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Classification of Rhythmic Cortical Activity
Elicited by Whole-Body Balance Perturbations

Suggests the Cortical Representation of
Direction-Specific Changes in Postural Stability

Teodoro Solis-Escalante , Member, IEEE, Digna de Kam , and Vivian Weerdesteyn

Abstract— Postural responses that effectively recover
balance following unexpected postural changes need to
be tailored to the characteristics of the postural change.
We hypothesized that cortical dynamics involved in top-
down regulation of postural responses carry information
about directional postural changes (i.e., sway) imposed
by sudden perturbations to standing balance (i.e., support
surface translations). To test our hypothesis, we evalu-
ated the single-trial classification of perturbation-induced
directional changes in postural stability from high-density
EEG. We analyzed EEG recordings from six young able-
bodied individuals and three older individuals with chronic
hemiparetic stroke, which were acquired while individu-
als reacted to low-intensity balance perturbations. Using
common spatial patterns for feature extraction and lin-
ear discriminant analysis or support vector machines for
classification, we achieved classification accuracies above
random level (p < 0.05; cross-validated) for the classifi-
cation of four different sway directions (one vs. the rest
scheme). Screening of spectral features (3-50 Hz) revealed
that the highest classification performance occurred when
low-frequency (3-10 Hz) spectral features were used. Strik-
ingly, the participant-specific classification results were
qualitatively similar between young able-bodied individuals
and older individuals with chronic hemiparetic stroke. Our
findings demonstrate that low-frequency spectral compo-
nents, corresponding to the cortical theta rhythm, carry
direction-specific information about changes in postural
stability. Our work presents a new perspective on the cor-
tical representation of postural stability and the possible
role of the theta rhythm in the modulation of (directional)
reactive balance responses. Importantly, our work provides
preliminary evidence that the cortical encoding of direction-
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specific changes in postural stability is present in chronic
hemiparetic stroke.

Index Terms— Balance control, common spatial patterns,
electroencephalogram (EEG), mobile brain/body imaging
(MoBI), Theta rhythm.

I. INTRODUCTION

H
UMAN standing balance and upright posture are main-

tained through interactions of hierarchically organized

and highly interconnected neural ensembles distributed across

the central nervous system (CNS), including the cerebral

cortex [1], [2]. Initial automatic postural responses are pre-

sumably mediated by brainstem/midbrain structures, and the

possible cortical contributions to reactive postural responses

likely increase with the latency of such responses [3]. The

cortical responses to balance perturbations appear in the

electroencephalogram (EEG) between 30 and 400 ms after

perturbation onset, with a broad scalp distribution and a

rich spectral composition [4]–[6]. The cortical responses may

reflect concurrent cognitive and sensorimotor processes related

to the integration of the multisensory input (visual, vestibular,

and proprioceptive) associated with sudden postural changes

[7], [8] and to the detection of a mismatch between expected

and current postural stability, as a form of error detection [9],

[10] or sensorimotor conflict [4]. In turn, the later cortical

responses could represent direct contributions to the reactive

postural responses [2], [3].

Recent studies on mobile brain/body imaging (MoBI) based

on high-density EEG identified consistent patterns of rhythmic

neural activity that could support the detection of a mismatch

between expected and current postural stability [4], [5], [11].

First, soon after perturbation onset, a transient enhancement

of the theta (3-7 Hz) rhythm appears in frontal, central,

parietal, and occipital cortical areas, irrespective of the sensory

modality of the perturbation (visual or physical perturbations;

