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Functional near-infrared spectroscopy (fNIRS) has been widely employed in the objective

diagnosis of patients with schizophrenia during a verbal fluency task (VFT). Most of the

available methods depended on the time-domain features extracted from the data of

single or multiple channels. The present study proposed an alternative method based on

the functional connectivity strength (FCS) derived from an individual channel. The data

measured 100 patients with schizophrenia and 100 healthy controls, who were used to

train the classifiers and to evaluate their performance. Different classifiers were evaluated,

and support machine vector achieved the best performance. In order to reduce the

dimensional complexity of the feature domain, principal component analysis (PCA) was

applied. The classification results by using an individual channel, a combination of

several channels, and 52 ensemble channels with and without the dimensional reduced

technique were compared. It provided a new approach to identify schizophrenia,

improving the objective diagnosis of this mental disorder. FCS from three channels

on the medial prefrontal and left ventrolateral prefrontal cortices rendered accuracy as

high as 84.67%, sensitivity at 92.00%, and specificity at 70%. The neurophysiological

significance of the change at these regions was consistence with the major syndromes

of schizophrenia.

Keywords: functional near infrared spectroscopy (fNIRS), schizophrenia, functional connectivity strength (FCS),

support machine vector, classification

INTRODUCTION

Schizophrenia is a kind of psychiatric disorder characterized by a series of positive/psychotic

(e.g., hallucinations and delusions), negative/deficit (e.g., insufficiency of thought and loss of

motivation), and cognitive (e.g., impairment of memory and attention) symptoms (Buckley

et al., 2009). Conventionally, clinical diagnostic criteria are predominately based on the relative
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subjective approaches, for example, according to the diagnostic

manuals (American Psychiatric Association, 1994). With the

development of neuroimaging, a number of objective methods

to identify schizophrenia patients have emerged, e.g., single

photon emission computed tomography (SPECT; Gordon

et al., 1994), diffusion tensor imaging (DTI; Ohtani et al.,

2014), functional magnetic resonance imaging (fMRI; Weiss

et al., 2004; Deng et al., 2017; Tréhout et al., 2017), and

functional near infrared spectroscopy (fNIRS; Kubota et al., 2005;

Rosenbaum et al., 2017).

fNIRS is a noninvasive hemodynamic imaging technique used

to assess functional activities in the human brain (Hoshi, 2003).

It detects the concentration of oxygenated hemoglobin (Oxy-

Hb) and deoxygenated hemoglobin (Deoxy-Hb) by measuring

the absorption and reflection of specific near infrared spectrums

in the cortices during tasks. Compared to other neuroimaging

instruments, fNIRS has the benefit of being low cost with a

high portability. These advantages have enabled its application

in the diagnosis of schizophrenia, which was mainly based on the

effect of hypofrontality (reduced activation around the bilateral

prefrontal cortex) during various verbal fluency tasks (VFTs;

Suto et al., 2004; Ehlis et al., 2007; Takizawa et al., 2008; Ji

et al., 2020). In practice, the majority of these studies extracted

the time-domain features from single or multiple channels of

healthy subjects and patients with schizophrenia (Suto et al.,

2004; Kanahara et al., 2013; Sugimura et al., 2014; Tian et al.,

2019). As a consequence, diverse machine learning classifiers (Li

et al., 2015) were trained and distinguished the patients with

schizophrenia from the healthy subjects.

