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Goal. Breast cancer is becoming one of the most common cancers among women. Early detection can help increase the survival
rates. Feature extraction directly a
ects diagnosis result. In this work, a novel feature extraction method based on Dual Contourlet
Transform (Dual-CT) is presented, and improved�nearest neighbor (KNN) is employed to improve the classi�cation performance.
Method. 	is presented method includes three main sections: �rstly, the Region of Interest (ROI) is cropped manually according
to gold standard fromMammographic Image Analysis Society (MIAS) database; secondly, the ROIs are decomposed into di
erent
resolution levels usingDual-CT, contourlet, and wavelet; a set of texture features are extracted.	en improved KNN and traditional
KNN are implemented for classi�cation. Experiments are performed on 324 ROIs which include 206 normal cases and 118 abnormal
cases; the abnormal cases are composed of 66 benign cases and 52 malignant cases. Results. Experimental results prove the validity
and superiority of Dual-CT-based feature and improved KNN. In particular, 94.14% and 95.76% classi�cation accuracy is achieved
based on Dual-CT domain. Moreover, the proposed method is comparable with state-of-the-art methods in terms of accuracy.
Contribution. Dual-CT-based feature is used for analyzing mammogram and can help improve breast cancer diagnosis accuracy.

1. Introduction

Breast cancer ranks second as a cause of deaths among
women in the world and it has become a major public health
problem [1]. According to the American Cancer Society
statistics, the estimated newbreast cancer cases reach 246,660
among women in the US during 2016, and it has been the
most dangerous malignant tumor for women. Among which
an estimated 40,450 breast cancer deaths are expected. 	e
data show that breast cancer incidence rates are increased
slightly, but the decline in breast cancer death rates is down
by 36% from peak rates as a result of improvements in early
detection and treatment [2]. In consequence, breast cancer
early detection and diagnosis are becoming a di�cult point
and hot issue of current international research.

Mammography as the best valid tool has beenwidely used
in early breast cancer detection [3–7]. However, the growing
mammograms especially the large number of normal cases
increase the reading burden of radiologist; it may lead to

missing the subtle abnormalities. Consequently Computer-
Aided Diagnosis (CAD) is particularly signi�cant to provide
a second opinion and reduce false positive and false negative
rates. Over recent decades, many researchers have proved its
e
ectiveness in breast cancer diagnosis.

CAD methods for distinguishing the normal and abnor-
mal or benign and malignant have been investigated based
on many di
erent techniques [8, 9]. 	ese classi�cation
techniques can be divided into two categories. One is image
analysis with segmentation the lesion areas [10–16], and
the other is image analysis without segmentation [17–23].
Wei et al. [10] come up with a content-based mammogram
retrieval system; meanwhile, a similarity measure scheme
was proposed, this study was tested on Digital Database for
Screening Mammography (DDSM) dataset, and experimen-
tal results demonstrated that round-shape masses were most
discriminative when using Zernike moments and round-
shape, circumscribed margin masses could achieve the high-
est precision among all mass types. Mustra and Grgic [11]
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presented a new method for breast skin-air interface detec-
tion and pectoral muscle detection based on selected Region
of Interest (ROI); this approach was used to solve segmen-
tation in very low contrast pectoral muscle areas. Pereira
et al. [12] put forward a method for overcoming the limi-
tation of analyzing only Cranio-Ca (CC) and Mediolateral
Oblique (MLO) views, an artifact removal algorithm and
multiple thresholding were used for mass preprocessing and
segmentation, and �nally they tested this new idea on DDSM
database. Agrawalet al. [13] proposed a method for mass
automatic detection which did not remove pectoral muscles.
Firstly, they segmented mass use saliency; secondly, di
erent
features of the segmented regions are extracted; then they
detected the mass by Support Vector Machine (SVM). 	is
experiment was tested on the MIAS database and the results
showed the e
ectiveness of this proposed method. Zhang et
al. [14] focused on identifying the optimal segmentor from
an ensemble mix of weak segmentor; the result showed that
the segmentor achieved higher segmentation success rates in
most cases. Anitha and Peter [15] proposed a new method to
identify and segment the suspicious mass using a modi�ed
transition rule. An adaptive global thresholding was used
to obtain the rough region; then the initial seed point and
the modi�ed transition rule were used for segmentation of
the mass. 	is proposed approach yielded promising results
when evaluating on 70 mass mammograms from mini-
MIAS database. Dong et al. [16] presented a novel automatic
segmentation and classi�cation base on DDSM and MIAS
database, the experimental results veri�ed the e
ectiveness
of this new approach.

