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Mojdeh Rastgoo; mojdeh.rastgoo@gmail.com, and Joan Massich; mailsik@gmail.com

Received 27 November 2015; Revised 15 February 2016; Accepted 24 May 2016

Academic Editor: 
eodore Leng

Copyright © 2016 Guillaume Lemâıtre et al. 
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is paper addresses the problem of automatic classi�cation of Spectral Domain OCT (SD-OCT) data for automatic identi�cation
of patients with DME versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME,
which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classi�cation framework
with �ve distinctive steps is proposed and we present an extensive study of each step. Ourmethod considers combination of various
preprocessing steps in conjunction with Local Binary Patterns (LBP) features and di�erent mapping strategies. Using linear and
nonlinear classi�ers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the
proposed method outperforms the previous studies by achieving a Sensitivity (SE) and a Speci�city (SP) of 81.2% and 93.7%,
respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best
results. However, the e�ects of preprocessing are inconsistent with di�erent classi�ers and feature con�gurations.

1. Introduction

Eye diseases such as Diabetic Retinopathy (DR) and Diabetic
Macular Edema (DME) are the most common causes of
irreversible vision loss in individuals with diabetes. Just in
United States alone, health care and associated costs related
to eye diseases are estimated at almost $500M [1]. Moreover,
the prevalent cases of DR are expected to grow exponentially
a�ecting over 300M people worldwide by 2025 [2]. Given
this scenario, early detection and treatment of DR and DME
play a major role in preventing adverse e�ects such as blind-
ness. DME is characterized as an increase in retinal thickness
within 1-disk diameter of the fovea center with or without
hard exudates and sometimes associated with cysts [3].
Fundus images which have proven to be very useful in
revealing most of the eye pathologies [4, 5] are not as good

as OCT images which provide information about cross-sec-
tional retinal morphology [6].

Many of the previous works on OCT image analysis
have focused on the problem of retinal layers segmentation,
which is a necessary step for retinal thickness measurements
[7, 8]. However, few have addressed the speci�c problem of
DME and its associated features detection fromOCT images.
Figure 1 shows one normal B-scan and two abnormal B-scans.

A summary of the existing work can be found in
Table 1. Srinivasan et al. [9] proposed a classi�cation method
to distinguish DME, Age-Related Macular Degeneration
(AMD), and normal SD-OCT volumes. 
e OCT images are
preprocessed by reducing the speckle noise by enhancing the
sparsity in a transform-domain and �attening the retinal cur-
vature to reduce the interpatient variations.
en,Histograms
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(a) Normal (b) DME-cyst (c) DME-exudate

Figure 1: Example of SD-OCT images for normal (a) and DME patients (b)-(c) with cyst and exudate, respectively.

of Oriented Gradients (HOG) are extracted for each slice of a
volume and linear Support VectorMachine (SVM) is used for
classi�cation. On a dataset of 45 patients equally subdivided
into the three aforementioned classes, this method leads to a
correct classi�cation rate of 100%, 100%, and 86.67% for nor-
mal, DME, and AMD patients, respectively. 
e images that
have been used in their paper are publicly available but are
already preprocessed (i.e., denoised), have di�erent sizes for
the OCT volumes, and do not o�er a huge variability in terms
of DME lesions, and some of them, without specifying which,
have been excluded for the training phase; all these reasons
prevent us from using this dataset to benchmark our work.

Venhuizen et al. proposed a method for OCT images
classi�cation using the Bag-of-Words (BoW) model [10]. 
e
method starts with the detection and selection of key points
in each individual B-scan, by keeping the most salient points
corresponding to the top 3% of the vertical gradient values.

en, a texton of size 9 × 9 pixels is extracted around each key
point, and Principal Component Analysis (PCA) is applied to
reduce the dimension of every texton to get a feature vector
of size 9. All extracted feature vectors are used to create a
codebook using �-means clustering.
en, each OCT volume
is represented in terms of this codebook and is characterized
as a histogram that captures the codebook occurrences.
ese
histograms are used as feature vector to train a Random
Forest (RF) with a maximum of 100 trees. 
e method was
used to classify OCT volumes between AMD and normal
cases and achieved an Area Under the Curve (AUC) of 0.984
with a dataset of 384 OCT volumes.

