
XX

Classification of Resilience Techniques Against Functional Errors at
Higher Abstraction Layers of Digital Systems

GEORGIA PSYCHOU1 , DIMITRIOS RODOPOULOS2, MOHAMED M. SABRY3,
TOBIAS GEMMEKE4, DAVID ATIENZA3, TOBIAS G. NOLL1, FRANCKY CATTHOOR5,
1EECS, RWTH Aachen, 2IMEC, 3ESL, EPFL, 4IDS, RWTH Aachen; formerly Holst Center/IMEC,
5IMEC & KU Leuven

Nano-scale technology nodes bring reliability concerns back to the center stage of digital system design. A
systematic classification of approaches that increase system resilience in presence of functional hardware-
induced errors is presented, dealing with higher system abstractions: i.e. the (micro-) architecture, the map-
ping and platform software. The field is surveyed in a systematic way based on non-overlapping categories,
which add insight into the ongoing work by exposing similarities and differences. Hardware and software
solutions are discussed in a similar fashion, so that interrelationships become apparent. The presented cat-
egories are illustrated by representative literature examples to illustrate their properties. Moreover, it is
demonstrated how hybrid schemes can be decomposed into their primitive components.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
fault tolerance; reliability, availability, and serviceability; B.8.1 [Hardware]: Performance and Reliability—
reliability, testing, and fault tolerance

General Terms: Reliability, Design

Additional Key Words and Phrases: Resilience, Reliability, Mitigation, Fault Tolerance

ACM Reference Format:

Psychou G., Rodopoulos D., Sabry M. M., Gemmeke T., Atienza D., Noll T. G. and Catthoor F. 2017. Classifi-
cation of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital Systems.
ACM Comput. Surv. V, N, Article XX (January XXXX), 38 pages.
❉❖■✿ http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The early concerns of John von Neumann [Von Neumann 1956] regarding building
reliable computing entities out of unreliable components were largely forgotten with
the gradual replacement of vacuum tubes by transistors and the following high-scale
transistor integration [Palem and Lingamneni 2012]. Now, after some decades, relia-
bility has come back to the forefront in the context of modern CMOS technology. The

This research has received funding from the EU ARTEMIS Joint Undertaking under grant agreement no.
621429 (project EMC2) and from the Dutch national programmes/funding authorities. D. Rodopoulos and
F. Catthoor acknowledge the support of the EU FP7-612069 Harpa project. M. M. Sabry and D. Atienza
were partially supported by the BodyPoweredSenSE (grant no. 20NA21 143069) RTD project, evaluated by
the Swiss NSF (SNSF) and funded by Nano-Tera.ch with Swiss Confederation financing, as well as by the
E4Bio (no. 200021 159853) project of the Swiss NSF.
1 G. Psychou, T. G. Noll, EECS, RWTH Aachen University, Schinkelstr. 2, D-52062, Aachen, Germany
2,5 D. Rodopoulos, F. Catthoor, IMEC, Kapeldreef 75, 3001 Leuven, Belgium
3 M. M. Sabry, D. Atienza, EPFL-STI- IEL-ESL ELG 130, Station 11, 1015 Lausanne, Switzerland
4 T. Gemmeke, IDS, RWTH Aachen University, Mies-v. d. Rohe-Str. 15, D-52074, Aachen, Germany
Contact email: psychou@eecs.rwth-aachen.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© XXXX ACM. 0360-0300/XXXX/01-ARTXX $15.00
❉❖■✿ http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:2 Psychou et al.

current reliability concerns originate from mechanisms, that manifest both during the
manufacturing process and during the system’s operational lifetime. Inherent time-
zero and time-dependent device variability, noise (e.g. supply voltage fluctuations) and
particle strikes are some of the most prevalent causes of such concerns [Borkar 2005],
[McPherson 2006], [Kuhn et al. 2011], [Aitken et al. 2013]. The anomalous physical
conditions that are created from those effects, are called faults. Depending on various
conditions, faults can manifest as bit-level corruptions in the internal state or at the
outputs of a digital system. The term functional errors is used to capture this class of
errors, with the worst case manifestation toward the end user being a complete failure
on the expected system service.

The manifested errors can be temporary or permanent [Bondavalli et al. 2000],
[Borkar 2005]. Temporary errors include transient and intermittent errors. Transient
errors are non-deterministic (concerning time and location), e.g. as a result of a fault
due to a particle strike. Intermittent errors occur repeatedly but non-deterministically
in time at the same location and last for one cycle or even for a long (but finite) period of
time. Main causes for intermittent errors are design weaknesses, aging and wear-out,
like Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) etc. In contrast,
permanent errors after their first occurrence persist forever. Causes for permanent
errors are fabrication defects and aging.

The current work presents a classification scheme for organizing the research do-
main on mitigation of functional errors at the higher abstraction layers that manifest
themselves during the operational lifetime, and discusses representative work for each
category. Given the multitude of reliability issues in modern digital systems, it is vital
to set the boundaries of the current survey: This survey discusses resilience schemes
at the architectural/microarchitectural layer and platform software, which have in-
creased in diversity during the last decades, following the evolution of computer archi-
tecture, parallel processing, software stack and general system design. Techniques at
application, circuit and device layers, can potentially act complementary to the tech-
niques presented here, but are not part of the current scope. Reliability-related errors
that occur due to hardware-design errors, insufficiently specified systems or malicious
attacks [Avizienis et al. 2004] or erroneous software interaction (i.e. manifestation of
software bugs due to software of reduced quality [Lochmann and Goeb 2011]) are be-
yond the current scope. Techniques to mitigate permanent errors that have been de-
tected during testing in order to improve yield or lifetime are not included. Techniques
to tackle permanent errors due to device and wire wear-out are incorporated though.
The main contributions of this work are:
(i) An integrated overview of the domain of functional reliability techniques (at the

higher system level stack) is presented, using a systematic, hierarchical top-down
splitting into sub-classes.

(ii) Multiple representative prior and state-of-the-art publications are mapped to these
categories to illustrate the concepts involved.

(iii) Hardware and software solutions are discussed using a similar reasoning, to allow
interrelations to become more visible.

(iv) The complementary nature of the splits allows hybrid schemes to be effectively
decomposed and better understood. That is especially important in the era of
growing cross-layer resilience design.

The current paper is organized as follows: Section 2 presents terminology regarding
reliable system design, the abstraction layers that are addressed in this work and
information on the rationale of the proposed classification. The classification along
with the presentation of published literature begins in Section 3 for techniques that
operate at the (micro-) architectural layers of the system and continues in Section 4

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:3

with techniques at the mapping and software part of the platform. Section 5 illustrates
ways of using the proposed framework and Section 6 discusses observations and trends
in the domain. Finally, related work is presented in Section 7 and Section 8 concludes
the paper. Moreover, from this point on, the symbol s will be used to refer the reader
to the supplementary material (see ACMCSUR website) for additional information.

2. CONTEXT AND USEFUL TERMINOLOGY

2.1. Resilient Digital System Design

This survey presents an organization of techniques that can be used to make a digi-
tal system more reliable at functional level. Reliability is defined as the probability
that over a specific period the system will satisfy its specification, i.e. the total set of
requirements to be satisfied by the system. Functional reliability is defined as the
probability that over a specific period of time the system will fulfill its functionality,
i.e. the set of functions that the system should perform [IEEE_Std 1990]. Functional
reliability is related with correcting binary digits as opposed to parametric reliability
that deals with aspects of variations in operation margins [Rodopoulos et al. 2015].
Functionality is one of the major elements of the specification set. Others may be min-
imum performance (e.g. throughput [ops/s], computational power [MIPS]), maximum
costs (e.g. silicon area [mm2], power [W], energy [J/op], latency [s/op]). In the follow-
ing, the term reliability will be used to denote the functional reliability. The term re-
silience describes the ability of a system to defer or avoid (functional) system failures
in the presence of errors. When a system becomes more resilient, its reliability is in-
creased. The terms reliable and resilient (system design) will be used interchangeably
in this paper s.

2.2. Computing Terminology

2.2.1. Terminology on Abstraction Layers.

This survey includes techniques implemented at the microarchitecture and architec-
ture layers, as well as at the mapping & software (SW) of the system, as shown in
Figure 1. The device, circuit and application layers are not considered. In this survey,
the term platform denotes a system composed of architectural and microarchitectural
components together with the software required to run applications. When the system
is not SW-programmable, like some small embedded systems are, the term platform
denotes only the hardware part.

Platform HW. Microarchitecture describes how the HW constituent parts are con-
nected and inter-operate to implement the operations that the HW supports. It in-
cludes the memory system, the memory interconnect and the internals of processors
[Hennessy and Patterson 2011]. This applies both to very flexible SW-programmable
processors, where an instruction-set is present to control the operation sequence,
and to dedicated HW processing components. Dedicated HW processors feature min-
imum to limited flexibility. Both SW-programmable and dedicated components can
be mapped on highly reconfigurable fabrics, like field-programmable gate arrays (FP-
GAs). The primary difference compared with the SW-programmable processors is that
not only the control flow but also the data flow can be substantially changed/recon-
figured. The microarchitecture together with the Instruction Set Architecture (ISA)
constitute the computer architecture (although the term has been recently used to
include also other aspects of the design [Hennessy and Patterson 2011]).

In general, the term HW module denotes a subset of the digital system’s HW, the
internals of which cannot be observed (or it is chosen that they are not observed), cor-
respondingly to the term black box [Rodopoulos et al. 2015]. To define a HW module,
its functionality and its interface with the external world must be described. At the

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:4 Psychou et al.

microarchitectural and architectural layer, examples of HW modules are a multipro-
cessor system, a single core, a functional unit, the row of a memory array, a pipeline
stage, a register (without exposing the internal circuit implementation though). In the
context of this survey, the term platform HW is an umbrella term, that encompasses
the microarchitecture and architecture layers of a system.

Q

Q
SET

CLR

D

L

application

layer

circuit/

device

platform

hardware

mapping&

platform

software

Scope

CMP

Register

File +

compiler/

synthesis

run-time

management job 1 job 2 time

+
*

+

void read_image(char*

file, int image[N][M])

{... ...}

Encoded

video frames

Fig. 1: Scope of the current paper

Mapping. During mapping, the
algorithmic level specification is
mapped into a pre-selected datap-
ath and control path that imple-
ments the required behaviour s.
Nowadays, the term is also used to
denote how an application or an ap-
plication set is split, distributed and
ordered in order to run in a multi-
processor design.

Platform SW. In order to enable
software-hardware interaction, an
instruction set is selected initially.
The instruction set defines the
hardware-software interface [Hen-
nessy and Patterson 2011]. Many
application instances sharing spe-
cific characteristics (a “domain”) can
be mapped on the same instruction
set. Each of the instructions in that
set can then be implemented in the
hardware in different ways.

Platform SW includes several
sublayers that interpret or trans-
late high level operations (derived
from the algorithmic description)
into “primitive” instructions, which
correspond to the instruction set and are ready to be executed by the hardware. Exam-
ples include: system libraries, operating systems and run-time managers s.

2.2.2. Additional Terminology.

A Control Data Flow Graph (CDFG) is a graph representing all possible paths
the flow of data can follow during execution. An application corresponds to a sepa-
rate CDFG in the system. A process is an instantiation of a program, or a segment
of code, under execution consisting of “own” memory space, containing an image of
the executable code and data, resource descriptions, security attributes, and state in-
formation (register content, physical memory addressing etc.), i.e. all the information
necessary to execute the program s. Threads are sequences of instructions, or a flow
of control, in a program which can be executed concurrently. All threads in a given
process share the private address space of that process s. The term task is used quite
ambiguously in the literature: On the one hand, the terms task and process are used
synonymously. On the other hand, the terms process and thread are considered as
“mechanic” while the term task is considered as being more conceptual and used in
the context of scheduling as a set of program instructions loaded in memory for ex-
ecution. The term task in this paper is used as an umbrella term, which can denote

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:5

complete applications, sub-parts of the CDFG like processing kernels (e.g. for-loops) or
even single computations (e.g. instructions) depending on the context.

2.3. Rationale of the classification and its presentation

The proposed classification tree is organized using a top-down splitting of the
types of techniques that increase the system resilience. It is accompanied by a
mapping of related work (see Figure 2). The top-down splitting allows to reach
a comprehensive list of types of techniques, which can always be expanded fur-
ther on demand. Splits are created based on properties of the techniques, which
allow them to be grouped together. More specifically, the properties in the pro-
posed framework regard: (1) the effect that the techniques have on the execution
and (2) the changes that are required on the system design for a technique to
be implemented. The properties will be elaborated as the tree is being presented.

A

A1.b

BOTTOM-UP

MAPPING

A1

A1.a

A2

A2.b

WORK

#1
WORK

#2

WORK

#3
WORK

#4

WORK

#5

TOP-DOWN

CLASSIFICATION Subsection x.2.Subsection x.1.

A2.a

Fig. 2: Top down splitting to create the classification
tree and mapping of the related work

Other organizations are also
possible, like organizing
the splits around the sys-
tem functionality, hardware
components, types of errors
(transient, intermittent, per-
manent), types of resilience
metrics or the application do-
mains. The aforementioned
organization is chosen in order
to stress the reusability of
techniques but also to enable
the better understanding of
hybrid combinations. This is
especially supported through
the complementarity of the cat-
egories. It is important to note
that many actual approaches

that increase resilience typically represent hybrids and do not fall strictly into only
one of the categories.

For the presentation of the classification tree, the following structure is followed for
each of the abstraction layers (platform hardware, mapping and platform software).
First, the main classes are presented for the different techniques. Within each class,
subcategories are presented which are illustrated with the help of a figure. Groups of
nodes are chosen to be discussed together. For the visualization of the groups, bubbles
with different colors are used, along with the subsection number and a small geomet-
rical shape (see Figure 2). The colors and the geometrical shapes are used to enable a
more explicit link with the corresponding subsections in the text. Especially the geo-
metrical shapes are used for the facilitation of the reader in the black-white printed
version. The order of the leaves, the colors and the geometrical shapes do not indicate
the significance or the maturity of the techniques. For each of the classes, pros and cons
are discussed, based on general properties bound to each class. Among the aspects con-
sidered are: area and power overhead, performance degradation (in terms of additional
execution cycles), mitigation latency (delay until the scheme fulfils the intended miti-
gation function), error protection, general applicability, storage overhead. An overview
of those for the different classes can be found in Tables II-VII in the Appendix (see
supplementary material). In parallel, representative related work is discussed to fur-
ther illustrate the subcategory concept and demonstrate the usefulness of the proposed
classification scheme for classifying existing (and future) literature s. Moreover, in Ta-

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:6 Psychou et al.

bles II-VII in the Appendix, a crude indication of the amount of literature for each of
the classes is performed.

