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Abstract— In this paper, we present a novel tactile-array
sensor for use in robotic grippers based on flexible piezoresistive
rubber. We start by describing the physical principles of
piezoresistive materials, and continue by outlining how to
build a flexible tactile-sensor array using conductive thread
electrodes. A real-time acquisition system scans the data from
the array which is then further processed. We validate the prop-
erties of the sensor in an application that classifies a number
of household objects while performing a palpation procedure
with a robotic gripper. Based on the haptic feedback, we classify
various rigid and deformable objects. We represent the array
of tactile information as a time series of features and use this
as the input for a k-nearest neighbors classifier. Dynamic time
warping is used to calculate the distances between different time
series. The results from our novel tactile sensor are compared
to results obtained from an experimental setup using a Weiss
Robotics tactile sensor with similar characteristics. We conclude
by exemplifying how the results of the classification can be used
in different robotic applications.

I. INTRODUCTION

For both humans and robots, tactile sensing is very im-

portant when manipulating tools or everyday objects, as

well as for feature exploration and interaction. By extracting

contact properties (position, forces, torques) in an exploration

scenario, object properties such as geometry, deformability,

and texture can be inferred. This can furthermore be used to

improve grasping and manipulation of objects. Research in

this area has gradually shifted from structured manufactured

environments toward unstructured everyday environments.

Visual feedback has proven to be an important source

of sensory information necessary for grasp generation and

control, [1], [2], [3], [4], [5], [6]. Although vision provides

important information, it is not always trivial to obtain, and

the accuracy is limited, due to imperfect calibration and oc-

clusions. In addition, vision does not provide all information

about object properties such as deformability or material

properties. Errors in estimation of object shape are common

even for known objects and these errors may cause failures

in grasping. The different failures that may arise are difficult

to prevent at the grasp-execution stage if the hand is only

equipped with visual sensors. Tactile and finger-force sensors

can be used as additional sensors to improve performance [7],

[8], [9], but are still rather uncommon in practice. Mechanical

compliance, for instance, is an important characteristic of an

object, and it is essential in grasping fragile items. Humans
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furthermore use object properties such as hardness, thermal

conductivity, friction and roughness in object manipulation,

which could be addressed by robotic grippers as well by

using haptic feedback.

In this paper, we propose the design of a novel tactile

sensor that is flexible, has a sensitive output and is moreover

cheap to manufacture. We demonstrate its use in a haptic-

based object-classification scenario. The contributions of this

paper are 1) describing the building of a tactile sensor pro-

totype using piezoresistive materials and conductive thread

electrodes, 2) a method for classifying rigid and deformable

objects based on time series of features recorded from a

palpation procedure. The system is implemented, evaluated,

and finally compared to the widely used Weiss Robotics

tactile sensor, [10].

This paper is organized as follows: Section II presents

the related work regarding tactile sensors, while Section III

describes the steps used to manufacture the proposed sensor

prototype and the electronics used for data acquisition.

Section IV describes the processing of the tactile images

and the data modelling needed for object classification. The

experiments are evaluated in Section V and the conclusions

and further improvements are given in Section VI.

II. RELATED WORK

In terms of tactile-array sensors for static stimuli, such as

pressure, there are a range of technologies that have been

used with various results [11]. There are a few technologies

that can be used for manufacturing tactile-array sensors, and

the most used are piezoresistive (rubbers or inks), piezoca-

pacitive, piezoelectrical, and optical [12]. [13] propose an

industrial tactile-array sensor using a piezoresistive rubber.

However, this sensor has a low spatial resolution and does not

have any flexible capabilities. A flexible 16x16 sensor array

with 1 mm spatial resolution was developed for minimal

invasive surgery, but the sensor fails to give steady output

for static stimuli, and has a high hysteresis and non-linearity

[14]. A combination of static and dynamic sensors was

developed in [15] to address both pressure profiles and

slippage, but the design has only 4x7 cells, and a number of

wires equal to the number of cells. Flexible sensors based on

pressure conductive rubber with 3x16 cells were developed

using a stitched electrode structure, but the construction

method and the leak currents brought high variations in the

measurements [16].