[4]) or the subsequent postural response (stepping or maintain-

ing both feet in place; [5]). A similar pattern has been observed

during a balance beam walking task during the double sup-

port phase of the gait cycle directly preceding the loss of
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balance [11], when proprioceptive information from both feet

could be used for assessment of postural stability. The broad

spatial distribution of the theta enhancement suggests cortico-

cortical interactions that may support the integration of sensory

information. Second, a transient enhancement of theta, alpha

(8-12 Hz), and beta (13-17 Hz) rhythms appears in midline

central cortical areas following physical perturbations [4], [5]

and in parietal cortical areas following visual perturbations,

i.e., brisk rotation of the visual field in a virtual environment

[4]. This pattern was first identified in frontal and central

scalp areas as the spectral components of the main cortical

evoked response to physical balance perturbations [12], and

also around the onset of voluntary balance reactions during

unperturbed postural sway [13]. Interestingly, the presence of

similar broadband patterns in central and parietal areas suggest

consistent neural mechanisms for balance control that are

common across sensory modalities of the perturbation. These

common cortical mechanisms could represent the integration

of multisensory information related to postural stability for

adaptation of late-phase responses (e.g. stepping or reaching

for support [2], [3]).

Because reactive postural responses are known to be

direction-specific [14]–[16], we hypothesized that cortical

processes involved in (feedback) control of balance and pos-

ture convey direction-specific information further into the

CNS, presumably for appropriate modulation and execution of

reactive postural responses. Our goal was to determine if the

modulations of rhythmic neural activity elicited by whole-body

balance perturbations carry information related to direction-

specific changes in postural stability. To achieve this goal,

we evaluated the offline single-trial classification of four differ-

ent sway directions based on high-density EEG. We analyzed a

database of EEG recordings from six young able-bodied indi-

viduals and three older individuals with chronic hemiparetic

stroke. Importantly, the focus of our analysis was the single-

trial classification of sway direction within each participant.

Individuals with chronic hemiparetic stroke were included

because their reduced balance capacity towards one body side,

demonstrated by greater postural sway towards the paretic side

in response to balance perturbations of equal intensity, and

associated to direction-specific deficits in their neuromuscular

responses [14]. In individuals with chronic hemiparetic stroke,

cortical activity related to balance control could reflect both

primary cortical deficits and/or the long-term adaptation of the

cortical representation of postural stability due to the acquired

asymmetric balance capacity. We expected that the inclusion

of individuals with chronic hemiparetic stroke would indicate

if cortical encoding of direction-specific changes in postural

stability exists after stroke. Such knowledge is necessary to

guide further studies on cortical correlates of impaired balance

capacity post-stroke, and for the development of future EEG-

based systems for monitoring of postural stability.

II. MATERIALS AND METHODS

A. Database Description

We analyzed a database of high-density EEG recordings

from six young able-bodied individuals and three older indi-

viduals with chronic hemiparetic stroke who participated in

one experimental session with a reactive balance task. The

experiments were undertaken with the understanding and

written consent of each individual. The study protocol was

approved by the ethics committee of the Medisch Spectrum

Twente (Enschede, The Netherlands; NL52632.044.15). The

experiments were conducted in accordance with the Declara-

tion of Helsinki.

B. Participants

Six young able-bodied volunteers (age 26.3 ± 1.6 years,

2 female) were recruited for the experiment. None of them

had self-reported history of neurological or neuromuscular

disease, or any other impairments that limited their involve-

ment in the experiment. In addition, three older individu-

als with chronic hemiparetic stroke (male) were recruited.

The individuals with stroke had mild to moderate motor

impairments caused by unilateral supratentorial lesions and

were able to stand and walk independently on uneven terrain

(functional ambulation category score of 5). None of the

individuals with stroke presented other neurological, cognitive,

or musculoskeletal impairments. Table I and Table II show the

participants’ characteristics.

C. Experimental Paradigm

The experiments were conducted with the Radboud Falls

Simulator, a dynamic posturography system for delivering

multidirectional balance perturbations [17]. During the exper-

iments, participants stood in the middle of a movable platform

with a narrow stance (feet approximately 4.5 cm apart). The

participants were instructed to maintain standing balance in

response to low-intensity balance perturbations, i.e. transla-

tions of the movable platform in the horizontal plane. The

perturbation consisted of constant acceleration (300 ms), con-

stant velocity (500 ms), and constant deceleration (300 ms).