Liu et al. proposed a methodology for detecting macular
pathology in OCT images using LBP and gradient informa-
tion as attributes [11]. 
e method starts by aligning and
�attening the images and creating a 3-level multiscale spatial
pyramid. 
e edge and LBP histograms are then extracted
fromeach block of every level of the pyramid.All the obtained
histograms are concatenated into a global descriptor whose
dimensions are reduced using PCA. Finally a SVM with
a Radial Basis Function (RBF) kernel is used as classi�er.

e method achieved good results in detection OCT scan

containing di�erent pathologies such as DME or AMD, with
an AUC of 0.93 using a dataset of 326 OCT scans.

Lemaitre et al. [12] proposed using 2D and 3D LBP
features extracted from denoised volumes and dictionary
learning using the BoWmodels [13]. In the proposedmethod
all the dictionaries are learned with the same size of “visual
words” (� = 32) and �nal descriptors are classi�ed using RF
classi�er.


e work described in this paper is an extension of our
previous work [12]. In this research, beside the comparison
of 2D and 3D features, we explore di�erent possible repre-
sentations of the features and di�erent preprocessing steps for
OCT data (i.e., aligning, �attening, and denoising). We also
compare the performances of di�erent classi�ers.


is paper is organized as follows: the proposed frame-
work is explained in Section 2, while the experiments and
results are discussed through Sections 3 and 4. Finally, the
conclusion and avenue for future directions are drawn in
Section 5.

2. Materials and Methods


e proposed method, as well as its experimental setup,
for OCT volume classi�cation is outlined in Figure 2. 
e
methodology is formulated as a standard classi�cation proce-
dure which consists of �ve steps. First, the OCT volumes are
preprocessed as presented in detail in Section 2.1. 
en, LBP
and LBP-TOP features are detected,mapped, and represented
as discussed in depth in Sections 2.2, 2.3, and 2.4, respectively.
Finally, the classi�cation step is presented in Section 2.5.

2.1. Image Preprocessing. 
is section describes the set of pre-
processing techniques which aim at enhancing the OCT vol-
ume.
e in�uences of these preprocessingmethods and their
possible combinations are extensively studied in Section 3.

2.1.1. Non-Local Means (NLM). OCT images su�er from
speckle noise, like other imagemodalities such as Ultrasound
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Figure 2: Our proposed classi�cation pipeline.
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Figure 3: OCT: (a) organization of the OCT data, (b) original image, and (c) NLM �ltering. Note that the images have been negated for
visualization purposes.

(US) [14].
e OCT volumes are enhanced by denoising each
B-scan (i.e., each (�-�) slice) using the NLM [15], as shown in
Figure 3. NLM has been successfully applied to US images to
reduce speckle noise and outperforms other commondenois-
ing methods [16]. NLM �ltering preserves �ne structures as
well as �at zones, by using all the possible self-predictions that
the image can provide rather than local or frequency �lters
such as Gaussian, anisotropic, or Wiener �lters [15].

2.1.2. Flattening. Textural descriptors characterize spatial
arrangement of intensities. However, the OCT scans su�er
from large type of variations: inclination angles, positioning,
and natural curvature of the retina [11]. 
erefore, these
variations have to be taken into account to ensure a consistent
characterization of the tissue disposition, regardless of the
location in the retina. 
is invariance can be achieved in
di�erent manners: (i) using a rotation invariant descriptor
(cf. Section 2.2) or (ii) unfolding the curvature of the retina.

is latter correction is known as image �attening which
theoretically consists of two distinct steps: (i) estimate and �t
the curvature of the Retinal Pigment Epithelium (RPE) and
(ii) warp the OCT volume such that the RPE becomes �at.

Our correction is similar to the one of Liu et al. [11]:
each B-scan is thresholded using Otsu’s method followed by
a median �ltering to detect the di�erent retina layers (see
Figures 4(c) and 4(d)). 
en, a morphological closing and
opening is applied to �ll the holes and the resulting area
is �tted using a second-order polynomial (see Figure 4(d)).
Finally, the scan is warped such that the curve becomes a line
as presented in Figures 4(e) and 4(f).

2.1.3. Slice Alignment. 
e �attening correction does not
enforce an alignment through the OCT volume. 
us, in
addition to the �attening correction, the warped curves of
each B-scan are positioned at the same altitude in the �-axis.