Finally, the notion of non-determinism is introduced and will be discussed in the
paper whenever appropriate. A common technique to mask the effect of errors is by
employing replication. During replication, an algorithmic function is executed again,
often by using extra hardware or software. However, deterministic execution is re-
quired for replicas to work. Determinism ensures that different runs of the same func-
tion under the same input will produce identical outcomes. In practice, deterministic
execution is challenged by a multitude of non-deterministic events [Poledna 1996],
[Slember and Narasimhan 2006], [Poledna 2007]. Examples include non-predictable
user or sensor inputs, timers, random numbers, system calls and interrupts s.

3. PLATFORM HARDWARE

To make digital systems more robust, functional capabilities need to be provided that
would be unnecessary in a fault-free environment. This section focuses on techniques
that modify the hardware capabilities for reliability purposes. The goal is to provide
non-overlapping categories that cover the broad range of error mitigation and re-
silience techniques. The complete classification scheme is shown in Figure 12 in Sub-
section 3.5. A high level split for the proposed classification tree is shown in Figure 3.
Techniques are first classified into techniques that continue the execution forward

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

Subsection 3.1 Subsection 3.2 Subsection 3.3 Subsection 3.4

Fig. 3: Basic classification1 for techniques at the platform HW

(forward) and those that move the execution to an earlier point (backward). Both
categories are further split into techniques that require the addition of HW modules
in the platform at design time (additional HW modules provision) and techniques
that keep the amount of modules the same (HW modules amount fixed). In the lat-
ter case, only a HW or SW controller may be needed. These four classes are discussed
in the following subsections, as shown in Figure 3. Main criteria for further catego-
rization include whether modifications are required in: existing functionalities, exist-
ing design implementations, resource allocation, operating conditions, the interaction
with neighbouring modules, storage overhead. Leaves of the tree have an accompany-
ing simple ordinal number for identification. The numbers (together with the leaves)
are collectively shown in Figure 12.

3.1. Forward execution - Additional HW modules provision

This subsection discusses techniques that increase the resilience through adding
HW modules on the platform. The added modules may have either the same (same

1The boxes in the classification figures include hyperlinks to the text. By clicking on each of the boxes, the
reader will be transferred to the corresponding section in the text.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:7

functionality) or different (different functionality) functionality. The structure
of this subtree along with the corresponding subsections is illustrated in Figure 4.

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

Subsection 3.1.1 ■ Subsection 3.1.2 ▲

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

...

Fig. 4: Classification for forward techniques
that require additional HW modules

3.1.1. Same functionality ■ . This

group includes techniques that
add hardware modules of the same
functionality as the one(s) that
should be protected. Some of the
most known and well-established
fault tolerant techniques are found
in this category. The provision of
additional HW modules can be
further categorized into modules
that are used in parallel execution
mode and modules used as spares.
Parallel execution denotes that
the modules are all active and pro-
cessing operations (or hold/transfer
data and instructions for process-
ing). The term spares denotes that
the added modules are not all executing in parallel with the default ones. They will
only start executing upon certain conditions.

Parallel execution 1 2. In general, parallel execution implies that the modules
are all actively used for the intended functionality, or at least potentially when the
workload is very high s. The term lockstep denotes a mode of operation, according
to which, HW modules execute the same operations regarding the same program at
the same time. Generally, lockstep processing can be “tight” or “loose” depending on
whether the outputs of the modules are synchronized at the operation level or only se-
lectively, for example at the I/O level [Aggarwal 2008]. Lockstep processing is used to
make a system more robust either by masking an error, i.e. by allowing the correct out-
put to be produced independent of which module caused the error, or by using explicit
knowledge of the faulty module.

In the first case, multiple modules (N modules in the general case) with the same
specification as the primary module are provided and majority voting is applied at
their output. No error detection is required as the error is masked through the vot-
ing. This results in a well-known technique called N-modular redundancy or NMR.
Typically N is an odd number to avoid uncertain output votes. Most often, the scheme
has been employed in the form of triple modular redundancy (TMR) so that a correct
output is produced with a two out of three vote.

Lockstep processing can be combined also with system awareness of the faulty
module. In this case, a separate detection scheme is employed for the identification
of the faulty module. Majority voting is not required, as after the detection, the faulty
module is considered not valid any more. Only the output of the other module(s) is
considered valid. So in this case, only two modules operating in lockstep suffice for
producing a correct output.3 One technique commonly found in literature, belonging to

2The circled numbers refer to the corresponding leaves in the overall classification tree (in this case Fig-
ure 12). By clicking on these numbers the reader will be transferred to this figure.
3However, detection of the faulty module can also be employed in NMR schemes [Siewiorek and Swarz
1982]. Even though the output would be correct also without it, this knowledge can be used in order to have
faulty module replaced.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:8 Psychou et al.

this category, is the so-called pair-and-spare4 technique. In pair-and-spare, two pairs
of replicas operate in lockstep, as illustrated in Figure 5. Within each pair, error detec-
tion is performed through a comparison circuit. In presence of an error, the faulty pair
declares itself as faulty. Then, the output of the other pair is selected as the valid one s.

Core A Core A Core B Core B

= =

=
Valid Output

x

Invalid Output

Fig. 5: Lockstep execution in a pair-and-spare
structure

Replica determinism is not an
issue here as the processors per-
form their operations simultane-
ously and they operate on iden-
tical inputs [Poledna 1996]. Pros
in this class include the high er-
ror protection, the lack of latency
and performance overhead and the
general applicability. Cons include
the very high area (e.g. 200% for
TMR) and power overhead. Liter-
ature examples on the aforemen-
tioned concepts include: [Dickinson
et al. 1964], [Jewett 1991], [May
et al. 2008] on TMR, Stratus com-
puters and the VAXft 3000 minicom-
puter [Siewiorek 1990] on pair and

spare s.
Spares 2 . In this category, the added modules, which deliver the same functionality

as the original ones, act as spares. The role of spare modules can be potentially dual:
The first use of spares is to remain in standby mode and take over execution when
the primary module fails s. The second use of spares is to take over execution (or
be included in the system operation) for part of the time, without the primary module
experiencing some failure. That means that the execution can potentially alter-
nate between the spare and the primary module. Several reasons can motivate
the undertaking of such a scheme. One possibility is related to the benefits coming
from sharing the workload (in time). For example, it is known [He et al. 2011] that
the device stress, which contributes to the system aging, is increased when there is
a full workload operation compared to when there is alteration of active and inactive
periods. Through alternating the execution between a primary and a spare the lifetime
of the system could be expanded. Another possibility is that the modules (original and
spare) have partially different internal implementation, which gives them character-
istics that fit better for certain conditions. In this case, the execution may alternate
depending on the changing application requirements, for example, due to changes in
the input workload or in environmental parameters (e.g. noise or temperature) s. Pros
include the high error protection and lack of performance overhead. Cons include the
area overhead. The power overhead can be avoided depending on whether the spares
are powered or not and this is a trade-off with latency (see supplementary material).
The approach is generally applicable, except if spares are tailored to fit changing ap-
plication requirements. Literature examples on the aforementioned concepts include:
[Chean and Fortes 1990], [Srinivasan et al. 2005] on spares with failing modules, [Shin
et al. 2008], [Narayanan et al. 2010] on spares with working modules s.

3.1.2. Different functionality ▲ . This group includes techniques that add hardware

modules of different functionality than the one(s) that should be protected or become

4The part “spare” of the term is misleading as in fact all the modules involved operate in lockstep.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:9

Syndrome

0 1 0

Codeword

0 0 01 1 1 0 1 0 0

x indicates no error

indicates error

at bit position 2

1 1 1 0 1 1 0

√

1 1 1 0 1 0 0

corresponding

bit is negated

correction

is triggered

Fig. 6: Read out (7,4) Hamming codeword and syndrome generation for zero and one
error with correction

more robust. Again, a distinction can be made between modules that are in parallel
execution mode and modules that act as spares.

Parallel execution 3 . Here, the added module performs different functions than
the original module. Several possibilities exist: A category includes hybrid schemes,
according to which, the added modules that are designed to be more robust (by
employing for example circuit-level techniques). The added module can perform only
a subset of the operations of the original module for verification purposes, i.e. it is a
module with reduced functionality. For example, the most crucial operations or the
ones that cannot be performed (repeated) by any other of the already existing modules
on the platform, maybe be performed by the added module. Since it is designed to be
more robust, its output is assumed as the correct one. Another possibility is that the
added module performs a super-set of the operations of the original module, namely it
is a module of increased functionality. That means that it performs the operations of
the original module plus additional operations, which are normally performed by other
modules on the platform. That would be the case when the added module would act
like a supervisor for several modules. An additional possibility is that the added mod-
ule performs different types of functions. For example, it may perform some error
correction. Given that the HW module granularity can go down to a register, the error
correction codes (ECC) are placed in this category. They are typically implemented in
memory structures, but also in buses, state machines and arithmetic units. Figure 6
shows an example of a single bit correction with the Hamming code [Hamming 1950].
Syndrome bits are created during the read operation. If a single error occurs, the syn-
drome identifies the erroneous bit. Pros include the flexibility to trade-off area, power,
performance overhead and latency with the error protection by selecting a fitting func-
tionality to be added. Cons include that this class generally requires system-specific
solutions (although for ECC reusable concepts are typically applied). Literature exam-
ples on the aforementioned concepts include: the Algorithmic Noise Tolerance (ANT)
[Hegde and Shanbhag 2001] on modules with reduced functionality, [Hamming 1950],
[Dutt et al. 2014] on ECC s.

Spares 4 . As already discussed, spare modules can be present in order to take over
execution in case the primary module fails or to take over execution for part of the time,
even if no failure is present. A reduced functionality spare module is able to continue
execution at a reduced power and area overhead but also at a degraded performance
(since only part of the functionality is available). An increased functionality spare
module is able to continue execution in an environment that the primary module has
been shown to be not good enough. By using its additional functionality, it keeps or
improves the reliability target (at extra area and power cost) s. Similarly to the earlier

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:10 Psychou et al.

category, pros include the flexibility to trade-off area, power, latency and performance
with error protection by selecting the appropriate solution. Cons, generally in this
class, include that system-specific solutions are required. In the literature, techniques
that employ spares with reduced functionality have been identified. Examples can be
found in [Tomayko 1986] s.

3.2. Forward execution - HW modules amount fixed

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

EXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTING

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

OPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATION

MODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODE

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

INTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNAL

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

REUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSE

I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O
CONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATION

MODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATION

CONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITH

NEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

ISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATION

CAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITY

OPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATING

CONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONS

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

RESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCE

ALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATION

ALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATE

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

Subsection 3.2.1 ■

Subsection 3.2.2 ▲

Subsection 3.2.3 ●

Subsection 3.2.4 ◆

Subsection 3.2.5 ✖

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

...

Fig. 7: Classification for forward techniques that
keep the amount of HW modules fixed

This subsection discusses tech-
niques that use only the same
amount of modules on the plat-
form as the original system (be-
fore reliability related counter-
measures are added). Hardware
modifications (like adding inter-
connects) may be required but
no additional HW module is
added. A HW or SW controller
is often needed to coordinate
the actions. These techniques
are split into techniques that
reuse the existing HW modules
(existing HW modules) and
those that replace one (or more)
module with an alternate in or-
der to make the system more
robust (alternate HW mod-
ules). The first category is fur-
ther split into techniques that
either change the way of oper-
ation of the HW modules (HW
modules operation mode) or
leave the operation unaltered
and change the way the work-
load is mapped on these HW modules (resource allocation). Changing the opera-
tion of the HW modules means that the changes have as focus either the functional-
ity (functionality control) or the operating conditions (operating conditions con-
trol). Functionality-oriented modifications either focus on the internals of a HW mod-
ule so that the intended module usage is exploited for reliability purposes (internal
functionality reuse) or on the input-output behavior of the module and how it inter-
acts with the other modules (I/O configuration modification). Figure 7 shows the
proposed subtree and its division into subsections.

3.2.1. Internal functionality reuse 5 ■ . Techniques belonging to this category are very

system/application dependent. For example, communication or signal processing
systems typically have blocks that perform channel or source coding. Channel decoders
mitigate errors introduced by the channel and can be potentially reused in order to
mitigate hardware-induced errors. Pros include the lowest possible area and power
overhead due to the reuse. Cons include the lack of general applicability, latency, pos-
sible performance costs and the limited error protection. Literature examples that
reuse the channel decoder include: [Khajeh et al. 2012], [Brehm et al. 2012] s.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:11

3.2.2. I/O configuration modification ▲ . This group of techniques re-organizes the inter-

action of a module with the other modules. This can potentially mean a different way of
connecting or communicating (connectivity with neighbouring HW modules) or
even an isolation action (isolation capability), during which, an erroneous module is
bypassed from the system.

Connectivity with neighbouring HW modules 6 . Inter-module techniques can
exploit inherent redundancy typically present in regularly structured systems, like
arrays of processing elements (PEs), to increase the masking and correction capability
of the system. Nowadays, high-performance is achieved primarily by chip multiproces-
sors (CMPs). CMPs are composed of multiple cores located in a single die or on multiple
dies in a single package. The types of cores may vary: from simple, in-order processors
up to more complex, superscalar ones. They enable high performance through parallel
computation. The CMPs are used here as driver, but the ideas can be applied to other
regularly structured systems, where reuse is possible. The availability of the cores can
be exploited to create masking capability by, for example, running a process in three
cores in parallel in a TMR structure. Or the hardware itself can be built as recon-
figurable, so that, the modules can be connected in a different way depending on
run-time conditions. Typically, this last possibility is found in the form of a hybrid; for
example, it is often found together with spare modules. Pros include the low area and
power overhead (due to the reuse of existing modules but with additional cross-links),
the general applicability (for systems with inherent redundancy), the potentially high
error protection. Cons include the latency and blockage of resources for reliability that
could be used to improve performance. A literature example that employs a modified
connection network in CMPs is found in [Aggarwal et al. 2007] s.

Isolation capability 7 . To prevent erroneous results from corrupting the system
output, faulty components can be bypassed (through a switch) or powered off, in
case such an isolation capability has been added in the system. The system continues
operating but at a degraded performance. These schemes exploit inherent redundancy
in regularly structured systems such as arrays of PEs, memories and interconnection
networks or even processors.5 Pros include low area and power overhead, general
applicability (for systems with inherent redundancy). Cons include latency, degraded
performance, limited error protection. Literature examples of the concept include:
[Srinivasan et al. 2005], [Bower et al. 2005] on structures within processors, [Gupta
et al. 2008], [Romanescu and Sorin 2008] on pipeline stages in CMPs s.

