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Abstract. A new Sentinel-1 image-based sea ice classifica-

tion algorithm using a machine-learning-based model trained

in a semi-automated manner is proposed to support daily ice

charting. Previous studies mostly rely on manual work in se-

lecting training and validation data. We show that the read-

ily available ice charts from the operational ice services can

reduce the amount of manual work in preparation of large

amounts of training/testing data. Furthermore, they can feed

highly reliable data to the trainer by indirectly exploiting the

best ability of the sea ice experts working at the operational

ice services. The proposed scheme has two phases: training

and operational. Both phases start from the removal of ther-

mal, scalloping, and textural noise from Sentinel-1 data and

calculation of grey level co-occurrence matrix and Haralick

texture features in a sliding window. In the training phase, the

weekly ice charts are reprojected into the SAR image geom-

etry. A random forest classifier is trained with the texture fea-

tures on input and labels from the rasterized ice charts on out-

put. Then, the trained classifier is directly applied to the tex-

ture features from Sentinel-1 images operationally. Test re-

sults from the two datasets spanning winter (January–March)

and summer (June–August) seasons acquired over the Fram

Strait and the Barents Sea showed that the classifier is capa-

ble of retrieving three generalized cover types (open water,

mixed first-year ice, old ice) with overall accuracies of 87 %

and 67 % in winter and summer seasons, respectively. For the

summer season, the classifier failed in distinguishing mixed

first-year ice from old ice with accuracy of only 12 %; how-

ever, it performed rather like an ice–water discriminator with

high accuracy of 98 % as the misclassification between the

mixed first-year ice and old ice was between them. The ac-

curacy for five cover types (open water, new ice, young ice,

first-year ice, old ice) in the winter season was 60 %. The er-

rors are attributed both to incorrect manual classification on

the ice charts and to the semi-automated algorithm. Finally,

we demonstrate the potential for near-real-time service of the

ice map using daily mosaicked Sentinel-1 images.

1 Introduction

Wide swath SAR observation from several spaceborne SAR

missions (RADARSAT-1, 1995–2013; Envisat ASAR, 2002–

2012; ALOS-1 PALSAR, 2006–2011; RADARSAT-2, 2007-

present; Sentinel-1, 2014–present) played an important role

in studying global ocean and ice-covered polar regions. The

Sentinel-1 constellation (1A and 1B) is producing dual-

polarization observation data with the largest Arctic cov-

erage and the highest temporal resolution ever. The cross-

polarization is known to be more sensitive to the differ-

ence in scattering from sea ice and open water than the co-

polarization (Scheuchl et al., 2004), and the combination of

HH and HV polarizations has been widely used for ice edge

detection and ice type classification (a nice overview is given

in the paper by Zakhvatkina et al., 2019). However, most of

the recent ice classification algorithms were developed using

RADARSAT-2 ScanSAR (Leigh et al., 2014; Liu et al., 2015;

Zakhvatkina et al., 2017), which has different sensor charac-
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Figure 1. Study area.

teristics from Sentinel-1 TOPSAR, and the use of Sentinel-1

for the same purpose is very limited in literature. The main

drawback of applying existing algorithms to Sentinel-1 TOP-

SAR data is the relatively high level of thermal noise contam-

ination and its propagation to image textures.

For proper use of dense time series of Earth observa-

tions using SAR sensors, radiometric properties must be

well-calibrated. Thermal noise is often neglected in many

cases but can seriously impact the utility of dual-polarization

SAR data. Sentinel-1 TOPSAR image intensity is particu-

larly disturbed by the thermal noise in the cross-polarization

channel. Although the European Space Agency (ESA) pro-

vides calibrated noise vectors for noise power subtraction,

residual noise contribution is still significant considering the

relatively narrow backscattering distribution of the cross-

polarization channel. In our previous study (Park et al. 2018),

a new denoising method with azimuth de-scalloping, noise

scaling, and inter-swath power balancing was developed and

showed improved performance in various SAR intensity-

based applications. Furthermore, when it came to texture-

based image classification, we suggested a correction method

for textural noise (Park et al., 2019) which distorts lo-

cal statistics, and thus degrades texture information in the

Sentinel-1 TOPSAR images.

In many of the previous studies on ice–water and/or sea ice

classification (Soh and Tsatsoulis, 1999; Zakhvatkina et al.,

2013; Leigh et al., 2014; Liu et al., 2015; Ressel et al., 2015;

Zakhvatkina et al., 2017; Aldenhoff et al., 2018), the training

and validation were done using manually produced ice maps.

Although the authors claimed that the manual ice maps were

drawn by ice experts, the selection of SAR scenes and inter-

pretation could be inconsistent, and the number of samples

might not be enough to generalize the results because of the

laborious manual work. Furthermore, the results are hardly

reproducible by others because the reference sources are not

open to the public. Therefore, increasing objectivity is cru-

cial, and automating the classification process is encouraged.

The idea of training using SAR images and accompanying

Figure 2. Processing flow chart of the proposed algorithm. The grey

colour shows the training phase

image analysis charts, which is a direct manual interpretation

of SAR images by trained ice analysts working at operational

ice services, was tested for sea ice concentration estimation

by Wang et al. (2017); however, such image analysis charts

are not accessible to the public.

The use of a public ice chart as training and validation

reference data may help in solving the validation problem.

The preparation of a public ice chart is also through manual

inspection of various sources of satellite imagery and other

sources of data (Partington et al., 2003; Johannessen et al.,

2006); however, training using a large volume of these charts

would reduce operator-to-operator bias, such as inconsistent

decisions against similar ice conditions. The overall bias may

exist since the public ice charts are produced in the inter-

est of marine safety. Nevertheless, as the human interpreta-

tion available in the ice chart is currently considered the best

available information on sea ice (Karvonen et al., 2015), the

best practice to make a sea ice type classifier is to train with

the public ice chart so that the best knowledge of ice analysts

is mimicked.

In this work, we present a semi-automated Sentinel-1

image-based sea ice classification algorithm which takes ad-

vantage of our denoising method. The noise-corrected dual-

polarization images are processed into image textures that

capture sea ice features in various spatial scales, and they

are used for supervised classification with a random forest

classifier by relating with ice charts published by operational

ice services. The use of ice charts has a dual purpose: semi-

automatization of classifier training and minimization of hu-

man error.
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Figure 3. An example of the ice chart preprocessing. From the ice chart, stage of development (SoD; a), ice concentration (CT; b), and partial

concentration of the dominant ice type (CP; c) maps are extracted. Then, some of the different SoDs are merged (e.g. thin and thick first-year

ice is merged into a single label as first-year ice), and the area with low ice concentration is labelled as open water. The processed map of

SoD (d) is related with textural features extracted from HH and HV polarization images (e, f). Note that the NIC ice chart which was published

on 25 January 2018 and the Sentinel-1 product S1B_EW_GRDM_1SDH_20180122T075237_20180122T075337_009281_010A4D_65AA

acquired over the Fram Strait were used in this example.

2 Data and methods

2.1 Study area and used data

The region of study for developing and testing the proposed

algorithm is the Fram Strait and the Barents Sea including a

part of the Arctic Ocean (75–85◦ N, 10◦ W–70◦ E) as shown

in Fig. 1. Various sea ice types are found in this area due to

the intensive export of multi-year ice through the Fram Strait

(Smedsrud et al., 2017) and development of young and first-

year ice between Svalbard and Franz Josef Land.

Sentinel-1 TOPSAR data in extended wide-swath (EW)

mode acquired in summer (June–August in 2016–2018) and

winter (January–March in 2017–2019) seasons were col-

lected from the Copernicus Open Access Hub (https://scihub.

copernicus.eu, last access: 18 August 2020). The number of

daily image acquisitions covering the study area ranges from

6 to 10 depending on the orbits. The images from the first 2

years (hereafter called DS1) are used to train the classifier,

and those from the third year (hereafter called DS2) are used

for validation.

The ice charts covering the same periods were collected.

There are two ice services that publish weekly ice charts with

pan-Arctic coverage: the U.S. National Ice Center (NIC) of

the United States of America and the Arctic and Antarctic

Research Institute (AARI) of Russia. Although the accura-

cies are known to be comparable (Pastusiak, 2016) to each

other, there is no partial ice concentration information in the

AARI ice chart. In this study, we use the ice charts down-

loaded from the NIC website (https://www.natice.noaa.gov/

Main_Products.htm, last access: 18 August 2020). The NIC

ice products are produced primarily using radar, microwave

radiometer, scatterometer, visible, and infrared imagery from

a variety of sources. In addition to imagery, drifting buoy

data, ice model predictions, limited ship reports, meteoro-

logical and oceanographic observations, and ice information

provided by other international centres are also used to make

a comprehensive analysis of ice conditions (WMO, 2017).

2.2 Methods

Figure 2 shows the flow of the semi-automated ice classifi-

cation scheme that we propose. It is divided into two phases:
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Figure 4. Incidence angle dependences of sigma naught in HH

(closed squares) and HV (open squares) polarization channels. Pix-

els covering various types of sea ice were merged so that the av-

eraged property can be estimated. The blue and red zones indicate

winter and summer seasons, respectively.