The acceleration was 0.5 m/s2. At this acceleration, the low-

intensity of the perturbations required feet-in-place responses

for maintaining standing balance. After the perturbation,

the platform remained stationary for two seconds before slowly

returning to its initial position. For safety reasons, individuals

with chronic hemiparetic stroke were fitted with a safety

harness (ARG 110 ERGOTEC, SKYLOTEC GmbH, Neuwied,

Germany) and an ankle brace (ASO, Medical Specialties,

Wadesboro, NC, USA) on the paretic side, which only pro-

vided minimal support.

During the experiment, the participants were perturbed with

movements of the support surface in four different directions

(see Fig. 1). The support surface translations cause the body

to sway in the opposite direction of the surface movement.

In this study, we refer to sway direction (i.e., the direction of

loss of balance) rather than perturbation direction to emphasize

that the cortical responses indicate changes in body posture.

The directions were identified in a previous study [14] as the

directions with preferential recruitment of coordinated muscu-

lar responses during reactive balance control. The experiment

included 50 trials per direction, for a total of 250 trials divided

into five blocks with ten trials per direction. The order of

the directions was randomized. The onset of the perturba-

tion within each block varied between 10 and 12 s. Task
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TABLE I

CHARACTERISTICS OF ABLE-BODIED INDIVIDUALS

TABLE II

CHARACTERISTICS OF INDIVIDUALS WITH CHRONIC HEMIPARETIC

STROKE

performance was visually evaluated and manually annotated

during data acquisition.

D. Data Acquisition

High-density EEG was recorded using a cap with 126 Ag-

AgCl electrodes (WaveGuard, ANT Neuro, Hengelo, The

Netherlands), distributed across the scalp according to the five

percent electrode system [18]. The EEG was referenced to

the common average during acquisition. The ground electrode

was placed on the left mastoid. A biosignal amplifier (REFA

System, TMSi, Oldenzaal, The Netherlands) recorded the EEG

at 2048 Hz without any filters, except for a built-in antialiasing

low-pass filter. To monitor for physiological artifacts, two-

channel electrooculogram (EOG) was recorded with the same

amplifier using adhesive Ag-AgCl electrodes placed slightly

above the nasion (vertical eye movement) and at the outer

canthus of the left eye (horizontal eye movement). The onset

of each perturbation trial was recorded from a synchronization

trigger generated by the platform controller.

E. EEG Analysis

1) Preprocessing: The EEG was analyzed with MATLAB

(The Mathworks, Inc., Natick, MA, USA) using custom scripts

and incorporating functions from EEGLAB [19]. The EEG

was bandpass filtered between 2 and 200 Hz (4th order

Butterworth IIR filter, zero-phase shift) and downsampled to

512 Hz. Highly contaminated channels were identified by

visual inspection and removed from the recordings. On aver-

age, 126 channels remained for analysis (SD ± 1.6; range:

123-128). The remaining channels were re-referenced to the

common average.

2) Artifact Correction: To improve the signal-to-noise ratio of

the cortical activity contained in the EEG, artifact correction

was performed in four stages (see Fig. 2). In the first stage,

line noise (50 Hz) and its harmonics (100 Hz and 150 Hz) were

removed with the CleanLine plugin for EEGLAB, which uses

frequency-domain regression to estimate and reduce sinusoidal

artifacts.

In the second stage, nonstationary high-amplitude arti-

facts (e.g., muscle artifacts, eye movements, and electrode

movements) were reduced with the clean_rawdata plugin for

EEGLAB, which implements the artifact subspace reconstruc-

tion (ASR) method [20]. This method determines statistical

parameters from a signal subspace obtained from principal

component analysis (PCA) of artifact-free EEG. To iden-

tify artifacts, new statistical parameters are determined from

sliding-window PCA and compared against the parameters

from the signal subspace. When artifacts are identified, the cor-

responding principal components (i.e., the artifact subspace)

are suppressed, and artifact-reduced EEG is reconstructed for

the corresponding sliding window. In this stage, the signal

subspace was automatically determined by the clean_rawdata

plugin from the continuous participant-specific dataset, includ-

ing all intertrial intervals where participants stood quietly and

the support surface remained stationary. We used a rejection

threshold of 10 × SD of the signal subspace parameters and

allowed for rejection of segments if more than 50% of the

channels are judge outside the signal subspace.