2.2. Feature Detection. In this research, we choose to detect
simple and e�cient LBP texture features with regard to each
OCT slice and volume. LBP is a texture descriptor based on
the signs of the di�erences of a central pixel with respect to
its neighboring pixels [17]. 
ese di�erences are encoded in
terms of binary patterns as follows:

LBP�,� =
�−1
∑
�=0
� (	� − 	�) 2�,

� (�) =
{
{
{

1 if � ≥ 0
0 otherwise,

(1)

where 	�, 	� are the intensities of the central pixel and a given
neighbor pixel, respectively, and � is the number of sampling
points in the circle of radius �.

Ojala et al. further extended the original LBP formulation
to achieve rotation invariance at the expense of limiting the
texture description to the notion of circular “uniformity” [17].
Referring to the coordinate system de�ned in Figure 3(a), the
LBP codes are computed on each (�-�) slice, leading to a set
of LBP maps, a map for each (�-�) slice.

Volume encoding is later proposed by Zhao et al. by com-
puting LBP descriptors in three orthogonal planes, so-called
LBP-TOP [18]. More precisely, the LBP codes are computed
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(a) (b) (c)

(d) (e) (f)

Figure 4: Flattening procedure: (a) original image, (b) thresholding, (c) median �ltering, (d) curve �tting, (e) warping, and (f) �atten image.

Table 2: Number of patterns (LBP#pat) for di�erent sampling points
and radius ({�, �}) of the LBP descriptor.

Sampling point for a radius ({�, �})
{8, 1} {16, 2} {24, 3}

LBP#pat 10 18 26

considering the (�-�) plane, (�-�) plane, and (�-�) plane,
independently.
us, three sets of LBPmaps are obtained, one
for each orthogonal plane.

In this work, we consider rotation invariant and uniform
LBP and LBP-TOP features with various sampling points (i.e.,
{8, 16, 24}) with respect to di�erent radius (i.e., {1, 2, 3}). 
e
number of patterns (LBP#pat) in regard to each con�guration
is reported in Table 2.

2.3. Mapping. 
emapping stage is used to partition the pre-
viously computed LBP maps; for this work, two mapping
strategies are de�ned: (i) global and (ii) local mapping. 
e
size of the feature descriptor is summarized in Table 3.

2.3.1. Global. Global mapping extracts the �nal descriptors
from the 2D feature image for LBP and 3D volume for LBP-
TOP. 
erefore, for a volume with � slices, the global-LBP
mapping will lead to the extraction of � elements, while

Table 3: Size of a descriptor for an SD-OCT volume. � denotes the
number of slices in the volume,� the number of 2D windows, and
�� the number of 3D subvolumes, respectively.

Global mapping Local mapping

LBP � × LBP#pat (� × �) × LBP#pat

LBP-TOP 1 × (3 × LBP#pat) �� × (3 × LBP#pat)

the global-LBP-TOP represents the whole volume as a single
element.
e globalmapping for 2D images and 3D volume is
shown in Figures 5(a) and 5(b).

2.3.2. Local. Local mapping extracts the �nal descriptors
from a set of (� × �) 2D patches for LBP and a set of (� ×
� × �) subvolumes for LBP-TOP. Given � and �� as the
total number of 2D patches and 3D subvolumes, respectively,
the local-LBP approach provides�×� elements, while local-
LBP-TOP provides �� elements. 
is mapping is illustrated
in Figures 5(c) and 5(d).

2.4. Feature Representation. Two strategies are used to de-
scribe each OCT volume’s texture.

2.4.1. Low-Level Representation. 
e texture descriptor of an
OCT volume is de�ned as the concatenation of the LBP
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Figure 5: Graphical representation of the feature extraction: (a) extraction of LBP for global mapping, (b) extraction of LBP-TOP for global
mapping, (c) extraction of LBP for local mapping, and (d) extraction of LBP-TOP for local mapping.

histograms with the global mapping. 
e LBP histograms
are extracted from the previously computed LBP maps (see
Section 2.2). 
erefore, the LBP-TOP �nal descriptor is
computed through the concatenation of the LBP histograms
of the three orthogonal planes with the �nal size of 3 ×
LBP#pat. More precisely, an LBP histogram is computed for
each set of LBP maps (�-�) plane, (�-�) plane, and (�-�)
plane, respectively. Similarly, the LBP descriptor is de�ned
through concatenation of the LBP histograms per each (�-�)
slice with the �nal size of � × LBP#pat.