	ese methods mentioned above have taken much e
ect
onCADbreast cancer. At the same time, themethodswithout
segmentation also play an important role. Campanini et al.
[17] exploited all the information available on the image
instead of extracting any feature from ROI; then SVM was
used to classify suspect areas or not; �nally a voting strategy
by an ensemble of experts was applied to achieve the �nal
suspect regions. 	e presented system obtained impressive
results when testing on DDSM database. Rashed et al. [18]
used fractional amount of biggest wavelets coe�cients in
multilevel decomposition and they achieved a remarkably
high e�ciency in distinguishing between benign and malig-
nant tumors. Reyad et al. [19] studied the e
ect of di
erent
features to be used in CAD system for classi�cation of
masses, these features included Local Binary Pattern (LBP),
statistical measures, and multiresolution feature, the results
showed that when using both statistical and LBP features, the
accuracy was increased to 98.63%, and the contourlet-based
features achieved classi�cation accuracy of 98.43%. Tai et al.
[20] studied the local texture characteristics and the discrete
photo-metric distribution of each ROI and used stepwise
linear discriminate analysis to classify abnormal regions, and
the results revealed that the proposed system obtained satis-
factory detection performance. Orozco et al. [21] presented
a CAD system to distinguish lung nodules CT images based
on supervised extraction of the ROI; experimental results
showed that this method helped reducing the complexity of
classi�cation without the segmentation stage. Pak et al. [22]

used ROI-feature extraction based on Nonsubsampled Con-
tourlet Transform (NSCT) and Super Resolution (SR); then
AdaBoost algorithm was used to classify and determine
the probability of benign and malignant. Beura et al. [23]
employedGray Level CooccurrenceMatrix (GLCM) to all the
detailed wavelet coe�cients based on ROI and then classi�ed
the breast tissues as normal, benign, or malignant using Back
Propagation Neural Network (BPNN).

Based on the discussion above, it can be concluded that
breast cancer analysis with segmentation has got certain
achievements; moreover, the segmentation results directly
a
ect the classi�cation accuracy. Whereas mammogram
analysis without segmentation also can obtain higher accu-
racy and it help reduce the complexity of classi�cation by
not carrying out the segmentation stage. Just in time, we
have proposed a new structure of Dual Contourlet Trans-
form (Dual-CT) in our previous work [24]. Meanwhile, to
our knowledge, there is no previous research using Dual-
CT-based feature in digital mammogram analysis. In this
paper, we �rstly extracted the Dual-CT-based feature of ROI
and then developed a new classi�cation method based on
Dual-CT feature and improved �-nearest neighbors (KNN)
classi�er. Firstly, we identify the ROI manually according to
the gold standard. Secondly, Dual-CT is used to decompose
the ROI and then a series of feature are extracted based on
Dual-CT coe�cients. Finally, improved KNN is employed
to classify the mammogram into normal and abnormal and
malignant and benign.

	e outline of the rest paper is organized as follows.
Section 2 describes the wavelet transform, contourlet trans-
form, and Dual-CT brie�y; also KNN is given a simple
introduction; the database and preprocessing are described
in Section 3. In Section 4, feature extraction and feature
analysis are presented, and the achieved results are discussed.
Conclusions and future work are presented in Section 5.

2. Materials and Image Preprocessing

2.1. Wavelet Transform. Wavelet proposed by J. Morlet is
widely used in many areas [25, 26]. Wavelets are short basis
functions that are used to represent other functions. It is
implemented by iterations of discrete time �lters. 	e basis
function is called mother wavelet, and a cluster of functions
can be generated by translations and dilation of this basis
function. It possesses well-localized properties in both time
and frequency simultaneously.

	e wavelet basis function can be described as follows;
�rstly we de�ne scale parameter � = �0� and translation

parameter � = ��0��0��,� (�) = �����0����−�/2 � (�0−�� − ��0) , (1)

where �, � ∈ Z, �0 > 1, �0 > 0, respectively.
In general, the discrete wavelet transform of 
(�) can be

de�ned as�� (�, �) = ⟨
, ��,�⟩
= �����0����−�/2 ∫+∞−∞ 
 (�) � (�0−�� − ��0)� (�) . (2)
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When applying two-dimensional (2D) wavelet decom-
position to an image, we will get four subbands in each
level, the low frequency subband and three high frequency
subbands. 	en the low frequency subband is used to be
further decomposed. 	e low frequency subband contains
the coarse information of the original image; and the edges
and other details information are distributed in the high
frequency subbands. Figure 1 shows the decomposition of
DWT.	e wavelet has the following properties:

1. Multiresolution: it can represent the images approxi-
mated successively, from coarse to �ne resolutions.

2. Localization: the separable wavelet represents the
basic elements localizing in both spatial and fre-
quency domains.

3. Critical sampling: wavelet can form a basis or a frame
with small redundancy.

For more details about wavelet analysis, refer to [27].