In the third stage, the EEG was segmented into epochs from

−2 to 3 s relative to perturbation onset. Based on manual

annotations during data acquisition, epochs corresponding to

incorrect task execution were discarded. Infomax independent

component analysis (ICA), implemented in EEGLAB, decom-

posed the epoched EEG into maximally independent and spa-

tially stationary components, corresponding to cortical source-

level activity and remaining artifacts. Because re-referencing

the EEG to the common average reduces the rank of the

data by one, PCA was applied to the epoched EEG and the

component with zero-valued eigenvalue was removed before

computing ICA.

ICA was used for artifact correction. Therefore, we identi-

fied the independent components (ICs) most likely to represent

artifact-related activity and remove those ICs from the data.

Artifact-related ICs were identified by the median frequency

of their power spectrum (≥25 Hz), their correlation coefficient

with the EOG channels (≥0.6), and the topography of their

scalp projection (major contributions of one single electrode).

The artifact-related components were removed and artifact-

reduced EEG was reconstructed. On average, the artifact-

reduced EEG consisted of 47 independent components (SD

± 11.4; range: 30-69).

In the fourth stage, the impact of task-related muscle activity

was further reduced by computing a set of spatial filters that

enhance the contributions of low frequency cortical rhythms

and minimize the contributions of broadband high frequency
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rhythms (assumed to represent muscle artifacts). The spatial

filters were obtained from the generalized eigendecomposition

between the covariance matrices of lowpass (zero-phase shift

FIR order 103, 25 Hz) and bandpass (zero-phase shift FIR

order 103, 25 to 100 Hz) filtered EEG [21]. The generalized

eigendecomposition

W · 3 = 6
−1
R · 6A · W (1)

finds the eigenvectors W that maximize the ratio (eigenvalues

3) between 6A and 6R , which in this case correspond to the

covariance matrices of lowpass and bandpass filtered EEG.

The covariance matrices were computed from the filtered

EEG after extracting and concatenating a one-second time

window directly after perturbation onset in each trial (all

conditions). Because the rank of the data was reduced after

removing independent components in stage three of the artifact

correction, the covariance matrices were regularized to the

identity matrix according to 6 = (1 − γ ) · 6 + γ · I ;

where 6 represents the covariance matrix, I represents the

identity matrix, and γ is the regularization parameter (γ =

0.001). To minimize broadband high frequency rhythms the

eigenvectors associated with the five smallest eigenvalues were

removed, and the remaining eigenvectors (i.e., spatial filters)

were kept for further use in the analysis.

F. Classification of Directional Changes in Postural
Stability

The classification followed a one vs. the rest scheme, where

four different binary classifiers were trained to classify trials

from one of the sway directions against trials from the other

three (i.e., the rest). This scheme helped to determine if

the different balance perturbations elicited cortical responses

encoding direction-specific changes in postural stability.

To evaluate classification performance, we computed the

classification accuracy (ACC) and the area under the receiver

operating characteristic curve (AUC) with 10 × 10-fold cross-

validation. This means that the participant-specific data from

each sway direction was divided into ten subsets. In each

cross-validation fold, nine subsets from each class (i.e., sway

direction) were used for feature extraction and classifier train-

ing and the remaining subset from each class was used for

classifier testing. The ACC and AUC were computed after all

ten subsets had been tested (i.e., in the outer folds). In the

next (outer) cross-validation fold, the order of the trials was

shuffled, respecting class membership, and the (inner) cross-

validation was repeated.