Table 1. Hyperparameters used for grid search.

Parameters Values

NT 1 2 4 8 16 32 64

D 1 2 4 8 16 32 64

NF 1 2 4 8 16 28

training and operational. Both phases start from the removal

of thermal noise from Sentinel-1 data (Sect. 2.2.2), incidence

angle calibration (Sect. 2.2.3), and calculation of texture fea-

tures (Sect. 2.2.4). The training phase (shown in grey in

Fig. 2) continues with preprocessing and collocation of the

ice charts with the Sentinel-1 data (Sect. 2.2.1) and machine

learning step (Sect. 2.2.5 and 2.2.6). The operational phase

uses the classifier which developed during the training phase

for processing texture features that were computed from the

input SAR data and for generating ice charts. Detailed expla-

nations for each step are given in the following subsections.

2.2.1 Ice chart preprocessing

To take advantage of the objective identification of the ice

type from expert sources open to public and to develop a

semi-automated processing scheme, the proposed algorithm

uses electronic ice charts published by international ice chart

services. The electronic ice chart follows SIGRID-3 format

(JCOMM, 2014a), which is based on a vector format called

shapefile (ESRI, 1998). The first step is to reproject the ice

chart into the geometry of each SAR image. Although an ac-

curate reprojection needs several pieces of information such

as orbit, look angle, topographic height, etc., our interest is in

the sea ice where the topographic difference does not exceed

Figure 5. Hyperparameter optimization using grid search results

(cross). Dashed lines represent the best-fit Richards curve. (a) The

optimal values are extracted from the locations where the score

increments per unit of each hyperparameter become lower than a

threshold (e.g. 0.001). (b) If the curve does not fit the grid search

results well, (c) the difference between training and test scores is

used to find the locations where it does not exceed a threshold (e.g.

0.03) in order to avoid overfitting.

more than a few metres; hence the reprojection of coordinates

of ice chart polygons is done with Geospatial Data Abstrac-

tion Library (GDAL; GDAL/OGR contributors, 2019) using

a simple third-order polynomial fitted using the ground con-

trol point information from the Sentinel-1-product-included

auxiliary data.

After the reprojection, the following three layers are ex-

tracted: total ice concentration (CT), partial ice concentra-

tion of each ice type (CP), and stage of development (SoD).

CT is important because areas with low CT can be misinter-

preted as open ocean in a SAR image. Heinrichs et al. (2006)

reported that the ice edge determined from AMSR-E pas-

sive microwave radiometer data using the isoline of 15 %

concentration best matches the ice edge determined from

RADARSAT-1 SAR data using visual inspection. After the

visual comparison of many SAR images and the correspond-

ing reprojected ice charts, we set a threshold of 20 % for CT

The Cryosphere, 14, 2629–2645, 2020 https://doi.org/10.5194/tc-14-2629-2020
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Table 2. Distribution of the image acquisition dates prior to the publication of the reference ice chart.

Training and test dataset (DS1) Validation dataset (DS2)

Days prior to the date of 3 2 1 0 3 2 1 0

ice chart publication

Winter 124 168 77 50 78 75 67 61

Summer 119 125 112 65 87 67 48 30

to discard water-like pixels. Note that the ice concentration

label in the SIGRID-3 format is assigned in an increment of

10 %. CP is also important in finding the dominant ice type

in the given polygons. SoD is a so-called ice type. It is chal-

lenging to differentiate ice types using SAR data only; thus

we merged the SoDs into five simple classes: open water,

new ice, young ice, first-year ice, and old ice. For the sum-

mer season (June–August), there is almost no new ice and

young ice annotated in the NIC ice chart, and the SoDs are

further merged into three classes: open water, mixed first-

year ice, and old ice. Figure 3 demonstrates an example of

the ice chart preprocessing explained above with the colours

following the WMO nomenclature (JCOMM, 2014b). Com-

paring the original SoD in panel (a) with the processed SoD

in panel (d), it is clear that the ice edge of the processed SoD

matches better with the SAR backscattering images.

2.2.2 Denoising of Sentinel-1 imagery

Sentinel-1 cross-polarization images suffer from strong

noise, some which originates from combined effects of the

relatively low signal-to-noise ratio of the sensor system and

insufficient noise vector information in the extra-wide-swath

mode level 1 product (Park et al., 2018). For surfaces with

low backscattering such as calm open water and level sea

ice without the presence of frost flowers on top, the effects

from thermal noise contamination are visible not only in the

backscattering image but also in some of the texture images

(Park et al., 2019). The authors have developed an efficient

method for textural denoising which is essential for the pre-

processing of Sentinel-1 TOPSAR dual-polarization prod-

ucts. Denoising ensures beam-normalized texture properties

for all subswaths, which helps seamlessly mosaic of multi-

pass images regardless of the satellite orbit and image ac-

quisition geometry. By following the methods developed in

Park et al. (2018, 2019), each of the Sentinel-1 images was

denoised before further processes are applied. As the noise

power subtraction yields negative intensity values where the

backscattering power is close to the noise floor, more often

in HV polarization, which has lower backscatter than in HH

polarization, we added mean of the noise power back to the

denoised result so that those pixels do not turn into NaN (not

a number) by the sigma naught conversion of linear scale to

log scale (decibel).

2.2.3 Incidence angle correction

It is well-known that there is a strong incidence angle de-

pendence in the SAR backscattering intensity for open water

and sea ice surface (Mäkynen et al., 2002; Mäkynen and Kar-

vonen, 2017). For a wide-swath SAR system like Sentinel-

1 TOPSAR, varying backscatter intensity confuses image

interpretation. The quasi-linear slopes in the plane of inci-

dence angle versus sigma nought in decibel scale are reported

as −0.24 and −0.16 dB per degree for typical first-year ice

(Mäkynen and Karvonen, 2017), −0.27 and −0.26 dB per

degree for level first-year ice and −0.23 and −0.23 dB per

degree for multi-year ice (Lohse et al., 2020) in HH and

HV polarization, respectively. To normalize the backscatter-

ing intensity for all swath ranges, these slopes were compen-

sated for or used as an input layer in several ice classifica-

tion algorithms in the literature (Liu et al., 2015; Zakhvatk-

ina et al., 2013, 2017; Karvonen, 2014, 2017; Aldenhoff et

al., 2018). Although the angular dependency is not a system-

dependent variable but is governed by physical character-

istics of the backscattered surface, the numbers need to be

reassessed because the estimations of Mäkynen and Karvo-

nen (2017) might have been affected by the residual thermal

noise which used to be very strong before the ESA updated

the noise removal scheme in 2018 (Miranda, 2018).

Figure 4 shows incidence angle dependence in the SAR

backscattering intensity for mixed sea ice types. From the

Sentinel-1 dataset described in Sect. 2.1, sea ice pixels were

extracted by using daily global sea ice edge products avail-

able from the EUMETSAT Ocean and Sea Ice Satellite Ap-

plication Facilities (OSI SAF). For the midwinter season

(January–March displayed as a blue background), the esti-

mated mean slope in HH polarization was −0.21 dB per de-

gree, which is slightly different from the estimation of the

first-year ice (−0.24 dB per degree) in Mäkynen and Karvo-

nen (2017) and in between the estimations for first-year ice

(−0.22 dB per degree) and multi-year ice (−0.16 dB per de-

gree) in Mahmud et al. (2018). For HV polarization, the es-

timated slope was only −0.06 dB per degree, which is much

lower than −0.16 dB per degree for deformed first-year ice

in Mäkynen and Karvonen (2017); however, it is in line

with the estimations in Liu et al. (2015). Work by Leigh et

al. (2014) stated that the HV polarization backscatter signa-

tures are largely unaffected by incidence angle variation in

their RADARSAT-2 dataset. For the summer season (June–

https://doi.org/10.5194/tc-14-2629-2020 The Cryosphere, 14, 2629–2645, 2020
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Figure 6. Feature importance of the binary sub-classifiers. ASM: angular second moment; Cont: contrast; Corr: correlation; Var: variance;

IDM: inverse difference moment; Sum Avg: sum average; Sum Var: sum variance; Sum Ent: sum entropy; Ent: entropy; Diff Var: differ-

ence variance; Diff Ent: difference entropy; IMC: information measures of correlation; CV: coefficient of variation. For definitions of each

parameter, please refer to Haralick et al. (1973).

August displayed by red background), the mean slopes in-

creased to −0.28 and −0.08 dB per degree in HH and HV

polarization, respectively. Scharien et al. (2014) reported sig-

nificant slopes for ice adjacent to melt ponds in June, and

Gill et al. (2015) also found slopes of −0.33 and −0.25 for

smooth first-year ice in May in HH and HV polarization, re-

spectively. The smaller slopes in our estimation are likely due

to the mixed ice types and structures; the SAR backscatter-

ing of deformed ice has lower incidence angle dependency

as shown in Mäkynen and Karvonen (2017).