2.2. Contourlet Transform. Contourlet transform [28] is
proposed as a new image representation approach over
wavelet. It is a “true” 2D image representation scheme and

it can capture the intrinsic geometrical structure of original
image. 	e contourlet combines with Laplacian pyramid
(LP) and directional �lter banks (DFB) for multiresolution
and multidirectional decomposing. 	e LP is �rstly used to
capture the discontinuous points; next DFB is used to link
discontinuous points into linear structures. Figures 2 and 3
show the decomposition structure of CT and the frequency
spectrum decomposition of DFB, respectively.

	e LP iteratively decomposes a 2D image into low-pass
and bandpass subbands, and the following bandpass sub-
bands are fed intoDFB to capture the directional information.
	en iterating this scheme on the low-pass subband, the
contourlet coe�cients are obtained �nally.	e contourlet has
the following advantages over wavelet:

1. Directionality: DFB contains basis elements oriented
at various directions which are more than three
directions o
ered by wavelet.

2. Anisotropy: contourlet contains basis elements with
various elongated shapes with di
erent aspect ratios,
and it can capture smooth contours in images.

More details about contourlet can be found in [29].
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Figure 3: DFB: frequency partitioning with 8 directions bands.

2.3. Dual Contourlet Transform. Dual Contourlet Transform
is developed as an improvement over contourlet. It is con-
structed by cascading of dual LP and DFB; the dual LP is
used to improve the spectrum aliasing in downsampling of
LP. DFB involves basis functions orienting at any power of
two’s number of directionswith �exible aspect ratios. Figure 4
shows the decomposition structure of Dual-CT.

	e di
erence between Dual-CT and contourlet is the
special dual LP structure. 	e dual LP is composed of two
trees satisfying the relationship of phase constrains, and the
two trees can be seen an approximate Hilbert transform.
Figure 5 shows the decomposition structure of dual LP. In
Figure 5, ℎ0(�), ℎ1(�), �0(�), and �1(�) are all low-pass �lters.
	e �lters of the dual tree LP are designed as below:

�0 (�) = ℎ0 (� − �) ,
�1 (�) = ℎ1 (� − �) . (3)

At level 1, ℎ0(�) and ℎ1(�) satisfy the following relation-
ship:

ℎ1 (�) = ℎ0 (� − 1) . (4)

At level 2 and the following levels, ℎ0(�) and ℎ1(�) must
satisfy the following relationship:

ℎ1 (�) = ℎ0 (� − 12) . (5)

At level 1, we use the low-pass �lter of “9-7” as ℎ0(�),
�lter ℎ1(�) is just a sample delay of �lter, at level 2 and
the following, �lters ℎ0(�) and ℎ1(�) satisfy the following
relationship: ℎ0(�) = ℎ(� − 1/4) and ℎ1(�) = ℎ(� − 3/4),
where ℎ(� − 1/4) and ℎ(� − 3/4) are �lters pair designed by
“Q-shi�” algorithm.As such, �lters ℎ0(�) and ℎ1(�) satisfy the
phase constrained relationship of 1/2 sampling delay, and the
outputs of two trees form approximate analytic signal.

Besides the properties of contourlet, Dual-CT o
ers
approximate shi� invariance, phase information, which is
very important in image processing areas.

2.4. �Nearest Neighbor (KNN). �Nearest Neighbor (KNN)
[30] is proposed byCover andHart in 1968, and it is one of the

most simple machine learning algorithms. It is an extension
of the simple nearest neighbor. KNN classi�es an unknown
sample on the “vote” of nearest neighbor � rather than on
the single nearest neighbor.

	e main steps of KNN implementation are as follows:

(1) Assess similarity: calculate the similarity between
the test sample and each sample of the training
set. In general, the similarity can be measured by
Euclidean distance, Manhattan distance, Jaccard sim-
ilarity coe�cient, correlation coe�cient, and so on.
Among these, Euclidean distance is the most widely
used. For a given feature sample Test(�1, �2, . . . , ��)
and training set feature Train(��1, ��2, . . . , ���), the
Euclidean distance is calculated as below:

�� = √ �∑
�=1

(Test� − Train��), (6)

where � is the number of the feature vectors, � is the
number of training samples, and �� is the Euclidean
distance between the test sample and the �th sample
of the training set.

(2) Find neighbors: �nd the� neighbors nearest distance
and sort in ascending order. 	e selection of � value
will directly a
ect the classi�cation result. As shown
in Figure 6, the test sample class will change with the
value of �. 	e candidate of � can be chosen as 3, 5,
and 7 or by experience.

(3) Vote and classify: according to the vote result of each
category, the test sample is classi�ed to one class.

3. Mammogram Database and Preprocessing

3.1. Database. 	emammogram is obtained by compressing
the breast between two acrylic plates when X-ray is emitted
through. In the previous study, MIAS [31] was widely used in
mammography analysis because that they are freely available
[13, 16, 32, 33]. In this work, we choose the same dataset,
the same as other researchers. Another reason is that various
cases of MIAS are labeled by expert radiologist based on
experience and biopsy.

