [10−3 ∼ 100] is
the regularization parameter, k is the number of nearest
neighbors of x, and Ik is a k × k identity matrix. Finally,
using the weighted KNN rule, the class label ω jmax =

arg maxω j
(
∑

ynni =ω j
wi) is assigned to the sample x.

By defining the kernel Gram matrix, DFWKNN can be
extended to KDFWKNN. Using the feature mapping F : x →
φ(x) and the kernel function κ(x, x′) = 〈φ(x),φ(x′)〉, the
kernel Gram matrix Gκ is defined as

Gκ =
[

φ(x)− φ
(

xnn
1

)

, . . . ,φ(x)− φ
(

xnn
1

)]T

×
[

φ(x)− φ
(

xnn
1

)

, . . . ,φ(x)− φ
(

xnn
1

)]

.
(5)

In KDFWKNN, the weight vector w is obtained by solving

[

Gκ +
ηIk tr(Gκ)

k

]

w = 1k . (6)

For a detailed description of KDFWKNN, please refer to
[26].

3.3. The EDKC Classifier. Current similarity measure-based
methods usually adopt the simple nearest neighbor classifier.
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Figure 5: Inter- and intraclass variations of pulse patterns: (a) a moderate pulse with unnoticeable tidal wave is similar to (b) a smooth
pulse; taut pulse patterns may exhibit different shapes, for example, (c) typical taut pulse, (d) taut pulse with high tidal wave, and (e) taut
pulse with tidal wave merged with percussion wave.

Input: The unclassified sample x, the training samples X = {x1, . . . , xn} with the corresponding
class labels {y1, . . . , yn}, the regularization parameter η, and the number of nearest
neighbors k.

Output: The predicted class label ω jmax of the sample x.
Step 1. Use the ERP distance to obtain the k-nearest neighbors of the sample x,

Xnn = [xnn
1 , . . . , xnn

k ], and their corresponding class labels [ynn1 , . . . , ynnk ].
Step 2. Calculate the ERP-induced inner product of the samples x and each of its nearest

neighbors, kerp(i) = 〈x, xnn
i 〉erp = (d2

erp(x, x0) + d2
erp(xnn

i , x0)− d2
erp(x, xnn

i ))/2.

Step 3. Calculate the ERP-induced inner product of the k-nearest neighbors of sample x,
Kerp(i, j) = 〈xnn

j , xnn
i 〉erp

.

Step 4. Calculate the self-inner product of the sample x, 〈x, x〉erp.
Step 5. Calculate Gerp = Kerp + 〈x, x〉erp1kk − 1kkT

erp − kerp1T
k .

Step 6. Calculate w by solving [Gerp + ηIk tr(Gerp)/k]w = 1k .
Step 7. Assign the class label ω jmax = arg maxω j

(
∑

ynni =ω j
wi) to the sample x.

Algorithm 1: EDKC.

The combination of similarity measure with advanced
KNN classifiers is expected to be more promising. So, by
using DFWKNN, we intend to develop a more effective
classifier, the ERP-based DFWKNN classifier (EDKC), for
pulse waveform classification. Utilizing the metric property
of the ERP distance, we first develop an ERP-induced inner
product, and then embed this novel inner product into
DFWKNN to develop the EDKC classifier.

Let 〈·, ·〉erp denote the ERP-induced inner product. Since
ERP is a metric. We can get the following heuristic deduction:

d2
erp(x, x′) =

〈

x − x′, x− x′
〉

erp

= 〈x, x〉erp +
〈

x′, x′
〉

erp − 2
〈

x, x′
〉

erp,

=⇒ d2
erp(x, x′) = d2

erp(x, x0) + d2
erp(x′, x0)− 2

〈

x, x′
〉

erp,

(7)

where derp(x, x′) is the ERP distance between x and x′, and
the vector x0 represents a zero-length time series. Then the
ERP-induced inner product of x and x′ can be defined as
follows:

〈

x, x′
〉

erp =
1

2

(

d2
erp(x, x0) + d2

erp(x′, x0)− d2
erp(x, x′)

)

. (8)

In (3), the element at the ith row and the jth column of
the Gram matrix G is defined as Gi j = 〈x − xnn

i , x − xnn
j 〉,

where 〈·, ·〉 denotes the regular inner product. In EDKC,

we replace the regular inner product with the ERP-induced
inner product to calculate the Gram matrix Gerp, which can
be rewritten as follows:

Gerp = Kerp + 〈x, x〉erp1kk − 1kkT
erp − kerp1T

k , (9)

where Kerp is a k × k matrix with the element at ith row and
jth column Kerp(i, j) = 〈xnn

i , xnn
j 〉erp

, kerp is a k × 1 vector

with the ith element kerp(i) = 〈x, xnn
i 〉erp, and 1kk is a k × k

matrix of which each element equals 1.
Once we obtain the Gram matrix Gerp, we can directly

use DFWKNN for pulse waveform classification by solving
the linear system of equations defined in (4). The detailed
algorithm of EDKC is shown as Algorithm 1.