In contrast, substantial neuroimaging studies of other

modalities have found abnormal dysconnectivity between the

prefrontal cortex and temporal cortex in schizophrenia patients

(Friston and Frith, 1995; Maguire et al., 2000; Greicius, 2008;

Bullmore and Sporns, 2009; Whitfield-Gabrieli et al., 2009),

and these experiments using EEG and fMRI have proposed

classification methods based on brain network properties

(Demirci et al., 2008; Yang et al., 2010; Arbabshirani et al.,

2013). Nevertheless, the method on whole-brain network

properties cannot be directly applied to fNIRS analysis because

the conventional clinical fNIRS only measures signals from

the frontotemporal cortex. One fNIRS study discriminated

patients with schizophrenia using four global network properties

(Song et al., 2016). The achieved overall accuracy was 85.5%,

but the local changes could not be investigated with the

approach. Hence, the analysis on regional functional connectivity

(FC), integrating both the spatial and temporal relation of

brain activities, is hypothesized to provide new insights on

classifying schizophrenia.

In this article, we provided an FC-based method to identify

schizophrenia patients. Oxy-Hb data from 100 schizophrenia

patients and 100 healthy subjects during VFT were used

in the experiment. functional connectivity strength (FCS)

from single channel, from the ensemble 52 channels, from

the dimensional reduced 52 channels, and from different

combinations of 2–5 channels were used to trained four popular

classifiers (Linear Discriminant Analysis: LDA, k-Nearest

Neighbor: KNN, Gaussian Processes classifier: GPC, and Support

Vector Machine: SVM), respectively. The best accuracy was

85.00% (LOOCV), with sensitivity as 87.00% (LOOCV) and

specificity as 83.00% (LOOCV), by using FCS from three

channels. Theneurophysiological significance was discussed. The

FCS-based method provided a new and effective approach for

schizophrenic identification.

MATERIALS AND METHODS

Subject
The Oxy-Hb dataset included 100 schizophrenic (male/female:

50/50, 33.81 ± 11.52 years old and ranging from 18 to

53 years old) and 100 healthy subjects (male/female: 47/53,

34.43± 12.36 years old and ranging by 18–78 years old) whowere

recruited from Peking University Sixth Hospital. The diagnosis

for schizophrenia was based on DSM-IV and conducted by two

clinical doctors. All subjects were native Chinese speakers and

right-handed. This study was carried out in conformity with

the Declaration of Helsinki and was sustained by the ethics

committee of Peking University Sixth Hospital. All subjects

provided written consent after being fully informed of the

procedures in the study.

VFT Experiment
The experiment was conducted in a quiet room and no entry was

permitted during the experiment. The Chinese VFT (Quan et al.,

2015) was initiated by a 30-s pre-task baseline period, followed by

a 60-s task period and a 30-s post-task baseline period (Figure 1).

There was a screen 1 m in front of the participants. During the

pre-task and post-task baseline periods, the participants were

asked to stare at the center of the screen and count from 1 to

5. During the 60-s task period, three Chinese characters (‘‘ ,’’

‘‘ ,’’ and ‘‘ ,’’ indicating white, sky, and big, respectively) were

displayed on the screen and changed every 20 s. The participants

were instructed to produce as many phrases or four-character

idioms starting with these characters as they could.

fNIRS Measurement and Data
Preprocessing
The measurement was conducted using a 52-channel near

infrared spectrometer (ETG-4000, Hitachi Medical Co., Japan).

The instrument had 33 probes (17 emitters and 16 detectors;

Figure 2). The positioning of the receivers emitters was referred

to an international 10-20 system of Electroencephalography

(Oostenveld and Praamstra, 2001). To specify, the detector

between Channel #5 and #6 was located at Fz, the emitters

close to #43 and #52 were fitted around T4 and T3, and

#46 and #49 were placed in Fp2 and Fp1, respectively. The

measurement area covered the bilateral prefrontal and temporal

cortices (Figure 2). The separation between the channels was

3 cm. In the experiments, each subject was measured with 120 s

(30 s pre-task baseline, 60 s VFT and 30 s post-task baseline)

at a sampling rate of 10 Hz. Hence, there were 1,200 signal

points for each channel per subject. Themeasured Oxy-Hb signal

was organized as a matrix with 300 × 1,200 × 52 (number of

subjects × signal points × amount of channels).