We compensate for the incidence angle dependence using

the estimated slopes with respect to the nominal scene cen-

tre angle of 34.5◦ as reference. Although the incidence angle

dependence changes with ice type and radar frequency (Mah-

mud et al., 2018), the compensation is done for all pixels in

the image using a single value of mean slope because the ice

types are not identified in this stage. Open water areas of the

image are also affected; however, the correction is also bene-

ficial since the incidence angle dependence for open water is

stronger (−0.65 dB per degree for wind velocity of 5 m s−1,

computed from CMOD5 C-band geophysical model function

in Hersbach et al., 2007); thus the corrected image has less

incidence angle dependence.

2.2.4 Texture feature computation

Like many of the previously developed sea ice type classifi-

cation methods (Shokr, 1991; Barber and LeDrew, 1991; Soh

and Tsatsoulis, 1999; Deng and Clausi, 2005; Zakhvatkina

et al., 2013; Leigh et al., 2014; Liu et al., 2015), the pro-

posed approach starts from a grey level co-occurrence ma-

trix (GLCM) calculation. The GLCM is a four-dimensional

matrix P(ijda) calculated from two grey tones of refer-

ence pixel i and its neighbour j , with co-occurrence dis-

tance d and orientation a. Haralick et al. (1973) introduced

a set of GLCM-based texture features called Haralick fea-

tures, and its practicality has been reported in numerous stud-

ies. Since 13 Haralick features can be calculated for each

of the two-dimensional slices P(ij ) for multiple d and a

values, the maximum number of texture features is to be

2 × 13 × d × a = 26da, where 2 accounts for dual polariza-

tion. It is common to take the directional average for 0, 45,

90, and 135◦ to reduce GLCM dimensionality. Further aver-

aging for multiple distances (1 to w/2, where w is the size of

the subwindow for GLCM computation) is taken after com-

puting the normalized GLCM. The spatial resolution of the

texture features is the pixel spacing of the Sentinel-1 EW-

mode GRDM image (40 m) multiplied by w. In this study,

we set w as 25 so that the grid spacing of the result of texture

analysis is 1 km.

An important factor that influences the computed texture

features is the number of grey levels, L. Considering the

radiometric stability of Sentinel-1 EW mode (0.32 dB; Mi-

randa, 2018) and the range of sigma nought for various ice

types (−31 to 0 dB for HH, −32 to −7 dB for HV; estimated

from DS1 and DS2 after incidence angle correction), the

number of grey levels should be sufficiently large enough to

capture their actual differences in sigma nought values. The

optimal quantization level can be calculated using the ratio

of sigma nought range to radiometric resolution as follows:

For HH,
(0dB) − (−31dB)

0.32dB
= 96.875, (1)

For HV,
(−7dB) − (−32dB)

0.32dB
= 78.125. (2)

Since L should be sufficiently large to take full advantage

of the system capability and yet the computation cost should

not be too expensive, in this study, we set L as 64, which

is the closest power of 2 to the resulting numbers from the

equations above.

In addition to 13 Haralick features, the coefficient of varia-

tion (CV) which is reported as a useful feature for ice–water

discrimination (Keller et al., 2017) is included. The CV is

defined as follows:

CV = σ/µ, (3)

where σ and µ are the standard deviation and mean of the

samples in a given subwindow. Since CV can be computed

The Cryosphere, 14, 2629–2645, 2020 https://doi.org/10.5194/tc-14-2629-2020
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Figure 7. The 1 d mosaics of Sentinel-1A/1B images (a: HH; b:

HV) and the ice classification result (d) on 5 February 2019. The

publication date of the reference weekly ice chart (c) is 8 Febru-

ary 2019.

for each polarization image, the number of texture features

for Sentinel-1 dual-polarization data is extended to 28. Inci-

dence angle and day of the year can also be added. The for-

mer is adopted to account for possible residuals from the an-

gular dependency correction while the latter is to account for

seasonal variability. Although these two are not any type of

textures, they can be used as input features for image classifi-

cation. Note that it is important to have each ice type spatially

and temporally evenly distributed if these two additional fea-

tures are included; otherwise, the trained classifier will result

in a biased prediction. The effects of including these extra

features will be tested and discussed in later sections.

2.2.5 Machine learning classifier

Since there are hundreds of algorithms in the field of ma-

chine learning (ML) and each of the different algorithms has

its own pros and cons, it is not easy to compare their per-

formances and decide what to use. Fernández-Delgado et

al. (2014) found that the random forest (RF; Ho, 1998) was

the best classifier for various types of datasets with a slight

difference from a support vector machine (SVM; Cortes and

Vapnik, 1995). In the previous studies about sea ice classifi-

cation (e.g. Leigh et al., 2014; Liu et al., 2015; Zakhvatkina

et al., 2017), the SVM was used often because by nature it

works relatively well even when the number of datasets is

small. When the training dataset is prepared by manual work

(i.e. manual classification by human expert), the number of

images is not large, usually fewer than 20 (e.g. 12 scenes

in Zakhvatkina et al., 2013; 20 scenes in Leigh et al., 2014;

1 scene in Liu et al., 2015; 4 scenes in Ressel et al., 2015).

However, the number can increase with less effort when

Figure 8. The 1 d mosaics of Sentinel-1A/1B images (a: HH; b:

HV) and the ice classification result (d) on 8 February 2019. The

publication date of the reference weekly ice chart (c) is 8 Febru-

ary 2019.

the readily available ice charts are used as training refer-

ences. Besides, there is no need to rely on additional manual

work prone to contamination by biased decisions. The RF

has two practical advantages when processing a large num-

ber of datasets. First, the RF is scale-invariant and does not

require preprocessing of the datasets, whereas the SVM re-

quires scaling and normalization. Second, the computational

complexity of the RF is lower than that of the SVM. For the

SVM, the number of operations is O(n2p+n3) and O(nsvp)

for training and prediction while for RF it is O(n2pntr) and

O(ntrp), respectively, where n is the number of samples, p is

the number of features, nsv is the number of support vectors,

and ntr is the number of trees. Considering the practical re-

quirements of fast processing for near-real-time ice charting

services, the RF can be a reasonable solution. We use the RF

with the Python Scikit-Learn implementation (Pedregosa et

al., 2011).

We split the RF classifier into several binary classifiers us-

ing a one-vs.-all scheme (Anand et al., 1995). Although the

standard RF algorithm can inherently deal with a multiclass

problem, the one-vs.-all binarization to the RF results in bet-

ter accuracy with smaller forest sizes than the standard RF

(Adnan and Islam, 2015).

Three hyperparameters of the RF classifier were tuned:

number of trees (NT), maximum tree depth (D), and max-

imum number of features (NF). Usually, with the higher NT

and D, the model better fits to the data. However, increasing

forest size can slow down the training process considerably,

and more importantly, it can cause overfitting. Therefore, it

is important to tune these hyperparameters adequately so that

the processing time and performance are in balance. To de-

termine the best values of the hyperparameters, a grid search

https://doi.org/10.5194/tc-14-2629-2020 The Cryosphere, 14, 2629–2645, 2020
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Table 3. Confusion matrix of the five-class RF classifier which was trained with and applied to the DS1 winter dataset. The bold font indicates

where the classification was done correctly.

Predicted

OW (open water) NI (new ice) YI (young ice) FYI (first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3

A
ct

u
al

OW 90.1 91.3 92.4 1.3 1.1 1.2 1.6 1.7 1.6 6.9 5.9 4.8 0.0 0.0 0.0

NI 30.0 28.0 26.1 21.9 23.8 45.0 27.1 26.7 13.3 16.7 17.7 11.8 4.2 3.9 3.8

YI 3.7 3.7 3.9 5.1 4.8 5.2 58.8 60.1 62.6 24.3 24.0 21.1 8.1 7.4 7.2

FYI 5.0 4.7 3.9 1.7 1.5 1.7 18.7 19.0 19.4 64.4 65.3 65.9 10.1 9.6 9.1

OI 0.1 0.1 0.2 0.3 0.3 0.6 3.1 2.9 3.0 6.4 6.1 5.6 90.1 90.6 90.6

Table 4. Confusion matrix of the five-class RF classifier which was trained with the DS1 winter dataset and applied to the DS2 winter dataset.

The bold font indicates where the classification was done correctly.

Predicted

OW (open water) NI (new ice) YI (young ice) FYI (first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3

A
ct

u
al

OW 89.1 90.2 90.3 1.3 1.1 1.9 3.3 3.5 4.2 6.4 5.2 3.7 0.0 0.0 0.0

NI 45.1 45.0 56.5 31.9 30.6 17.6 6.0 5.7 13.3 15.1 17.3 11.2 2.0 1.5 1.5

YI 7.1 7.1 9.2 6.3 5.9 8.5 47.6 48.0 55.0 28.7 29.2 17.3 10.4 9.8 9.9

FYI 5.6 5.0 5.8 3.8 3.5 3.2 32.8 33.0 35.0 38.4 39.7 37.3 19.3 18.8 18.7

OI 0.3 0.3 0.7 0.5 0.4 0.7 1.9 1.8 1.9 4.6 4.8 4.5 92.8 92.8 92.6

with five-fold cross-validation (Kohavi, 1995) is used. The

grid (all possible combinations of NT, D, and NF values)

is set on a logarithmic scale (Table 1) because the perfor-

mance change with hyperparameter is typically on a loga-

rithmic scale. Classification scores with values ranging from

0 (worst performance) to 1 (best performance) are evaluated

for each node of the grid and are interpolated between the

nodes by curve fitting. The Richards curve (Richards, 1959)

was used as the fit model because it allows easy estimation

of the model’s maximum value. The optimal values for NT,

D, and NF are selected based on the saturation of score in-

crements, difference between training and testing scores, and

computational load considerations.