3.4. The GEKC Classifier. The Gaussian RBF kernel [28] is
one of the most common kernel functions used in kernel
methods. Given two time series x and x′ with the same length
n, the Gaussian RBF kernel is defined as

KRBF(x, x′) = exp

(

−
‖x − x′‖2

2

2σ2

)

, (10)

where σ is the standard deviation. The Gaussian RBF kernel
requires that the time series should have the same length, and
it cannot handle the problem of time axis distortion. If the
length of two time series is different, resampling usually is
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Table 1: Data set used in our experiments.

Pulse Moderate Smooth Taut Hollow Unsmooth Total

Number 800 550 800 160 160 2470

Table 2: The confusion matrix of EDKC.

Predicted

M S T H U

Actual

M 720 59 19 2 0

S 68 473 3 6 0

T 22 5 764 3 6

H 7 9 4 139 1

U 1 1 20 2 136

required to normalize them to the same length before further
processing. Thus Gaussian RBF kernel usually is not suitable
for the classification of time series data.

Actually Gaussian RBF kernel can be regarded as an
embedding of Euclidean distance in the form of Gaussian
function. Motivated by the effectiveness of ERP, it is inter-
esting to embed the ERP distance into the form of Gaussian
function to derive a novel kernel function, the Gaussian
ERP (GERP) kernel. By this way, we expect that the GERP
kernel would be effective in addressing the local time shifting
problem and be more suitable for time series classification in
kernel machines. Given two time series x and x′, we define
the Gaussian ERP kernel function on X as

Kerp(x, x′) = exp

(

−
d2

erp(x, x′)

2σ2

)

, (11)

where σ is the standard deviation of the Gaussian function.
We embed the GERP kernel into KDFWKNN by con-

structing the kernel Gram matrix Gκ
erp defined as

Gκ
erp = Kκ

erp + 1kk − 1k

(

kκ
erp

)T
− kκ

erp1T
k , (12)

where Kκ
erp is a k × k matrix with its element at ith row and

jth column

Kκ
erp

(

i, j
)

= Kerp

(

xnn
j , xnn

i

)

, (13)

and kκ
erp is a k × 1 vector with its ith element

kκ
erp(i) = Kerp

(

x, xnn
i

)

. (14)

Once we have obtained the kernel Gram matrix Gκ
erp,

we can use KDFWKNN for pulse waveform classification by
solving the linear system of equations defined in (6). The
details of the GEKC algorithm are shown as Algorithm 2.

4. Experimental Results

In order to evaluate the classification performance of EDKC
and GEKC, by using the device described in Section 2.1, we
construct a data set which consists of 2470 pulse waveforms

Table 3: The confusion matrix of GEKC.

Predicted

M S T H U

Actual

M 730 54 15 1 0

S 61 479 4 6 0

T 16 2 775 1 6

H 7 7 2 143 1

U 0 1 19 1 139

Table 4: Comparison of different methods for pulse waveforms
classification with their accuracies achieved in recent literature.

Category Methods
Data set

Accuracy
Size Classes

Representation-
based
methods

DT-M4 [22] 372 3 92.2%

Wavelet Network
[23]

600 6 83%

Artificial Neural
Network [21]

63 3 73%

21 2 90%

Similarity
measure-based
methods

IDTW [19] 1000 5 92.3%

EDKC 2470 5 90.36%

GEKC 2470 5 91.74%

of five pulse patterns, including moderate (M), smooth (S),
taut (T), hollow (H), and unsmooth (U). All of the data
are acquired at the Harbin Binghua Hospital under the
supervision of the TCPD experts. All subjects are patients
in the hospital between 20 and 60 years old. Clinical data,
for example, biomedical data and medical history, are also
obtained for reference. For each subject, only the pulse signal
of the left hand is acquired, and three experts are asked to
determine the pulse pattern according to their pulse signal
and the clinical data. If the diagnosis results of the experts
are the same, the sample is kept in the data set, else it is
abandoned. Table 1 lists the number of pulse waveforms of
each pulse pattern. To the best of our knowledge, this data
set is the largest one used for pulse waveform classification.