2.4.2. High-Level Representation. 
e concatenation of his-
tograms employed in the low-level representation in conjunc-
tion with either global or local mapping can lead to a high-
dimensional feature space. For instance, localmapping results
in a size of � × � × LBP#pat for the �nal LBP descriptor and

�� × LBP#pat for the �nal LBP-TOP descriptor, where� and

�� are the total number of 2D patches and 3D subvolumes,
respectively. High-level representation simpli�es this high-
dimensional feature space into a more discriminant lower
space. BoW approach is used for this purpose [13]. 
is
model represents the features by creating a codebook or
visual dictionary, from the set of low-level features. 
e set
of low-level features are clustered using �-means to create
the codebook with � clusters or visual words. A�er creating
the codebook from the training set, the low-level descriptors
are replaced by their closest word within the codebook. 
e
�nal descriptor is a histogram of size � which represents the
codebook occurrences for a given mapping.

2.5. Classi�cation. 
e last step of our framework consists
in the classi�cation of SD-OCT volumes as normal or DME.
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For that matter, �ve di�erent classi�ers are used: (i) �-Near-
est Neighbor (NN), (ii) Logistic Regression (LR) [19], (iii)
Random Forest (RF) [20], (iv) Gradient Boosting (GB)
[21, 22], and (v) Support Vector Machines (SVM) [23, 24].
Details regarding the parameters used in our experiments are
provided in Section 3.

3. Experiments

A set of three experiments is designed to test the in�uence
of the di�erent blocks of the proposed framework in com-
parison to our previous work [12]. 
ese experiments are
designed as follows:

(i) Experiment 1 evaluates the e�ects of number of words
used in BoW (high-level representation).

(ii) Experiment 2 evaluates the e�ects of di�erent prepro-
cessing steps and classi�ers on high-level representa-
tion.

(iii) Experiment 3 evaluates the e�ects of di�erent prepro-
cessing steps and classi�ers on low-level representa-
tion.

Table 4 reports the experiments which have been carried
out in [12] as a baseline and outlines the complementary
experimentation here proposed.
e reminder of this section
details the common con�guration parameters across the
experiments, while the detailed explanations are presented in
the following subsections.

All the experiments are performed using a private dataset
(see Section 3.1) and are reported as presented in Section 3.2.
In all the experiments, LBP and LBP-TOP features are
extracted using both local and global mapping for di�erent
sampling points of 8, 16, and 24 for radius of 1, 2, and 3 pixels,
respectively. 
e partitioning for local-mapping is set to (7 ×
7)-pixel patch for 2D LBP and (7 × 7 × 7)-pixel subvolume for
LBP-TOP.

3.1. SERI Dataset. 
is dataset was acquired by the Singapore
Eye Research Institute (SERI), using CIRRUS™ (Carl Zeiss
Meditec, Inc., Dublin, CA) SD-OCT device. 
e dataset
consists of 32 OCT volumes (16 DME and 16 normal cases).
Each volume contains 128 B-scanwith resolution of 512× 1024
pixels. All SD-OCT images are read and assessed by trained
graders and identi�ed as normal or DME cases based on
evaluation of retinal thickening, hard exudates, intraretinal
cystoid space formation, and subretinal �uid.

3.2. Validation. All the experiments are evaluated in terms of
Sensitivity (SE) and Speci�city (SP) using the LOPO-CV
strategy, in line with [12]. SE and SP are statistics driven
from the confusion matrix as depicted in Figure 6. 
e SE
evaluates the performance of the classi�er with respect to the
positive class, while the SP evaluates its performance with
respect to negative class. 
e use of LOPO-CV implies that,
at each round, a pair of DME-normal volumes is selected for
testing while the remaining volumes are used for training.
Subsequently, no SE or SP variance can be reported. However,
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Figure 6: Evaluation metrics: (a) confusion matrix and (b) SE-SP.

LOPO-CV strategy has been adopted despite this limitation
due to the reduced size of the dataset.

3.3. Experiment 1. 
is experiment intends to �nd the opti-
mal number of words and its e�ect on the di�erent con�gura-
tions (i.e., preprocessing and feature representation), on the
contrary to [12], where the codebook size was arbitrarily set
to � = 32.

