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This paper presents a method for classifying pen strokes in an on-
line sketching system. The method, based on linear least squares 
fitting to a conic section equation, proposes using the conic 
equation's natural classification property to help classify sketch 
strokes and identify lines, elliptic arcs, and corners composed of two 
lines with an optional fillet. The hyperbola form of the conic 
equation is used for corner detection. The proposed method has 
proven to be fast, suitable for real-time classification, and capable of 
tolerating noisy input, including cusps and spikes. The 
classification is obtained in o(n) time in a single path, where n is the 
number of sampled points. In addition, an improved adaptive 
method for clustering disconnected endpoints is proposed. The 
notion of in-context analysis is discussed, and examples from a 
working implementation are given. 
 
 

Introduction 
Freehand sketching is occupying a growing place in the 

realm of user-interface approaches for CAD systems. 
Sketching appears to be a natural communication language, 
enabling faster conveyance of qualitative information while 
not burdening the creativity of the user or disrupting the flow 
of ideas. Recent studies [1, 2] emphasize the importance of 
sketching in the mechanical design process, especially in the 
conceptual design stage. Several interfaces based on sketching 
have therefore been proposed, with stroke classification and 
clustering playing a major role. 

User interfaces based on on-line sketching are implemented 
on several levels and can generally be divided into three 
categories, according to the level of information they intend to 
gather from the input sketch: 
1. Drawing Pads. These sketchers allow basic sketching for 

general purpose drawings, especially in the graphic 
design arts. They smooth the input strokes and provide 
many other graphic tools but do not attempt to interpret 
the drawing in any way.  

2. 2D sketchers. In 2D sketchers, sketch strokes are 
smoothed and classified into 2D primitives, such as lines, 
arcs and splines. Some automatically infer constraints and 
relationships among the entities, such as parallelism or 
orthogonality, thus further refining the sketch [2,3,4,5,6]. 

3. 3D sketchers. Sketches are analyzed as representing 
rough projections of 3D scenes. The sketcher is still 
required to identify the sketch strokes as basic geometrical 
shapes, such as lines, arcs and corners. However, since the 
analyzed sketch represents a rough projection of a three-
dimensional scene, some of the sketch strokes do not 
necessarily represent what they appear to be. For instance, 
a circular arc in a three dimensional scene is most likely to 
appear as an ellipse in a projection. In addition, crossing 
curves in the sketch do not necessarily represent curves 
that actually meet. Systems for interpreting sketches as 3D 
scenes must confront greater problems and are less 
common [7,8,9]. 

This paper presents the basic operation of a sketcher from 
the third category that is used to preprocess a rough sketch 
representing a projection of a 3D object. The sketcher is the 
front-end of a 3D scene interpreter, intended to serve as a 
natural user-interface for 3D CAD applications. Although the 
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sketcher is designed to make automatic decisions, the 
interactive environment allows the user to modify or re-
sketch erroneous interpretations. Two stages can be observed 
in the functioning of the sketcher: (a) classification and 
smoothing of sketch strokes as they are drawn, and (b) 
linking the entities at their meeting endpoints to form a 
connected graph (clustering). Both stages require robust 
methods for analyzing the rough sketch data and overcoming 
ambiguities inherent in 2D drawings representing 3D scenes.  

Related Work 
Many methods have been used to analyze line drawings 

and convert image data into more meaningful geometrical 
information [10]. However, analysis of image data is 
fundamentally different from analysis of on-line sketching 
strokes. Strokes have been classified into entity types using 
curvature analysis [2], inspection of local angles at points 
along the stroke [3], correlation with predefined templates 
[11], and artificial neural nets [12]. With some sketchers, the 
user can or must explicitly indicate which type of entity was 
intended [6]. Classification must be distinguished from the 
pure smoothing employed in applications in the "sketch-pad" 
category. Smoothing is typically accomplished by averaging, 
convoluting, or fitting to Bezier, B-Spline and conic curves 
[13]. While conic section fitting has been used before both for 
smoothing and modeling of scattered data, here we are 
suggesting use of the natural classification properties of the 
conic section to classify noisy sketch strokes. 