In terms of using tactile sensors to perform recognition

or classification of objects, there are a few approaches. [17]

used tactile information to estimate the state of an object in



order to discriminate between different cans and filled bot-

tles, and obtained similar results with the ones obtained from

recognition tests done by humans. A different approach is

described in [18], where multiple grasps are performed on a

set of household objects. An unsupervised clustering method

was used to learn a vocabulary from tactile observations and

classification was done using a bag-of-words approach. The

approach takes into considerations only tactile information

at the points of contact with the considered objects. In some

studies, grasp generation is based on visual input and tactile

sensing is used for closed-loop control once in contact with

the object. For example, the use of tactile sensors has been

proposed to maximize the contact surface for removing a

book from a bookshelf [19]. The application of force, visual,

and tactile feedback to open a sliding door has been proposed

in [20]. Tactile information can be also used to reconstruct

the shape of unknown explored objects as proposed in [21].

One of the issues often faced in household scenarios are

deformable objects. Planning grasps for these type of objects

is not at all as well studied as rigid objects. Examples can be

found in the literature, such as [22], where the deformation

properties of objects are learned in order to apply suitable

grasping forces for the associated objects.

Our work considers a tactile-array sensor based on

piezoresistive technology. For classification, we look at the

time series that the sensor provides during a full palpation

procedure. Based on this dynamic information, different

objects can be classified based on their tactile properties.

III. THE TACTILE SENSOR

A. Building the tactile sensor

After an early investigation and testing of different tech-

nologies and methods for building tactile sensors, presented

in [23], we have chosen the piezoresistive principle (CSA)

as the most suited to build a flexible tactile-array sensor. The

CSA material has shown good performance in some research

works related to finger-pads for robots [14]. This pressure-

sensitive conductive rubber is a material made of non-

conductive elastomer, in which electric conductive particles

are distributed/dispersed homogeneously. Since the electric

conductive particles do not touch each other, electricity does

not pass through the particles in the state when there is no

external force. When external force acts, the particles come

into contact with each other and more paths for a flowing

current would be created. As a result of producing strain

in the material with external force and of the percolation

theory [14], the distribution state of the particles changes

and the resistance of the material varies. The piezoresistive

rubber shows an electrical resistance that ranges from about

0.5kΩ in the compressed (on) state to several MΩ in the

free (off) state. Due to the percolation theory and internal

distribution of particles, the Force-Resistance characteristic

shows a non-linear behaviour and because of the elastomeric

nature of the base material, it shows also hysteresis and creep

effect. The characteristic of the material is depicted in Figure

1 for a number of 20 trials, where linearly increased force

up to 400 grams-force and then decreased to 0 grams-force

was applied to a test sample of the material. Taking into

consideration the tip area of the actuator used to apply the

force, the response for a cell ranges from approx. 30 kPa (6

psi) which is the threshold sensitivity up to 200 kPa (30 PSI)

being the upper limit before the creep effect appears. Even

though non-linearities and creep effects are present in the

behaviour of the material, we do not consider these as being

a major disadvantage, as the human skin also shows them

[14]. Given its flexibility, cost, sensitivity, robustness and

ease of use we consider this material a very good candidate

for building a tactile-array sensor.
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Fig. 1. Force vs. Resistance characteristic for the piezoresistive material,
measured over 20 trials of applying increasing and decreasing force

In order to construct a tactile-array sensor, we seek

inspiration in biology, especially in the characteristics of

the human skin. Therefore, we are mainly interested in:

dynamic range and sensitivity, size of taxel similar to the

mechanoreceptor in the human hand, size of the array as big

as possible without too much wiring complexity, robustness

- to withstand repeated impacts and flexibility - so that we

could apply this to any kind of robotic grippers, very much

similar to an artificial skin. Other characteristics that we are

aiming for are a good sensor output, low complexity and

simple processing circuitry, ease of manufacture and a low

price. Fulfilling these requirements is not easy, but our novel

approach for making tactile sensors achieves most of our

goals.

One of the biggest problems when processing the infor-

mation from a multi-sensor device is the wiring complexity.