Mammogram of MIAS is selected from the United
Kingdom National Breast Screening Program; it contains
161 pairs of �lms. Every image is 1024 × 1024 pixels; they
contain normal and abnormal cases. 	e coordinates center
and approximate radius (in pixels) of abnormality are given
by experts. Each mediolateral oblique view is available for
research purpose. 	e summary of MIAS digital mammo-
gram is listed in Table 1. For instance, there are two lesion
areas in a mammogram such as “mdb 239” and “mdb 249,”
so there are totally 324 samples.

3.2. Region of Interest (ROI) Extraction. 	e original mam-
mogram contains background, muscle, and the label; this
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Figure 6: Classi�cation diagram of KNN.

information can be seen as noise in the process of classi�ca-
tion. Instead of segmentation on the lesion areas, we apply
a cropping operation to the original image manually, and
then 324 ROI are extracted with size of 128 ∗ 128 pixels. 	e
center of ROI is selected according to the given center of the

Table 1: Summary of MIAS digital mammogram.

Film category Benign Malignant Total

Abnormal 66 52 118

Normal — — 206

Total 66 52 324

abnormal area. An example of cropping result is shown in
Figure 7.

3.3. Performance Evaluation. 	e objective evaluation cri-
terion is measured by classi�cation accuracy and receiver
operating characteristic (ROC). Sensitivity and speci�city
are statistical measures of a binary classi�cation test. 	e
confusion matrix is de�ned in Table 2.

Sensitivity deals only with positive cases; it indicates the
proportion of the detected positive cases over the actual
positive cases.

Sensitivity = TP

TP + FN
. (7)
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(a) Full mammogram “mbd 028” (b) Cropper mam-
mogram “mbd 028”

(c) Cropper normal mammo-
gram “mbd 131”

(d) Cropper malignant mam-
mogram “mbd 083”

(e) Cropper benign mammo-
gram “mbd 021”

Figure 7: Set of cropped mammogram fromMIAS.

Table 2: 	e concept of confusion matrix.

Actual test
Predict result

Positive Negative

Positive TP FN

Negative FP TN

Speci�city deals only with negative cases; it indicates the
proportion of the detected negative cases over the actual
negative cases.

Speci�city = TN

TN + FP
. (8)

Accuracy deals with all cases and it is themost commonly
used indicators; it re�ects the precision of predict results.

Accuracy = TP + TN

TP + TN + FP + FN
. (9)

	eROC curve is used to evaluate the predictive accuracy
of the proposed model. It indicates the relation between sen-
sitivity and speci�city. 	e area under the ROC curve (AUC)
is one of the excellent methods for comparing classi�ers into
two-class issues. If the ROC curve rises quickly towards the
upper le� corner of the graph, this indicates that the test
method performs better. When the AUC is close to 1.0, it
indicates that the diagnostic test is reliable; on the contrary,
an area close to 0.5 demonstrates the unreliable test result.

4. The Proposed System

In this work, a new classi�cation method of mammograms
is proposed. 	e procedure of the proposed system can be
summarized as follows, and the proposed system is presented
in Figure 8.

1. ROI extraction: a ROI with size of 128 ∗ 128 pixels
is cropped, where the center of ROI is determined
according to the given center of the abnormal area.
	e normal ROI is extracted randomly from the
normal mammogram.

2. Dual-CT decomposition: Dual-CT is implemented
on the extracted ROI and Dual-CT coe�cients are
obtained.

3. Feature extraction and analysis: feature is extracted
based on the Dual-CT directional subbands and this
characteristic di
erence is analyzed between normal
and abnormal ones and benign and malignant ones.

4. Classi�cation: improved KNN is used for classi�ca-
tion based on the extracted features.

4.1. Feature Extraction. Image texture is an important fea-
ture of representing itself; di
erent types of image possess
di
erent texture. Previous studies [18, 22, 36] have shown
that combining texture feature with multiresolution trans-
form domain feature can help improving the classi�cation
accuracy. In this work, feature is extracted from the mul-
tiresolution domain based on ROI. Firstly, the extracted
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ROI is decomposed by the proposed Dual-CT, and the
Dual-CT coe�cients are obtained; secondly the directional
subband coe�cients are used for feature extraction. A�er
investigation and analysis, it is found that these nine features
including mean, smoothness, and others are e
ective. 	ese
nine features are illustrated as follows.

For the given ROI, �� is each gray value of the ROI, �(��)
is the gray level histogram,  is the number of gray levels.