1) Feature Extraction: Discriminative features were

extracted from the EEG using a variant of the common spatial

patterns algorithm (CSP) [22], [23]. For binary classification,

the CSP algorithm computes optimal spatial filters that

maximize the variance of one of the classes while minimizing

the variance of the other classes. This is equivalent to

solving (1) for the intra-class covariance matrices. In this

implementation, the EEG was passed through the spatial

filters of the artifact correction phase and bandpass filtered.

Then, covariance matrices were computed from the trials

in the training set of each sway direction and regularized

Fig. 1. Experimental setup and paradigm timing. A. Participants stood
on a movable platform with a narrow stance. Their task was to maintain
standing balance with both feet in place. B. Low-intensity balance
perturbations induced postural sway in four different directions (arrows).
The sway direction labels indicate forward (FWD), backward (BWD),
preferred/paretic body side (P; black foot), or non-preferred/non-paretic
body side (N; white foot). C: The balance perturbations were support
surface translations with three phases: constant acceleration, constant
velocity, and constant deceleration.

(γ = 0.001). The one vs. the rest CSP filters were obtained

by computing a generalized eigendecomposition using the

covariance matrix of one direction and the sum of the

covariance matrices of the other directions.

We extracted spectral features between 3 and 50 Hz (in 30

steps, logarithmically spaced). We used the convolution of

each EEG epoch with a set of complex Morlet wavelets,

which were defined as complex sine waves tapered by a

Gaussian [24]. The full-width at half-maximum (FWHM) for

these wavelets ranged from 500 to 200 ms, decreasing with

increasing wavelet peak frequency. In this way, the wavelets

corresponded to a spectral FWHM range of 1.9 to 5.1 Hz.

To compute the (regularized) covariance matrices, short time-

segments were matched to the FWHM of each wavelet, with

an offset of 50 ms relative to perturbation onset.

The resulting CSP filters were combined with the GED

spatial filters from the artifact correction phase by multiplying

both filter matrices. Actual features for classification were

obtained from the first three and the last three spatial fil-

ters in the combined filter matrix. Specifically, the artifact-

corrected EEG passed through the six spatial filters and the

corresponding complex wavelet. Then, the absolute squared

was computed for each (complex) time sample, which was

log-transformed and smoothed by a 100 ms moving average

filter (zero-phase shift). These logarithmic bandpower feature

vectors had six features.

2) Classification: Binary classification was handled by linear

discriminant analysis (LDA) and support vector machines

(SVM). These classifiers are the most popular for single-trial
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Fig. 2. Diagram of EEG preprocessing, artifact correction, and classification.

classification in the field of brain-computer interfaces [25]. The

LDA is a linear classifier that provides a Bayes-optimal sep-

arating hyperplane based on the class means and inter-, intra-

class covariance matrices [26]. The SVM is a linear classifier

that finds an optimal separating hyperplane by maximizing the

margin between this hyperplane and the feature vectors that

define the border between both classes (i.e., the support vec-

tors) [26]. The SVM can provide linear separation hyperplanes

following a non-linear transformation of the feature space via

a kernel function. This can improve the performance in non-

linearly separable classification problems.

We used LDA and SVM with linear and Gaussian (radial

basis function, rbf) kernels. Noteworthy, the class covariance

matrices necessary for LDA were regularized (γ = 0.05).

Regularization of the covariance matrices is more effective

for classification and more robust for small training sets [25],

[26].

For classifier training, feature vectors were computed as the

mean value of the continuous features over the frequency-

specific time-segments used for feature extraction (matched to

the FWHM). For classifier testing, the classifiers were applied

to the sample-by-sample features in each testing trial. Class

membership was determined by majority vote on the sign

of the sample-by-sample classification within the frequency-

specific time-segments.

3) Statistical Analyses: The statistical significance of

participant-level classification accuracy was determined with

non-parametric permutation statistics [27], [28]. The classi-

fication accuracy of each cross-validation test (i.e., the outer

folds) was compared against a surrogate distribution of random

accuracies created via random permutations (n = 200) of the

true class labels. The random accuracy level was defined from

the 95th percentile of the surrogate distribution of random

accuracies. At participant-level, statistically significant differ-

ences between classification accuracy (cross-validated) and the

random accuracy level were calculated using non-parametric

one-tailed Wilcoxon signed rank tests (α = 0.05).