When a high-resolution tactile array is the aim, with n
columns and m rows - considering a pair of wires for each

sensing elements, results in nxmx2 wires. This means a

complicated circuit design and other solutions may be better

suited. One of them is by using electrodes arranged in rows

on one side and as columns on the other side of the sensor

device, as depicted in Figure 2. In this way, by selecting

only one column and one row, the information from a single

element can be read. Such a readout circuit would reduce

the wiring from nxmx2 to n+m wires, which is a desirable

improvement. This way it is possible to read a single sensor’s

value at a specific moment, resulting in high speeds for

iteration through all columns and rows.

To build a tactile-array sensor, we start with a flexible



substrate (PVC) covered by an adhesive layer. On top of

this substrate, we lay conductive threads spaced 2.5 mm

apart in a series of 8 parallel lines. On top of the thread,

we add a piezoresistive rubber patch, which is 0.5 mm in

thickness, and has a 20x20 mm size. Next, a similar layer as

the base layer is added on top, only this time, the conductive

threads overlap the bottom ones perpendicularly. These steps

of manufacturing are illustrated in Figure 3. The conductive

threads ensure the flexibility and maximum compliance of

the whole structure. From our previous results [23] we have

concluded that there should not be any permanent electrical

contact between the electrodes and the piezoresistive rubber

patch, as this reduces the sensitivity for the low-forces range.

The conductive threads show a resistance of about 10 Ω per

10 cm, which does not affect the performance of the sensor

considering these threads have not more than 40 cm before

the connector. The resulted prototype is roughly 25x25 mm,

1 mm in thickness and has a number of 64 taxels. We have

manufactured larger arrays using this technique as well, but

this is beyond the scope of this paper.

Fig. 2. Sensor structure

Fig. 3. Building the tactile sensor

B. Data acquisition

1) Signal conditioning: The signal conditioning for mea-

suring the pressure applied over a tactile cell is based on the

voltage divider principle. In the configuration described in

Figure 4, the sensor cell is modelling a variable resistor with

a value of up to 500 KΩ and is connected in series with a

fixed resistor - with a value typically less than 1 KΩ .

Fig. 4. Signal conditioning for measurement of one tactile cell

The voltage is measured over this resistance as:

V oltage = V+
R

Rsensor+R
Based on this equation, a high

pressure applied on the material will result in a low resistance

value for the sensor, increasing the voltage drop over R. A

low pressure applied on the material will result in a high

resistance value for the sensor, therefore the voltage drop

over R approaching 0V .

2) Data acquisition: In order to achieve a high multi-

plexing speed and a high number of inputs we have used a

dsPIC33FJ256, a 16 bit digital signal controller developed

by Microchip.

Assuming an array of n x m elements arranged in n rows

and m columns, the scanning procedure works as follows:

for each rowi from (row1, ..., rown) we apply a voltage over

the rowi (Vapplied) and all the others are kept to ground (0V).

We use n Digital Output ports (O1, ..., On) to control which

row will be enabled and which not, by setting Oi = 1 and

all others O1, ..., Oi−1, Oi+1, ..., On = 0. At this point, we

use m Analog Input ports (I1, ..., Im) corresponding to the

m columns, column1, ..., columnm. We start by converting

the voltage on I1 by ADC, followed by the conversion of

the I2 and so forth, until we reach Im. After this point we

have obtained m values, Vi1, Vi2, ..., Vim that represent the

voltage difference between rowi and all m columns. Doing

so will result in a matrix of n x m voltage readings. Each

such matrix represents a frame or a tactile image.

The implemented data-acquisition module scans tactile

arrays of up to 512 cells, providing 100 frames per second,

with 8 bit data for each taxel. In our case, the module was

used to scan the 64 taxels of the sensor and providing a

tactile image every 10ms.