2.2.6 Training and validation

To train an ice type classifier, a set of collocated SAR im-

ages and ice charts is required. After the preprocessing of

the ice chart including reprojection into the SAR image ge-

ometry, only the samples with spatially and temporally good

matches should be fed to the training phase. The goodness

of matching should be examined as the weekly ice chart is

produced by merging information from many image sources

acquired in different time instances; hence the ice locations

and conditions are unlikely to match to those in every SAR

image. As no explicit scene identifier or time information of

the images used in ice charting is provided with the ice chart

itself, the basic strategy in image selection is to find a pair

Figure 9. The 1 d mosaics of Sentinel-1A/1B images (a: HH; b:

HV) and the ice classification result (d) on 13 August 2018. The

publication date of the reference weekly ice chart (c) is 16 Au-

gust 2018.

of a SAR image and an ice chart which match well visually.

Such an image selection is trivial, but not easy to automate.

Since the weekly ice chart is made partly based on the SAR

images acquired in the past 3 d from the date of publication,
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Table 5. Classification accuracies before and after applying textural denoising.

Case

FC1 FC2 FC3

Thermal Textural Difference Thermal Textural Difference Thermal Textural Difference

denoising denoising denoising denoising denoising denoising

Class only applied only applied only applied

Open water 88.0 89.1 +1.1 88.7 90.2 +1.5 89.4 90.3 +1.9

New ice 32.2 31.9 −0.3 32.2 30.6 −1.6 20.0 17.6 −2.4

Young ice 45.2 47.6 +2.4 44.7 48.0 +3.3 48.8 55.0 +6.2

First-year ice 38.6 38.4 −0.2 39.4 39.7 +0.3 36.4 37.3 +0.9

Old ice 88.9 92.8 +3.9 88.5 92.8 +4.5 88.6 92.6 +4.0

Kappa 0.59 0.67 +0.08 0.59 0.67 +0.08 0.59 0.67 +0.08

Table 6. Confusion matrix of the three-class RF classifier which was trained with and applied to the DS1 summer dataset. The bold font

indicates where the classification was done correctly.

Predicted

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3

A
ct

u
al OW 98.1 97.9 98.7 0.7 0.7 0.6 1.2 1.4 0.6

mFYI 4.1 3.9 2.4 14.9 15.5 41.8 81.1 80.6 55.8

OI 1.5 1.4 1.0 5.5 5.7 4.9 93.0 92.9 94.1

the ice edges in some images match well with those in the ice

chart.

In order to automate image selection, the ice edges in SAR

images need to be identified first. Since even an ice–water

classifier has not been well-developed yet for Sentinel-1, the

image selection procedure has to be done manually in the

beginning. However, once a classifier is generated with high

accuracy, it can be used to automate the procedure; then the

whole process in the proposed scheme will be fully auto-

mated. This is why the proposed algorithm is named “semi-”

automated for now. Nevertheless, the manual selection to

guarantee a “good match” is done by visual inspection of ice–

water boundaries overlaid on SAR images. The ice–water

boundary can be extracted easily from the reprojected ice

chart. Then the SAR backscattering image contrasts across

the ice–water boundaries are examined in both HH and HV

polarization because the image contrast between ice–water is

larger in HV while smooth level ice is more easily identified

in HH.

After the image selection, the samples in the selected im-

ages are split randomly into training and test datasets with a

ratio of 7 : 3. For the training dataset, further data selection

is made by excluding the samples residing close to the poly-

gon boundaries. This is to account for possible mismatch due

to various reasons (e.g. ice drift, vector mapping error, im-

age geocoding error). In this study, only the data from pix-

els more than 3 km away from the polygon boundaries were

fed into the training process. Once the hyperparameter op-

timization is done, the RF classifier is trained for the train-

ing dataset. The trained classifier is then applied to the test

dataset. For performance evaluation, we use confusion ma-

trix and Cohen’s kappa coefficient κ (Cohen, 1960), which

measures the agreement between two rasters (in this study,

they are the output from the trained classifier and the ref-

erence ice chart), taking account of the possibility of the

agreement occurring by chance. The validation is done in the

same way but using a completely independent dataset. The

DS1 was used to run the training phase. Among 4485 images

in total, we selected 840 images (419 for the winter season

and 421 for the summer season) of which ice edges match

well with the collocated ice chart. From the selected images,

120 million samples covering open water and sea ice were

divided into training and test datasets. The DS2 was used

to evaluate the performance of the trained classifier using a

temporally independent dataset of 513 images (281 for the

winter season and 232 for the summer season). The distribu-

tion of the image acquisition dates prior to the publication of

the reference ice chart is shown in Table 2.

It might not be enough to assess the quality of the classi-

fier output when it is trained with, and evaluated against, only

NIC ice charts. The accuracy could be indirectly investigated

by comparing the output from our classifier against another

data source, such as the OSI SAF sea ice type product (OSI-

403-c). The ice classes of OSI-403-c are assigned from at-
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Table 7. Confusion matrix of the three-class RF classifier which was trained with the DS1 summer dataset and applied to the DS2 summer

dataset. The bold font indicates where the classification was done correctly.

Predicted

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3
A

ct
u

al OW 99.5 99.4 96.2 0.2 0.2 3.2 0.3 0.4 0.6

mFYI 5.4 5.1 3.0 12.0 11.2 25.8 82.5 83.7 71.2

OI 2.9 2.7 2.2 5.8 5.8 13.4 91.2 91.4 84.4

Table 8. Confusion matrix of the three-class RF classifier which was trained with the DS1 summer dataset and applied to the DS1 summer

dataset of each month. The bold font indicates where the classification was done correctly.

Predicted (FC1)

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case Jun Jul Aug Jun Jul Aug Jun Jul Aug

A
ct

u
al OW 99.0 99.0 98.1 0.9 0.3 0.3 0.1 0.7 1.6

mFYI 4.7 2.1 3.9 60.6 32.6 26.5 34.7 65.3 69.6

OI 0.6 0.8 2.1 7.7 7.7 10.1 91.7 91.5 87.8

Figure 10. The 1 d mosaics of Sentinel-1A/1B images (a: HH; b:

HV) and the ice classification result (d) on 16 August 2018. The

publication date of the reference weekly ice chart (c) is 16 Au-

gust 2018.

mospherically corrected brightness temperatures of passive

microwave radiometers (SSMIS and AMSR2) and backscat-

ter values of radar scatterometer (ASCAT), using a Bayesian

approach (Aaboe et al., 2018).

Figure 11. An example of the inconsistency of the ice charts. Note

that the SoD labels and colours are of an original NIC ice chart,

while those in Figs. 7 and 8 are of a simplified version as described

in Sect. 2.2.1. The SoDs from the NIC ice charts on different dates

(26 December 2018 and 2 January 2019) are superimposed on the

Sentinel-1 backscattering image of the corresponding dates. The

same ice floe (red outline) is classified differently in each ice chart

(old ice in a and first-year ice in b) despite the similarity in the

SAR backscattering images. Source credits: U.S. National Ice Cen-

ter (colours) and European Space Agency (background).

3 Results and discussion

We trained three RF classifiers with different feature config-

urations: (i) FC1: Haralick texture features and CV; (ii) FC2:

Haralick texture features, CV, and incidence angle; and

(iii) FC3: Haralick texture features, CV, incidence angle, and

day of the year.
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Table 9. Confusion matrix of the three-class RF classifier which was trained with the DS1 summer dataset and applied to the DS2 summer

dataset of each month. The bold font indicates where the classification was done correctly.

Predicted (FC1)

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case Jun Jul Aug Jun Jul Aug Jun Jul Aug
A

ct
u

al OW 90.6 99.5 99.7 8.1 0.2 0.1 1.3 0.3 0.2

mFYI 3.4 4.0 4.2 55.6 41.4 11.0 41.0 54.9 84.9

OI 1.4 3.4 3.4 11.2 10.9 6.3 87.5 85.6 90.3

As expected, the classification score increases with the

number of trees (crosses in Fig. 5a), and Richards curve

(dashed line) fits well to the observations (RMSE = 2.3 ×

10−4). The optimal NT value is selected where the score in-

crement per tree (i.e. local slope) becomes less than 0.001

(i.e. accuracy increase of 0.1 %) and constitutes 11 trees, thus

keeping the forest size small. The scores also increase with

the maximum tree depth (crosses in Fig. 5b), but Richards’

curve (dashed line) does not fit so well (RMSE = 3.6×10−3)

and cannot be used for finding the optimal D value. This can

be explained by overfitting of the classifier and illustrated by

the difference between training and testing scores (Fig. 5c):

a small difference between the scores (for D ≤ 8) indicates

similar performance on training and testing datasets, while a

large difference (for D > 8) indicates that the testing dataset

is processed with worse results. The optimal D value is there-

fore selected where the score difference becomes higher than

0.03 and constitutes eight levels. The optimal value of the

number of features (NF) was selected using the same crite-

rion as for NT, and the value constitutes 10 features. As a re-

sult, the optimal hyperparameters of the number of trees, the

maximum tree depth, and the number of features were 11, 8,

and 10, respectively.