3.2.3. Operating conditions control 8 ● . Operating conditions represent the interfer-

ence caused to a digital system by its environment [Rodopoulos et al. 2015]. This covers
a broad range of effects like radiation, temperature, humidity but also electrical stim-
uli. This category includes all actions that influence the operating conditions of the
digital system, beyond changing the system’s functionality.

Typically, operating parameters, such as the supply voltage and the clock
frequency, are controlled to manage the performance, power and reliability trade-
offs. Scaling the voltage beyond a critical limit can lead to excessive error rates. On
the other hand, using conservative guard bands for the voltage setting can lead to sig-
nificant power overhead. Pros include lack of area overhead, general applicability (as-
suming that knobs are present in the system for power management). Cons include
the latency and limited error protection. Power and/or performance will typically be

5Quite often, this isolation functionality is combined with techniques presented in Additional HW modules
provision/same functionality or the previous category so that a different error-free module is used instead.
In these cases, these are hybrid combinations. Note that techniques that employ additional modules that
run in parallel or act as spares do not necessarily isolate the faulty component.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:12 Psychou et al.

affected depending on the knob being used. Here, works that implement control algo-
rithms that change operational parameters are classified, like the examples of [Karl
et al. 2006], [Rosing et al. 2007] s.

3.2.4. Resource allocation 9 ◆ . Here, the way the hardware resources are assigned

is modified without changing the way of operation of the HW modules. Simply the
task is migrated or swapped with another task. Pros include the limited area,
power, performance overhead due to the modules reuse (with the exception of adding
specialized interconnects) and the rather general applicability (for systems with inher-
ent redundancy). Cons include latency during migration and limited error protection.
Literature examples on hardware-based task migration include: [Powell et al. 2009],
[Venkataraman et al. 2015] s.

3.2.5. Alternate HW modules 10 ✖ . This category includes schemes that replace an ex-

isting HW module with another more robust implementation for the system con-
text (without employing circuit or lower layer techniques). Pros include the limited
area and power, performance overhead as the new implementation will typically sat-
isfy the system requirements, while minimizing additional cost. Cons include that
system-specific solutions are required (if existing at all) and typically only limited er-
ror protection will be possible. Literature examples in this category include: [Hussien
et al. 2010], [Hussien et al. 2011] on alternate channel decoders s.

3.3. Backward execution - Additional HW modules provision

This subsection discusses techniques that increase the resilience of systems
through rollback to an earlier point of execution and repetition of the execution.

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

Subsection 3.3.1 ■ Subsection 3.3.2 ▲

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

...

Fig. 8: Classification for backward
techniques that require the provi-
sion of additional HW modules

Just like in the forward execution category, the
added modules can have either the same (same
functionality) or different (different func-
tionality) functionality. The corresponding cat-
egories and subsections are shown in Figure 8.6

3.3.1. Same functionality 11 ■ . This category

discusses techniques that provide additional HW
modules with the same functionality as the orig-
inal ones. The recovery is achieved by repeating
part (or the whole) of the execution, when
an error is detected. In this category, the second
module plays an active role in the recovery. For
example, it can activate the execution repetition
or provide necessary information to the first
module so that the execution is repeated suc-
cessfully. When the second module executes the

same instruction sequence, non-deterministic execution is not a concern, as long
as identical inputs can be provided to both modules. Pros include the potentially
high error protection (at the expense then of performance and latency). Moreover, the

6Note that lower level splits like a split between modules that are in parallel execution mode and modules
that act as spares are also possible (like in the forward category). Spare modules would, for example,
not only take over the execution after the primary module has failed but also repeat the failed execution.
However, hardware-based techniques that retry the execution using spare modules have been less explored
in the literature. So, this split is left as implied for this tree.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:13

technique is generally applicable. Cons include the high area and power overhead. A
literature example in this category is [Pflanz and Vierhaus 2001] s.

3.3.2. Different functionality 12 ▲ . Instead of adding modules with the same function-

ality, modules with different functionality can be added; the added modules play an
active role in the recovery as in the previous category. The added modules can be
with reduced or increased functionality as in the corresponding forward category
for similar reasons. Pros include the flexibility to trade-off area, power, performance,
latency with error protection depending on the selected functionality. Cons include
that the solutions are rather system-specific. A literature example in this category is
[Austin 1999] s.

3.4. Backward execution - HW modules amount fixed

The majority of the techniques proposed in the literature that employ backward exe-
cution, reuse the already existing HW modules as the additional area overhead of the
previous category is avoided. This can be achieved by techniques that retry the execu-
tion without explicit storage (retry without state storage) and techniques that retry
by storing some (redundant) system information at intermediate execution points to
be used for system recovery (retry with state storage).7 Checkpointing is a term that
refers to the intermediate storing of the application’s state (or of part of it), like register
and memory contents. Additional events may be registered as part of the state, which
are called logs. The corresponding categories and subsections are shown in Figure 9.

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

Subsection 3.4.1 ■ Subsection 3.4.2 ▲

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

...

Fig. 9: Classification for backward tech-
niques that reuse existing HW modules

3.4.1. Retry without state storage ■ .

This category includes the schemes that
move back the execution to an earlier
point and repeat it, upon error detec-
tion. The execution can be successfully
repeated without explicitly storing the
system state either because the state
information is not really needed
or because it is provided indirectly
by executing another task, which pro-
duces the required information. In the
degenerate case, a hardware-driven
restart/reboot procedure can be trig-
gered to remedy transient errors. The
techniques can be further distinguished
into techniques that take place within
the boundaries of a single module, i.e.
intra-module and techniques that
operate across modules, i.e. inter-module, as shown in Figure 9.

Intra-module 13 . In this category belong schemes that either exploit inherent

features of processors to retry a task execution, like instruction retry or cache refetch,
or employ additional hardware-based tasks.

For example, Ray et al. [Ray et al. 2001] propose to use the pre-existing instruction
rewind mechanism present in superscalar machines for branch mispredictions in order
to handle error recovery. After detecting an error (by duplicating the instruction during

7Note that the Backward/additional HW modules provision subtree could also be split further in similar
categories, depending on whether intermediate state storage is involved. However, in that case, because the
biggest overhead comes from additional HW modules, this split is left as an implied lower level split.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:14 Psychou et al.

the decode stage and comparing the results before committing), the contents of the
ReOrder Buffer (ROB) are flushed and the instruction is re-executed, similarly to what
happens upon a branch misprediction event (see Figure 10a). In case the results agree
after cross-checking, a single instruction retires and execution proceeds.

Hardware-based tasks in the literature are implemented by simultaneous mul-
tithreading to increase on-chip parallelism. Simultaneous multithreading (SMT) is
a technique that allows multiple threads to issue multiple instructions each cycle on
a superscalar processor [Tullsen et al. 1996]. The threads can be separate from each
other or coupled to each other. Separate threads could be potentially created to exe-
cute the same program in a TMR structure, assuming that care is taken so that the
threads use identical shared resources. The literature focuses on employing hardware-
based threads in coupled execution mode. According to this mode of operation, the
threads communicate with each other, i.e. one thread uses some knowledge from the
other thread(s) in order to execute the program. Coupled execution has been used with
processors in order to speed-up execution and the idea has been reused for fault tol-
erance [Sundaramoorthy et al. 2000]. The concept is as follows: Two streams of the
same program run in parallel but with a time lag (see Figure 10b). The first stream
is a less accurate one as it processes less instructions than a complete stream would.
It bypasses certain computations and branch instructions as indicated by a hardware
monitor which has observed past instances. Thus, it can run faster than a complete
stream. Its results are stored in a delay buffer. The second stream is an accurate one, as
it executes all the instructions. However, it receives information from the first stream
through a delay buffer, which allows it to run also faster. For example, it uses memory
load values and thus it can avoid memory latencies. When the second thread commits
(writes its results to the registers), the results from both threads are compared. If they
are not identical, the results of the second one are used to restore the system state.

FUn

FU1

IF COMMITDE FU2

..
.instruction

replication

=

rollback

x

(a) Reusing the existing rewind mechanism
to rollback the execution in [Ray et al. 2001]

Core

Delay

buffer

A streamR stream

time

copy register and memory

from R stream

Core

A stream R stream

Instruction

detector/predictor

x

data/control flow

outcomes for R stream

(b) Recovery using threads with a time lag
in [Sundaramoorthy et al. 2000]

Fig. 10: Illustration of concepts in the platform-HW backward category

Non-deterministic events like traps and exceptions are handled with some minimal
support from the operating system. The first stream stalls until the delay buffer com-
pletely empties and the second stream is terminated. The first stream is serviced (by
the operating system) and execution resumes. Pros include the low area and power
overhead, potentially high error protection (but only for transient errors) and rather
general applicability. Cons include the latency, performance overhead and the limita-
tion to transient errors. Literature examples include: [Ray et al. 2001] on re-executing
instructions, [Rotenberg 1999] on tasks with a time lag, [Cho et al. 2012] on restarting
a core s.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:15

Inter-module 14 . This category has similar properties with the earlier but requires
the cooperation of modules. Pros and cons are similar with the previous category,
but here also permanent errors can be handled and synchronization issues have to be
addressed. In the literature, mainly examples that include tasks with time lag have
been identified: [Sundaramoorthy et al. 2000], [Gomaa et al. 2003] s.

3.4.2. Retry with state storage ▲ . This group of techniques employs the storage of a

complete or partial error-free state and the rollback to that state upon detection of
an error. Afterwards, the execution is repeated to acquire error-free results, assum-
ing that the error was transient. The techniques are also distinguished into intra-
module and inter-module. In the latter category issues that have to do with the state
synchronization among several modules have to be addressed. Checkpointing/rollback
refers to a widespread concept, according to which, the state of a process is proac-
tively stored at certain intervals during execution so that the correct state is restored
in case of an error. The majority of prior work realizes software-based checkpoint-
ing/rollback schemes. However, groups both in industry and academia have provided
fully hardware-based implementations. Typically, when these schemes address non-
determinism, this is done by synchronizing the checkpoints with the external events
(e.g. interrupts). Namely, when an external event takes place, a checkpoint is forced.

rollback

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory
checkpoint

storage

CPU Logic

& Memory

checkpoint

storage

CPU Logic

& Memory
checkpoint

storage

CPU Logic

& Memory

x

Fig. 11: A local error can trigger all the
CMP cores to roll-back in global check-
pointing schemes

Intra-module 15 . This category in-
cludes schemes that store the whole
state or a subpart of the state of a mod-
ule in order to restart the execution from
that stored point if an error occurs. The
storage can take place in the main mem-
ory, hard disk, register file or memory
buffers, and is often complemented by
another error resilience technique, like
ECC, in order to be more robust. A broad
range of checkpointing techniques exist,
from techniques that store checkpoints
very rarely (every thousands up to bil-
lions of cycles) assuming low error rates
up to techniques that perform check-
pointing very often (every few cycles) as-
suming high error rates. Pros include
the high error protection (for transient
errors only), the general applicability. Cons include latency (depending on the check-
pointing granularity), performance (depending also on whether checkpointing is over-
lapped with normal execution) and the limitation to transient errors. Area and power
overhead is medium. Literature examples include: [Ahmed et al. 1990] on cache-based
checkpoints, [Wang and Patel 2006], [Gupta et al. 2009], [Li et al. 2013b] on register-
based checkpoints s.

Inter-module 16 . Such schemes are typically found in multicore architectures.
Here, on top of the external non-deterministic events, like interrupts, also internal
events have to be taken care of, like the accesses to the shared memory. These check-
pointing schemes can be characterized as global and local. In the global schemes, com-
mon checkpoints are created among all modules and upon detection all modules have
to roll back to an earlier state (even when many of them are error-free). Figure 11 il-
lustrates the concept. A challenge with this approach is the scalability as the number
of cores increases. On the other hand, local checkpointing schemes allow such actions

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:16 Psychou et al.

to be made by a subset of the modules, performing only local synchronization and in-
formation storage. A taxonomy of hardware-based checkpointing schemes for CMPs
can be found in [Prvulovic et al. 2002]. Pros and cons are similar with the previous
category, but with extra synchronization costs. Global schemes induce more overhead
during checkpointing, but have a simpler recovery, compared to local schemes. Liter-
ature examples include: [Wu et al. 1990], [Agarwal et al. 2011] on local and [Sorin
et al. 2002] on global schemes s.

3.5. Overall platform hardware classification

The sub-trees presented in the previous subsections are combined to form the over-
all classification tree for platform HW techniques, as shown in Figure 12. Starting
from the top-level split of Figure 3, the intermediate nodes (colored by pale green)
are followed when necessary, to reach the final classes (colored by darker green and
numbered).

PLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HWPLATFORM HW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

EXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTING

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

OPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATIONOPERATION

MODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODEMODE

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

INTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNAL

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

REUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSE

I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O
CONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATION

MODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATION

CONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITHCONNECTIVITY WITH

NEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HWNEIGHBOURING HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

ISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATION

CAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITY

OPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATINGOPERATING

CONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONSCONDITIONS

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

RESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCE

ALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATION

ALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATE

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

ADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HWADDT’L HW
MODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULESMODULES

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

HW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULESHW MODULES

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

11111111111111111 22222222222222222 33333333333333333 44444444444444444

55555555555555555

66666666666666666 77777777777777777

88888888888888888

99999999999999999

1010101010101010101010101010101010 1111111111111111111111111111111111 1212121212121212121212121212121212

1313131313131313131313131313131313 1414141414141414141414141414141414 1515151515151515151515151515151515 1616161616161616161616161616161616

Fig. 12: Overall proposed classification for techniques at the platform HW

4. PLATFORM SOFTWARE

In this section, techniques that extend the platform software capabilities for reliabil-
ity purposes are presented. The proposed classification is built around the notion of
tasks in a similar way that the earlier section was built around the notion of HW mod-
ules. The complete classification scheme is shown in Figure 22 in Subsection 4.5. As
in the platform hardware section, the first split in the platform software techniques

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:17

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’L
TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

Subsection 4.1 Subsection 4.2 Subsection 4.3 Subsection 4.4

Fig. 13: Basic classification for techniques at the mapping and platform software

is between (forward) and (backward) techniques. Forward techniques are then fur-
ther split into techniques that require additional tasks (additional tasks provision)
and techniques that cope with the existing amount of tasks (tasks amount fixed).
Backward techniques are split into techniques that require the re-execution of tasks
without storing state information (retry without state storage) and techniques that
do require such intermediate state storage (retry with state storage). Since re-
execution of tasks is a prerequisite for a technique to be characterized as backward
technique, backward techniques always include additional tasks (a re-execution can
be seen as providing an additional identical task in time). These four classes are dis-
cussed in the following subsections, as shown in Figure 13 s. Main criteria for fur-
ther categorization into classes include whether modifications are required in: existing
functionalities, existing task implementations, the resource allocation, the interaction
with neighbouring tasks, execution mode (of additional tasks), cooperation among HW
modules. Here, also, end nodes are accompanied by a ordinal number.