IV. OBJECT CLASSIFICATION

The goal of the application is to classify the ten rigid and

deformable objects shown in Figure 6 by performing a simple

palpation procedure with a parallel gripper, using only the

measured tactile feedback. The elastic properties (Young’s

modulus, stress-strain curve or Poisson Ratio) of the objects

are not known a priori due to the fact that it is very difficult



Fig. 5. Acquisition board

to determine such parameters given that the tested objects are

not made of linear materials and have a non uniform structure

and shape. The only constraints on the objects to be grasped

is that they should be smaller in at least one dimension than

the gripper opening. During the experiments, the objects

were manually placed in between the gripper jaws. The

palpation procedure started by closing the gripper’s fingers

until contact was established. This was then followed by a

squeeze procedure, in five small steps, each step squeezing

the object 1mm. Squeezing stiffer objects requires the use

of more force, which translates to the increase of the current

used by the gripper to perform the action. If the object cannot

be further squeezed due to its stiffness, then the gripper

would use its maximum rated force to squeeze it and this will

be propagated onto the sensor, which will react accordingly,

giving maximum output. After these squeeze steps, five de-

squeeze steps of 1mm each were executed, and then the

gripper released the object. The force applied by the gripper

at its jaws is dependent on the material properties of the

grasped object. The whole palpation procedure lasted about

6 to 7 seconds, depending on the object’s size.
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Fig. 6. Objects used in the experimental evaluation.

A. Hardware Setup

The hardware setup consisted of a Schunk PowerCube

Robotic Arm with a 1-DOF Schunk PG70 parallel gripper

as the end effector (see Figure 10). The parallel jaws were

equipped with our tactile sensors, and then further connected

to the data-acquisition circuitry as described in the previous

section. The data-acquisition modules stream the data over

USB to a host computer that records the tactile data and

controls the execution of the grasp procedure.

B. Data modelling

The start of a palpation procedure (time t0) is considered

when both gripper jaws are in contact with the object,

which is given when the tactile-sensor data is above a

specified threshold. The procedure ends at time tN , where

N represents the number of frames (tactile images) recorded

from the tactile sensors. In our case the data-acquisition

system provides a tactile image each 10ms. Examples of

such tactile images are illustrated in Figure 8.a) – 8.e)

for a few grasped objects, being sampled every 1s from

a palpation procedure. Because the execution time varies

slightly for each experiment, the number of tactile images

in each sequence varies between 500 and 520. A tactile

image is an array of 64 values (8 × 8), x1, x2, ..., x64,

each representing an 8 bit value that encodes the pressure

applied over the taxel. Considering around 500 frames for

each sensor during an exploration procedure, we obtain a

high-dimensional description of each palpation procedure.

In order to reduce the dimensionality, we extract just the

first two moments of each tactile image as two independent

features. The first feature corresponds to the average of an

image, given by:

µ =
1

N

N
∑

i=1

xi, (1)

and the second feature corresponds to the standard deviation

of the pixels in an image, given by:

σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2 (2)

The average of the tactile image gives a good estimate

of the overall pressure applied to the contact area, which

increases with the number of contact taxels and with the

pressure over each taxel. The standard deviation is a rough

estimate of the number of contact pixels, describing a wider

or narrower contact area. These two features reduce the

dimensionality of the data to a number of N values for each

feature. An observation Z is therefore represented as:

Zµ = {µ1, µ2, ..., µN} (3)

Zσ = {σ1, σ2, ..., σN} (4)

In Figure 7, different time series depicting the µ and σ
sequences for the Full Bottle object are represented.
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Fig. 7. Different series for µ (red) and σ (blue) describing the palpation
procedures of the Full Bottle object. The graphs show that the different time
series are consistent despite squeezing the object at different positions.

C. Classification and distance metric

We use a k-nearest neighbors (k-NN) classification

method to classify the time series resulting from the palpation

procedure. A number of training examples are stored for each

object. A new observation is compared to the training data.

Based on a distance metric, the k-nearest neighbours are

found, and the new observation is assigned the label that is

most frequent in this set.

In order to calculate the distance between the time series,

we use the Dynamic Time Warping algorithm [24], which is

widely used in different areas for measuring the similarity

between time series by minimizing the effects of distortion

and shifts in time or speed. This is important in our case,

since we are dealing with real-world perception and action,

which both are noisy. The sequences are ”warped” non-

linearly in the time dimension to determine a measure of

their similarity independent of certain non-linear variations

in the time dimension. It allows an elastic transformation and

can be used to detect similarity between signals with different

phases. Given two time series, X = {x1, x2, ..., xN}, N ∈ N

and Y = {y1, y2, ..., yM}, M ∈ N, the DTW algorithm

returns the distance, d ∈ R, d > 0 between the two time

series, with d being closer to 0 for more similar time series

and larger otherwise.