Several preprocessing strategies are used: (i) NLM, (ii)
a combination of NLM and �attening (NLM+F), and (iii)
a combination ofNLM, �attening, and aligning (NLM+F+A).
LBP and LBP-TOP descriptors are detected using the default
con�guration. Volumes are represented using BoW, where
the codebook size ranges within � ∈ {10, 20, 30, . . . , 100, 200,
. . . , 500, 1000}. Finally, the volumes are classi�ed using LR.

e choice of this linear classi�er avoids the case that the
results get boosted by the classi�er. In this manner, any
improvement would be linked to the preprocessing and the
size of the codebook.


e usual build of the codebook consists of clustering the
samples in the feature space using �-means (see Section 2.4).
However, this operation is rather computationally expensive
and the convergence of the �-means algorithm for all code-
book sizes is not granted. Nonetheless, Nowak et al. [25]
pointed out that randomly generated codebooks can be used
at the expense of accuracy. 
us, the codebook is randomly
generated since the �nal aim is to assess the in�uence of the
codebook size and not the performance of the framework.
For this experiment, the codebook building is carried out
using random initialization using �-means++ algorithm [26],
which is usually used as a �-means initialization algorithm.
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Table 5: Summary of all the results in descending order.

Line Experiment
Evaluation

Pre-processing
Feat. Detection

Mapping Feat. Representation Classi�er BoW
SE SP Type {8, 1} {16, 2} {24, 3}

1 2 81.2 93.7 NLM+F LBP ✓ Local High SVM ✓
2 2 75.0 93.7 NLM+F+A LBP ✓ Local High SVM ✓
3 2 75.0 93.7 NLM LBP ✓ Local High SVM ✓
4 2 75.0 100 NLM LBP-TOP ✓ Local High SVM ✓
5 2 81.2 87.5 NLM LBP-TOP ✓ Local High SVM ✓
6 2 81.2 87.5 NLM+F+A LBP-TOP ✓ Local High RF ✓
7 2 81.2 81.2 NLM LBP ✓ Local High RF ✓
8 3 81.2 81.2 NLM LBP-TOP ✓ Global Low RF

9 2 81.2 81.2 NLM+F LBP-TOP ✓ Local High SVM ✓
10 3 81.2 81.2 NLM+F+A LBP-TOP ✓ Global Low GB

11 3 81.2 81.2 NLM+F LBP-TOP ✓ Global Low RF

12 2 75.0 87.5 NLM LBP ✓ Local High �-NN ✓
13 Lemaitre et al. [12] 75.0 87.5 NLM LBP ✓ Local High RF ✓
14 Lemaitre et al. [12] 75.0 87.5 NLM LBP-TOP ✓ Global Low RF

15 2 68.7 93.7 NLM LBP ✓ Global High RF ✓
16 3 75 81.2 NLM+F+A LBP-TOP ✓ Global Low RF

17 2 68.7 81.2 NLM LBP-TOP ✓ Local High RF ✓
18 3 62.5 93.7 NLM LBP-TOP ✓ Global Low SVM

19 3 68.7 87.5 NLM LBP-TOP ✓ Global Low RF

20 3 68.7 81.2 NLM LBP-TOP Global Low RF

21 3 75.0 75.0 NLM LBP-TOP Global Low RF

22 3 68.7 75.0 NLM+F LBP-TOP ✓ Global Low SVM

23 3 56.2 75.0 NLM LBP ✓ Global Low RF

24 3 56.2 75.0 NLM+F LBP ✓ Global Low �-NN
25 3 56.2 75.0 NLM+F+A LBP ✓ Global Low �-NN
26 Venhuizen et al. [10] 61.5 58.8

For this experiment, SE and SP are complemented with
ACC and F1 score (see (2)). ACC o�ers an overall sense of
the classi�er performance, and F1 illustrates the trade-o�
between SE and precision. Precision or positive predictive
value is a measure of algorithm exactness and is de�ned
as a ratio of True Positive over the total predicted positive
samples:

ACC = TP + TN
TP + TN + FP + FN ,

F1 = 2TP

2TP + FP + FN .
(2)

Table 6 in Appendix shows the results obtained for the
optimal dictionary size while the complete set of all ACC and
F1 graphics can be found at [27]. According to the obtained
results, it is observed that the optimum number of words is
smaller for local-LBP features in comparison to local-LBP-
TOP and global-LBP, respectively. Using LR classi�er, the best
performances were achieved using local-LBP with 70 words
(SE and SP of 75.0%) and local-LBP-TOP with 500 words (SE
and SP of 75.0% as well). 
ese results are shown in bold in
Table 6 in Appendix.