(1) Mean: it re�ects the average gray level of an image

! = �−1∑
�=0

��� (��) . (10)

(2) Standard deviation: it re�ects the degree of deviation
between the whole image and the mean image

" = √�−1∑
�=0

(�� − !)2 � (��). (11)

(3) Smoothness: the practical signi�cance is similar to the

variance "2
smoothness = 1 − 11 + ("2)2 . (12)

(4) Skewness: it re�ects the deviation trend between the
whole gray level and the mean; the gray deviation
caused byminority extremum can be indicated in this
index

skewness = �−1∑
�=0

(�� − !)3 � (��) . (13)

(5) Uniformity:

uniformity = �−1∑
�=0

�2 (��) . (14)

(6) Entropy: it is o�en used to measure the random
distribution of gray value; the greater the randomness,
the larger the entropy value:

entropy = −�−1∑
�=0

� (��) log2� (��) . (15)

(7) Contrast: it is used to measure the image de�nition;
the deeper the texture, the larger the contrast,

kurtosis = �−1∑
�=0

(�� − !)4 � (��) ,
contrast = "(kurtosis)� ,

(16)

where � is a positive number. Experimentally, � is set
as 1/4.

For a given image 
(#, �), �(#, �) is the normalized
Gray Level Cooccurrence Matrix (GLCM) of 
(#, �),
where$ and� are the size of �(#, �).

(8) Correlation: it measures the spatial similarity of
GLCM along with row or column direction.

(9) Homogeneity: it re�ects the homogeneity of image
texture; it is o�en used to measure local variation of
image texture

Homogeneity = 	∑
�=1


∑
�=1

� (#, �)(1 + ����# − �����) . (17)

4.2. Feature Analysis. In this research, there are nine features
extracted based on Dual-CT domain. In order to verify
the feature used in this paper e
ectiveness, we choose ten
extracted ROIs from the abnormal and normal images,
respectively, and compute several features of the selected
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Figure 9: Comparison of the feature value in the ROIs between normal and abnormal.

image. 	ese selected features include standard variance,
uniformity, entropy, and correlation. Figure 9 shows the
feature value of 10 normal ROIs and 10 abnormal ROIs.

It can be seen that the standard variance of normal images
is stable and low, while that of abnormal images is high
and sharp. It means that gray scale of the normal image
changes smoothly; the emergence of the lesion area changes
the gray level distribution obviously. For the uniformity
and the correlation, the normal image achieves higher value
than the abnormal. It indicates that the local similarity is
higher in normal sample than that in abnormal sample. From
the entropy indicator, the normal image is lower than the
abnormal because the gray level distribution of the abnormal
image is more randomness, while it is regular in normal
image.

Figure 9 indicates that the feature of smoothness is
signi�cant to distinguish these two types.

	e same step is also done for the malignant and benign
ROIs. We �rstly select 10 malignant and 10 benign samples,
respectively; secondly we compute the same four features
of the selected ROIs. Figure 10 shows the feature value of
10 benign ROIs and 10 malignant ROIs. From Figure 10, we
can see that the features between benign and malignant have
obvious di
erence. 	e uniformity and correlation value of
benign ROI is larger than that of malignant ROI, while the

standard variance and the entropy value of benign ROI is
smaller than that of malignant ROI.	ese changes are related
to the gray level distribution of lesion areas. For instance, the
gray level of benign lesion assumes disciplinary changes and
the gray level of malignant lesion changes desultorily.

As can be seen, these selected features are useful to classify
normal and abnormal ROI and benign and malignant ROI.
Following, we will use these features for classi�cation and
analyze the experimental results.

4.3. Classi	cation Results. In order to verify the e
ectiveness
of the present new method, we compare our method with
the state-of-the-art methods. For the choice of the number of
decomposition layers, previous research suggests that three
layers of decomposition in feature extracted o�en indicate
better classi�cation results. So in this paper, we choose three
levels. 	e main steps in this article are as follows: �rstly,
the 322 ROIs are extracted manually; secondly Dual-CT,
contourlet transform, and wavelet transform are used to
decompose the extracted ROIs, the decomposition level is
set as [4, 4, 4] based on the experiment, and then we obtain
the multiresolution coe�cients: Dual-CT has 24 directions
at each scale for each tree; contourlet has 24 directions at
each scale, and wavelet has only 3 directions at each sale. 	e
aforementioned nine features are extracted on the directional
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Figure 10: Comparison of the feature value in the ROIs between benign and malignant.

coe�cients, and we obtain the feature database. Finally, the
features are fed into the improved KNN for classi�cation.

4.3.1.
e Improved KNN. 	ebasic KNN can be described in
three steps: computing distance, �nding � nearest neighbor,
and classi�cation. In this work, we used improved KNN to
improve the classi�cation accuracy. 	e implementation of
improved KNN is illustrated as follows.

1. Compute distance: for each test sample, we calculate
the Euclidean distance between the feature of test
sample and all the rest of the features database.

2. Find � nearest samples: sorting the distance in
ascending order and �nding the �rst � samples. In our
experiment, we set � as 3 and 5 by experience.

3. Classify: the test sample will be divided into the class
of more votes directly in former KNN. In order to
increase the classi�cation accuracy, we improve this
step.

For a test sample %, &� represents the category and ��
and '� are the sample and sample number which belong to

&� in the � neighbor, respectively; then we de�ne *(&�, %)
as the credibility of% to category &�.