One palpation procedure, z, consists of a µ and σ time

series for each of the two fingertip sensors:

z = {Zµ,left, Zµ,right, Zσ,left, Zσ,right} (5)

where Zµ,left, Zµ,right, Zσ,left, Zσ,right ∈ [0, 255]N represent

the time series of features computed for the images of the

left sensor and right sensor.

In the experiments, we consider different classifications

methods, based on different distance metrics. The simplest

distance metric is based only on the first moment of the

sensor on one of the fingertips, e.g., Zµ,left, to measure the

distance between z1 and z2:

distl,1(z1, z2) = DTW (Z1,µ,left, Z2,µ,left) · wµ,left (6)

where wµ,left is used for normalizing the distance metric:

wµ,left = 1/maxi,j(dist(zi, zj)), (7)

where i 6= j, 0 < i < n, 0 < j < n.

An improved metric is given by also taking into consid-

eration the second feature:

distl,2(z1, z2) = DTW (Z1,µ,left, Z2,µ,left) · wµ,left+

DTW (Z1,σ,left, Z2,σ,left) · wσ,left (8)

The same two distance metrics can be written for the right

sensor as well, resulting in distr,1(z1, z2) and distr,2(z1, z2).
When considering both sensors, the distance metric can

be calculated using only the first feature of both sensors:

distlr,1(z1, z2) = distl,1(z1, z2) + distr,1(z1, z2), (9)

or by taking into consideration both features:

distlr,2(z1, z2) = distl,1(z1, z2) + distr,1(z1, z2)+

distl,2(z1, z2) + distr,2(z1, z2) (10)

These distance metrics are used for our classification

algorithm, and we would like to test if the closer to 0 the

distance between two observation is, the more likely is the

fact that two objects belong to the same observed object.
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Fig. 8. Example tactile images for a few grasped objects, sampled every
1s during the palpation procedure: a)Rubber ball, b)Duck, c)Bad orange,
d)Fresh orange and e)Tape

V. EXPERIMENTAL EVALUATION

A. Classification Strategy

For testing our sensor, we have recorded tactile data for

10 various household objects, rigid and deformable, some

of them being similar in shape and size to the others (see

Figure 6). The set of objects consisted of a rubber ball, a

balsam bottle, a rubber duck, an empty 0.5l plastic bottle,

a full 0.5l plastic bottle, a bad orange, a fresh orange, a

juggling ball, a tape roll and a small block of wood. The

tape roll and the block of wood are rigid objects, while the

other ones were more or less deformable. Each palpation

procedure was repeated around 10 times for each object,

and the grasping was executed each time with the object

slightly moved or rotated in the gripper jaws, to ensure some



variability in the data set. We thus obtained a data set of

|D| = 97 labels for 10 objects. The classification algorithm

was based on three k-NN classifiers, with k = 1, 3, 5. As

explained in the previous section, we apply different distance

metrics to take into account the tactile readings from the

left sensor, from the right sensor and from both sensors.

Moreover, the first moment, or the first two moments are

used in distance calculation.

In order to quantify the classification performance, we use

a 10-fold cross validation, where we have split D into 10

disjoint subsets of approximately the same size, Di, each

subset having approximately the same number of examples

per object, in order to ensure equal training for each label.

Each subset is used as a test set, Dtest = Di where all other 9
subsets are used as training data, Dtraining = D−Dtest. The

recognition rate of each subset Di is given by the number

of correctly classified labels divided by the total number of

tests. We thus obtain 10 recognition rates, one for each fold,

{r1, r2, ..., r10}, which we use to calculate the mean and

95% confidence intervals for the recognition results.