3.4. Experiment 2. 
is experiment explores the improve-
ment associated with (i) di�erent preprocessingmethods and

(ii) using larger range of classi�ers (i.e., linear and nonlinear)
on the high-level representation.

All the preprocessing stages are evaluated (NLM,NLM+F,
and NLM+F+A). In this experiment, the codebooks for the
BoW representation of LBP and LBP-TOP features are com-
puted using regular �-means algorithm which is initialized
using �-means++, where � is chosen according to the �ndings
of Experiment 1. Finally, the volumes are classi�ed using �-
NN, RF, GB, and SVM. 
e �-NN classi�er is used in con-
junction with the 3 nearest neighbors rule to classify the test
set.
e RF and GB classi�ers are trained using 100 unpruned
trees, while SVM classi�er is trained using an RBF kernel and
its parameters � and � are optimized through grid-search.

Complete list of the obtained results from this experiment
is shown in Table 7 in Appendix. Despite the fact that highest
performances are achieved when NLM+F or NLM+F+A is
used, most con�gurations decline when applied with extra
preprocessing stages.
e best results are achieved using SVM
followed by RF.

3.5. Experiment 3. 
is experiment replicates Experiment 2
for the case of low-level representation of LBP and LBP-TOP
features extracted using globalmapping.


e obtained results from this experiment are listed in
Table 8 in Appendix. In this experiment, �attening the B-
scan boosts the results of the best performing con�guration.
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However, its e�ects is not consistent across all the con�gu-
rations. RF has a better performance by achieving better SE
(81.2%, 75.0%, and 68.7%), while SVM achieves the highest
SP (93.7%), see Table 8 in the Appendix.

In terms of classi�er, RF has a better performance than the
others despite the fact that the highest SP is achieved using
SVM.

4. Results and Discussion

Table 5 combines the obtained results from Section 3 with
those reported by Lemaitre et al. [12], while detailing the
frameworks con�gurations. 
is table shows the achieved
performances with SE higher than 55%.


e obtained results indicate that expansion and tuning
of our previous framework improve the results. Tuning the
codebook size, based on the �nding of Experiment 1, leads to
an improvement of 6% in terms of SE (see Table 5 at lines 7
and 13). Furthermore, the �ne-tuning of our framework (see
Section 2) also leads to an improvement of 6% in both SE and
SP (see Table 5 at lines 1 and 13). Our framework also outper-
forms the proposed method of [10] with an improvement of
20% and 36% in terms of SE and SP, respectively.

Note that although the e�ects of preprocessing are not
consistent through all the performances, the best results are
achieved with NLM+F and NLM+F+A con�gurations as
preprocessing stages. In general, the con�gurations presented
inExperiment 2 outperform the others, in particular the high-
level representation of locally mapped features with an SVM
classi�er. Focusing on themost desirable radius and sampling
point con�guration, smaller radius and sampling points are
more e�ective in conjunction with local mapping, while
global mapping bene�ts from larger radius and sampling
points.

5. Conclusions


e work presented here addresses automatic classi�cation
of SD-OCT volumes as normal or DME. In this regard, an
extensive study is carried out covering the (i) e�ects of dif-
ferent preprocessing steps, (ii) in�uence of di�erent mapping
and feature extraction strategies, (iii) impact of the codebook
size in BoW, and (iv) comparison of di�erent classi�cation
strategies.

While outperforming the previous studies [10, 12], the
obtained results in this research showed the impact and
importance of optimal codebook size, the potential of 3D
features, and high-level representation of 2D features while
extracting from local patches.


e strengths of SVM while being used along with BoW
approach and RF classi�er while being used with global map-
ping were shown. In terms of preprocessing steps, although
the highest performances are achieved while alignment and
�attening were used in the preprocessing, it was shown that
the e�ects of these extra steps are not consistent for all the
cases and do not guarantee a better performance.

Several avenues for future directions can be explored.
e
�attening method proposed by Liu et al. �attens roughly the

RPE due to the fact that the RPE is not segmented. 
us, in
order to have a more accurate �attening preprocessing, the
RPE layer should be presegmented as proposed by Garvin
et al. [28]. In this work, the LBP invariant to rotation was
used and the number of patterns encoded is reduced. Once
the data are �attened, the nonrotation invariant LBP could
be studied since this descriptor encodes more patterns. In
addition to LBP, other feature descriptors can be included in
the framework.