* (&�, %) = � − '�� × 1'�
��∑
�=1
� (%,���) ,

� (%,���) = √��∑
�=1

(% − ���).
(18)

	e smaller the *(&�, %) is, the greater the possibility
that % belongs to &�. If *(&�, %) is equal to 0, there is no
doubt that% belongs to &�.

In the following experiments, the improved KNN will be
proved to show its e
ectiveness in classi�cation.

4.3.2. Classi	cation between Normal and Abnormal. In this
section, there are totally 324 ROIs extracted from the MIAS
database. It includes 206 normal areas and 118 abnormal
areas. Table 3 shows the classi�cation accuracy of di
erent
methods.

For Table 3, we analyze the classi�cation performance
from the following two aspects.
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Table 3: Classi�cation performance (%) using KNN and improved KNN tested between normal and abnormal.

Feature
Dual-CT Contourlet Wavelet

Normal Abnormal Normal Abnormal Normal Abnormal

KNN (mean) 84.47 79.66 87.38 53.39 88.35 61.02

Improved KNN (mean) 96.12 88.14 98.54 80.51 95.15 81.36

KNN (SD) 85.44 73.73 83.98 61.86 87.86 62.71

Improved KNN (SD) 96.60 88.14 97.57 85.59 94.17 87.29

KNN (smoothness) 83.98 77.97 90.29 61.02 87.86 67.80

Improved KNN (smoothness) 94.66 92.37 96.60 81.36 90.78 87.29

KNN (skewness) 83.98 77.12 86.41 55.08 83.90 59.32

Improved KNN (skewness) 95.15 88.98 93.69 83.05 91.75 84.95

KNN (uniformity) 85.92 62.71 88.83 61.36 84.47 66.95

Improved KNN (uniformity) 98.54 84.75 96.60 87.29 96.60 84.75

KNN (entropy) 84.95 70.34 87.38 58.44 82.52 63.56

Improved KNN (entropy) 98.06 87.29 99.03 83.90 97.57 86.44

KNN (contrast) 83.98 67.80 89.81 53.39 80.58 66.10

Improved KNN (contrast) 96.60 80.51 98.06 85.59 94.66 89.83

KNN (correlation) 84.47 80.51 85.92 63.56 86.89 64.41

Improved KNN (correlation) 96.12 89.83 96.60 84.75 90.29 84.75

KNN (homogeneity) 87.86 69.49 86.89 59.32 86.41 60.17

Improved KNN (homogeneity) 98.54 83.05 98.54 85.59 95.63 87.29

SD represents standard deviation; bold font number indicates the best performance in each class.

Table 4: Classi�cation accuracy (%) of di
erent methods tested between normal and abnormal.

Accuracy
Improved KNN KNN

Dual-CT Contourlet Wavelet Dual-CT Contourlet Wavelet

Mean 93.21 91.98 90.12 82.72 75.00 78.40

SD 93.52 93.21 91.67 81.17 75.93 78.70

Smoothness 93.83 91.05 89.51 81.79 79.63 80.56

Skewness 92.90 89.81 88.89 81.48 75.00 75.62

Uniformity 93.52 93.21 92.28 77.47 79.01 78.09

Entropy 94.14 93.52 93.52 79.83 76.85 75.62

Contrast 90.74 93.52 92.90 78.09 76.54 75.31

Correlation 93.83 92.28 88.27 83.02 77.78 78.80

Homogeneity 92.90 93.83 92.59 81.17 76.85 76.85

SD represents standard deviation; bold font number indicates the best performance in each class.

1. In terms of KNN classi�er, Dual-CT-based features
performbetter than contourlet andwavelet in general.
Especially for the abnormal case, the accuracy of
Dual-CT is 15% higher than that of the contourlet and
wavelet on average. For the correlation index, Dual-
CT achieves the accuracy of up to 80.51% in abnormal
cases, whereas the accuracy is 63.56% and 64.41% of
contourlet and wavelet, respectively.

2. In terms of improved KNN, the classi�cation perfor-
mance is improved totally. Especially for the abnor-
mal cases, the accuracy is promoted obviously.

All in all, the classi�cation accuracy of normal is higher
than that of abnormal. Dual-CT domain feature performs the
best of the three multiresolution domains; contourlet-based

feature performs slightly better than wavelet-based feature.
	e improved KNN helps improving the classi�cation per-
formance.

Table 4 shows the classi�cation accuracy of the nine
extracted features based on the KNN and improved KNN
classi�er. It can be concluded that the classi�cation accuracy
is up to 94.14% based on entropy feature using improved
KNN classi�er, and the average of the classi�cation accuracy
is about 93%. 	e best classi�cation performance of KNN
is achieved by the correlation index with the accuracy of
83.02%, and the improved KNN promotes the accuracy to
93.83%.