B. Recognition results

The recognition rates for using one feature (the first mo-

ment) for classification are shown in Table I. It can be seen

that the recognition rates differ depending on which sensor

is used. This is mostly based on the fact that the sensors

were placed on the gripper jaws in a non-perfect alignment

and because of small differences between the sensors which

are due to the manual manufacturing of the sensors. Using

both sensors instead of only one improves the performance

significantly. This shows that the two sensors compliment

each other and make the system more robust. There are no

significant differences in recognition performance when a

larger k is used in the k-NN classifier. This means that we

can reduce the computational complexity of the classifier by

only considering the first-nearest neighbor without the loss

of performance.

Table I also shows the results when two features (first

and second moment) are used for classification. Compared

to using only one feature, the recognition rates are higher.

This and the fact that the difference in performance between

the two sensors disappeared shows that the addition of the

second feature improves the robustness of the system. Again,

no significant differences can be seen for the different values

of k in the classifier.

Figure 9 shows the resulting confusion matrices for 1-

NN classification based on left, right and both sensors, and

based on one and two features. The numbers on the axes

correspond to the object numbers given in Figure 6. The

vertical axis shows the truth and the classification is given

on the horizontal axis. In general, it can be observed from the

clear diagonal that the classification performs nicely. Some of

the objects are harder to recognize, and for example we see

that the balsam bottle is classified as either an empty bottle

or a bad orange, which shows that they are similar objects.

Another case is with the bad orange, that is sometimes

classified as a joggling ball due to the fact that both objects

are more plastic than elastic, meaning they do not go back

to their initial shape that easy. It is possible to see from the

tactile images example in Figure 8 that the fresh orange does

not become soft as easily and its stiffness determines a more

concentrated contact area as well as peak pressure compared

to a bad orange. However, bad oranges and fresh oranges are

also sometimes hard to distinguish using this method because

unless the bad oranges are strongly damaged, they still have

a minor elastic behaviour and vice-versa, the fresh oranges

have a plastic behaviour after a few palpation procedures.
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Fig. 9. Confusion Matrix for 1-NN classification for the proposed sensors:
a) using one feature, b) using both features

C. Comparison with the Weiss Robotics sensor

We compare our sensor with the Weiss Robotics tactile

sensor [10], since this is a widely used sensor for tactile

feedback. We therefore investigate if we can obtain similar

results using our sensor. The Weiss Robotics tactile sensors

are mounted on the Schunk Dextrous Hand SDH and they

consist of 13 rows x 6 columns of taxels, in about 24 mm

x 51 mm area (see Figure 10). The area occupied by this

sensor is almost double compared to the sensor that we

propose, therefore a different size resolution is achieved.

Increasing the geometrical resolution of our sensor would

mean the addition of detail data for the extra cells. Such

details could be used for improvement of recognition if the

objects would be small enough to actually benefit from a

more precise contact shape. Given the fact that the objects are



TABLE I

CLASSIFICATION RESULTS FOR ONE AND TWO FEATURES USING 10

FOLD CROSS VALIDATION, 95 % CONFIDENCE INTERVAL

Using one feature

kNN Left Sensor Right Sensor Both Sensors

1NN 78.14 ± 4.55 % 86.00 ± 6.90 % 91.57 ± 3.89 %
3NN 76.14 ± 6.86 % 86.00 ± 6.32 % 88.00 ± 4.64 %
5NN 70.71 ± 5.40 % 84.00 ± 6.90 % 84.00 ± 6.32 %

Using two features

kNN Left Sensor Right Sensor Both Sensors

1NN 88.57 ± 5.18 % 88.00 ± 6.07 % 92.00 ± 4.64 %
3NN 87.00 ± 6.23 % 85.00 ± 6.93 % 90.00 ± 5.54 %
5NN 78.14 ± 7.69 % 85.00 ± 6.93 % 91.00 ± 5.15 %

rather big with respective to the size of one cell and because

of the dimensionality reduction, this resolution difference

would not influence the comparison in classification results

between the two sensors. However, other applications could

benefit from more detailed data regarding contact shapes. We

tested this sensor using the same experimental setup. Again

we test the recognition performance on the 10 objects, each

object with 10 observations. After processing the recorded

tactile data according to the same algorithms described for

our sensor, we obtained a similar data set of time series of

features.