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 40

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Yang et al. Schizophrenia Classification by fNIRS

FIGURE 1 | Experimental flowchart. The experiment has three procedures: 30-s pre-task, 60-s verbal fluency task (VFT) task, and 30-s post-task.

FIGURE 2 | The setting of functional near infrared spectroscopy (fNIRS) probe and channel. Hexagons stand for near-infrared light emitters, diamonds stand for

near-infrared light receptors, and cycles stand for fNIRS channels. T3, T4, Fp1, Fp2, and Fz are the electrode positions in the international 10-20 system. rSFC, right

superior frontal cortex; rSTC, right superior temporal cortex; rDLPFC, right dorsolateral prefrontal cortex; rVLPFC, right ventrolateral prefrontal cortex; mPFC, medial

prefrontal cortex; lDLPFC, left dorsolateral prefrontal cortex; lVLPFC, left ventrolateral prefrontal cortex; lSFC, left superior frontal cortex; lSTC, left superior temporal

cortex. The placement is in line with the configuration of Schecklmann et al. (2010).

The raw Oxy-Hb data were preprocessed through a band-pass

filter of 0.009–0.08 Hz to remove the motion artifacts. The

least square method was used to eliminate and remove

the linear trend from the Oxy-Hb signals. MATLAB toolkit

HomER2 (Huppert et al., 2009) was used to preprocess the

original data.

Feature Extraction for Classification
The conventional classification methods usually utilized the

time-domain features (for example, mean amplitude of Oxy-Hb

during VFT). Frontal functional dysconnectivity is a salient

feature of schizophrenia but it has not yet been applied for

identifying schizophrenia. FCS was selected to characterize

the effect and the following steps were used to obtain

the value:

(1) Pearson’s correlation among the data from 52 channels

was calculated by:

rxy =
∑

xiyi − nxy

(n − 1)SxSY
(1)

where x, y are the mean, and Sx, Sy are the standard deviations

of the measured data xi and yi, respectively; n is the number of

the data.
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(2) FCS was calculated by:

FCS =
∑

y rx,y

51
(2)

As a consequence, 52 FCSs were derived per subject. We

assessed the results from three kinds of approaches to

identify schizophrenia.

- Single-feature: FCS from single channel

- Ensemble 52 FCSs: FCSs from 52 channels with or without

dimensional reduction techniques

- Combine-features: FCS from the combination of several

single-features

Four widely used classifiers in schizophrenic identification,

LDA, GPC, KNN, and SVM, were trained and applied in the

study. Since the details of these classifiers were extensively

discussed previously (Mourão-Miranda et al., 2005; Yoon et al.,

2007; Azechi et al., 2010; Tanaka and Katura, 2011; Dai et al.,

2012; Arbabshirani et al., 2013; Hahn et al., 2013), we will

not repeat them again. The MATLAB toolkits, GPML (v3.41;

Rasmussen and Nickisch, 2010), LIBSVM (v3.1.22, and LDA

(V1.0.0.03) were used in the analysis. KNN was realized by

MATLAB function KNNCLASSIFY.

Note that the major parameters of these toolkits and functions

used default or empirical values, with the exceptions of:

- KNN: k = (100)1/2 = 10; Euclidean distance is adopted to

calculate the distances between the unlabeled sample and the

labeled training samples. Traditionally, the Euclidean distance

is appropriate when the issue included mutually correlated

observations. As such, this distance needs to consider every

variable and does not remove redundancies. The situation

is very similar to our situation: the data from 52 channels

are highly correlated and none can be simply removed. k

is to set k =
√
n The method has been proposed by

Mitra et al. (2002);

- SVM: RBF kennel; C and gamma were optimized by

automated grid search and evaluated via 10-fold cross-

validation. The optimization was conducted per case and the

best RBF factors were provided along with the results.