Figure 11 compares the area underROCcurve ofmultires-
olution feature based on KNN and improved KNN classi�er.
It indicates that the Dual-CT domain feature using improved
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Figure 11: 	e comparison of AUC tested between normal and abnormal.

KNNclassi�er achieves better performance.We can see that a
higher ROCof 0.95 has been obtained on average.	is proves
once again the superiority and robustness of ourmethod over
the others.

4.3.3. Classi	cation between Benign andMalignant. 	ere are
totally 118 abnormal cases, which includes 52 malignant cases
and 66 benign cases. In this section, we classify the two cases
with the proposedmethod.	e classi�cation results are listed
as shown in Table 5.

From Table 5, we can see that the best classi�cation accu-
racy rate is achieved by the Dual-CT feature using improved
KNN classi�er. Using KNN classi�er to distinguish benign
and malignant seems a little weak; it cannot provide reliable
classi�cation accuracy; when using improved KNN classi-
�er, the classi�cation accuracy has increased signi�cantly
with almost 15 percentage points. 	e best performance is
achieved by the standard deviation and contrast in Dual-CT
domain with the accuracy of 100% and 96.15% for the benign
case and malignant case, respectively.

To further con�rm the e
ectiveness of our method,
we calculate the classi�cation accuracy based on the above
simulation results and list in Table 6. 	e higher the values
for classi�cation accuracy, the better the performance of the
method. Table 6 shows that the optimal value is obtained
by improved KNN classi�er with Dual-CT domain feature
(about 6%∼20% improvements). In terms of feature index,

wavelet-based feature performs the worst; contourlet-based
feature performs slightly better; Dual-CT-based feature per-
forms the best. In terms of classi�ers, the improved KNN
obviously promotes the classi�cation accuracy compared
with KNN.

Figure 12 shows theAUC comparison betweenKNN clas-
si�er and improved KNN classi�er based on multiresolution
feature. In most instances, Dual-CT-based feature achieves
better performance than CT and wavelet-based feature. 	e
AUC is 0.95, 0.91, and 0.88 based on improved KNN with
Dual-CT domain feature, contourlet domain feature, and
wavelet domain feature. 	is indicates that the proposed
method can detect benign and malignant lesions with high
probability, and it will help reduce the number of biopsies for
benign lesions.

4.3.4. Compared with State-of-the-Art Methods. In the previ-
ous section, we have demonstrated that the proposed Dual-
CT-based feature with improved KNN classi�er provides
better performance than that using traditional KNNclassi�er.
Here, we compare this proposed method with state-of-the-
art methods reported in the literature, including accuracy
and AUC. Table 7 shows the comparison where the database
and classi�cation technique are listed. It can be seen that
the proposed method obtains better diagnostic performance.
Even compared to [7], it is also comparable. It can be noted
that [7] reaches the higher accuracy, but we choose the
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Table 5: Classi�cation performance (%) using KNN and improved KNN tested between benign and malignant.

Feature
Dual-CT Contourlet Wavelet

Benign Malignant Benign Malignant Benign Malignant

KNN (mean) 84.85 65.38 80.38 76.92 87.88 73.08

Improved KNN (mean) 98.48 82.69 95.45 86.54 93.94 78.85

KNN (SD) 87.88 61.54 77.27 63.46 83.33 65.38

Improved KNN (SD) 100 84.62 89.39 86.54 90.91 78.85

KNN (smoothness) 75.76 63.46 83.33 69.23 87.88 65.38

Improved KNN (smoothness) 96.97 94.23 95.45 80.77 89.39 75.00

KNN (skewness) 81.82 59.62 80.30 75.00 77.27 73.08

Improved KNN (skewness) 93.94 86.54 89.39 82.69 87.88 86.54

KNN (uniformity) 83.33 65.38 78.79 69.23 89.39 61.54

Improved KNN (uniformity) 98.48 90.38 95.45 80.77 92.42 73.08

KNN (entropy) 72.73 61.54 83.33 71.15 89.39 59.62

Improved KNN (entropy) 93.94 86.54 93.94 82.69 96.97 73.68

KNN (contrast) 80.30 69.23 84.85 63.46 78.79 63.46

Improved KNN (contrast) 95.45 96.15 92.42 80.77 92.42 78.85

KNN (correlation) 77.27 75.00 83.33 73.08 81.82 78.85

Improved KNN (correlation) 93.94 88.46 95.45 75.00 89.39 82.69

KNN (homogeneity) 74.24 78.85 80.30 63.46 81.82 61.54

Improved KNN (homogeneity) 95.45 94.23 92.42 82.69 87.88 73.08

SD represents standard deviation; bold font number indicates the best performance in each class.

Table 6: Classi�cation accuracy (%) of di
erent methods tested between benign and malignant.