The results shown in Table II suggest that our sensor

performs similar to the Weiss sensor. Using our classifica-

tion procedure it is also possible to discriminate with high

recognition rates between the chosen objects using the Weiss

sensor. Looking at the differences between left and right

sensor, the experiments show that the Weiss sensors are also

prone to manufacturing and placement differences. This is

caused by the sensitivity of the specific sensor used, which

was rather low, caused probably by manufacturing or wear

and tear of the sensor during it’s use with the robotic hand.

The confusion matrices shown in Figure 11 show that the

recognition results are in general good, pointed out by the

clear diagonal. However, some objects were not as easy to

recognize as others and rigid objects, such as the tape or the

wood block which were classified sometimes as the rubber

ball or the balsam bottle. This is understandable because

they are almost rigid and the palpation procedure would

sometimes start only after establishing a good contact with

the object. The sensitivity of the sensors was the limiting

factor because it delayed the start of the palpation procedure

to the point where the object was already deformed. On the

other hand, even though using our sensor we have similar

recognition rates, we have obtained rather different results in

the confusion matrix, where we could see that deformable

objects such as good oranges, bad oranges and joggling balls

were confused more often. Rigid objects were also prone to

confusion, but were only confused with other rigid objects.

This different behaviour is based on the increased sensitivity

in our sensor and it suggests that for better classification rates

we should take into consideration other features extracted

TABLE II

CLASSIFICATION RESULTS USING WEISS ROBOTICS SENSORS, FOR ONE

AND TWO FEATURES USING 10 FOLD CROSS VALIDATION, 95 %

CONFIDENCE INTERVAL

Using one feature

kNN Left Sensor Right Sensor Both Sensors

1NN 87.00 ± 6.23 % 75.00 ± 6.35 % 91.00 ± 6.47 %
3NN 85.00 ± 6.35 % 69.00 ± 3.34 % 88.00 ± 8.22 %
5NN 81.00 ± 7.04 % 67.00 ± 4.84 % 84.00 ± 7.94 %

Using two features

kNN Left Sensor Right Sensor Both Sensors

1NN 93.00 ± 4.84 % 74.00 ± 7.44 % 92.00 ± 4.64 %
3NN 88.00 ± 7.23 % 72.00 ± 7.74 % 85.00 ± 7.96 %
5NN 84.00 ± 6.32 % 69.00 ± 5.15 % 84.00 ± 7.44 %

from the tactile images.

(a) (b)

Fig. 10. Experimental setup a) using the Schunk Parallel Gripper with our
sensor, b) using the Schunk Dextrous Hand with Weiss sensors

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the building principles

of a novel flexible array tactile sensor and its use for

recognition of different household objects based on their

haptic feedback when grasped. Starting from describing

the working principles of the piezoresistive materials we

continue by showing how to build a tactile-array sensor that

is flexible, very sensitive and cheap to manufacture and we

also describe the implementation of a data acquisition system

for the proposed sensor. We furthermore tested the usefulness

of the sensor by classifying different grasped soft and rigid

objects based only on their tactile feedback. We use dynamic

time warping to compare the similarity in the signal based

on basic features extracted from a series of tactile images

with a k-nearest neighbor classifier. We used time series

of two features for the classification: the first moment and

the second moment of the tactile images. We showed how

the classification rates can be improved by combining the

two features. By comparing the results obtained with the

proposed tactile sensor with the results obtained with a Weiss

Robotics tactile sensor, we conclude that the proposed sensor

performs at least as good, while having other advantages such

as being cheap, more sensitive and flexible. Even though

the tests for the considered application were done using flat
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Fig. 11. Confusion Matrix for 1-NN classification for Weiss Robotics
sensors: a) using one feature, b) using both features

jaws, the flexibility of the sensor ensures applicability over

curved surfaces. We are confident that our sensor prototype

can be successfully used in robotic applications such as

grasping unknown objects and determining some physical

characteristics of these objects, such stiffness and texture.

Although we demonstrated good results in terms of recog-

nition rates, future work will consider an improved version

of the sensor, with increased resolution that uses a different

manufacturing method, ensuring a good repeatability as well

as similar response from all the taxels. A larger data set

with a greater variation in number of the samples will also

be considered Other applications are also envisioned, such

as recognizing objects based on their contact geometrical

features.
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