The trained five-class classifier consists of five binary sub-

classifiers; each of them is used for discriminating one spe-

cific class from the others. For each sub-classifier, each tex-

ture feature has a different weight in decision making. The

fraction of the samples that each texture feature contributes

can be used to compute the relative importance of the fea-

tures, and the averaged estimates of them over several ran-

domized trees serve as an indicator of feature importance

(Louppe, 2014). The feature importance of the sub-classifiers

is presented in Fig. 6. The overall pattern shows that the fea-

tures of HV polarization play a more important role than

those of HH polarization. For HH polarization, the sum av-

erage, which is equal to the mean backscattering intensity in

each subwindow, was the prominent feature. For HV polar-

ization, however, contrast and variance- and entropy-related

features were more important. The classifiers for open water

and old ice have stronger dependencies on HV polarization

than others. This is understandable because the main radar

scattering mechanisms for those two types are strongly char-

acterized by the portion of volume scattering: low for calm

water and high for dry ice with low salinity (old ice). The

classifier for new ice has a distinctive pattern that the sum

averages in both polarizations are much more important than

other features. This might be because the new ice has dif-

ferent types of recently formed ice including nilas, which is

smooth but rafting can make rough features, and frost flow-

ers, which introduce high surface roughness and volume scat-

tering (Isleifson et al., 2014). Thus the new ice can appear

either featureless and dark or complex and bright in a SAR

image (Dierking, 2010). The large range in backscatter val-

ues makes it hard to define characteristic texture in the new

ice patch.

The confusion matrix for testing the trained classifier for

winter season with the test dataset (DS1) is shown in Table 3.

Three cases with different feature configurations (FC1–FC3)

were tested. The accuracies for open water and old ice were

higher than 90 %; however, those for young ice and first-year

ice were around 60 %. The mean difference between the re-

sults of FC1 and FC2 was only 1.2 %, indicating that residual

angular dependency was negligible after the incidence an-

gle correction. However, the accuracy significantly improved

from FC2 to FC3, especially with new ice (21.2 %). The Co-

hen kappa coefficients κ for FC1, FC2, and FC3 were 0.70,

0.71, and 0.77, respectively. It should be noted that the eval-

uation of the DS1 was carried out with the input dataset that

was used for training. Thus, the test and training data share

the same ice conditions as well as spatio-temporal coverage.

As a result, the κ might contain correlation which is not

preferable for proper evaluation. Table 4 shows the confu-

sion matrix for validation results from the DS2 of which the

accuracy of open water and old ice was at a similar level,

compared to the DS1. Meanwhile, the accuracy of young ice

and first-year ice decreased considerably. The differences be-

tween the results of FC1, FC2, and FC3 were insignificant.

This result is opposite to the DS1 inferring that the train-

ing with FC3 was overfitted and the day of the year may

not correspond to the temperature, air–sea fluxes, or weather

regimes. The κ values for FC1, FC2, and FC3 with the DS2

were 0.67, 0.67, and 0.67, respectively.

To see how the denoising step in Sect. 2.2.2 led to im-

provements in the classification accuracies, the same training
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Figure 12. The ice types in NIC ice chart (a) and OSI SAF sea ice type product (b) for the same date (8 February 2019). Note that the SoD

labels and colours follow those defined in each ice chart format. Source credits: U.S. National Ice Center (a) and EUMETSAT Ocean and

Sea Ice Satellite Application Facilities (b).

Table 10. Confusion matrix of the three-class RF classifier which was trained and applied to the DS1 winter dataset. The bold font indicates

where the classification was done correctly.

Predicted

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3

A
ct

u
al OW 92.2 92.5 93.6 7.8 7.4 6.3 0.0 0.0 0.0

mFYI 6.4 5.5 5.5 83.8 85.3 85.5 9.8 9.2 9.0

OI 0.2 0.2 0.2 8.9 8.5 8.7 90.9 91.3 91.1

and evaluation were conducted for the same dataset without

applying the textural noise correction (Table 5). In all config-

urations (FC1–FC3), the accuracies improved for young ice

(+2.4 % to +6.2 %) and old ice (+3.9 % to +4.5 %), which

were most pronounced compared to those for open water

(+1.1 % to +1.9 %) and first-year ice (−0.2 % to +0.9 %).

On the contrary, a small accuracy decrease was observed for

new ice (= 2.4 % to −0.3 %). Nevertheless, the improvement

in κ (+0.08) demonstrates a clear improvement in the overall

classification result.

The confusion matrix for testing the trained classifier for

the summer season with the test dataset (DS1) is shown in

Table 6. As described in Sect. 2.2.1, the further simplified

three-class classification is applied. The accuracies for open

water and old ice were higher than 92 %; however, the ac-

curacies for mixed first-year ice were only around 15 % in

both FC1 and FC2 and 42 % in FC3. The large difference

between the results of FC1-FC2 and FC3 indicates that the

mixed first-year ice likely changes at short timescales. The

misclassifications for mixed first-year ice were mostly into

old ice. This might be because of the surface melting and

the corresponding image textures which make the discrimi-

nation between the mixed first-year ice and old ice difficult.

The same patterns were observed from the confusion matrix

(Table 7) for validation results from the DS2, except that

the accuracy decrease from Tables 6 to 7 was particularly

large for FC3, meaning overfitting for DS1. However, it is

unclear if the low accuracy for mixed first-year ice is due to

the classifier itself or the data. To unravel this, the data were

divided into three groups of 1 month each (June, July, Au-

gust), and then separate classifiers were trained and tested.

Tables 8 and 9 show the results with FC1 configuration for
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Table 11. Confusion matrix of the three-class RF classifier which was trained with the DS1 winter dataset and applied to the DS2 winter

dataset. The bold font indicates where the classification was done correctly.

Predicted

OW (open water) mFYI (mixed first-year ice) OI (old ice)

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3
A

ct
u

al OW 91.4 91.7 91.7 8.6 8.5 8.5 0.0 0.0 0.0

mFYI 9.4 8.5 9.9 75.0 76.5 74.6 15.6 15.2 15.5

OI 0.3 0.3 0.3 6.3 6.5 6.6 93.3 93.2 93.1

DS1 and DS2, respectively. There was a rapid accuracy de-

crease for mixed first-year ice from June to August in both

results (from 60.6 % to 26.5 % for DS1 and from 55.6 % to

11.0 % for DS2). As there is no particularly large difference

between the numbers in Tables 8 and 9, meaning the classi-

fiers were not overfitting, the very low accuracies for mixed

first-year ice in Table 6 (14.9 %) and Table 7 (12.0 %) seem

to be due to a too large temporal extent for a single classifier.

In other words, the classifier for the summer season needs to

be split into multiple groups with shorter time spans, and/or a

feature that can effectively account for surface melting needs

to be introduced into the algorithm for further development.

Based on these results so far, the trained classifiers in the

summer season for 3 months in bulk failed in distinguish-

ing mixed first-year ice from old ice; thus they are close to

ice–water discriminators rather than ice type classifiers.

Figure 7 shows a daily mosaic of Sentinel-1 SAR images

over the study area and the classified ice map in the winter

season. For comparison, the NIC weekly ice chart is also dis-

played. Despite the SAR images being acquired 3 d before

the ice chart was published, the ice edges of the ice chart

match well with the SAR mosaic in most parts because the

same SAR data were used. Overall, the discriminations be-

tween ice and non-ice, old ice and other ice types, and de-

tection of new ice patches look reasonable. However, some

young ice patches, for example the ice patches between the

Svalbard archipelago, are misclassified as first-year ice. Fig-

ure 8 shows another daily mosaic made by the images ac-

quired on the same day of the ice chart publication. Consid-

ering notable ice drift in the backscattering images in Figs. 7

and 8, the SAR-based ice classification results in both figures

looking consistent, well in line with the ice drift. Although

the weekly ice chart is supposed to represent the averaged ice

status in the past few days, the actual ice distribution on the

actual date of the publication can be largely different. This

example shows a clear potential of near-real-time service of

ice type classification.

Figures 9 and 10 show the same mosaics for the case in

the summer season. As shown in Tables 6 and 7, the misclas-

sifications for the mixed first-year ice into old ice are pro-

nounced in the large ice patches north to Svalbard, while the

ice edge positions of the ice chart and the classification result

are in good agreement with each other.