Evaluation of the Classification
Performance
To evaluate the performance of the individual classifier,

both leave-one-out cross-validation (LOOCV) and 10-fold/

20-fold CV were used to estimate the performance of the

classifier. The subjects involved in the experiments were

schizophrenia patients (positive, P) and the healthy controls

(negative, N). The true positive (TP) and the true negative

(TN) are the number of patients and healthy people being

correctly classified, respectively. The false positive (FP) is the

number of healthy people being classified as patients. The false

negative (FN) is the number of patients being classified as

1http://www.gaussianprocess.org/gpml
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3https://ww2.mathworks.cn/matlabcentral/fileexchange/29673-lda-linear-

discriminant-analysis

healthy people. The performance of the classification method

was assessed in terms of accuracy, sensitivity, and specificity

as shown in:

accuracy =
TP + TN

(TP + FP + FN + TN)
(3)

sensitivity =
TP

(TP + FN)
(4)

specificity =
TN

(FP + TN)
(5)

RESULTS

FC Matrices
Figure 3 shows the waveform of Oxy-Hb from 52 channels.

The results were averaged across the healthy control and

schizophrenic group. The reduced Oxy-Hb during VFT was

obvious in patients with schizophrenia, being consistent with

previous literature. The derived FCs were mapped in Figure 4.

It was revealed that functional connections with high intensity

were observed in the healthy controls, indicating dysconnectivity

of schizophrenia.

Classification Results
Single-FCS Results
The overall accuracy from the top five channels to identify

schizophrenia is shown in Figure 5 and is summarized in

Table 1. LDA, KNN, and SVM demonstrated similar overall

levels of accuracy, i.e., LDA: 72.50–81.00% (LOOCV), KNN:

78.00–82.00% (LOOCV), and SVM: 77.50–83.50% (LOOCV).

GPC had the lowest accuracy at 67.00–69.50% (LOOCV). In

terms of spatial distribution of the channels, although LDA,

KNN, and SVM demonstrated laterality (left or right sidedness),

in general, the best channels identified by these three classifiers

were on the ventral part of the frontal cortices. In contrast, GPC

utilized the FCS from the dorsal channels.

52-FCS Results
Figure 6 shows the 52-feature results from different classifiers.

Again, GPC achieved the lowest results (accuracy at 51.00%

(LOOCV), with sensitivity at 55.00% (LOOCV) and specificity

at 47.0% (LOOCV)). The other three classifiers had similar

performances whilst SVM slightly outperformed the other

two. In summary, SVM achieved the best accuracy at 86.50%

(LOOCV), sensitivity at 91.00% (LOOCV), and specificity

at 82% (LOOCV). LDA had the best accuracy at 83.00%

(LOOCV), sensitivity at 85.00% (LOOCV), and specificity

at 81.00% (LOOCV). KNN yielded the best accuracy

at 77.00% (LOOCV), sensitivity at 84.00% (LOOCV),

and specificity at 70.00% (LOOCV). The performance

of the classifiers initially increased with the numbers of

channels but stabilized when more channels were taken into

consideration. It may indicate the existence of redundancy in

this feature space.

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 40

http://www.gaussianprocess.org/gpml
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://ww2.mathworks.cn/matlabcentral/fileexchange/29673-lda-linear-discriminant-analysis
https://ww2.mathworks.cn/matlabcentral/fileexchange/29673-lda-linear-discriminant-analysis
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Yang et al. Schizophrenia Classification by fNIRS

FIGURE 3 | The concentration curve of Oxy-Hb from 52 channels averaged from the healthy controls (blue lines) and the schizophrenic group (red lines). SZ,

schizophrenic patients; HC, healthy controls.