We make use of only one period from each pulse signal
and normalize it to the length of 150 points. We randomly
split the data set into three parts of roughly equal size and use
the 3-fold cross-validation method to assess the classification
performance of each pulse waveform classification method.
To reduce bias in classification performance, we adopt the
average classification rate of the 10 runs of the 3-fold cross-
validation. Using the stepwise selection strategy [26], we
choose the optimal values of hyperparameters k, η, and σ :
k = 4, η = 0.01 for EDKC, and k = 31, η = 0.01, σ = 16
for GEKC. The classification rates of the EDKC and GEKC
classifiers are 90.36% and 91.74%, respectively. Tables 2 and 3
list the confusion matrices of EDKC and GEKC, respectively.

To provide a comprehensive performance evaluation of
the proposed methods, we compare the classification rates
of EDKC and GEKC with several achieved accuracies in the
recent literature [19, 21–23]. Table 4 lists the sizes of the
data set, the number of pulse waveform classes, and the
achieved classification rates of several recent pulse waveform
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Input: The unclassified sample x, the training samples X = {x1, . . . , xn} with the corresponding class
labels
{y1, . . . , yn}, the regularization parameter η, the kernel parameter σ , and the number of
nearest neighbors k.

Output: The predicted class label ω jmax of the sample x.

Step 1. Use the ERP distance to obtain the k-nearest neighbors [xnn
1 , . . . , xnn

k ] of the sample x, and
their corresponding class labels [ynn1 , . . . , ynnk ].

Step 2. Calculate the GERP-induced inner product between samples x and each of its nearest
neighbors kκ

erp(i) = exp(−d2
erp(x, xnn

i )/2σ2).
Step 3. Calculate the GERP-induced inner product of the k-nearest neighbors of x

Kκ
erp(i, j) = exp(−d2

erp(xnn
j , xnn

i )/2σ2).

Step 4. Calculate Gκ
erp = Kk

erp + 1kk − 1k(kκ
erp)T

− kκ
erp1T

k .
Step 5. Calculate w by solving [Gκ

erp + ηIk tr(Gκ
erp)/k]w = 1k .

Step 6. Assign the class label ω jmax = arg maxω j
(
∑

ynni =ω j
wi) to the sample x.

Algorithm 2: GEKC.

Table 5: The average classification rates (%) of different methods.

Pulse waveform 1NN-Euclidean 1NN-DTW 1NN-ERP Wavelet network [23] IDTW [19] EDKC GEKC

Moderate 86.11 82.44 88.31 87.23 87.31 89.94 91.25

Smooth 85.02 81.16 86.31 85.36 80.38 86.00 87.09

Taut 95.76 87.95 95.10 89.63 93.15 95.50 96.88

Hollow 86.75 82.44 87.56 85.63 80.44 86.88 89.38

Unsmooth 84.06 70.81 84.75 80.63 89.50 85.00 86.88

Average 87.36 83.19 89.79 87.08 88.90 90.36 91.74

classifiers, including improved dynamic time warping
(IDTW) [19], decision tree (DT-M4) [22], artificial neural
network [21], and wavelet network [23]. From Table 4, one
can see that GEKC achieves higher accuracy than wavelet
network [23] and artificial neural network [21]. Moreover,
although IDTW and DT-M4 reported somewhat higher
classification rates than our methods, the size of the data set
used in our experiments is much larger than those used in
these two methods, and DT-M4 is only tested on a 3-class
problem. In summary, compared with these approaches,
EDKC and GEKC are very effective for pulse waveform
classification.

To provide an objective comparison, we independently
implement two pulse waveform classification methods listed
in Table 4, that is, IDTW [19] and wavelet network [23],
and evaluate their performance on our data set. The average
classification rates of these two methods are listed in Table 5.
Besides, we also compare the proposed methods with several
related classification methods, that is, nearest neighbor with
Euclidean distance (1NN-Euclidean), nearest neighbor with
dynamic time warping (1NN-DTW), and nearest neighbor
with ERP distance (1NN-ERP). These results are also listed
in Table 5. From Table 5, one can see that, our methods
outperform all the other methods in term of the overall
average classification accuracy.

5. Conclusion

By incorporating the state-of-the-art time series matching
method with the advanced KNN classifiers, we develop two

accurate pulse waveform classification methods, EDKC and
GEKC, to address the intraclass variation and the local
time shifting problems in pulse patterns. To evaluate their
classification performance, we construct a data set of 2470
pulse waveforms, which may be the largest data set yet
used in pulse waveform classification. The experimental
results show that the proposed GEKC method achieves an
average classification rate of 91.74%, which is higher than
or comparable with those of other state-of-the-art pulse
waveform classification methods.

One potential advantage of the proposed methods is to
utilize the lower bounds and the metric property of ERP
for fast pulse waveform classification and indexing [29]. In
our future work, we will further investigate accurate and
computationally efficient ERP-based classifiers for various
computerized pulse diagnosis tasks.
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