4.1. Forward execution - Additional tasks provision

ADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’L
TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

Subsection 4.1.1 ■ Subsection 4.1.2 ▲

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

...

Fig. 14: Classification for forward tech-
niques that require additional tasks

This subsection discusses techniques
that increase the resilience of systems
through providing additional tasks us-
ing the platform’s software without mov-
ing the execution to an earlier point. The
added tasks may have either the (same
functionality) or (different function-
ality). The structure of this subtree
along with the corresponding subsec-
tions is illustrated in Figure 16. These
techniques can be differentiated accord-
ing to the granularity of the replicated
task (instruction, thread, process) and/or
according to the abstraction layer in
the software stack (see Subsection 2.2.1)
that the replication takes place.

4.1.1. Same functionality ■ . As in the corresponding platform HW category, this cat-

egory can be further split into tasks that are in parallel execution mode and tasks
that act as spares.

Parallel execution 1 . The parallel execution implies that the HW resources are
available, like in the case of a multicore architecture. In case additional HW resources
are provided but the tasks run at the higher software stack, then this category is a hy-
brid with the (Additional HW modules provision/same functionality) category. Here,

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:18 Psychou et al.

similar concepts can be applied as in the corresponding platform HW category but dif-
ferences exist as well. Parallel tasks can run in lockstep. They may be configured in
an execution mode, according to which, awareness of the faulty task is not required,
since the error is masked; like in an NMR or TMR structure combined with voting.
The alternative is that the faulty module is identified (some explicit detection/di-
agnosis scheme is present) and then only the outputs of the other running task(s) are
considered valid. The concept of using multiple tasks in parallel and applying majority
voting at their outputs has been presented in the literature since a long time. Execu-
tion among the redundant processes/threads must be deterministic. The literature
has focused mostly on employing such schemes on multicore architectures. Thus, the
first source of non-determinism that has to be tackled is the shared memory accesses.

When the parallel execution is combined with fault awareness, majority voting is not
necessary. Two tasks are typically sufficient to have a robust execution. In the presence
of non-deterministic events, like I/O operations, the literature deals with this category
typically in the following manner: One of the two tasks (primary) executes I/O opera-
tions and the other task (backup) gets informed about the results. If the primary task
is declared faulty, then the backup takes the role of the primary and continues
operation, including I/O operations.

Pros include the high error protection (for the task that is protected), the lack of la-
tency (except if there is lack of empty slots during scheduling), storage and power over-
head (assuming the HW resources would be used anyway). Depending on the software
stack level implementation, different degrees of transparency can be achieved. Cons
include the blockage of resources for replicating functions leading indirectly to perfor-
mance overhead. Literature examples include: [Avizienis 1985], [Fiala et al. 2012] on
TMR at user-level, [Döbel et al. 2012] on TMR at OS-level, [Jeffery and Figueiredo
2012] on primary/backup set-up at VM level. For example, the authors in [Döbel et al.
2012] base their technique on a microkernel. A master process (see Figure 15) gener-
ates the replica threads and performs the output checks s.

Spares 2 . As already discussed in Subsection 3.1 in the HW category, a spare can
have a dual role: to take over execution when the primary module fails or, potentially,
to take over execution for part of the time so that the execution alternates between
the primary and the spare, depending on the objectives. Having a task with the same
functionality as a spare could make sense, for example, if, upon failure of the primary
task, the spare task is loaded from a different instruction memory location (which may
be considered more robust). The execution would continue forward (past errors would
not be corrected) but the loading action could prevent to have future error manifesta-
tions due to corrupted instruction memory s. Pros would include the limited storage,
area, performance overhead, latency, high error protection (only for instruction mem-
ory errors) and general applicability. Cons would include the limitation to instruction
memory errors. Literature schemes that use alternate tasks as spares in a forward
mode have not be found.

4.1.2. Different functionality ▲ . In this case, the added task(s) deliver a different func-

tionality than the one that should be made more robust. This category can also be
distinguished into tasks in parallel execution mode and tasks that act as spares.

Parallel execution 3 . In principle, similar types of techniques can be applied as
in the corresponding platform HW category. The added task may perform a subset or
a super-set of the functions of the original task but because of some complementary
technique (i.e. it is a hybrid) it is assumed to be more robust. The complementary
technique may be that the processing element on which the added task runs is con-
figured to be more robust. Or the added task performs some different function, like
error correction. It must be noted that parallel execution in this context, does not nec-

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:19

essarily imply that the additional task runs at the exact same moment as the original
one, but it is active in parallel with the original task during the system lifetime.
For example, it may be executed more sporadically, e.g. periodically. Pros include the
flexibility to balance among storage, power, performance, latency and error protection
through appropriately selecting the added function. Cons include the need for system-
specific solutions and the blockage of resources. A literature example is [Shirvani
et al. 2000] s.

Spares 4 . Tasks that have a different functionality can also be potentially used as
spares. For example, the backup task may have some inherent error correction coding,
which makes it more appropriate than the original task for given external conditions.
Pros and cons are similar to the previous category; however, in this case the added
task runs instead of the original task, leading to partially different costs depending
on the exact implementation. Literature schemes that use spare tasks with different
functionality in a forward execution mode have not been found.

user-level

microkernel

Applic
atio

ns

OS se
rvices

kernel-level

replicareplica replica

master

process

HW

 =

&

Fig. 15: Redundant multithreading at the OS level in [Döbel et al. 2012]

4.2. Forward execution - Tasks amount fixed

This subsection discusses techniques that do not provide additional tasks in the system
in order to make it more reliable. Initially these techniques can be distinguished be-
tween techniques that make use of the existing tasks on the platform (existing tasks)
and techniques that replace the implementation of existing tasks with an alternate
implementation (alternate tasks). The techniques based on the existing tasks can be
split into techniques that manipulate the functionality of the tasks (functionality
control) and techniques that re-arrange the allocation of the tasks into the hardware
resources (resource allocation). Figure 16 shows the proposed subtree and its divi-
sion into subsections.

4.2.1. Functionality control ■ . Techniques that are focused around the functionality of

tasks can either operate within the task boundaries, by reusing the task function-
ality (internal functionality reuse) or operate outside the task boundaries by re-
arranging its interaction with the other tasks (I/O configuration modification).
The latter can be further split into techniques that reorganize the execution se-
quence (scheduling-ordering) and techniques that isolate results from corrupted
tasks (isolation capability).

Internal functionality reuse 5 . In this category some knowledge of the inher-
ent task functionality is exploited in a useful way to increase resilience. By config-
uring some parameters through the platform SW, a more resilient execution is
achieved. Although a literature example in the present context has not been found,
such a scheme could be similar to the following example. In [Pant et al. 2012] the

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:20 Psychou et al.

authors consider a number of parameters for the H.264 encoding: sub-pixel motion es-
timation, size of motion estimation search window, DCT window size and run-length
encoding mechanism. They show that adapting those parameters can utilize the appli-
cation algorithm′s quality or performance tradeoffs to achieve error free operation in
presence of permanent manufacturing variations. Pros include the low storage, power
overhead. Cons include the need for very system-specific solutions, the limited error
protection. Performance and latency may be affected depending on the exact imple-
mentation.

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

EXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTING

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

INTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNAL

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

REUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSE

I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O
CONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATION

MODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATION

SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/
ORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERING

ISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATION

CAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITY

RESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCE

ALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATION

ALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATE

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

Subsection 4.2.1 ■

Subsection 4.2.2 ▲

Subsection 4.2.3 ●

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’L
TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

...

Fig. 16: Classification for forward techniques
that keep the amount of tasks fixed

I/O configuration
modification/scheduling-
ordering 6 . These schemes re-
organize the application or instruc-
tion profile so that the re-ordered
execution is more robust. Typi-
cally, additional information is used
regarding the vulnerability of cer-
tain instructions or operands (and
thus registers). By re-scheduling
the flow, the interval that the most
vulnerable operations and operands
are used is minimized. Pros in-
clude the very limited storage,
power overhead and rather general
applicability. Cons include the
need for additional information to
guide the re-scheduling, the limited
error protection. Performance and
latency may be affected. Literature
examples at the instruction-level
include: [Yan and Zhang 2005],
[Rehman et al. 2012] s.

I/O configuration modification/isolation capability 7 . This class includes tech-
niques which isolate tasks so that errors do not propagate to subsequent tasks or
the output. To be more accurate, the focus is on the results of the tasks. This requires
some application knowledge to ensure that the impact of the discarded computations
is not destructive. Pros include the lack of storage, power overhead and latency. Cons
include the need for system-specific solutions, the low error protection (through iso-
lation), the potential performance degradation. A hybrid example is [de Kruijf et al.
2010] s.

4.2.2. Resource allocation 8 ▲ . This category includes techniques that change the as-

signment of tasks and data to hardware components in a way that the most reliable
match between task and hardware module is found. This can be in the context
of a single processor or a multiprocessor system. To find the best match, information
regarding the vulnerability (or robustness) of the tasks and of the HW modules has
first to be identified. The category includes also the case where although the task was
initially running in one core, is migrated to another compatible core (task migra-
tion). Pros include the very limited storage, power overhead and rather general appli-
cability. Cons include the need for additional information to guide the re-allocation,
the limited error protection. Performance and latency may be affected. Literature ex-
amples include: [Yan and Zhang 2005] on register allocation, [Rahimi et al. 2013],
[Chakravorty et al. 2006] on task-processor mapping s.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:21

4.2.3. Alternate tasks 9 ● . Here, an existing task is modified and replaced by an al-

ternate one with a more robust implementation, without providing additional tasks
and without implementing a different algorithm. Typically, this is driven by informa-
tion regarding vulnerable parts of the HW and is fed into the compiler, which per-
forms the alterations. Pros include the lack of storage and latency. Cons include the
limited error protection and rather system-specific applicability. Depending on the ap-
plied scheme, power and performance may be affected. Literature examples include:
altered code that bypasses faulty HW [Meixner and Sorin 2008], altered code that re-
duces the amount of critical instructions [Rehman et al. 2011] s.

4.3. Backward execution - Retry without state storage

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION

SEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIAL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

Subsection 4.3.1 ■ Subsection 4.3.2 ▲

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

...

Fig. 17: Classification for back-
ward techniques that do not re-
quire state storage

This subsection discusses techniques that in-
crease the resilience of systems by retrying
the execution using the software stack without
the need for storing intermediate state. Such
schemes move back the execution to a point that
information has been stored by the system it-
self due its normal functionality (without extra
reliability-related storage overhead). In the de-
generate case, a system can be re-started, e.g. the
operating system can reboot in presence of an er-
ror. For a long time, such retry mechanisms have
been integrated in correcting transient disk and
memory read errors [Siewiorek and Swarz 1982].
But also in recent works, existent system fea-
tures are exploited allowing re-execution with-
out additional storage actions. A task can be re-
executed without requiring extra storage either
because there is another task running in paral-
lel that keeps the state updated but potentially

with a delay (parallel execution) or the task is being started from the beginning
(sequential execution), so intermediate state information is not needed. Figure 17
shows the corresponding subtree.

4.3.1. Parallel execution 10 ■ . This category assumes that additional HW resources

are available. When HW resources are explicitly added for the implementation, the
technique is a hybrid with the (Additional HW modules provision/same functionality)
category. The so-called primary/backup technique assumes that two tasks are exe-
cuting in parallel, with one of them lagging behind the other. However, only the pri-
mary processor handles communication with external devices. The backup will take up
this role once the primary processor fails. As the execution between the copies should
be deterministic, extra care has to be taken for the handling of non-deterministic
events. Typically, these are handled by the primary module and the result is passed
afterwards to the backup module. Implementation of the primary/backup technique
can take place at several layers of the software stack. Pros include the high error pro-
tection at minimum storage and rather general applicability. Cons include the power,
performance overhead, latency and blockage of resources. A literature example in
this category is [Bressoud and Schneider 1996]. The replicas are implemented at the
virtual machine level and are running on different physical processors. The primary
task handles I/O communication and the backup task lags a few instructions behind
the primary. After a specific number of instructions have been executed, called epoch

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:22 Psychou et al.

(see Figure 18), the hypervisor communicates the interrupts the primary received and
accompanying data to the backup s.

4.3.2. Sequential execution ▲ . This group includes techniques that restart the execu-

tion of the task from the beginning. As typical in the current framework, tasks at dif-
ferent granularities can exist, like instruction, thread, process. But the focus here will
be on the task notion as it is meant in a broad category of techniques that is covered
here, called fault tolerant scheduling techniques. These techniques are primarily
employed for real-time systems. Such a system processes a set T of tasks. A task can
be a unit of work, such as a granule of computation, a unit of data transmission or a
file transfer [Liu et al. 1994] or in general a thread or a process that has to be ready
by a certain deadline. Each task has a release time (and a deadline). If the execution
finishes before the deadline for all the tasks, then the application is successfully ex-
ecuted. Resilience is achieved by re-executing a given task when it fails. The goal of
a fault tolerant scheduling is to guarantee that the total execution time of the task
set, including possible delays from re-execution due to (transient or permanent) faults,
meets the system (hard) deadline. If this is not possible, the task set is rejected.

primary backup

epoch i

epoch i

epoch i+1

epoch i+1
x

coordinate replica

Fig. 18: The primary and
backup tasks synchronize at
each epoch in [Bressoud and
Schneider 1996]

The tasks may be periodic (with equal or vary-
ing periods), aperiodic or sporadic [Sprunt et al.
1989]. Periodic tasks are released every Pi seconds
(task period), while the release time in aperiodic
tasks varies. Sporadic tasks are aperiodic tasks that
have hard deadlines. Each release of a task is called
an instance. Sporadic tasks may have an upper limit
in their rate of arrival. For sporadic tasks, the sys-
tem has to create the schedule as the tasks arrive and
not offline s. The task can be re-executed either on a
single processor so that transient errors are removed
or on a different processor so that permanent errors
are avoided. Therefore, this category is further split
into intra-module and inter-module techniques.
In intra-module techniques, the literature does not
generally address tasks that are amenable to non-
deterministic events. In inter-module techniques,
this issue is partially addressed, especially concern-
ing the shared memory accesses.