Dimensional Reduced 52-FCS Results
Principal component analysis (PCA) can convert multiple

observations of potentially correlated variables into a set of

linearly independent components. It implemented singular value

decomposition to reduce the dimensionality of a dataset that

consisted of a large number of interrelated variables, while

retaining as much variation present in the dataset as possible

(Abdi and Williams, 2010). For comparison, we also used two

other variants of PCA in the analysis: Kernel PCA and Sparse

PCA. Kernel PCA uses various kernel functions to project

datasets into a higher dimensional feature space, where it is

linearly separable. We selected Gaussian kernel in this case.
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FIGURE 4 | Functional connectivity (FC) matrices averaged over schizophrenia group and healthy controls. SZ, schizophrenic patients (A); HC, healthy controls (B).

FIGURE 5 | Overall accuracy achieved by single-channel feature using four classifiers [LDA (A), KNN (B), GPC (C), SVM (D)]. The top five channels were indicated

by blue (the optimized C and gamma of the top five channels of SVM are shown in the Supplementary Figures 1–5). LDA, Linear Discriminant Analysis; KNN,

k-Nearest Neighbor; GPC, Gaussian Processes classifier.

It was realized by MATLAB function KernelPca.m (Kitayama,

2020). Sparse PCA is implemented on the basis of the inverse

power method for nonlinear eigenproblems, which is introduced

in detail by Hein and Bühler (2010). Moreover, the deflation

scheme proposed by Bühler (2015) is adopted to compute

multiple principal components. It was realized by the free

software sparsePCA developed by Matthias Hein and Thomas

Bühler [Copyright 2010–2020 Thomas Bühler andMatthias Hein

(hein@cs.uni-saarland.de). Machine Learning Group, Saarland

University, Germany4].

4http://www.ml.uni-saarland.de
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FIGURE 6 | Fifty-two functional connectivity strength (FCS) results [accuracy (A), sensitivity (B), specificity (C); the optimized C and gamma of best accuracy as

86.50% of SVM are shown in Supplementary Figure 6].

TABLE 1 | Top five channels with functional connectivity strength (FCS)

representing the best overall accuracy from the four classifiers (the optimized C

and gamma of five channels of Support Vector Machine (SVM) are shown in

Supplementary Figures 1–5).

LDA Channel Brain region Accuracy

#41 lSTC 81.00%

#50 lVLPFC 78.50%

#35 rVLPFC 75.50%

#48 mPFC 74.00%

#36 mPFC 72.50%

KNN

#51 lSTC 82.00%

#35 rVLPFC 81.00%

#38 mPFC 79.50%

#50 lVLPFC 79.00%

#39 lVLPFC 78.00%

GPC

#5 mPFC 69.50%

#24 rDLPFC 68.50%

#39 lVLPFC 66.50%

#25 rDLPFC 67.00%

#19 lDLPFC 67.00%

SVM

#50 lVLPFC 83.50%

#41 lSTC 80.50%

#40 lVLPFC 79.00%

#44 rSTC 79.00%

#52 lSTC 77.50%

We derived the first 21 principal components representing

cumulative rates exceeding 93.4%. Classification based on the

selected principal components is shown in Table 2. The

results of 10-fold and 20-fold cross validation were provided

for comparison.

Combined FCS Results
Further effort was made to assess the capability of schizophrenic

identification using a certain combination of the channels. Since

SVM yielded the best overall accuracy, the experiments were

conducted only using this classifier. FCSs from 2, 3, 4, and

5 channels were selected from the five channels presenting

the top capability on schizophrenic identification (presented

in Figure 5). The results are shown in Table 3. Classification

using FCS from three channels can achieve accuracy at 85.00%

(LOOCV), sensitivity at 87.00% (LOOCV), and specificity at

83.00% (LOOCV).

DISCUSSIONS

Schizophrenia has been considered a disorder of connectivity

between various brain units (Elvevåg and Goldberg, 2000).

The connections were found to be reduced by schizophrenia,

as shown in Figure 4. This finding was consistent with

studies using other imaging modalities (Bellani et al., 2010;

Deng et al., 2017).