In the classification process, corners are often detected by 
searching for sharp curvature peaks or angle changes [2,3]. 
Note, however, that curvature analysis is extremely 
susceptible to cusps, spikes and wobbles in the strokes which 
are common in rough sketches even after smoothing.  

In addition to classification and smoothing, most sketchers 
link strokes at their endpoints, crossings and junctions. This 
phase is difficult when rough and inaccurate sketches are 
considered. Moreover, it poses a major hurdle when the 
sketch depicts a 3D scene in which endpoints that appear to 
be close in the sketch plane can actually correspond to 
endpoints that are far apart spatially. Linking has been 
performed using sharp distance tolerances [3], tolerance as a 
percentage of length of meeting entities [5], or a clustering 
scheme based on a threshold of the maximum interval in a 
group of elements [4]. In the last case, the threshold was 
empirically chosen according to the type of drawing and 
statistics. 

Stroke Classification Using Conic-Curve Fitting 
In the classification stage, the sketcher is required to accept 

sketch strokes and classify them into various geometrical 
entities. A stroke is defined as the path marked by a pen 
between the pen-down and the pen-up operations. Each 
stroke is assumed to correspond to a single entity (line/arc), 
or a sharp/filleted corner. In the specific case considered here, 
the sketcher is part of a system aimed at interpreting a 
drawing depicting a 3D object [7,14,15]. As asserted in [16], 
line drawings of manmade objects often exhibit instances of 
straight lines, circular arcs and ellipses, all of which are conic 
sections. In addition, corners are important features of line 
drawings. A corner closely resembles a hyperbola, which 
fortunately is also a conic section. The use of a hyperbola also 
permits detection of filleted corners. Consequently, it is 
assumed that the majority of entities in the sketch will indeed 
be either lines, elliptic arcs or corners, and we focus on their 
detection. Other curve types (e.g. parabolas) are not 
considered by our sketcher on the assumption that they are 
special cases and may be entered directly into the CAD 
system for which this sketcher is a front end.   

A sketch stroke is classified by fitting it to a conic section 
and analyzing its coefficients. A general conic section in the x-
y plane is given by: 



Q x,y( ) =Ax
2

+Bxy+Cy
2

+Dx+ Ey+F =0  (1) 
In practice, it can be assumed that F≠0; the equation can 

therefore be normalized with F=1. A detailed description of 
least-squares fitting to conic sections can be found in [13]. 
Briefly, a sketch stroke is denoted by 
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parameter and differentiating partially with respect to the 
conic coefficients, the following linear system is obtained. 
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Once the coefficients A...F have been solved, some 
conclusions regarding the conic section may be derived using 
the following definition. Denote: 

δ ≡
A

B

2
B

2
C

      and   ∆ ≡

A
B

2

D

2
B

2
C

E

2
D

2

E

2
F

 (3) 

then, if δ>0, the section represents an ellipse, and if δ<0, a 
hyperbola. For both hyperbolas and ellipses, translation and 
orientation with respect to their canonical position can easily 
be determined, 

x =
BE −2CD

4AC−B
2    y =
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2  (4) 
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The length of their main axes can also be calculated: 

a ,b =
∆

δ
⋅

2

A +C( )± A−C( )2 +B2  (6) 

where the distinction between a and b is made according to 
the sign of B. 

Classification is based on the specific form of the conic 
section; the parameters of the form define the geometrical 
dimensions of the shape and enable smoothing and 
decomposition of strokes at corners. In the rare case of 
obtaining a fit to a parabola, a slight perturbation of any 
stroke point can be used to avoid the singularity. Exact lines 
are also a rare form of a conic curve, occurring only in some 
cases where D=d=0. A linear segment will typically be fitted 
with a very narrow ellipse or hyperbola. Since detection of 
linear segments is crucial, any elliptical or hyperbolic fit with 
an aspect ratio (minor to major axis ratio) less than 1:20 is 
assumed to be linear. This ratio is heuristic and was chosen 
according to observations. A hyperbola fit must be further 
broken down into a set of two lines with a possible elliptic 
fillet between them. Such a fit can be obtained by scaling the 
hyperbola so that a=b=1. Then, an ordinary circular fillet is 
calculated and transformed back into the original plane.  