Also at participant-level, the performance of the different

classifiers (LDA, SVM-lin, SVM-rbf) was evaluated with

a non-parametric one-way Kruskal-Wallis. Multiple compar-

isons between classifier-specific performance were conducted

using non-parametric two-tailed Wilcoxon signed rank tests.

The significance level (α = 0.05) for multiple comparisons

was corrected for false discovery rate (FDR) [29]. These

analyses were repeated for each spectral feature and sway

direction.

G. Spatial Patterns

All classifiers were trained with features extracted using

participant-specific and direction-specific spatial filters. Each

of these filters can be associated with a spatial pattern that

represents the scalp projection of the underlying cortical

sources [30]; therefore allowing for interpretation regarding

the neurophysiological origin of the discriminative features.

For each participant, the spatial patterns from all cross-

validation folds were averaged (respecting the filter order) after

taking the absolute value and normalizing each pattern by its

root mean square. For group-level visualization, the spatial

patterns of young able-bodied individuals were clustered with

the k-means algorithm (k = 3; metric: cosine distance). This

was separately done for the first three (i.e., direction-specific)

and the last three spatial filters (i.e., rest class). The spatial

patterns of the individuals with chronic hemiparetic stroke

were excluded from group-level pattern visualization.

III. RESULTS

A. Classification Accuracy

Table I and Table II show the participant-specific number of

trials per direction available for classification. Fig. 3 presents

the mean classification accuracy (over cross-validation folds)
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achieved for each participant, sway direction, spectral feature,

and classifier type. Overall, the classification accuracy was

consistently above the random level for features extracted from

low-frequency spectral components, in both healthy young

able-bodied individuals and older individuals with chronic

hemiparetic stroke. On the other hand, high-frequency spectral

components yielded classification accuracies above the random

level for some, but not all, participants. Comparisons between

classifiers (Fig. 3) showed that the highest accuracies were

obtained by the SVM classifiers, but the differences between

linear and Gaussian kernels were not always significant.

Noteworthy, the mean random accuracies across participants

and spectral features were LDA 55.3% (SD 1.0%), SVM-lin

72.0% (SD 2.0%), and SVM-rbf 73.5% (SD 1.9%). The higher

random accuracy levels of the SVM classifiers show that the

outputs of these are less affected by random permutations

of the true class labels, which suggests a bias towards the

more prevalent class. This effect is better appreciated from

the confusion matrices.

Fig. 4 presents a set of mean confusion matrices, averaged

across young able-bodied individuals, and corresponding to

spectral features with non-overlapping frequency bands. The

confusion matrices show that the SVM classifiers lead to a

high proportion of true and false negatives. This is evident for

high-frequency spectral components, which resulted in clas-

sification accuracies not significantly above random accuracy

levels. Nonetheless, the results presented in Fig. 3 and Fig. 4

demonstrate that classification accuracies above chance level

are achieved when features are extracted from low-frequency

spectral components. Furthermore, the estimation of random

accuracy level is able to handle the class imbalance of the one

vs the rest scheme.

B. Area Under the Receiver Operating Characteristic
Curve

Fig. 5 presents the mean area under the receiver operating

characteristic curve (over cross-validation folds) estimated for

each participant, spectral feature, and classifier type. The AUC

gives complementary information about a classifier’s ability

to separate the positive and negative classes and it is robust

against class imbalance, i.e., a random level of performance

results in 0.5 AUC, regardless of class prevalence.

The results in Fig. 5 show that, overall, the AUC was higher

for features extracted from low-frequency spectral compo-

nents, in both young able-bodied individuals and older indi-

viduals with chronic hemiparetic stroke; in a similar way that

the results for classification accuracy. Comparisons between

classifiers in terms of AUC showed that highest performances

were obtained by the linear classifiers, i.e., LDA and SVM

with a linear kernel. Moreover, an effect of classifier type

was uncommon (c.f. classification accuracy in Fig. 3). These

results show that the classification problem can be solved using

linear classifiers.