Intra-module 11 . In order to deal with transient faults, a task is re-executed from
the start on the same (single) processor; either the same task or a different (e.g. lighter)
version of the task. To make a fault tolerant scheduling, extra slack is inserted in
the schedule enough to allow the task re-execution upon fault occurrence. This extra
slack is also referred to -symbolically- as backup task s. Pros include the limited
storage, medium power overhead, rather general applicability, potentially high error
protection (only transient errors). Cons include the performance overhead, latency
and limitation to transient errors. Literature examples include: [Reis et al. 2007],
[Rehman et al. 2013] on executing additional instructions, [Pandya and Malek 1998],
[Ghosh et al. 1998] on fault-tolerant scheduling of periodic tasks and [Liberato et al.
2000] on aperiodic tasks s.

Inter-module 12 . The following group of techniques is applied on a multiprocessor
system and addresses not only transient but also permanent errors. A different proces-
sor is used to re-assign the task execution. Typically, the alternate processors have
private memory. Each task has a backup copy. In general, the backup tasks may be

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:23

passive or active. Active tasks are scheduled and execute independent of whether an
error occurs. The passive copies of the tasks are assigned and scheduled on different
processors and will execute only if an error occurs. The copies may be pre-loaded in
the memory of each processor (before execution time). Alternatively, only the required
copies are loaded at run-time in a demand-driven way. The tasks may be periodic (with
equal or varying periods) or sporadic. In these techniques two policies need to be de-
rived: one for the task allocation to each processor and one for the scheduling of the
tasks within each processor. Pros and cons are similar as in the previous category.
However, in this case potentially also permanent errors can be addressed at the ex-
pense of resource blockage and extra synchronization. Moreover, in task scheduling
schemes active tasks cause more latency and power overhead but are simpler to sched-
ule. Literature examples include: [Krishna and Shin 1986], [Bertossi et al. 1999] on
periodic tasks and [Ghosh et al. 1994] on aperiodic tasks. For example, Figure 19 shows
an example of scheduling 4 primary tasks (P1, P2, P3, P4) and their backups (B1, B2,
B3, B4) on three processors, as indicated in [Ghosh et al. 1994]. When the original
tasks complete execution, their backups are deallocated and the space can be used for
scheduling other tasks s.

time

P1

P
r
o

c
 1

1 20 43 5 6

...

B4

B3 ...

P
r
o

c
 2

P
r
o

c
 3

B1

B2

P2

P4

P3 ...

backup tasks 1

& 3 overlap

(a) The backup tasks B1, B3 can overlap in the sched-
ule

time
P

r
o

c
 1

1 20 43 5 6

...

B4

...

P
r
o

c
 2

P
r
o

c
 3

P3 ...

B3

P4

(b) After P1, P2 tasks complete their (passive) back-
ups are de-allocated

Fig. 19: Scheduling backup tasks in a multiprocessor system in [Ghosh et al. 1994]

4.4. Backward execution - Retry with state storage

The other group of backward techniques includes the techniques that retry the execu-
tion by storing the state of the system at intermediate points. The concept of proac-
tively storing some part of the system state (and potentially additional information) in
order to be able to restore the state and re-execute in the presence of errors has already
been presented in Section 3.4.2. Here, checkpointing/rollback implementations at the
mapping layer and the lower layers of the software stack are discussed. These can
be differentiated between techniques that operate within a single HW module (intra-
module) and techniques that operate across HW modules (inter-module). The pro-
posed subtree is shown in Figure 20 s.

Different checkpointing schemes can be implemented for systems that do not have to
deal with non-deterministic events and those that do. In applications of deterministic
nature more design time knowledge can be exploited since the execution is more pre-
dictable due to the lack of non-deterministic events. For example, design time knowl-
edge of the control and data flow graph (CDFG) can be exploited for optimizing
the placement of the checkpoints. Rather than saving checkpoints at fixed intervals,
checkpoints can be stored in a customized way so that the amount of stored data is
minimized.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:24 Psychou et al.

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

Subsection 4.4.1 ■ Subsection 4.4.2 ▲

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

...

Fig. 20: Classification for SW-
based backward techniques that
require intermediate state storage

Using the CDFG to decide on the placement
of checkpoints is not really practical in the non-
deterministic applications due to the fact that the
execution flow is decided in a non-deterministic
way at run-time. For such applications, typically
extra effort has to be invested to save relevant
information. For example, the inter-process de-
pendencies are often recorded, so that the execu-
tion can be accurately repeated during the recov-
ery phase.

4.4.1. Intra-module 13 ■ . The techniques can be

further characterized according to when the
checkpoint placement (location and/or fre-
quency) is decided. If the decision is made at
design-time, the techniques belong to the offline
category. Techniques that are applied during behavioral system synthesis or incorpo-
rate the checkpoint placement at the compilation or even combined with a design-time
scheduling algorithm are offline techniques. When the decision is made at run-time,
during program execution, they belong to the online category. These techniques are
typically combined with a scheduling algorithm.

step 2

insert recovery

point

-

*

...

c

+
step 3

step 4

ro
ll

b
a

ck

fault detected?

e f

d

...

yes

Fig. 21: The insertion of a checkpoint in
the CDFG turns the number of required
hardware registers to four instead of two at
control step 3 (adapted from [Blough et al.
1997])

The techniques at behavioral sys-
tem synthesis level typically use the
application CDFG and identify the opti-
mal number and locations of checkpoints
under some optimization constraints.
Such optimization constraints may in-
clude the amount of expected rollbacks,
the additional execution time due to the
rollback and the additional hardware re-
sources, like registers needed to store
the lifetime-extended variables [Blough
et al. 1997]. An example that illustrates
the usage of extra registers can be seen
in Figure 21. Without the recovery facil-
ity, the hardware registers used for stor-
ing intermediate variables c, d can be

reused for variables e, f. Therefore, at control step 3 only two registers are needed
for the storage of the variables e, f. However, when a recovery point is added at control
step 2, two additional registers are required for storing temporary variables c, d.

Techniques at compiler level employ the compiler to identify the optimal check-
point locations. For example, the compiler can identify variables that are dead. These
variables do not need to be included in the checkpoint. In the latter case, they can be
used as assistance/guidance since the actual decisions on the checkpointing have to be
made at run-time due to the need to handle non-deterministic events s. Beyond the
earlier discussed types of systems, intra-module schemes may address applications
that are amenable to numerous non-deterministic events: uncertain functions
(like human input functions), interrupts, system calls, I/O operations due to commu-
nication with external devices. Schemes, that incorporate the impact of such events in
their rollback techniques, store information beyond the state of the participating pro-
cesses, like interactions with external devices. Such additional pieces of information

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:25

are typically called logs. Sometimes logs can be sufficient for the accurate re-execution
of the process, without storing the process state. In the literature, schemes have been
developed tailored to address one specific type of non-deterministic events or more of
them together. Here, a few examples are provided and the reader is referred to spe-
cialized surveys on the topic. Such concepts are elaborated in [Elnozahy et al. 2002],
[Sancho et al. 2005], [Chen et al. 2015], [Egwutuoha et al. 2013]. These surveys ad-
dress both single-threaded and multithreaded/multi-process applications s.

A number of techniques have been developed that do not explicitly bring the han-
dling of non-deterministic events to the forefront. Some of them do not take care of
them at all and some of them address them partially. They focus on performing check-
pointing in a -to a large extent- transparent way for the user. These techniques can
be differentiated depending on the abstraction level. Typically they are implemented
either at kernel-level or user-level (see Section 2.2 and supplementary material). For
kernel-level implementations, either the OS source code is available for modification
or the user installs developed packages. The packages are only available for specific
operating systems though. This implies that OS updates will require modifications of
the packages. However, compared to user-level schemes no extra compilation or link-
ing has to be performed by the user and the application is fully unaware of the check-
pointing. Checkpointing at user-level utilizes run-time libraries that are linked to the
application program. Minimal changes in the source code may be required. Schemes
implemented at user-level improve portability and offer the possibility to the user to
identify program points at which state data are essential for restarting the execution.

Pros include the high error protection and general applicability. Cons include the
potentially high storage and power overhead, the potentially very high latency and
performance (depending also on whether checkpointing is overlapped with normal ex-
ecution). These costs vary depending on the exact implementation and selected gran-
ularity. Literature examples include: [Chandy and Ramamoorthy 1972], [Orailoglu
and Karri 1994] on CDFG checkpoint placement, [Li et al. 1994], [Ramkumar and
Strumpen 1997] on employing the compiler for the checkpointing. Examples that ad-
dress non-deterministic applications include: [Hendriks 2002], [Duell 2005] at kernel-
level, [Plank et al. 1994], [Slye and Elnozahy 1996] at user-level s.

4.4.2. Inter-module 14 ▲ . While the multithreaded applications are also amenable to

non-deterministic events which go beyond the process and thread concurrency issues,
the focus of the related literature is on handling these process/thread depen-
dencies so that rollback takes place effectively. Nevertheless, system-specific strate-
gies have been developed which deal with events coming from the external en-
vironment, especially events due to communication with external devices s. Online
multiprocessor checkpointing can be broadly characterized as local and global. Local
schemes require that only a single process or a subset of the processes that have in-
teracted save independently a checkpoint and no global coordination takes place. That
means, the rest of the processes do not have to perform any action at that moment.
Typically, in such schemes, when a process fails, then all processors have to coordinate
to create a consistent system-wide state. The inter-thread data dependencies of the
processors that have communicated have to be recorded so that the inter-thread com-
munication is correctly reconstructed at recovery time. Compared to global schemes,
local schemes reduce the amount of data to be stored during checkpointing but re-
quire typically a more complicated recovery algorithm. Moreover, local schemes can
potentially cause that one process rolls back after the other until the system goes
back to a consistent state, potentially even back to the beginning. This type of rollback
propagation is also called domino effect. On the contrary, global schemes require that

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:26 Psychou et al.

all processes take actions in order to take a single, global, system-wide checkpoint at
distinct times. One disadvantage is that they become less scalable as the number of
processes increase. Pros and cons are similar to the previous category with the extra
overhead required to handle inter-process and inter-thread dependencies. As in the
corresponding HW case, local schemes require less storage during checkpointing but
need typically a more complicated recovery, compared to global schemes. Literature
examples include: [Wu and Fuchs 1990], [Elnozahy 1994] on local and [Duell 2005],
[Batchu et al. 2004] on global schemes s.

4.5. Overall mapping and platform software classification

By combining the sub-trees of the previous subsections, the overall mapping and plat-
form software classification tree is built, as shown in Figure 22. Starting from the top-
level split of Figure 13, the intermediate nodes (colored by pale yellow) are followed
when necessary, to reach the final classes (colored by darker yellow and numbered).

MAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SWMAPPING & PLATFORM SW

FORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARDFORWARD

ADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’LADDT’L
TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

PROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISIONPROVISION

SAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAMESAME

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

DIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENTDIFFERENT

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION
SPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARESSPARES

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

AMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNTAMOUNT

FIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXEDFIXED

EXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTINGEXISTING

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

CONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROLCONTROL

INTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNALINTERNAL

FUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITYFUNCTIONALITY

REUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSEREUSE

I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O
CONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATIONCONFIGURATION

MODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATIONMODIFICATION

SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/SCHEDULING/
ORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERINGORDERING

ISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATIONISOLATION

CAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITYCAPABILITY

RESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCERESOURCE

ALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATIONALLOCATION

ALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATEALTERNATE

TASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKSTASKS

BACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARDBACKWARD

RETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/ORETRY W/O
STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

PARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLELPARALLEL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION

SEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIALSEQUENTIAL

EXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTIONEXECUTION

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

RETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITHRETRY WITH

STATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATESTATE

STORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGESTORAGE

INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-INTRA-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-INTER-
MODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULEMODULE

11111111111111111 22222222222222222 33333333333333333 44444444444444444

55555555555555555

66666666666666666 77777777777777777

88888888888888888

99999999999999999 1010101010101010101010101010101010

1111111111111111111111111111111111 1212121212121212121212121212121212

1313131313131313131313131313131313 1414141414141414141414141414141414

Fig. 22: Techniques that rely on mapping and platform software

5. USAGE OF THE CLASSIFICATION FRAMEWORK

Identifying the primitive components (corresponding to a primitive category) and their
position in the framework first, allows to handle the complexity of the sometimes
highly sophisticated mitigation schemes. A “divide and conquer” view of the publica-
tion enables the reader to delve into the most relevant implementation details (when
that is necessary) in a much more controlled way.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:27

M
a

p
p

in
g

&
 P

la
tf

o
rm

 S
W KHAJEH ET

AL. 2012

CHO ET

AL. 2012

Controller

voltage

knob

Monitor

OPERATING CONDITIONS CONTROL H.8

P
la

tf
o

rm
 H

W x
error

HW module Decoder
Increase

iterations
Channel

REUSE FUNCTIONALITY H.5
ADDT’L HW MODULES-SPARES-SAME

FUNCTIONALITY H.2

Module

A

Module

B

Module

C

Voter

Module

A

Module

B

Module

C

Voter

ADDT’L HW MODULES-PARALLEL-

SAME FUNCTIONALITY H.1

Selective protection

(based on significance)

Bit stream

Group

1

Group

2

Group

3

Group

4

ADDT’L TASKS-DIFFERENT

FUNCTIONALITY S.3

Discard iterations

Algorithm

step1 step2

ISOLATION CAPABILITY S.7

Execution time

x
error

RETRY WITHOUT STATE STORAGE S.11

Checkpoint 1

x
error

Restore state

Checkpoint 2 Checkpoint 4

RETRY WITH STATE STORAGE (CHECKPOINTING) S.13

Execution time

Core 1 Core 2 Core N
...

x
Reallocate

task

RESOURCE ALLOCATION S.8

AVIZIENIS ET

AL. 1971

Fig. 23: Mapping of hybrid schemes according to the proposed classification

5.1. Mapping of hybrid schemes

In reality, the resiliency and mitigation approaches, which are present in research
papers, rarely belong to a single leaf of the previous, and indeed any, classification.
The majority of the published work consists of hybrid combinations of the leaves. Po-
sitioning these works in the classification framework above, allows to obtain a better
understanding of the techniques.