The linear solution and classification forms are most 
suitable for fast on-line interpretation. Whenever a new stroke 
coordinate pair is generated, the matrix sums are updated 
and the set of equations re-solved for A...F. The time 
complexity of the classification process at a given point is not 

a function of the number of points acquired so far; the process 
may be executed in O(1) time. This fact allows continuous 
updating of the conic fit at the cost of inverting a 5x5 matrix, 
and the display may be updated as the user draws the stroke. 
This continuous feedback, beneficial for spotting potential 
misinterpretations in advance, is one of the advantages of an 
on-line system. The time complexity of classifying a given 
stroke of points is o(n) and requires a single pass. 

Figure 1 shows some examples of conic sections (dashed) 
fitted to strokes (noisy solid). 

Entity Linking and Endpoint Clustering 
In order to process the classified entities as more 

meaningful data (in this case, as a projection of a 3D object), 
they must be linked at connection points. However, an 
examination of sketches reveals that users tend to place stroke 
endpoints inaccurately. A simple approach of joining 
endpoints that are closer than a minimal threshold distance 
will not suffice; a threshold that is too large may eliminate 
fine details, and a threshold that is too small may leave 
adjacent endpoints unlinked. Different tolerances may be 
necessary for different parts of the sketch, and certainly for 
different sketches made by different users. 

To overcome these variations, an adaptive clustering 
approach is used. In essence, the method is based on 
computing tolerance zones around each endpoint in the 
drawing, where the size of the zone corresponds to the 
uncertainty in the endpoint position. When the size of the gap 
between two endpoints is less than the expected error in 
placement of both the endpoints, it is likely that the endpoints 
were meant to coincide. Based on this reasoning, endpoint 
pairs are clustered when each member of the pair falls within 
the uncertainty zone of the other member. First, a list of 
potential connection points, termed raw vertices, is created. 
These points are placed at the endpoints of all the entities in 
the sketch. A specific tolerance is computed for each raw 
vertex, according to its neighboring geometry and other 
parameters, as discussed below. Then, every raw vertex is 
grouped with any neighboring raw vertices when both 
endpoints fall within each other's tolerance zone. The 
procedure is repeated as more and more endpoints are 
grouped. When two endpoints belonging to different groups 
are clustered, their associated groups are united. This 
procedure results in clusters of raw vertices. Each cluster will 
finally be represented by one vertex whose coordinates are at 
the average of centers. 

The critical phase of this algorithm is determining the size 
(radius, assuming the zones are circular) of the tolerance zone 
for each raw vertex. The size corresponds to the uncertainty 
in the vertex position. If the size is set to some (perhaps 
arbitrary) value, the result reverts to that of simple distance 
threshold linking. A tolerance threshold chosen according to a 
statistical analysis may result in the clustering obtained in [4]. 
If a tolerance circle is set to a percentage of the attached entity 
length, the result reverts to that suggested in [5].  

 
Fig. 1:  Some examples of conic fitting to strokes. 

It seems that a uniform tolerance or one based on a 
percentage of the associated line length cannot be used to 
obtain the most reliable result. The size of the tolerance zone 
should also be sensitive to the magnitude of the detail in the 



close vicinity of the endpoint. To achieve this sensitivity, the 
average distance from the endpoint to each entity in the 
sketch is measured. This includes the average distance from 
the endpoint to its own entity, namely, half the entity length. 
The smallest of these averages is taken as the size of the 
tolerance circle. Clearly, when small and fine detail is in the 
close vicinity of the endpoint, the resulting tolerance circle 
will be appropriately small. The value obtained will be 
limited by some arbitrary upper bound. In addition, a 
tolerance circle of an endpoint can never, by definition, 
contain both endpoints of an entity and therefore will never 
obscure even the finest detail. The tolerance circles shown in 
Fig. 2 (a) were derived using this method. 