C. Scalp Topography of the Spatial Patterns

Fig. 6 presents the spatial patterns associated with direction-

and frequency-specific spatial filters for extraction of spectral

Fig. 3. Classification accuracy. A–C. Cross-validated mean classification
accuracy per participant, sway direction, spectral feature, and classifier
type. Images shown with the same color scale. Accuracies above random
level (p< 0.05, FDR corrected) are indicated with black asterisks. D. Tile
colors corresponding to the classifier type with highest accuracy. Results
of multiple comparisons (p < 0.05, FDR corrected) indicate accuracy
significantly higher than the other two classifiers (white asterisks), accu-
racy significantly higher than one other classifier (white diamonds), non-
significant differences (white plus signs). Tiles without markers indicate
no effect of classifier type. Participant 1-6: young able-bodied individuals.
Participant 7-9: older individuals with chronic hemiparetic stroke.

features. The spatial patterns are shown for the evaluation of

LDA classifiers and the set of features presented in Fig. 4. The

spatial patterns were obtained as group-level visualization via

k-means clustering of the spatial patterns of young able-bodied

individuals. Notably, the spatial patterns of low-frequency

spectral components present scalp topographies with clear

fronto-centro-parietal distributions.

IV. DISCUSSION

A. Low-Frequency Spectral Components Encode
Direction-Specific Changes to Postural Stability

The key finding in our study is that direction-specific

changes in postural stability can be classified from modula-

tions of low-frequency spectral components (3-10 Hz) of the

EEG (see Fig. 3 and Fig. 5). Remarkably, these modulations

were identified in young able-bodied individuals and three

older individuals with unilateral cerebral lesions (chronic
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Fig. 4. Confusion matrices. To summarize the performance of the LDA
and SVM classifiers the participant-specific confusion matrices were
averaged across young able-bodied individuals (Participant 1-6). These
matrices suggest a bias towards the negative class (the rest ) in the SVM
classifiers.

hemiparetic stroke). Our finding demonstrates an associa-

tion between the low-frequency (e.g., theta rhythm) cortical

rhythms and the cortical representation of postural stability;

presumably for the appropriate selection and/or modulation of

direction-specific postural responses.

The low-frequency rhythms may represent the detection of a

mismatch between expected and (imposed changes to) current

postural stability, which has been previously considered a

form of error detection or processing of sensorimotor conflict

[4], [6], [9], [10]. This interpretation is consistent with a

view of the theta rhythm as representing mechanisms of

cognitive control for the self-regulation of behavior [31]–

[36]. Indeed, many studies have found correlations between

modulations of the (fronto-central) theta rhythm and task

performance in experiments related to action monitoring (i.e.,

the capacity to evaluate the outcome of one’s actions in order

to detect errors and initiate corrective adjustments) and the

resolution of response conflict (i.e., the ability to select task-

relevant responses among competing alternatives) [31]–[39].

Although our experimental paradigm did not required overt

motor responses, the postural control system (likely involving

the cerebral cortex) could have assessed the direction of

postural sway, in order to determine an appropriate postural

response for maintaining balance. Interestingly, recent studies

on cortical control of balance and posture have found that

the power of the fronto-central theta rhythm covaries with the

Fig. 5. Area under the receiver operating characteristic curve. A–
C. Cross-validated mean AUC per participant, sway direction, spectral
feature, and classifier type. Images shown with the same color scale.
D. Tile colors corresponding to the classifier type with highest AUC.
Results of multiple comparisons (p < 0.05, FDR corrected) indicate
AUC significantly higher than the other two classifiers (white asterisks),
AUC significantly higher than one other classifier (white diamonds), non-
significant differences (white plus signs). Tiles without markers indicate
no effect of classifier type. Participant 1-6: young able-bodied individuals.
Participant 7-9: older individuals with chronic hemiparetic stroke.

postural demand of a continuous “feet-in-place” balance task

[40]–[42]. Based on these observations and the presently found

relevance of the theta rhythm for the classification of direction-

specific sway, we suggest that the cortical theta rhythm may

play a role in the feedback control of balance and posture.