To cope with the ambiguous classification for the winter

season ice types with low accuracy, we conducted a test with

the three-class classification, and Tables 10 and 11 show the

resulting confusion matrices. The κ values for FC1, FC2, and

FC3 were 0.83, 0.84, and 0.84 in DS1 and 0.75, 0.75, and

0.74 in DS2, respectively. The dramatic increase in the ac-

curacy of the mixed first-year ice indicates that the misclas-

sification for the new ice, young ice, and first-year ice was

mostly among themselves. However, the accuracy decrease

from DS1 to DS2 was at a similar level to the case of the

five-class classification. This could have been caused by in-

consistent labelling in the reference ice chart.

Figure 11 shows an example of the inconsistent labelling

in the reference ice chart. The SoDs from the NIC ice charts

are superimposed on the Sentinel-1 backscattering images.

The same ice floe (red outline) is classified differently in

two different ice charts (old ice on the left panel and first-

year ice on the right panel), although it looks almost the

same in the corresponding SAR backscattering images. It

should be noted that training with the ice chart might have in-

cluded mislabelled small features even if the image selection

based on ice edge matching was successful. Furthermore, the

boundaries between different ice types in the ice chart are

normally not as precise as those in the SAR image-based

classification results. Therefore, the lower classification ac-

curacies compared to those in previous studies (80 % in Za-

khvatkina et al., 2013; 91.7 % in Liu et al., 2015; 87.2 % in

Aldenhoff et al., 2018), which used manually classified ice

maps as training and validation reference, are expected.

Unfortunately, we could not find an official report regard-

ing the accuracy of the NIC ice chart information.

Table 12 shows the confusion matrices for our three-class

classifiers when their prediction results are compared with

the OSI-403-c product as reference. For one-to-one compari-

son, it was assumed that the ideal characteristics of the mixed

first-year ice and the old ice in our three-class classification

are equivalent to those of the first-year ice and the multi-year

ice in OSI-403-c. Comparing with the results in Table 11, the

accuracies for open water decreased by 6 %; however, this

is mainly because the ice concentration threshold for ice–
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Table 12. Confusion matrix of the three-class RF classifier which was trained with the DS1 winter dataset and applied to the DS2 winter

dataset with reference to the OSI SAF sea ice type product (OSI-403-c). Bold indicates where the classification was done correctly.

Predicted (classifier was trained with NIC ice chart)

Open water First-year ice Multi-year ice

Case FC1 FC2 FC3 FC1 FC2 FC3 FC1 FC2 FC3
R

ef
er

en
ce

(O
S

I
S

A
F

) Open water 85.9 86.1 86.2 12.6 12.4 12.1 15.7 15.3 16.2

First-year ice 1.9 1.6 2.0 26.0 26.8 26.9 72.1 71.6 71.2

Multi-year ice 0.1 0.1 0.1 1.5 1.4 1.4 98.4 98.5 98.5

Table 13. Averaged percent agreement of NIC weekly ice chart

and OSI SAF daily sea ice type product (OSI-403-c) for the same

publication dates (12 different days) in the studied domain during

January–March 2019. Bold indicates where the classification was

done correctly.

NIC

Open First-year Multi-year

water ice ice

O
S

I
S

A
F Open water 90.0 10.0 0.1

First-year ice 0.9 58.8 40.3

Multi-year ice 0.0 1.0 99.0

water discrimination in OSI-403-c is 35 %, which is higher

than the 20 % that we set in our preprocessing of the NIC

ice chart (Sect. 2.2.1). Thus areas with low ice concentra-

tion in marginal ice zone are most likely annotated as open

water in OSI-403-c. The accuracies for open water at points

in the NIC charts with ice concentration between 20 % and

40 % only were considerably lower, with 67.4 %, 67.8 %,

and 70.1 % for FC1, FC2, and FC3, respectively (not pre-

sented in Table 12). For first-year ice, large portions (72 %)

are misclassified as old ice. This might be partly explained in

Fig. 12, which shows the ice classes in the NIC ice chart and

OSI-403-c for the same publication date. A large extent of

old ice in the NIC ice chart is annotated as multi-year ice in

OSI-403-c. As our classifiers were trained with the NIC ice

chart, it is natural to result in more multi-year ice for the area

where the ice type is classified as first-year ice in OSI-403-c.

For multi-year ice, the accuracy was the highest, 98 %.

The inconsistency in ice types between the NIC ice chart

and OSI-403-c seems persistent at least for the time cover-

age of DS2 (January–March in 2019). Table 13 shows av-

eraged percent agreement of the two sea ice type products

for the same publication dates over 12 weeks (12 one-to-one

comparisons as the NIC ice chart is a weekly product). To

make a fair comparison, the ice-covered areas with ice con-

centrations lower than 35 %, which is the threshold for ice–

water discrimination in OSI-403-c, were excluded. The per-

cent agreement for first-year ice (58.8 %) was much lower

than that of open water (90.0 %) and multi-year ice (99.0 %),

which is in line with the results in Table 12. Finding the rea-

son for the clear discrepancy of the extent of first-year ice be-

tween the NIC ice chart and OSI-403-c is beyond the scope

of this study; however, it should be noted that elaborate future

work for cross-calibrating ice types in different ice charts is

necessary.

The proposed algorithm has several limitations. First of

all, the variations in radar backscattering and its correspond-

ing image textures due to seasonal changes were not prop-

erly captured. Although day of the year was tested as a sea-

sonality variable in the FC3 feature configuration, the result

did not show any improvement. This is because SAR im-

age features, which partially reflect temperature fluxes and

weather regimes, might not correspond to day of the year.

Second, the proposed method struggles when the same type

of sea ice is located on different edges of the range swath of

SAR images because the incidence angle dependence could

not be normalized perfectly. An example of such a failure

can be seen along the image boundaries at 79.5◦ N, 45◦ E

in Fig. 7 and 79◦ N, 50◦ E in Fig. 8, approximately. Third,

some artefacts were observed under large ocean swells. In

the classified results in Fig. 8d, there is a misclassified first-

year ice patch (yellow) in the open water area. According

to the high-resolution sea surface wind data from SAR on

the Sentinel-1 satellites (https://data.nodc.noaa.gov/cgi-bin/

iso?id=gov.noaa.nodc:SAR-WINDS-S1, last access: 18 Au-

gust 2020), the wind speed ranged from 17 to 21 m s−1 at the

time of image acquisition, heavily roughing the water sur-

face. Although we have included images with both high and

low wind conditions in our training data, the image textures

of wind-roughened water surface and ice were confused in

some cases, and the same happened in the image textures of

calm water surface and smooth level ice.

4 Conclusions

A new semi-automated SAR-based sea ice type classification

scheme was proposed in this study. For the first time several

ice types were successfully identified on Sentinel-1 SAR im-

agery in the winter season, while only an ice–water discrim-

The Cryosphere, 14, 2629–2645, 2020 https://doi.org/10.5194/tc-14-2629-2020

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:SAR-WINDS-S1
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:SAR-WINDS-S1


J.-W. Park et al.: Classification of sea ice types in Sentinel-1 SAR images 2643

ination was feasible in the summer season. The main tech-

nological innovation is two-fold: (i) reduced manual work in

the preparation of a large amount of training and validation

reference data using readily available public ice charts and

(ii) more objective evaluation of the SAR-based sea ice type

classifier compared to the previous studies conducted with a

small number of images and customized ice type references

from sources not open to the public. A conventional approach

for selecting training and testing data by anonymous human

ice experts is undesirable not only because it is laborious,

but also due to subjectivity and lack of standardization in the

assessment of the automated classifier. Therefore, the perfor-

mance from different literature sources cannot be intercom-

pared directly.

Test results from the datasets of the winter season acquired

over the Fram Strait and the Barents Sea area showed overall

accuracies of 87 % and 60 % and the Cohen kappa coeffi-

cients of 0.75 and 0.67 for the three-class and five-class ice

type classifiers, respectively. These are slightly lower than

the numbers in previous studies, and the errors are attributed

not only to the automated algorithm but also to the incon-

sistency of the ice charts and the high level of their gener-

alization. Test results from the datasets of summer seasons

showed overall accuracy of 67 % and the Cohen kappa coef-

ficient of 0.78 for the three-class classifiers. Considering the

misclassifications in different ice types were among them-

selves, the three-class classifiers are not really a sea ice type

classifier, but they performed well at least as an ice–water

discriminator with accuracy of 98 %.

Based on the results, we envisage that three-class ice type

classification from SAR imagery would be useful for making

a global sea ice type product like OSI SAF OSI-403-c with

higher spatial resolution. The proposed approach importantly

showed that a daily ice type mapping from the Sentinel-1

data is feasible and can help capture details of short-term

changes in the stage of sea ice development. Based on the

achieved results, we believe that the proposed approach may

be efficiently used for operational ice charting services for

supporting navigation in the Arctic.

Data availability. Relevant data can be made available upon re-

quest to the authors. The Sentinel-1 data are produced by European

Space Agency and are freely available at https://scihub.copernicus.

eu/ upon registration. The weekly ice charts are produced by U.S.

National Ice Center and are freely available at https://www.natice.

noaa.gov/. The daily sea ice type products are produced by Ocean

and Sea Ice Satellite Application Facilities and are freely available

at http://osisaf.met.no/.