FCS measures the connectivity across different brain units,

so as to identify the hubs playing important roles in information

processing and communication during cognitive tasks

(van den Heuvel and Sporns, 2013; Mears and Pollard, 2016). As

shown in Table 1, the capability of discriminating schizophrenia

was evident for the FCS at VLPFC and mPFC. mPFC relates
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TABLE 2 | Classification performance of leave-one-out cross-validation (LOOCV), 10-fold, and 20-fold by using three dimensionality reduction methods (the optimized C

and gamma of SVM are shown in Supplementary Figures 7–15).

LOOCV 10-fold 20-fold

LDA Accuracy (PCA KernelPCA SparsePCA) 80.50% 80.00% 82.00% 79.00% 80.50% 80.50% 81.50% 82.00% 82.50%

Sensitivity (PCA KernelPCA SparsePCA) 82.00% 81.00% 83.00% 81.00% 82.00% 83.00% 83.00% 84.00% 83.00%

Specificity (PCA KernelPCA SparsePCA) 79.00% 79.00% 81.00% 77.00% 79.00% 78.00% 80.00% 80.00% 82.00%

KNN Accuracy (PCA KernelPCA SparsePCA) 79.00% 82.00% 79.50% 80.50% 80.50% 82.00% 80.00% 81.00% 80.50%

Sensitivity (PCA KernelPCA SparsePCA) 82.00% 83.00% 81.00% 81.00% 82.00% 84.00% 82.00% 83.00% 81.00%

Specificity (PCA KernelPCA SparsePCA) 76.00% 81.00% 78.00% 80.00% 79.00% 80.00% 78.00% 79.00% 80.00%

GPC Accuracy (PCA KernelPCA SparsePCA) 72.00% 73.50% 75.00% 68.50% 70.00% 70.50% 70.00% 71.50% 70.50%

Sensitivity (PCA KernelPCA SparsePCA) 73.00% 75.00% 77.00% 70.00% 72.00% 72.00% 72.00% 73.00% 72.00%

Specificity (PCA KernelPCA SparsePCA) 71.00% 72.00% 73.00% 67.00% 68.00% 70.00% 68.00% 70.00% 69.00%

SVM Accuracy (PCA KernelPCA SparsePCA) 87.50% 89.00% 88.00% 85.50% 87.00% 88.50% 87.50% 86.00% 89.50%

Sensitivity (PCA KernelPCA SparsePCA) 89.00% 90.00% 89.00% 86.00% 88.00% 89.00% 86.00% 87.00% 90.00%

Specificity (PCA KernelPCA SparsePCA) 86.00% 88.00% 87.00% 85.00% 86.00% 88.00% 89.00% 85.00% 89.00%

TABLE 3 | Overall accuracy of different combinations of FCS using SVM (the optimized C and gamma are shown in Supplementary Figures 16–41).

Selection of the channels Accuracy Sensitivity Specificity

#40 #41 #44 #50 #52

x x 82.00% 84.00% 80%

x x 81.50% 82.00% 81%

x x 80.50% 82.00% 79%

x x 83.00% 85.00% 81%

x x 78.50% 79.00% 78%

x x 82.00% 83.00% 79%

x x 83.00% 83.00% 83%

x x 79.00% 80.00% 78%

x x 80.50% 81.00% 80%

x x 83.50% 85.00% 82%

x x x 81.50% 83.00% 80%

x x x 85.00% 87.00% 83%

x x x 84.00% 86.00% 82%

x x x 82.00% 82.00% 80%

x x x 84.50% 85.00% 84%

x x x 83.00% 85.00% 81%

x x x 80.00% 82.00% 78%

x x x 79.50% 81.00% 78%

x x x 80.00% 81.00% 79%

x x x 81.00% 84.00% 78%

x x x x 83.50% 86.00% 81%

x x x x 83.00% 84.00% 82%

x x x x 84.50% 85.00% 84%

x x x x 82.00% 85.00% 79%

x x x x 83.00% 84.00% 82%

x x x x x 84.50% 86.00% 83%

to decision making and short- and long-term memory (Euston

et al., 2012), and coordinates VLPFC and DLPFC functions

(Peng et al., 2018). The neurophysiological functions of this

cortex are associated with the symptoms of schizophrenia.