B. The Cortical Representation of Postural Stability
Includes the Medial Frontal Cortex

Another relevant finding in our study is that the cortical rep-

resentation of direction-specific changes in postural stability

(related to low-frequency spectral components) appeared with

well-defined scalp topographies showing fronto-centro-parietal

distributions (Fig. 6), which is consistent with previous studies

on cortical control of balance [4]–[6], [41], [42]. Furthermore,

the fronto-central topography of the theta rhythm is a hallmark

of cognitive control [35], [36], [38].

Notably, spatial patterns clustered across young able-bodied

individuals show subtle differences in the scalp topography

of the multiple sway directions (c.f. positive and negative

classes in Fig. 6). This could indicate that the direction
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Fig. 6. Spatial patterns of young able-bodied individuals (Participant
1-6). These spatial patterns represent centroids of the most common
clusters of direction- and frequency-specific spatial filters used for feature
extraction of the positive (A) and negative (B) classes. Noteworthy,
the low-frequency spectral components, related to the best classification
performance, show well-defined topographies.

of a change in postural stability is encoded by precisely

timed differential power modulations of the theta rhythm

across adjacent structures in the medial prefrontal cortex, e.g.,

the anterior cingulate cortex and the supplementary motor

area [35], [43], [44]; without dismissing possible contributions

from other cortical areas [4], [5]. Furthermore, coordination

between multiple (near and/or distant) cortical areas may be

required for effective postural control. Thus, the direction of

a change in postural stability may also be encoded in patterns

of neural synchronization across the cerebral cortex. Such

neural synchronization patterns could not be revealed in our

study because the analyses were based on power modula-

tions. Nonetheless, recent studies have shown reorganization

of cortico-cortical synchronization in the frequencies of the

theta rhythm following perturbations to standing balance [41],

[45], [46]. Notably, Peterson and Ferris [46] found that the

supplementary motor area could serve as a hub for a cortical

sensorimotor network relevant for the control of balance and

posture. This is consistent with a role of the fronto-central

theta rhythm as part of a feedback control system for balance

and posture.

C. Decoding Direction-Specific Changes to Postural
Stability in Individuals With Chronic Stroke – Preliminary
Evidence

Our study shows that the classification of direction-specific

changes to postural stability using spectral components of the

EEG is feasible. This was demonstrated in a small group of

young able-bodied individuals and, remarkably, also in three

older individuals with chronic hemiparetic stroke.

The analysis of experimental data from individuals with

chronic hemiparetic stroke provides preliminary evidence on

persisting cortical encoding of direction-specific changes in

postural stability after stroke. These preliminary findings

encourage pursuing future systematic investigation of cortical

sensitivity to sway direction and its possible relation with

participant-specific balance impairments due to stroke, other

neurological conditions (such as Parkinson’s disease), or due

to age-related decline.

V. CONCLUSION

Our study demonstrates that modulations of low-frequency

spectral components of the EEG encode information about

the direction of an imposed change to postural stability. The

scalp topographies associated with the spectral features leading

to the highest classification performance suggest a role of

the fronto-central theta rhythm in the cortical representation

of postural stability. Online monitoring of the fronto-central

theta rhythm, perhaps in combination with other perturbation-

related features (e.g., the N1 potential [6], [10], [47]) may

provide the basis for an EEG-based fall detection system for

use in rehabilitation. The inclusion of individuals with chronic

hemiparetic stroke in this study presents preliminary evidence

of an existing cortical representation of postural stability in

individuals with impaired (i.e., asymmetric) balance capacity.

Our study provides a new perspective on the cortical rep-

resentation of postural stability and the possible role of the

theta rhythm in the modulation of (directional) reactive balance

responses.
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