In this subsection, the previous classification is applied on selective works, from a
range of older and more recent literature, to illustrate how works can be classified by
using the appropriate combination of leaves. For the mapping capital letters are used
to indicate the major group the technique belongs to (H for platform HW and S for
mapping & platform SW) and the number of the leaf from the corresponding figure
(Figure 12 for platform HW, Figure 22 for mapping & platform SW). The selection of
these papers is based on several criteria, the main ones being that they include hybrid
schemes, that they cover a broad range and that combinations from many different
leaves are present to provide a better illustration.
(1) A cross-layer co-exploration approach for reliability/energy optimization for video
applications over wireless channels is presented in [Khajeh et al. 2012].
Platform HW: Reusing the Viterbi (by increasing the trace back depth) and Turbo (by
increasing the number of iterations) channel decoders is discussed (because they are
primarily used by WCDMA systems) as a complementary approach to reinforce the
correcting capabilities (H.5). Aggressive Voltage Scaling (AVS) is applied on sections
of the WCDMA modem. The authors focus on the embedded memory organization for
which a specific analysis of the errors is performed to characterize the read and write

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:28 Psychou et al.

failures statistically, resulting in an analytic model. Based on this model, power sav-
ings can be maximized while maintaining a macro level quality metric such as the
Peak Signal to Noise Ratio (PSNR) of the image sequence (H.8).
Mapping & platform SW: The difference in the significance of groups of bits is used
to perform selective protection by proper encoding at the middleware layer (S.3). In
particular, UDP-Lite packetization is (re-)designed in such a way that bits which are
very sensitive to errors are better protected. 8

(2) The ERSA architecture [Cho et al. 2012] is a multicore architecture with the
characteristic that some cores are super reliable (SRC), while the majority are relaxed
reliability cores (RRC). The super reliable cores execute operations that are less
resilient to errors. 9

Platform HW: The RRCs can be restarted by using a watchdog timer (H.13).
Mapping & platform SW: A run time scheduler reassigns a task that has failed
on a particular RRC to another RRC (S.8). Moreover, the SRC can terminate the
execution of a RRC task and reboot the RRC (S.12). Computations are discarded
when excessively large fluctuations are present (S.7). This requires knowledge of the
applications algorithm so it is a hybrid itself.

(3) The JPL-STAR was a fault tolerant computer designed to cope with many
kinds of hardware faults [Avizienis et al. 1971].
Platform HW: Triple Modular Redundancy with voting is applied for the test and re-
pair processor (TARP). This processor monitors the operation of the main computer
and implements the recovery (H.1). One or more unpowered spares are provided for
each functional unit and the TARP itself (H.2). All machine words (data and instruc-
tions) are encoded using error-detecting codes (H.3).
Mapping & platform SW: Checkpointing and rollback of programs to a previous state
is also used when an error is detected (S.13). The system uses also a restart (named
“cold start”) procedure in the TARP and the resident executive (S.11).

5.2. Comparison of closely related schemes

Academic Works at the Same Abstraction Level. Research trends undergo a prolif-
erating application of hybrid mitigation mechanisms. The work by Li et al. [Li et al.
2013a] provides a hybrid error mitigation mechanism, called DHASER, that exploits
several mapping & platform SW approaches. In particular, this scheme adopts the fol-
lowing mitigation approaches:

● First, a task mapping approach (S.8) is employed, by analyzing the impact of
single-event upset on the overall correctness of a running task, without correcting this
error. The outcome is a generated parameter per task (based on the masking capability
of the task). Thus, the tasks can be appropriately allocated to the processing elements
with the required level of resiliency for a reliable operation. For example, highly vul-
nerable tasks are executed on cores that are more robust and less vulnerable ones on
cheaper and more power-efficient cores without recovery functionalities.

● A second mechanism is applied to select the appropriate error protection mech-
anism to each processing element. The choices are between re-executing instructions
inserted by the compiler (S.11) or a hybrid SW/HW checkpointing scheme (H.15, S.13).

8An additional technique implemented at the paper is the modification of the video compression encoding
mode at the algorithmic layer
9The authors also employ circuit-layer techniques to implement the asymmetric reliability among the SRCs
and the RRCs.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:29

ERSA DHASER dTune

Feature Class Feature Class Feature Class

Distributing tasks to
SRC and RRC cores

S.8 Task allocation based on pa-
rameter selection

S.8 Task allocation based
on parameter selection

S.8

RRC core reboots H.13 Re-execute instructions S.11 Redundant Multi-
threading (TMR)

H.9

SRC reboots RRC S.12 HW/SW checkpointing
(functionality mapped into
micro-operations)

S.13,
H.15

Alternate reliable code
versions

S.9

Discard computations S.7 – – – –

Table I: Classification of run time task mapping by platform SW solutions

ASER Hayat

Feature Class Feature Class

Task allocation on subset of cores given appli-
cation properties and constraints (e.g. dark sil-
icon area)

S.8 Task allocation on subset of cores
based on aging estimation mechanism

S.8

TMR on processor parts H.1 Operating conditions control H.8

Table II: Resilience schemes in the dark silicon constraint

This selection is based on the expected to-be-mapped task from the previous technique,
and the characteristics of the targeted processing element.

This classification also allows to make a clear distinction with the platform SW part
of the ERSA approach [Cho et al. 2012] discussed earlier (see 2 first columns of Table I).
That approach is intended to deal with the same problem formulation, namely reliable
run time mapping of tasks on a heterogeneous multicore platform. ERSA formulates
this as “distributing tasks to SRCs and RRCs, i.e. Super Reliable and Relaxed Relia-
bility Cores”. It combines this also with algorithmic layer resilience but this part will
not be discussed here. In order to achieve this reliable task mapping, both approaches
use partly similar and partly different techniques and the systematic classification
provides effective insight in this. The (S.8) techniques of both ERSA and DHASER
are used in a largely similar way but ERSA uses an instance of the (S.7, S.12, H.13)
option on top of this, whereas the presently discussed approach uses instances of the
(S.11, S.13, H.15) leaves in combination with it (see above). To illustrate further the
point made, in the third column, dTune [Rehman et al. 2014] has been added, which
performs reliable task mapping (S.8) by combining reliable code versions (S.9) with
HW-based Redundant Multithreading (H.9).

Finally, in Table II, two schemes in the so-called dark silicon constraint are briefly
compared, ASER [Kriebel et al. 2014] and Hayat [Gnad et al. 2015] without providing
a detailed explanation. In the supplementary material, a comparison of two industrial
RAS schemes is elaborated, from Intel [Intel 2011] and IBM [Mitchell et al. 2009] s.

6. DISCUSSION AND FUTURE CHALLENGES

The proposed classification was illustrated through a representative list of schemes,
to better absorb the related ideas and support the validity of the tree. Although the

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:30 Psychou et al.

focus of the current paper was not to present a comprehensive list of state-of-the-art
schemes, some observations become clear regarding the evolution of techniques.

Observations derived from the proposed framework and literature. The literature on
fault tolerance and resilience techniques has evolved in accordance with the trends
in computer architecture and (platform) software design development. Due to
the power density issues that came along with technology scaling, there was a shift
towards multicore designs and in general parallel processing. The inherent regularity
and abundance of such designs offered opportunities for fault-tolerant techniques. The
software had to evolve as well to make use of these new designs (especially through
multithreading). Another evolution has to do with adding more custom processing el-
ements (like GPUs) on the platform, together with general-purpose components, in
order to accelerate part of the functionality. Of course, fault tolerant techniques did
not omit to exploit more ad-hoc features of certain platforms, like features that enable
the out-of-order execution on superscalar platforms.

Commonalities and differences between HW-based and SW-based schemes
can be observed. Traditional fault-tolerance was based on a few basic types of tech-
niques: hardware replication, re-execution starting from a previously saved state (typ-
ically at the OS level), hardware-based error coding schemes. While these techniques
have not been abandoned, over time there is a clear boost in platform software and
mapping approaches. This does not reduce complexity for the designer but allows to
have the cost reduced. Employing mapping and platform software techniques even
creates new flavors of the aforementioned techniques ending still in a big set of instan-
tiated techniques. For example, TMR can be implemented at the MPI library [Fiala
et al. 2012], error coding can be implemented through a software task [Shirvani et al.
2000], checkpointing can be implemented at almost all layers of the software stack (see
Section 4.4). But this is not the only commonality. Common concepts can be identified
behind the techniques both in the forward category (with the exception of the operat-
ing conditions control for the SW) and the backward category (with the exception of
having the amount of tasks fixed in SW since there is always some repetition of exe-
cution). Nevertheless differences also exist. The most prominent being that mapping
and SW provides a lot of flexibility due to the re-mapping possibilities of a given task
sequence onto the “fixed” HW. This leads to a number of techniques that are not pos-
sible in the HW-based approaches: re-arranging the instruction profile, fault tolerant
task scheduling, fault tolerant mapping on multi/many-core architectures s.

Trends and new directions. Applications themselves have been evolving. Beyond
the advance in parallelizable applications, enabled by the architecture changes, there
has been an explosion in the types of embedded applications, covering many different
aspects of the daily life. Fault-tolerant design has invaded such areas, even lifestyle
applications, as multimedia applications [Andreopoulos 2013]. Networked applications
expanded further the deliverable functionality possibilities. There is a clear tendency
to exploit more of the application knowledge in order to minimize the cost; espe-
cially, when error tolerance is possible, like in approximate computing [Sampson et al.
2015]. Other examples of emerging error-tolerant application domains are Recogni-
tion, Mining and Synthesis (RMS) [Dubey 2005] as well as artificial neural networks
(ANNs) [Temam 2012]. It is important to note that as applications and systems keep on
evolving, new combinations of requirements that have to be satisfied are created.
For example, enterprise distributed real-time and embedded (DRE) systems combine,
among others, the requirement for high availability, with real-time response, resource-
constraints and certain quality of service (QoS) requirements, like low-latency [Tambe
2010], [He and Da Xu 2014].

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:31

Adaptivity is another notable characteristic of more recently developed techniques.
Techniques incorporate elements that allow them to be differentiated during run time
depending on the changing conditions. Knobs that allow fine-grained control, enable
cost reduction by satisfying the minimum necessary requirements. This is strongly en-
abled by the evolution and availability of monitor and sensor systems [Chandra 2014].
The system behavior can be adapted at run time whenever significant environmental
changes take place, or according to varying error rates.

As indicated by several authors during the last years [DeHon et al. 2010], [Carter
et al. 2010], [Reddi et al. 2012], [Henkel et al. 2014], synergistic reliability ap-
proaches that combine several techniques across the same layer or cross-layer can
lead to near-optimal solutions. This is especially so, as errors can be masked as they
propagate through the different hardware and software layers (including the applica-
tion itself). Therefore, by properly propagating information among the different layers
and providing a suitable degree of adaptivity (with design time and run time knobs),
the most cost-effective solutions can be achieved. This has brought on challenges as
well, as knowledge and expertise from different domains has to be combined.

Further technology trends like 3D integration, incorporating heterogeneous
technologies on a single platform and dark silicon pose new challenges and op-
portunities for the fault tolerance techniques. In 3D designs the outer dies offer a
shield against radiation particles. So, for example, part of the cache can be mapped in
the inner dies without ECC protection to reduce energy and latency [Sun et al. 2011].
The authors in [Shafique et al. 2014] discuss the challenges coming from the dark sil-
icon era. For a given (maximum) thermal design power (TDP), not all transistors can
be simultaneously powered on at full performance, so that the chip operates below the
thermal safe temperature. For example, during a particular TDP (mode 5), the au-
thors have observed some natural trade-offs between transient fault rates and lifetime
reliability (through aging). The TDP mode 5 corresponds to a mode, where cores are
operated in near threshold voltages. At this mode, 3x-30x higher soft error rates have
been observed. However, since the cores can be operated at reduced temperatures at
this mode, they are exposed to reduced aging. This information can be provided to the
run time manager of the system, which can then make appropriate dynamic decisions
depending on the system quality targets.

Moreover, as many systems nowadays employ commodity-off-the-shelf (COTS)
hardware and/or software components, the case of building a system’s hardware and
software from the ground up becomes rare. This leads to partial blackbox-based design
and the resulting lack of internal design knowledge adds an additional challenge on
deriving appropriate reliability-driven approaches.

The aforementioned challenges require the designers to come up with innovative
solutions in order to ensure reliable digital system operation. This makes the request
for a global view on the domain of reliability-improvement techniques more necessary.
This survey is a contribution in that direction.

7. RELATED WORK ON CLASSIFICATION SCHEMES

During the last decades, both academia and industry have invested effort to describe
fault tolerance and mitigation techniques in a structured way. Here, some representa-
tive examples are discussed, that act complementary to this work.

In the extended past, works like the one by Randell [Randell et al. 1978], Siewiorek
and Swarz [Siewiorek and Swarz 1982] (in their book) have described the principles
of reliable system design, including terminology, metrics and models. In addition, they
explained in detail resilience features of highly reliable and highly available systems,
like commercial computers, spacecraft and avionics systems. What is most relevant for
the current work, is that these works include a categorization of the broad literature

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:32 Psychou et al.

at that time in the domain of reliability mitigation including (micro-) architectural
and software layers. Rivers et al. [Rivers et al. 2011] give an overview of the current
state-of-the-art practices for error tolerance in server class microprocessors: A basic
discussion is performed regarding the abstraction layers and the different forms of
redundancy (information, space, time), based on which error tolerance is achieved.
The aim of the paper is to give a review of current schemes and discuss approaches of
promise for the future such that they do not present an elaborate classification scheme.
Gizopoulos et al. [Gizopoulos et al. 2011] present a taxonomy of error recovery and re-
pair techniques for multicore processor architectures. In this paper, a basic split of
mitigation techniques is made between error recovery and error repair techniques.
Error recovery is further split into forward error recovery (FER), which includes re-
dundancy, like for example triple modular redundancy, and backward error recovery
(BER), which includes rolling back to a previously saved correct state of the system.
They consider that error repair techniques include basically reconfiguration and grace-
ful performance degradation. Abdallah et al. [Abdallah et al. 2012] present a survey on
designs of stochastic hardware with relaxed guard-bands in order to achieve reliable
operation and satisfactory performance. Such designs address applications that are in-
herently error tolerant. Mittal and Vetter [Mittal and Vetter 2015] present a survey of
techniques that improve resilience as well as reliability metrics, during the last 10-15
years. They use some rough categories for their presentation (e.g. redundancy-based,
compiler-based etc.) and they classify the presented schemes based on a few criteria,
like the processor component that is addressed, key approach/feature of the technique
and evaluation platform. The survey in [Saha 2006] lists a number of software-level
techniques to counteract hardware-induced errors but also software bugs.