The left VLPFC associates with the production of articulate

language and in nonlinguistic tasks (Hickok and Poeppel,

2004, 2007), while the right VLPFC plays a role in linking

working memory with episodic memory and in a series of

complicated social behaviors (He et al., 2020). The reduced

FCS of VLPFC in patients with schizophrenia may relate to the

impairment of both verbal skills and social functions, which

are the major symptoms of schizophrenia. In contrast, some

channels were at STC, which mediates spatial awareness and

exploration (Karnath, 2001). To summarize, these changes

during VFT corresponded to the perturbed performance of

schizophrenia patients (difficulty or incapability to produce

four-character idioms).

PCA reduced the dimension of the feature space and saved

the computational cost, while achieving satisfactory accuracy.

The disadvantage of PCA was that the principle components

could not be attributed to the data from the specific channel,

thus concealing the regional neurophysiological changes. Using

the FCS from three channels, the achieved performance was

comparable to the current results: accuracy at 70–86%, sensitivity

at 70–84%, and specificity at 65–93% (Arbabshirani et al., 2013;

Chuang et al., 2014; Li et al., 2015; Pina-Camacho et al., 2015;
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Song et al., 2017). The method was not calculated from the

time-domain values on single or multiple channels. It means

that reliable results could be provided when integrated with the

time-domain approaches.

There are some limitations to the present study. First,

the individual schizophrenic episode was not identified and

taken into analysis. However, it may have implications on

the effected sites (Zhu et al., 2010). Second, the patients

receiving medications and physical treatment were not ruled

out from the study. Although previous studies have revealed a

negligible medication effect on fNIRS signals, investigations of

drug-free patients or of those receiving physical treatment (e.g.,

transcranial magnetic stimulation, electroconvulsive therapy,

and neurofeedback) will be needed to allow further clinical

applications of fNIRS (Fujita et al., 2011; Mihara et al.,

2012; Monden et al., 2012). Third, educational background

may have an impact on language ability. In our study,

we did not categorize the subjects into more educational

background groups because the number of subjects in each

group would be sparse. But the two groups matched their

educational backgrounds (the schizophrenia group included

14 graduate degrees, 20 undergraduate degrees, 20 college

degrees, 31 senior high school degrees, and 15 junior high

school degrees, and the healthy group included 15 graduate

degrees, 20 undergraduate degrees, 20 college degrees, 30 high

school degrees, and 15 junior high school degrees). Lastly,

only three machine-learning classifiers, LDA, KNN, and SVM,

were used in the study because they were the most popular

machine-learning classifiers in discriminating patients with

schizophrenia. The comparison of their performance was a

topic being widely discussed while the individual performance

seemed to be signal- and feature-dependent (Mourão-Miranda

et al., 2005; Hahn et al., 2013; Li et al., 2015). In the present

study, we conducted a similar comparison. Other classifiers,

such as artificial neural networking, has not yet been applied

but theoretically could be utilized in the identification of

schizophrenia (Zheng et al., 2019a,b, 2020). We will try it in our

future study.

CONCLUSION

The study proposed an FCS-based method to identify patients

with schizophrenia. 52-channel Oxy-Hb data of fronto-

temporal fNIRS were obtained during VFT from healthy and

schizophrenic subjects. The FCS of each channel was calculated

as features for classification. We investigated the performance

of different classifiers, from FCS of all the 52 channels or from

several channels. The method was in sharp contrast to most

previous studies using the time-average data obtained from

multiple channels. The classification results were comparable

to the existing results. In addition, the method can detect the

changes of hubs during VFT, which was in consistency with the

symptoms of schizophrenia.
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