 
Fig 2: Raw vertices with tolerance circles and resulting 
clustering. 

Alternative or additional criteria for determining the 
tolerance circle size may be considered as well, for instance, 
one based on pen dynamics and button-release timing. 

The size of the tolerance circle can also be influenced by 
criteria specific to the application in which the sketcher is 
used. In this work, the sketch is assumed to depict a 3D object. 
As is often the case in trihedral manifold objects, each 
endpoint is connected to three edges. That is, endpoints tend 
to be clustered in groups of three. Thus, clustering may be 
biased towards such grouping; the tolerance of clusters 
containing multiples of three endpoints are perturbed 
downwards in an attempt to cause the cluster to split into 
groups of three. Similarly, 3D objects tend not to contain 
unconnected endpoints; the clustering mechanism is therefore 
biased against such cases by slightly enlarging the size of 
such disconnected single vertices. An example of a connected 
graph processed by the above procedure is given in Fig. 3. 

 

 
Fig 3:  Tolerance circles obtained using clustering procedure 
and resulting linking.  

To conclude, the following steps are applied by the 
clustering algorithm 
• Create raw vertices at all endpoints of entities in the drawing. 

• Determine the radius of the tolerance circle around each raw 
vertex.  

• Identify and group pairs of raw vertices when each member of 
the pair falls within the other member's tolerance circle. 

• Iteratively group chains of pairs into clusters. 
• Place a vertex node at the centroid of each cluster. 
• Adjust lines and arcs accordingly. 

In-Context Classification and Clustering 
The classification and clustering methods described above 

and those appearing in the references all attempt to classify 
entities using explicit geometrical information appearing in 
the sketch. However, examples may be constructed where the 
correct decision can only be made when the geometry is 
considered in the global context of the drawing. Fig. 4 
illustrates two such examples. In Fig. 4 (a), an encircled 
junction of six lines appears in the two pictures. Although the 
two junctions are geometrically identical, they have different 
meanings when viewed in the drawing context: on the left, 
the junction represents two separate corners which 
accidentally coincide in the projection plane; on the right, it 
represents an orthogonal junction of six lines. Similarly, the 
classification of the horizontal entity illustrated in Fig. 4 (b) 
depends on the context in which it appears. On the left, it 
represents an arc, and on the right, it represents a straight 
line. 

It is evident that in order to differentiate between these 
cases, the meaning of the sketch must be "understood." If the 
sketcher is part of a larger mechanism that also interprets the 
sketch as a whole, then making the decision in context is 
possible.  

 
(a) 

 
(b) 

Fig. 4: (a) The same line junction appears in the two drawings, 
but with different meanings, (b) The same stroke appears at 
the bottom of each drawing, on the left as an arc and on the 
right as a line. 

Conclusions 
This paper presents a method for classifying sketch strokes 

acquired from on-line sketching systems. The classification is 
performed using conic-curve fitting and is capable of 
recognizing lines, arcs, elliptic arcs, sharp corners and filleted 
corners. The method has two basic advantages: (a) It can 
perform robust classification of rough input including spikes 
and cusps, which are troublesome for curvature-based 
classification, and (b) it has a short execution time that is not 
dependent on the length of the stroke or the number of 



sample points acquired (assuming coordinates have been 
summed while drawing the stroke). The procedure can 
therefore be used to provide continuous feedback of the 
interpreted entity during drawing, in real time. However, in 
spite of this ability, it is evident that geometrical-based 
classification is inherently limited and a more general, 
context-sensitive approach must be pursued.  

A new endpoint clustering scheme has also been presented 
based on adaptive tolerances at different parts of the sketch. 
The proposed formulation provides a framework for 
implementing various criteria for determining local 
thresholds, such as detail sensitive criteria, dynamic criteria, 
or other application specific criteria. Again, clustering can be 
improved using a context-sensitive approach. 
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