Many of the aforementioned survey papers follow a different approach: They present
selected works in detail or they select techniques addressing specific types of sys-
tems or application domains. The proposed approach is closer to the one followed in
[Siewiorek and Swarz 1982], having a similar motivation: organizing the categories
by the type of techniques that are applied allows the universality of techniques to be
manifested. This gives more opportunities to the designer to identify a technique, that
is potentially fitting for his problem, and customize it according to the specific features
of a given system and application. To this end, the presentation of pros and cons for
the classes can more actively assist. For example, consider that the designer needs a
generally applicable solution for a medical application, in which a strong requirement
for reliability is posed. Based on the property of high error protection and general
applicability, he would have to select more costly techniques, like TMR or checkpoint-
ing/rollback. It is important to note that, in general, detection costs should also be
taken into account when considering a mitigation scheme. In many cases, detection
is strongly correlated with the mitigation and the combined outcome will decide the
cost. Other organizations are also possible. A different way would be to organize the
classification around specific modules (e.g. schemes for processors). However, this way
suppresses the re-usability of techniques. For example, TMR or isolation capability
can work for many types of modules beyond processors. Another organization could be
around specific error effects (e.g. present solutions for transient errors vs. aging). But
there, also, reusability is possible. For instance, in an example placed under leaf H.2,
the authors in [Shin et al. 2008] propose a proactive scheme to periodically activate
and deactivate modules (cache arrays) in order to suspend and/or recover the wear-out
that is caused due to NBTI and the deviation of cell stability due to process variation
(using one spare array). Potentially a similar scheme could be applied for errors due to
supply noise (but then in a demand-driven way rather than periodically), to allow the
effects of the noise go away.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:33

Of course, since the work in [Siewiorek and Swarz 1982] a lot of progress has taken
place in the domain, as already discussed, which has made the number of types of
techniques become significantly larger: parallel processing, software stack evolution,
sensing and monitoring evolution to name a few notable examples. Without claiming
an exhaustive presentation of the domain, an effort to keep a balance between breadth
and depth has been made, illustrated by multiple examples, in order to give the reader
a comprehensive view. Also, hardware and software solutions have been discussed us-
ing a similar reasoning, to allow interrelations to become more visible and facilitate
experts from different disciplines to come closer to each other. Moreover, the comple-
mentarity of the leaves allows hybrid combinations to be better understood. Finally,
for the interested user, this paper can act complementary to previous survey works.
They can become part but also enrich a more global framework in which older, more
recent but also potential future resilience approaches can be classified.

8. CONCLUSION

In this paper, techniques that increase resilience and mitigate functional reliability
errors were classified in a novel way. This was achieved through a framework with
complementary splits, in which primitive mitigation concepts are defined. That allows
every type of technique to be classified, by combining the appropriate components.
The framework has been accompanied by a wide variety of sources from the published
literature. In this way, insight can be provided to the designers and researchers about
the nature of existing schemes, since every node has some unique properties. But also
the development of efficient solutions in the future is facilitated, since the desired
properties of a new technique, required to satisfy a certain need, can be more easily
identified when they are presented in a structured way.

REFERENCES

Sarah Abdallah, Ali Chehab, Imad H. Elhajj, and Ayman Kayssi. 2012. Stochastic hardware architectures:
A survey. In Energy Aware Computing, 2012 International Conference on. 1–6.

Rishi Agarwal, Pranav Garg, and Josep Torrellas. 2011. Rebound: scalable checkpointing for coherent shared
memory. Vol. 39. ACM.

Nidhi Aggarwal. 2008. Achieving high availability with commodity hardware and software. ProQuest.

Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P Jouppi, and James E Smith. 2007. Configurable
isolation: building high availability systems with commodity multi-core processors. In ACM SIGARCH
Computer Architecture News, Vol. 35. ACM, 470–481.

Rana Ejaz Ahmed, Robert C Frazier, and Peter N Marinos. 1990. Cache-aided rollback error recovery
(CARER) algorithm for shared-memory multiprocessor systems. In Fault-Tolerant Computing, 1990.
FTCS-20. Digest of Papers., 20th International Symposium. IEEE, 82–88.

Robert Aitken, Görschwin Fey, Zbigniew T Kalbarczyk, Frank Reichenbach, and Matteo Sonza Reorda.
2013. Reliability analysis reloaded: how will we survive?. In Proceedings of the Conference on Design,
Automation and Test in Europe. EDA Consortium, 358–367.

Yiannis Andreopoulos. 2013. Error tolerant multimedia stream processing: There’s plenty of room at the top
(of the system stack). Multimedia, IEEE Transactions on 15, 2 (2013), 291–303.

T.M. Austin. 1999. DIVA: a reliable substrate for deep submicron microarchitecture design. In Microarchi-
tecture, 1999. MICRO-32. Proceedings. 32nd Annual International Symposium on. 196 –207.

Algirdas Avizienis. 1985. The N-version approach to fault-tolerant software. IEEE Transactions on software
engineering 12 (1985), 1491–1501.

Algirdas Avizienis, George C Gilley, Francis P Mathur, David A Rennels, John A Rohr, and David K Rubin.
1971. The STAR (self-testing and repairing) computer: An investigation of the theory and practice of
fault-tolerant computer design. Computers, IEEE Transactions on 100, 11 (1971), 1312–1321.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (Jan. 2004),
11–33.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:34 Psychou et al.

Rajanikanth Batchu, Yoginder S Dandass, Anthony Skjellum, and Murali Beddhu. 2004. MPI/FT: a model-
based approach to low-overhead fault tolerant message-passing middleware. Cluster Computing 7, 4
(2004), 303–315.

A.A. Bertossi, L.V. Mancini, and F. Rossini. 1999. Fault-tolerant rate-monotonic first-fit scheduling in hard-
real-time systems. Parallel and Distributed Systems, IEEE Transactions on 10, 9 (sep 1999), 934 –945.

Douglas M Blough, Fadi J Kurdahi, and Seong Y Ohm. 1997. Optimal algorithms for recovery point insertion
in recoverable microarchitectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 16, 9 (1997), 945–955.

Andrea Bondavalli, Silvano Chiaradonna, Felicita Di Giandomenico, and Fabrizio Grandoni. 2000.
Threshold-based mechanisms to discriminate transient from intermittent faults. Computers, IEEE
Transactions on 49, 3 (2000), 230–245.

S. Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor vari-
ability and degradation. IEEE Micro 25, 6 (Nov 2005), 10–16.

Fred A Bower, Daniel J Sorin, and Sule Ozev. 2005. A mechanism for online diagnosis of hard faults in
microprocessors. In Proceedings of the 38th annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, 197–208.

Christian Brehm, Matthias May, Christina Gimmler, and Norbert Wehn. 2012. A case study on error re-
silient architectures for wireless communication. In Proceedings of the 25th international conference on
Architecture of Computing Systems (ARCS’12). 13–24.

Thomas C Bressoud and Fred B Schneider. 1996. Hypervisor-based fault tolerance. ACM Transactions on
Computer Systems (TOCS) 14, 1 (1996), 80–107.

Nicholas P Carter, Helia Naeimi, and Donald S Gardner. 2010. Design techniques for cross-layer resilience.
In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and
Automation Association, 1023–1028.

Sayantan Chakravorty, Celso L Mendes, and Laxmikant V Kalé. 2006. Proactive fault tolerance in MPI
applications via task migration. In High Performance Computing-HiPC 2006. Springer, 485–496.

Vishal Chandra. 2014. Monitoring reliability in embedded processors-A multi-layer view. In Design Automa-
tion Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 1–6.

K Mani Chandy and Chittoor V Ramamoorthy. 1972. Rollback and recovery strategies for computer pro-
grams. Computers, IEEE Transactions on 100, 6 (1972), 546–556.

Mengly Chean and Jose AB Fortes. 1990. A taxonomy of reconfiguration techniques for fault-tolerant pro-
cessor arrays. Computer 23, 1 (1990), 55–69.

Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi Chen. 2015. Deterministic Replay: A
Survey. ACM Comput. Surv. 48, 2, Article 17 (Sept. 2015), 47 pages.

Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. 2012. Ersa: Error resilient system architecture for
probabilistic applications. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on 31, 4 (2012), 546–558.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: an architectural framework
for software recovery of hardware faults. In Proceedings of the 37th annual international symposium on
Computer architecture (ISCA ’10). ACM, New York, NY, USA, 497–508.

André DeHon, Heather M Quinn, and Nicholas P Carter. 2010. Vision for cross-layer optimization to address
the dual challenges of energy and reliability. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010. IEEE, 1017–1022.

M. M. Dickinson, J. B. Jackson, and G. C. Randa. 1964. Saturn V launch vehicle digital computer and data
adapter. In Proceedings of the October 27-29, 1964, fall joint computer conference, part I (AFIPS ’64 (Fall,
part I)). ACM, New York, NY, USA, 501–516.

Björn Döbel, Hermann Härtig, and Michael Engel. 2012. Operating system support for redundant mul-
tithreading. In Proceedings of the tenth ACM international conference on Embedded software. ACM,
83–92.

Pradeep Dubey. 2005. Recognition, mining and synthesis moves computers to the era of tera. (2005).

Jason Duell. 2005. The design and implementation of berkeley lab’s linux checkpoint/restart. Lawrence
Berkeley National Laboratory (2005).

Nikil Dutt, Puneet Gupta, Alex Nicolau, Abbas BanaiyanMofrad, Mark Gottscho, and Majid
Shoushtari. 2014. Multi-layer memory resiliency. In Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE. IEEE, 1–6.

Ifeanyi Egwutuoha, David Levy, Bran Selic, and Shiping Chen. 2013. A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance computing systems. Journal of
Supercomputing 65, 3 (2013).

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:35

Elmootazbellah Nabil Elnozahy. 1994. Manetho: fault tolerance in distributed systems using rollback-
recovery and process replication. (1994).

Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B Johnson. 2002. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys (CSUR) 34, 3 (2002),
375–408.

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell. 2012.
Detection and correction of silent data corruption for large-scale high-performance computing. In Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, 78.

Sunondo Ghosh, R. Melhem, and D. Mosse. 1994. Fault-tolerant scheduling on a hard real-time multipro-
cessor system. In Parallel Processing Symposium, 1994. Proceedings., Eighth International. 775–782.

Sunondo Ghosh, Rami Melhem, Daniel Mossé, and Joydeep Sen Sarma. 1998. Fault-tolerant rate-monotonic
scheduling. Real-Time Systems 15, 2 (1998), 149–181.

D. Gizopoulos, M. Psarakis, S.V. Adve, P. Ramachandran, S.K.S. Hari, D. Sorin, A. Meixner, A. Biswas, and
X. Vera. 2011. Architectures for online error detection and recovery in multicore processors. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011. 1–6.

Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman, Duo Sun, and Jörg Henkel. 2015.
Hayat: Harnessing Dark Silicon and Variability for Aging Deceleration and Balancing. In Proceedings
of the 52Nd Annual Design Automation Conference (DAC ’15). ACM, NY, USA, Article 180, 6 pages.

Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomeranz. 2003. Transient-fault recovery
for chip multiprocessors. In Computer Architecture, 2003. Proceedings. 30th Annual International Sym-
posium on. IEEE, 98–109.

Meeta S Gupta, Jude A Rivers, Pradip Bose, Gu-Yeon Wei, and David Brooks. 2009. Tribeca: design for
PVT variations with local recovery and fine-grained adaptation. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 435–446.

S. Gupta, Shuguang Feng, A. Ansari, J. Blome, and S. Mahlke. 2008. The StageNet fabric for constructing
resilient multicore systems. In Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on. 141–151.

Richard W Hamming. 1950. Error detecting and error correcting codes. Bell System technical journal 29, 2
(1950), 147–160.

Haibo He, Sheng Chen, Kang Li, and Xin Xu. 2011. Incremental learning from stream data. Neural Net-
works, IEEE Transactions on 22, 12 (2011), 1901–1914.

Wu He and Li Da Xu. 2014. Integration of distributed enterprise applications: a survey. Industrial Informat-
ics, IEEE Transactions on 10, 1 (2014), 35–42.

Rajamohana Hegde and Naresh R Shanbhag. 2001. Soft digital signal processing. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on 9, 6 (2001), 813–823.

Erik Hendriks. 2002. VMADump. (2002).

Jörg Henkel, Lars Bauer, Hongyan Zhang, Semeen Rehman, and Muhammad Shafique. 2014. Multi-Layer
Dependability: From Microarchitecture to Application Level. In Proceedings of the 51st Annual Design
Automation Conference (DAC ’14). ACM, New York, NY, USA, Article 47, 6 pages.

John L Hennessy and David A Patterson. 2011. Computer architecture: a quantitative approach. Elsevier.

Amr Hussien, Muhammed S Khairy, Amin Khajeh, Kiarash Amiri, Ahmed M Eltawil, and Fadi J Kurdahi.
2010. A combined channel and hardware noise resilient Viterbi decoder. In Signals, Systems and Com-
puters (ASILOMAR). IEEE, 395–399.

Amr Hussien, Muhammad S Khairy, Amin Khajeh, Ahmed M Eltawil, and Fadi J Kurdahi. 2011. A class of
low power error compensation iterative decoders. In Global Telecommunications Conference (GLOBE-
COM 2011), 2011 IEEE. IEEE, 1–6.

IEEE_Std. 1990. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990 (Dec
1990), 1–84. ❉❖■✿http://dx.doi.org/10.1109/IEEESTD.1990.101064

Intel. 2011. Intel R© Xeon R© Processor E7 Family: Reliability, Availability, and Serviceability10. Technical
Report. Data Center Group – Intel Corporation.

Casey M Jeffery and Renato JO Figueiredo. 2012. A flexible approach to improving system reliability with
virtual lockstep. Dependable and Secure Computing, IEEE Transactions on 9, 1 (2012), 2–15.

Doug Jewett. 1991. Integrity S2: A fault-tolerant Unix platform. In Fault-Tolerant Computing, 1991. FTCS-
21. Digest of Papers., Twenty-First International Symposium. IEEE, 512–519.

10
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf

XX:36 Psychou et al.

Eric Karl, David Blaauw, Dennis Sylvester, and Trevor Mudge. 2006. Reliability Modeling and Manage-
ment in Dynamic Microprocessor-based Systems. In Proceedings of the 43rd Annual Design Automation
Conference (DAC ’06). ACM, New York, NY, USA, 1057–1060.

Amin Khajeh, Minyoung Kim, Nikil Dutt, Ahmed M Eltawil, and Fadi J Kurdahi. 2012. Error-Aware Algo-
rithm/Architecture Coexploration for Video Over Wireless Applications. ACM Transactions on Embed-
ded Computing Systems (TECS) 11, 1 (2012), 15.

Florian Kriebel, Semeen Rehman, Duo Sun, Muhammad Shafique, and Jörg Henkel. 2014. ASER: Adaptive
Soft Error Resilience for Reliability-Heterogeneous Processors in the Dark Silicon Era. In Proceedings
of the 51st Annual Design Automation Conference (DAC ’14). ACM, NY, USA, Article 12, 6 pages.

C Mani Krishna and Kang G Shin. 1986. On scheduling tasks with a quick recovery from failure. Computers,
IEEE Transactions on 100, 5 (1986), 448–455.