Appendix

Complementary Results for
Experiments 1, 2, and 3

See Tables 6, 7, and 8.
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References

[1] S. Sharma, A. Oliver-Fernandez, W. Liu, P. Buchholz, and J.
Walt, “
e impact of diabetic retinopathy on health-related
quality of life,” Current Opinion in Ophthalmology, vol. 16, no.
3, pp. 155–159, 2005.

[2] S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global
prevalence of diabetes: estimates for the year 2000 and projec-
tions for 2030,”Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.

[3] Early Treatment Diabetic Retinopathy Study Group, “Photoco-
agulation for diabetic macular edema: early treatment diabetic
retinopathy study report no. 1,” Archives of Ophthalmology, vol.
103, no. 12, pp. 1796–1806, 1985.

[4] M. R. K. Mookiah, U. R. Acharya, C. K. Chua, C. M. Lim, E.
Y. K. Ng, and A. Laude, “Computer-aided diagnosis of diabetic
retinopathy: a review,” Computers in Biology and Medicine, vol.
43, no. 12, pp. 2136–2155, 2013.

[5] E. Trucco, A. Ruggeri, T. Karnowski et al., “Validating retinal
fundus image analysis algorithms: issues and a proposal,” Inves-
tigativeOphthalmology&Visual Science, vol. 54, no. 5, pp. 3546–
3559, 2013.

[6] Y. T. Wang, M. Tadarati, Y. Wolfson, S. B. Bressler, and N. M.
Bressler, “Comparison of prevalence of diabetic macular edema
based on monocular fundus photography vs optical coherence



14 Journal of Ophthalmology

tomography,” JAMAOphthalmology, vol. 134, no. 2, pp. 222–228,
2016.

[7] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and
S. Farsiu, “Automatic segmentation of seven retinal layers in
SDOCT images congruent with expert manual segmentation,”
Optics Express, vol. 18, no. 18, pp. 19413–19428, 2010.

[8] R. Ka�eh, H. Rabbani, M. D. Abramo�, and M. Sonka, “Intra-
retinal layer segmentation of 3D optical coherence tomography
using coarse grained di�usion map,” Medical Image Analysis,
vol. 17, no. 8, pp. 907–928, 2013.

[9] P. P. Srinivasan, L. A. Kim, P. S. Mettu et al., “Fully automated
detection of diabetic macular edema and dry age-related mac-
ular degeneration from optical coherence tomography images,”
Biomedical Optics Express, vol. 5, no. 10, pp. 3568–3577, 2014.

[10] F.G.Venhuizen, B. vanGinneken, B. Bloemen et al., “Automated
age-related macular degeneration classi�cation in OCT using
unsupervised feature learning,” in Proceedings of the Medical
Imaging 2015: Computer-Aided Diagnosis, vol. 94141l of Proceed-
ings of SPIE, Orlando, Fla, USA, February 2015.

[11] Y.-Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman,
and J. M. Rehg, “Automated macular pathology diagnosis in
retinal OCT images using multi-scale spatial pyramid and local
binary patterns in texture and shape encoding,” Medical Image
Analysis, vol. 15, no. 5, pp. 748–759, 2011.

[12] G. Lemaitre, M. Rastgoo, J. Massich, S. Sankar, F. Meriaudeau,
and D. Sidibe, “Classi�cation of SD-OCT volumes with LBP:
application to DME detection,” in Proceedings of the Medical
Image Computing andComputer-Assisted Intervention (MICCAI
’15), Ophthalmic Medical Image Analysis Workshop (OMIA ’15),
Munich, Germany, October 2015.

[13] J. Sivic and A. Zisserman, “Video google: a text retrieval
approach to object matching in videos,” in Proceedings of the 9th
IEEE International Conference on Computer Vision (ICCV ’03),
pp. 1470–1477, Nice, France, October 2003.

[14] J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical
coherence tomography,” Journal of Biomedical Optics, vol. 4, no.
1, pp. 95–105, 1999.

[15] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
’05), vol. 2, pp. 60–65, June 2005.

[16] P. Coupe, P. Hellier, C. Kervrann, and C. Barillot, “Nonlocal
means-based speckle �ltering for ultrasound images,” IEEE
Transactions on Image Processing, vol. 18, no. 10, pp. 2221–2229,
2009.
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