Accuracy
Improved KNN KNN

Dual-CT Contourlet Wavelet Dual-CT Contourlet Wavelet

Mean 91.53 91.53 87.29 76.27 78.81 81.36

SD 93.22 88.14 85.59 76.27 71.19 75.42

Smoothness 95.76 88.98 83.05 70.34 77.12 77.97

Skewness 90.68 86.44 87.29 72.03 77.97 75.42

Uniformity 94.92 88.98 83.90 75.42 74.58 77.12

Entropy 90.68 88.98 86.44 67.80 77.97 76.27

Contrast 95.76 87.29 86.44 75.42 75.42 72.03

Correlation 91.53 86.44 86.44 76.27 78.81 80.51

Homogeneity 94.92 88.14 81.36 76.27 72.88 72.88

SD represents standard deviation; bold font number indicates the best performance in each class.

Table 7: Classi�cation performance of di
erent methods.

Reference/year Database Classi�cation technique Accuracy (%) AUC (Az)

Proposed method MIAS Improved KNN classi�er
N versus A 94.14 0.9582

B versus M 95.76 0.9717

Ref. [16] 2015
DDSM
MIAS

Random forest classi�er B versus M 91.73 0.9467

Ref. [5] 2014 MIAS SVM classi�er N versus A 85.48 —

Ref. [34] 2013 MIAS OWBPE classi�er. B versus M 89.28 0.9280

Ref. [7] 2012 MIAS SVM classi�er N versus A 95.98 —

Ref. [6] 2011 MIAS MLP classi�er B versus M 93.60 —

Ref. [35] 2010 DDSM MLP classi�er B versus M 88.75 —

Ref. [33] 2008 MIAS S2SP B versus M — 0.95

N versus A represents normal versus abnormal; B versus M represents benign versus malignant.
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Figure 12: 	e comparison of AUC tested between benign and malignant.

point where the classi�cation accuracy rate is higher and the
number of features is fewer.

4.4. Discussions. 	e obtained promising results suggest the
following:

1. 	e Dual-CT-based features perform better than
contourlet-based features and wavelet-based features.
It is consistent with the expected e
ect since the
Dual-CT simultaneously possesses approximate shi�
invariance and higher directional selectivity than
contourlet andwavelet. Dual-CT is able to capture the
anisotropic structures and multidimensional features
of mammogram. Wavelet lacks shi� invariance and
has poor directional selectivity; contourlet performs
a little better than wavelet because of its better
directional selectivity.

2. 	e improved KNN classi�er performs better than
the traditional KNN classi�er in terms of classi�ca-
tion performance. 	is should be attributed to the
improved discrimination process. In the improved
KNN,we take the number of samples in each category
into consideration. For the MIAS database, there
are 206 normal cases and 118 abnormal cases; the
traditional KNNdirectly distinguishes the test sample
to either of the two classes according to the � nearest
neighbor samples. 	e number of normal cases is

about double that of the abnormal cases, it will lead
to normal cases that are more likely to be selected
into � nearest neighbor samples than abnormal cases
and bring about misclassi�cation. 	e introduction
of credibility solves this problem and improves the
classi�cation performance.

3. 	e normal and benign cases achieve better perfor-
mance than that of abnormal and malignant cases.
It may be because the normal cases have relatively
homogeneous texture; in contrast, the abnormal cases
include many conditions such as microcalci�cation,
circumscribed mass, speculated mass, architectural
distortion, and other cases, as well as the same reason
in benign and malignant cases.

5. Conclusion

In this work, a new method of digital mammogram analysis
and classi�cation is proposed. Firstly, the ROI is cropped
from MIAS database manually according to the gold stan-
dard. Secondly, Dual-CT, contourlet, and wavelet transform
are used to decompose each cropped ROI separately. 	e
directional subbands from each decomposition level are used
to extract feature.	en improved KNN and traditional KNN
are employed to distinguish normal and abnormal andmalig-
nant and benign. We analyze the classi�cation accuracy and
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AUC of eachmethod quantitatively.	e experimental results
suggest that the Dual-CT-based features obtain a better per-
formance as compared to contourlet and wavelet transform,
and improved KNN gives a more outstanding performance
than traditional KNN. For instance, the accuracy of abnormal
based on entropy feature reaches 80.51%, while the accuracy
achieved by contourlet and wavelet transform is 63.56%
and 64.41%, respectively; for classi�cation of benign and
malignant, the Dual-CT-based feature using improved KNN
is 95.76%, which is 20 percent higher than that of traditional
KNN. Moreover, the proposed method is comparable with
state-of-the-art methods reported in recent literatures in
terms of accuracy and AUC.

	e Dual-CT-based features are �rstly used to analyze
mammograms, and improvedKNN is used to help improving
diagnosis of breast cancer. 	ese positive results clearly
demonstrate the great potential of the Dual-CT-based feature
and improved KNN in analysis and classi�cation of biomed-
ical data. In the future, we will try to extend the proposed
method with appropriate changes for other medical images.
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