K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari, and S.
Mudanai. 2011. Process Technology Variation. IEEE Trans. on Electron Devices (2011), 2197–2208.

Chung-Chi Jim Li, Elliot M Stewart, and W Kent Fuchs. 1994. Compiler-assisted full checkpointing. Soft-
ware: Practice and Experience 24, 10 (1994), 871–886.

Tuo Li, Muhammad Shafique, Semeen Rehman, Jude Angelo Ambrose, Jörg Henkel, and Sri Parameswaran.
2013a. DHASER: Dynamic Heterogeneous Adaptation for Soft-error Resiliency in ASIP-based Multi-
core Systems. In Proceedings of the International Conference on Computer-Aided Design (ICCAD ’13).
IEEE Press, Piscataway, NJ, USA, 646–653.

Tuo Li, Muhammad Shafique, Semeen Rehman, Swarnalatha Radhakrishnan, Roshan Ragel, Jude Angelo
Ambrose, Jörg Henkel, and Sri Parameswaran. 2013b. CSER: HW/SW configurable soft-error resiliency
for application specific instruction-set processors. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe. EDA Consortium, 707–712.

Frank Liberato, Rami Melhem, and Daniel Mossé. 2000. Tolerance to multiple transient faults for aperiodic
tasks in hard real-time systems. Computers, IEEE Transactions on 49, 9 (2000), 906–914.

Jane WS Liu, Wei-Kuan Shih, Kwei-Jay Lin, Riccardo Bettati, and Jen-Yao Chung. 1994. Imprecise compu-
tations. Proc. IEEE 82, 1 (1994), 83–94.

Klaus Lochmann and Andreas Goeb. 2011. A unifying model for software quality. In Proceedings of the 8th
international workshop on Software quality (WoSQ ’11). ACM, New York, NY, USA, 3–10.

Matthias May, Matthias Alles, and Norbert Wehn. 2008. A case study in reliability-aware design: a resilient
LDPC code decoder. In Proceedings of the DATE conference. ACM, 456–461.

J. W. McPherson. 2006. Reliability Challenges for 45Nm and Beyond. In Proceedings of the 43rd Annual
Design Automation Conference (DAC ’06). ACM, New York, NY, USA, 176–181.

A. Meixner and D.J. Sorin. 2008. Detouring: Translating software to circumvent hard faults in simple cores.
In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International Con-
ference on. 80–89.

Jim Mitchell, Daniel Henderson, George Ahrens, and Julissa Villareal. 2009. IBM Power Platform Relia-
bility, Availability and Serviceability (RAS)11 Technical Report POW03003.doc. International Business
Machines (IBM) Corporation.

Sparsh Mittal and Jeffrey Vetter. 2015. A Survey of Techniques for Modeling and Improving Reliability of
Computing Systems. IEEE Transactions on Parallel & Distributed Systems (2015).

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. 2010. Scalable stochastic proces-
sors. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’10). European
Design and Automation Association, 3001 Leuven, Belgium, Belgium, 335–338.

A. Orailoglu and R. Karri. 1994. Coactive scheduling and checkpoint determination during high level syn-
thesis of self-recovering microarchitectures. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on 2, 3 (Sept 1994), 304–311.

Krishna Palem and Avinash Lingamneni. 2012. What to do about the end of Moore’s law, probably!. In
Proceedings of the 49th Annual Design Automation Conference. ACM, 924–929.

Mihir Pandya and Miroslaw Malek. 1998. Minimum achievable utilization for fault-tolerant processing of
periodic tasks. Computers, IEEE Transactions on 47, 10 (1998), 1102–1112.

Aashish Pant, Puneet Gupta, and Mihaela Van Der Schaar. 2012. AppAdapt: Opportunistic application
adaptation in presence of hardware variation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 20, 11 (2012), 1986–1996.

Matthias Pflanz and Heinrich Theodor Vierhaus. 2001. Online check and recovery techniques for dependable
embedded processors. IEEE Micro 5 (2001), 24–40.

11
https://www-304.ibm.com/webapp/set2/sas/f/lopdiags/info/Power6RASOverview.pdf.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

https://www-304.ibm.com/webapp/set2/sas/f/lopdiags/info/Power6RASOverview.pdf.

Classification of Resilience Techniques Against Functional Errors at Higher Abstraction Layers of Digital SystemsXX:37

James S Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1994. Libckpt: Transparent checkpointing under
unix. Computer Science Department.

Stefan Poledna. 1996. Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism. Kluwer Aca-
demic Publishers, Norwell, MA, USA.

Stefan Poledna. 2007. "System Aspects of Dependable Systems ", Lecture Notes on Dependable Computer
Systems. (2007).

Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S. Mukherjee. 2009. Architectural core
salvaging in a multi-core processor for hard-error tolerance. In Proceedings of the 36th annual interna-
tional symposium on Computer architecture (ISCA ’09). 93 –104.

Milos Prvulovic, Zheng Zhang, and Josep Torrellas. 2002. ReVive: cost-effective architectural support for
rollback recovery in shared-memory multiprocessors. In Computer Architecture, 2002. Proceedings. 29th
Annual International Symposium on. IEEE, 111–122.

Abbas Rahimi, Andrea Marongiu, Paolo Burgio, Rajesh K Gupta, and Luca Benini. 2013. Variation-tolerant
OpenMP tasking on tightly-coupled processor clusters. In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2013. IEEE, 541–546.

Balkrishna Ramkumar and Volker Strumpen. 1997. Portable checkpointing for heterogeneous architectures.
In Fault-Tolerant Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual International
Symposium on. IEEE, 58–67.

B. Randell, P. Lee, and P. C. Treleaven. 1978. Reliability Issues in Computing System Design. ACM Comput.
Surv. 10, 2 (June 1978), 123–165.

Joydeep Ray, James C Hoe, and Babak Falsafi. 2001. Dual use of superscalar datapath for transient-fault
detection and recovery. In Proceedings of the 34th annual ACM/IEEE international symposium on Mi-
croarchitecture. IEEE Computer Society, 214–224.

Vijay Janapa Reddi, David Z Pan, Sani R Nassif, and Keith A Bowman. 2012. Robust and resilient designs
from the bottom-up: Technology, CAD, circuit, and system issues. In Design Automation Conference
(ASP-DAC), 2012 17th Asia and South Pacific. IEEE, 7–16.

Semeen Rehman, Florian Kriebel, Duo Sun, Muhammad Shafique, and Jörg Henkel. 2014. dTune: Leverag-
ing Reliable Code Generation for Adaptive Dependability Tuning Under Process Variation and Aging-
Induced Effects. In Proceedings of the 51st Annual Design Automation Conference (DAC ’14). ACM, New
York, NY, USA, Article 84, 6 pages.

Semeen Rehman, Muhammad Shafique, Pau Vilimelis Aceituno, Florian Kriebel, Jian-Jia Chen, and Jörg
Henkel. 2013. Leveraging variable function resilience for selective software reliability on unreliable
hardware. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’13). EDA
Consortium, San Jose, CA, USA, 1759–1764.

Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jörg Henkel. 2011. Reliable software for
unreliable hardware: embedded code generation aiming at reliability. In Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis. ACM,
237–246.

Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jörg Henkel. 2012. Raise: Reliability-aware
instruction scheduling for unreliable hardware. In Design Automation Conference (ASP-DAC), 2012 17th
Asia and South Pacific. IEEE, 671–676.

George A Reis, Jonathan Chang, and David I August. 2007. Automatic instruction-level software-only re-
covery. IEEE micro 1 (2007), 36–47.

Jude A Rivers, Meeta S Gupta, Jeonghee Shin, Prabhakar N Kudva, and Pradip Bose. 2011. Error tolerance
in server class processors. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on 30, 7 (2011), 945–959.

Dimitrios Rodopoulos, Georgia Psychou, Mohamed M. Sabry, Francky Catthoor, Antonis Papanikolaou,
Dimitrios Soudris, Tobias G. Noll, and David Atienza. 2015. Classification Framework for Analysis and
Modeling of Physically Induced Reliability Violations. ACM Comput. Surv. 47, 3, Article 38 (Feb. 2015),
33 pages.

Bogdan F Romanescu and Daniel J Sorin. 2008. Core cannibalization architecture: improving lifetime chip
performance for multicore processors in the presence of hard faults. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques. ACM, 43–51.

Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli. 2007. Power and reliability management
of SoCs. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 15, 4 (2007), 391–403.

E. Rotenberg. 1999. AR-SMT: a microarchitectural approach to fault tolerance in microprocessors. In Fault-
Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual International Symposium on. 84 –91.

Goutam Kumar Saha. 2006. Software based fault tolerance: a survey. Ubiquity 2006, July, Article 1 (July
2006), 1 pages.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

XX:38 Psychou et al.

Adrian Sampson, James Bornholt, and Luis Ceze. 2015. Hardware-Software Co-Design: Not Just a Cliché.
In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Jose Carlos Sancho, Fabrizio Petrini, Kei Davis, Roberto Gioiosa, and Song Jiang. 2005. Current practice
and a direction forward in checkpoint/restart implementations for fault tolerance. In Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings. 19th IEEE International. IEEE, 8–pp.

Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. 2014. The EDA challenges in
the dark silicon era. In Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 1–6.

Jeonghee Shin, Victor Zyuban, Pradip Bose, and Timothy M Pinkston. 2008. A proactive wearout recov-
ery approach for exploiting microarchitectural redundancy to extend cache SRAM lifetime. In ACM
SIGARCH Computer Architecture News, Vol. 36. IEEE Computer Society, 353–362.

Philip P Shirvani, Nirmal R Saxena, and Edward J McCluskey. 2000. Software-implemented EDAC protec-
tion against SEUs. Reliability, IEEE Transactions on 49, 3 (2000), 273–284.

D.P. Siewiorek. 1990. Fault tolerance in commercial computers. Computer 23, 7 (July 1990), 26–37.

D. Siewiorek and R. Swarz. 1982. The Theory and Practice of Reliable System Design. Digital Press.

Joseph Slember and Priya Narasimhan. 2006. Living with nondeterminism in replicated middleware ap-
plications. In Proceedings of the ACM/IFIP/USENIX 2006 International Conference on Middleware.
Springer-Verlag New York, Inc., 81–100.

J Hamilton Slye and Elmootazbellah Nabil Elnozahy. 1996. Supporting nondeterministic execution in fault-
tolerant systems. In Fault Tolerant Computing, Proceedings of Annual Symposium on IEEE. 250–259.

D.J. Sorin, M.M.K. Martin, M.D. Hill, and D.A. Wood. 2002. SafetyNet: improving the availability of shared
memory multiprocessors with global checkpoint/recovery. In Computer Architecture, 2002. Proceedings.
29th Annual International Symposium on. 123–134.

Brinkley Sprunt, Lui Sha, and John Lehoczky. 1989. Scheduling sporadic and aperiodic events in a hard
real-time system. Technical Report. DTIC Document.

Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. 2005. Exploiting Structural Duplica-
tion for Lifetime Reliability Enhancement. In Proceedings of the 32nd annual international symposium
on Computer Architecture (ISCA ’05). IEEE Computer Society, Washington, DC, USA, 520–531.

Hongbin Sun, Pengju Ren, Nanning Zheng, Tong Zhang, and Tao Li. 2011. Architecting high-performance
energy-efficient soft error resilient cache under 3D integration technology. Microprocessors and Mi-
crosystems 35, 4 (2011), 371–381.

Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. 2000. Slipstream processors: improving both
performance and fault tolerance. In ACM SIGARCH Computer Architecture News, Vol. 28. 257–268.

Sumant Tambe. 2010. Model-driven fault-tolerance provisioning for component-based distributed real-time
embedded systems. Ph.D. Dissertation. Vanderbilt University.

Olivier Temam. 2012. A defect-tolerant accelerator for emerging high-performance applications. ACM
SIGARCH Computer Architecture News 40, 3 (2012), 356–367.

James E Tomayko. 1986. Lessons learned in creating spacecraft computer systems: Implications for using
Ada (R) for the space station. (1986).

Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, and Rebecca L Stamm. 1996.
Exploiting choice: Instruction fetch and issue on an implementable simultaneous multithreading pro-
cessor. In ACM SIGARCH Computer Architecture News, Vol. 24. ACM, 191–202.

Shyamsundar Venkataraman, Rui Santos, Akash Kumar, and Jasper Kuijsten. 2015. Hardware task migra-
tion module for improved fault tolerance and predictability. In Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), 2015 International Conference on. IEEE, 197–202.

John Von Neumann. 1956. Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents. Automata studies 34 (1956), 43–98.

Nicholas J Wang and Sanjay J Patel. 2006. ReStore: Symptom-based soft error detection in microprocessors.
Dependable and Secure Computing, IEEE Transactions on 3, 3 (2006), 188–201.

Kun-Lung Wu and W Kent Fuchs. 1990. Recoverable distributed shared virtual memory. Computers, IEEE
Transactions on 39, 4 (1990), 460–469.

Kun-Lung Wu, W Kent Fuchs, and Janak H Patel. 1990. Error recovery in shared memory multiprocessors
using private caches. Parallel and Distributed Systems, IEEE Transactions on 1, 2 (1990), 231–240.

Jun Yan and Wei Zhang. 2005. Compiler-guided register reliability improvement against soft errors. In
Proceedings of the 5th ACM international conference on Embedded software. ACM, 203–209.

ACM Computing Surveys, Vol. V, No. N, Article XX, Publication date: January XXXX.

	Introduction
	Context and Useful Terminology
	Resilient Digital System Design
	Computing Terminology
	Terminology on Abstraction Layers
	Additional Terminology

	Rationale of the classification and its presentation

	Platform Hardware
	Forward execution - Additional HW modules provision
	 Same functionality .
	 Different functionality .

	Forward execution - HW modules amount fixed
	Internal functionality reuse .
	 I/O configuration modification .
	Operating conditions control .
	Resource allocation .
	Alternate HW modules .

	Backward execution - Additional HW modules provision
	Same functionality .
	Different functionality .

	Backward execution - HW modules amount fixed
	 Retry without state storage .
	 Retry with state storage .

	Overall platform hardware classification

	Platform Software
	Forward execution - Additional tasks provision
	 Same functionality .
	 Different functionality .

	Forward execution - Tasks amount fixed
	Functionality control .
	Resource allocation .
	Alternate tasks .

	Backward execution - Retry without state storage
	Parallel execution .
	 Sequential execution .

	Backward execution - Retry with state storage
	Intra-module .
	Inter-module .

	Overall mapping and platform software classification

	Usage of the Classification Framework
	Mapping of hybrid schemes
	Comparison of closely related schemes

	Discussion and Future Challenges
	Related Work on Classification Schemes
	Conclusion