Author contributions. JWP and AAK formulated the research plan.

JWP and AAK developed the algorithm. JWP implemented the al-

gorithm and performed the data processing. JWP, AAK, MB, JSW,

MWH, and HCK carried out the analyses, and JWP wrote the paper.

Competing interests. The authors declare that they have no conflict

of interest.

Acknowledgements. We would like thank the three anonymous re-

viewers for their invaluable comments and suggestions that helped

improve the manuscript. We would also like to thank the editor,

John Yackel.

Financial support. This research has been supported the French

Service Hydrographique et Océanographique de la Marine (SHOM)

(SHOM-ImpSIM Project 111222), the Research Council of Norway

and the Russian Foundation for Basic Research (NORRUSS Project

243608, SONARC), and the Korea Polar Research Institute (grant

no. PE20080).

Review statement. This paper was edited by John Yackel and re-

viewed by three anonymous referees.

References

Aaboe, S., Breivik, L.-A., and Eastwood, S.: Improvement of OSI

SAF product of sea ice edge and sea ice type, EUMETSAT Me-

teorological Satellite Conference, Geneva (Switzerland), 22–26

September 2014.

Aaboe, S., Breivik, L.-A., Sørensen, A., Eastwood, S., and

Lavergne, T.: Global sea ice edge and type product user’s manual

OSI-402-c & OSI-403-c, Ocean & Sea Ice Satellite Application

Facilities (OSI SAF), version 2.3, available at: http://osisaf.met.

no/docs/osisaf_cdop3_ss2_pum_sea-ice-edge-type_v2p3.pdf

(last access: 18 August 2020), 2018.

Adnan, M. N. and Islam, M. Z.: One-Vs-All Binarization Technique

in the Context of Random Forest, Proc. European Symposium

on Artificial Neural Networks, Computational Intelligence and

Machine Learning, Bruges (Belgium), 22–24 April 2015.

Aldenhoff, W., Heuzé, C., and Eriksson, L.: Compari-

son of ice/water classification in Fram Strait from C-

and L-band SAR imagery, Ann. Glaciol., 59, 112–123,

https://doi.org/10.1017/aog.2018.7, 2018.

Anand, R., Mehrotra, K., Mohan, C. K., and Ranka, S.: Ef-

ficient classification for multiclass problems using modu-

lar neural networks, IEEE T. Neural Networ., 6, 117–124,

https://doi.org/10.1109/72.363444, 1995.

Barber, D. G. and LeDrew, E. F.: SAR sea ice discrimination using

texture statistics: A multivariate approach, Photogramm. E. Rem.

S., 57, 385–395, 1991.

Cohen, J.: A coefficient of agreement for nom-

inal scales, Educ. Psychol. Meas., 20, 37–46,

https://doi.org/10.1177/001316446002000104, 1960.

Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn.,

20, 273–297, https://doi.org/10.1007/BF00994018, 1995.

Deng, H. and Clausi, D. A.: Unsupervised segmentation of syn-

thetic aperture radar sea ice imagery using a novel Markov

random field model, IEEE T. Geosci. Remote, 43, 528–538,

https://doi.org/10.1109/TGRS.2004.839589, 2005.

https://doi.org/10.5194/tc-14-2629-2020 The Cryosphere, 14, 2629–2645, 2020

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://www.natice.noaa.gov/
https://www.natice.noaa.gov/
http://osisaf.met.no/
http://osisaf.met.no/docs/osisaf_cdop3_ss2_pum_sea-ice-edge-type_v2p3.pdf
http://osisaf.met.no/docs/osisaf_cdop3_ss2_pum_sea-ice-edge-type_v2p3.pdf
https://doi.org/10.1017/aog.2018.7
https://doi.org/10.1109/72.363444
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/TGRS.2004.839589


2644 J.-W. Park et al.: Classification of sea ice types in Sentinel-1 SAR images

Dierking, W.: Mapping of different sea ice regimes us-

ing images from Sentinel-1 and ALOS synthetic aper-

ture radar, IEEE T. Geosci. Remote, 48, 1045–1058,

https://doi.org/10.1109/TGRS.2009.2031806, 2010.

ESRI (Environmental Systems Research Institute, Inc.): ESRI

Shapefile Technical Description, An ESRI White Paper,

available at: http://downloads.esri.com/support/whitepapers/mo_

/shapefile.pdf (last access: 18 August 2020), 1998.

European Space Agency: available at: at https://scihub.copernicus.

eu/, last access: 19 August 2020.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.:

Do we need hundreds of classifiers to solve real world classifica-

tion problems?, J. Mach. Learn. Res., 15, 3133–3181, 2014.

GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstrac-

tion software Library, Open Source Geospatial Foundation, avail-

able at: https://gdal.org (last access: 18 August 2020), 2019.

Gill, J. P.S., Yackel, J. J., Geldsetzer, T., and Fuller, M.

C.: Sensitivity of C-band synthetic aperture radar polari-

metric parameters to snow thickness over landfast smooth

first-year sea ice, Remote Sens. Environ., 166, 34–49,

https://doi.org/10.1016/j.rse.2015.06.005, 2015.

Haralick, R. M., Shanmugam, K., and Dinstein, I.: Textural features

for image classification, IEEE T. SYST. MAN. CY.-S., SMC-3,

610–621, https://doi.org/10.1109/TSMC.1973.4309314, 1973.

Hersbach, H., Stoffelen, A., and de Haan, S.: An im-

proved C-band scatterometer ocean geophysical model

function: CMOD5, J. Geophys. Res., 112, C03006,

https://doi.org/10.1029/2006JC003743, 2007.

Heinrichs, J. F., Cavalieri, D. J., and Markus, T.: Assessment of

the AMSR-E sea ice concentration product at the ice edge using

RADARSAT-1 and MODIS imagery, IEEE T. Geosci. Remote,

44, 3070–3080, https://doi.org/10.1109/TGRS.2006.880622,

2006.

Ho, T. K.: The random subspace method for construct-

ing decision forests, IEEE T. Pattern Anal., 20, 832–844,

https://doi.org/10.1109/34.7096011998, 1998.

Isleifson, D., Galley, R. J., Barber, D. G., Landy, J. C., Komarov,

A. S., and Shafai, L.: A study on the C-band polarimetric

scattering and physical characteristics of frost flowers on ex-

perimental sea ice, IEEE T. Geosci. Remote, 52, 1787–1798,

https://doi.org/10.1109/TGRS.2013.2255060, 2014.

JCOMM (Joint WMO-IOC Technical Commission for Oceanogra-

phy and Marine Meteorology): Ice chart colour code standard,

JCOMM Technical Report No. 24, Tech. Rep., World Meteoro-

logical Organization, Geneva, Switzerland, 2014a.

JCOMM (Joint WMO-IOC Technical Commission for Oceanogra-

phy and Marine Meteorology): SIGRID-3: a vector archive for-

mat for sea ice georeferenced information and data, JCOMM

Technical Report No. 23, Tech. Rep., World Meteorological Or-

ganization, Geneva, Switzerland, 2014b.

Johannessen, O. M., Alexandrov, V., Frolov, I. Y., Sandven, S.,

Pettersson, L. H., Bobylev, L. P., Kloster, K., Smirnov, V. G.,

Mironov, Y. U., and Babich, N. G.: Remote sensing of sea ice

in the Northern Sea route: Studies and applications, Springer,

Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-48840-8,

2006.

Karvonen, J.: A sea ice concentration estimation algorithm utiliz-

ing radiometer and SAR data, The Cryosphere, 8, 1639–1650,

https://doi.org/10.5194/tc-8-1639-2014, 2014.

Karvonen, J., Vainio, J., Marnela, M., Eriksson, P., and Niskanen,

T.: A comparison between high-resolution EO-based and ice

analyst-assigned sea ice concentrations, IEEE J. Sel. Top. Appl.,

8, 1799–1807, 2015.

Karvonen, J.: Baltic sea ice concentration estimation us-

ing Sentinel-1 SAR and AMSR2 microwave radiome-

ter data, IEEE T. Geosci. Remote, 55, 2871–2883,

https://doi.org/10.1109/TGRS.2017.2655567, 2017.

Keller, M. R., Gifford, C. M., Walton, W. C., and Winstead, N. S.:

Ice analysis based on active and passive radar images, U.S. Patent

9652674 B2, May 16, available at: https://patents.google.com/

patent/US9652674 (last access: 18 August 2020), 2017.

Kohavi, R.: A Study of cross-validation and bootstrap for accu-

racy estimation and model selection, Proceedings of the 14th in-

ternational joint conference on Artificial intelligence, Montreal,

Canada, 20–25 August 1995, 2, 1137–1143, 1995.

Leigh, S., Wang, Z., and Clausi, D. A.: Automated ice-

water classification using dual polarization SAR satel-

lite imagery, IEEE T. Geosci. Remote, 52, 5529–5539,

https://doi.org/10.1109/TGRS.2013.2290231, 2014.

Liu, H., Guo, H., and Zhang, L.: SVM-based sea ice classification

using textural features and concentration from RADARSAT-2

dual-pol ScanSAR data, IEEE J. Sel. Top. Appl., 8, 1601–1613,

https://doi.org/10.1109/JSTARS.2014.2365215, 2015.

Lohse, J., Doulgeris, A. P., and Dierking, W.: Mapping

sea ice types from Sentinel-1 considering the surface-

type dependent effect of incidence angle, Ann. Glaciol.,

https://doi.org/10.1017/aog.2020.45, 2020.

Louppe, G.: Understanding random forests: From theory to prac-

tice, PhD Thesis, U. of Liege, University of Liège, 123–144,

2014.

Mahmud, M. S., Geldsetzer, T., Howell, S. E. L., Yackel, J.

J., Nandan, V., and Scharien, R. K.: Incidence angle depen-

dence of HH-polarized C- and L-band wintertime backscatter

over Arctic sea ice, IEEE T. Geosci. Remote, 56, 6686–6698,

https://doi.org/10.1109/TGRS.2018.2841343, 2018.

Mäkynen, M. and Karvonen, J.: Incidence angle dependence of

first-year sea ice backscattering coefficient in Sentinel-1 SAR

imagery over the Kara Sea, IEEE T. Geosci. Remote, 55, 6170–

6181, https://doi.org/10.1109/TGRS.2017.2721981, 2017.

Mäkynen, M. P., Manninen, A. T., Simila, M. H., Karvonen, J. A.,

and Hallikainen, M. T.: Incidence angle dependence of the statis-

tical properties of C-band HH-polarization backscattering signa-

tures of the Baltic Sea ice, IEEE T. Geosci. Remote, 40, 2593–

2605, https://doi.org/10.1109/TGRS.2002.806991, 2002.

Miranda, N.: S-1 constellation product performance status, SeaSAR

2018, Frascati, Italy, 7–10 May 2018, available at: http://

seasar2018.esa.int/files/presentation216.pdf (last access: 18 Au-

gust 2020), 2018.

Ocean and Sea Ice Satellite Application Facilities: available at: http:

//osisaf.met.no/, last access: 19 August 2020.

Park, J.-W., Korosov, A. A., Babiker, M., Sandven, S., and Won,

J.-S.: Efficient thermal noise removal for Sentinel-1 TOPSAR

cross-polarization channel, IEEE T. Geosci. Remote, 56, 1555–

1565, https://doi.org/10.1109/TGRS.2017.2765248, 2018.

Park, J.-W., Won, J.-S., Korosov, A. A., Babiker, M., and Miranda,

N.: Textural noise correction for Sentinel-1 TOPSAR cross-

polarization channel images, IEEE T. Geosci. Remote, 57, 4040–

4049, https://doi.org/10.1109/TGRS.2018.2889381, 2019.

The Cryosphere, 14, 2629–2645, 2020 https://doi.org/10.5194/tc-14-2629-2020

https://doi.org/10.1109/TGRS.2009.2031806
http://downloads.esri.com/support/whitepapers/mo_/shapefile.pdf
http://downloads.esri.com/support/whitepapers/mo_/shapefile.pdf
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://gdal.org
https://doi.org/10.1016/j.rse.2015.06.005
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1029/2006JC003743
https://doi.org/10.1109/TGRS.2006.880622
https://doi.org/10.1109/34.7096011998
https://doi.org/10.1109/TGRS.2013.2255060
https://doi.org/10.1007/978-3-540-48840-8
https://doi.org/10.5194/tc-8-1639-2014
https://doi.org/10.1109/TGRS.2017.2655567
https://patents.google.com/patent/US9652674
https://patents.google.com/patent/US9652674
https://doi.org/10.1109/TGRS.2013.2290231
https://doi.org/10.1109/JSTARS.2014.2365215
https://doi.org/10.1017/aog.2020.45
https://doi.org/10.1109/TGRS.2018.2841343
https://doi.org/10.1109/TGRS.2017.2721981
https://doi.org/10.1109/TGRS.2002.806991
http://seasar2018.esa.int/files/presentation216.pdf
http://seasar2018.esa.int/files/presentation216.pdf
http://osisaf.met.no/
http://osisaf.met.no/
https://doi.org/10.1109/TGRS.2017.2765248
https://doi.org/10.1109/TGRS.2018.2889381


J.-W. Park et al.: Classification of sea ice types in Sentinel-1 SAR images 2645

Partington, K., Flynn, T., Lamb, D., Bertoia, C., and Dedrick, K:

Late twentieth century Northern Hemisphere sea-ice record from

the U.S. National Ice Center ice charts, J. Geophys. Res., 108,

3343, https://doi.org/10.1029/2002JC001623, 2003.

Pastusiak, T.: Accuracy of sea ice data from remote sensing meth-

ods, its impact on safe speed determination and planning of

voyage in ice-covered areas, International Journal on Marine

Navigation and Safety of Sea Transportation, 10, 229–248,

https://doi.org/10.12716/1001.10.02.06, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine

learning in Python, J. Mach. Learn. Res., 12, 2825–2830,

https://doi.org/10.1016/j.patcog.2011.04.006, 2011.

Ressel, R., Frost, A., and Lehner, S.: A neural network-

based classification for sea ice types on X-band

SAR images, IEEE J. Sel. Top. Appl., 8, 3672–3680,

https://doi.org/10.1109/JSTARS.2015.2436993, 2015.

Richards, F. J.: A flexible growth function for empirical use, J. Exp.

Bot., 10, 290–300, https://doi.org/10.1093/jxb/10.2.290, 1959.

Scharien, R. K., Landy, J., and Barber, D. G.: First-year sea ice melt

pond fraction estimation from dual-polarisation C-band SAR

– Part 1: In situ observations, The Cryosphere, 8, 2147–2162,

https://doi.org/10.5194/tc-8-2147-2014, 2014

Scheuchl, B., Flett, D., Caves, R., and Cumming, I.: Potential of

RADARSAT-2 data for operational sea ice monitoring, Can. J.

Remote Sens., 30, 448–471, 2004.

Shokr, M. E.: Evaluation of second-order texture parameters for sea

ice classification from radar images, J. Geophys. Res.-Ocean.,

96, 10625–10640, 1991.

Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R., and

Kloster, K.: Fram Strait sea ice export variability and September

Arctic sea ice extent over the last 80 years, The Cryosphere, 11,

65–79, https://doi.org/10.5194/tc-11-65-2017, 2017.

Soh, L.-K. and Tsatsoulis, C.: Texture analysis of SAR sea ice im-

agery using gray level co-occurrence matrices, IEEE T. Geosci.

Remote, 37, 780–795, https://doi.org/10.1109/36.752194, 1999.

U.S. National Ice Center: available at: https://www.natice.noaa.

gov/, last access: 19 August 2020.

Wang, L., Scott, K. A., and Clausi, D. A.: Sea ice concen-

tration estimation during freeze-up from SAR imagery using

a convolutional neural network, Remote Sens.-Basel, 9, 408,

https://doi.org/10.3390/rs9050408, 2017.

WMO (World Meteorological Organization): Sea-ice information

services in the world, WMO-No. 574, World Meteorological Or-

ganization, Geneva, Switzerland, 2017.

Zakhvatkina, N. Y., Alexandrov, V. Y., Johannessen, O. M., Sand-

ven, S., and Frolov, I. Y.: Classification of sea ice types in EN-

VISAT synthetic aperture radar images, IEEE T. Geosci. Remote,

51, 2587–2600, https://doi.org/10.1109/TGRS.2012.2212445,

2013.

Zakhvatkina, N., Korosov, A., Muckenhuber, S., Sandven, S., and

Babiker, M.: Operational algorithm for ice-water classification

on dual-polarized RADARSAT-2 images, The Cryosphere, 11,

33–46, https://doi.org/10.5194/tc-11-33-2017, 2017.

Zakhvatkina, N., Smirnov, V., and Bychkova, I.: Satellite SAR data-

based sea ice classification: An overview, Geosci. J., 9, 152,

https://doi.org/10.3390/geosciences9040152, 2019.

https://doi.org/10.5194/tc-14-2629-2020 The Cryosphere, 14, 2629–2645, 2020

https://doi.org/10.1029/2002JC001623
https://doi.org/10.12716/1001.10.02.06
https://doi.org/10.1016/j.patcog.2011.04.006
https://doi.org/10.1109/JSTARS.2015.2436993
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.5194/tc-8-2147-2014
https://doi.org/10.5194/tc-11-65-2017
https://doi.org/10.1109/36.752194
https://www.natice.noaa.gov/
https://www.natice.noaa.gov/
https://doi.org/10.3390/rs9050408
https://doi.org/10.1109/TGRS.2012.2212445
https://doi.org/10.5194/tc-11-33-2017
https://doi.org/10.3390/geosciences9040152

	Abstract
	Introduction
	Data and methods
	Study area and used data
	Methods
	Ice chart preprocessing
	Denoising of Sentinel-1 imagery
	Incidence angle correction
	Texture feature computation
	Machine learning classifier
	Training and validation


	Results and discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

