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Abstract

In this study, we focus on the classification of neutral and stressed speech based on a physical model. In order to

represent the characteristics of the vocal folds and vocal tract during the process of speech production and to

explore the physical parameters involved, we propose a method using the two-mass model. As feature parameters,

we focus on stiffness parameters of the vocal folds, vocal tract length, and cross-sectional areas of the vocal tract.

The stiffness parameters and the area of the entrance to the vocal tract are extracted from the two-mass model

after we fit the model to real data using our proposed algorithm. These parameters are related to the velocity of

glottal airflow and acoustic interaction between the vocal folds and the vocal tract and can precisely represent

features of speech under stress because they are affected by the speaker’s psychological state during speech

production. In our experiments, the physical features generated using the proposed approach are compared with

traditionally used features, and the results demonstrate a clear improvement of up to 10% to 15% in average stress

classification performance, which shows that our proposed method is more effective than conventional methods.
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1. Introduction
Stress is a psycho-physiological state characterized by sub-

jective strain, increased physiological activity, and deteri-

oration of performance [1]. Factors inducing stress on

speakers include workload, background noise, emotions,

physical environmental factors (e.g., G-force), and fatigue.

These factors are believed to affect voice quality and are

detrimental to the performance of communication equip-

ment, especially automated systems with speech inter-

faces. Therefore, it has become increasingly important to

study speech under stress in order to improve the per-

formance of speech recognition systems, to recognize

when people are in a stressed state and to understand

contexts in which speakers are communicating.

Researchers have attempted to probe reliable indica-

tors of stress by analyzing acoustic variables. Some ex-

ternal factors (workload, background noise, etc.) and

internal factors (emotional state, fatigue, etc.) may in-

duce stress [2]. The first investigations of emotional

speech were conducted in the mid-1980s, using the

statistical properties of acoustic features in order to de-

tect emotions from speech [3,4]. It has been found that

fundamental frequency (F0) has different characteristics

for each emotion [5] and that respiration patterns and

muscle tension also change [6]. The influence of the

Lombard effect on speech recognition has also been ex-

amined [7,8]. Selected acoustic features have been ana-

lyzed, such as amplitude and distribution of spectral

energy, and it was found that spectral energy shifted to

higher frequencies for consonants in the presence of

loud background noise. High workload stress has been

proven to have a significant impact on the performance

of speech recognition systems, with speech under work-

load sounding faster, softer, or louder than neutral

speech [9,10]. Matsuo et al. examined the frequency do-

main and showed how differences in the spectrum of

the high frequency band under stressful workload condi-

tions could be used to catch people committing remit-

tance fraud, and their proposed measure achieved better

classification performance [11]. Furthermore, the Teager

energy operator (TEO) [12] was proposed to explore

variations in the energy of airflow characteristics within

the glottis for the purpose of stress classification [13].

However, the features examined in these previous
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studies lack a physical basis, and the methods do not

consider the whole process of speech production, which

is believed to be essential for effective classification of

speech under stress.

We propose a stressed speech classification method

based on a physical model characterizing the vocal folds

(VF) and the vocal tract (VT). This method can repre-

sent the process of speech production and model airflow

patterns in the vocal folds and the vocal tract, which are

essential for stress classification. In this physical model,

changes in the physical characteristics of the vocal folds,

such as muscle tension, have a modulating effect on the

formants, while the shape of the vocal tract can also influ-

ence the glottal source because of the interaction between

the vocal folds and the vocal tract. It is believed that the

presence of stress can result in variations in the physical

characteristics of physiological systems and influence the

acoustic interaction between the vocal folds and the vocal

tract [2]. The parameters of the physical model also help

represent the influence of speaking style more directly and

clearly. Therefore, a physical model is helpful to estimate

the parameters of the physiological system.

An early but still prominent physical model is the

source-filter model [14], which models speech as the

combination of a glottal source (such as the vocal folds),

and a linear acoustic filter representing the vocal tract

and its radiation characteristic. An important assump-

tion that is often made in the use of the source-filter

model is independence of the source and filter. In such

cases, the model should more accurately be referred to

as the ‘independent source-filter model’. In 1961, Wong

proposed a linear model of speech production using a

lossless tube model of the vocal tract [15]. In 1979, a linear

source tract model was proposed to model the glottal

source, the vocal tract, and radiation impedance as linear

filters, using covariance analysis [16]. However, the vocal

tract and vocal folds do not function independently of

each other instead there is some form of interaction be-

tween them [17], which results in significant changes in

fundamental frequency and formant characteristics.

The two-mass model is a physical model, which at-

tempts to simulate the physical process of vocal fold vibra-

tion, characterizing the vocal folds and the vocal tract, and

to also model the effect of glottis-vocal tract interaction

[18]. Parameters affected under stressed conditions are

extracted from the physical model and are used as features

to identify speech under stress more precisely. We use the

two-mass model as a physical model, and our proposed

method estimates the values of parameters included in the

model from input speech. To identify speech under stress,

we evaluate parameters affected by stress.

In this paper, we propose a method for fitting a physical

model to real speech in order to estimate the physical pa-

rameters which characterize the vocal folds and the vocal

tract. For the physical model, a two-mass model connected

to a four-tube model is used to simulate the process of

speech production. The physical parameters (stiffness, vocal

tract length, and cross-sectional areas of the vocal tract) are

estimated by fitting the model to real speech. The estimated

parameters can be further analyzed and proposed as features

for the classification of neutral and stressed speech. Further-

more, different cost functions are proposed to compare clas-

sification performance. As a result, stiffness of the vocal folds

and cross-sectional areas of the vocal tract are selected as

features for the classification of neutral and stressed speech.

The paper is organized as follows: In Overview, an over-

view of our method is presented. Physical parameters, re-

lated to the vocal folds and the vocal tract, based on the

two-mass model are described as features for classification

in Physical parameters. This is followed by the presentation

of a fitting algorithm for real speech data in Estimation

method to help estimate the physical parameters. Classifica-

tion describes the classification method used for evaluation.

In Evaluation, experiments are performed to evaluate the

obtained parameters and show their corresponding classifi-

cation performances when separating neutral and stressed

speech. Finally, we draw our conclusions in Conclusion.

2. Overview
An overview of our work is shown in Figure 1. It in-

cludes the three steps needed to perform stressed speech

classification: proposal of physical parameters, parameter

estimation by fitting them to the two-mass model, and

the classification of neutral and stressed speech.

Initially, we propose physical parameters considered

likely to be useful, which include stiffness parameters of

the vocal folds, vocal tract length, and cross-sectional

areas of the vocal tract. These parameters characterize

the behavior of vocal folds and the shape of the vocal

tract. Furthermore, the relationship between the selected

physical parameters and acoustic parameters has been

shown to represent characteristics of the interaction be-

tween the vocal folds and the vocal tract.

The proposed physical parameters are then estimated

by fitting the two-mass model to real speech. An algo-

rithm based on the analysis-by-synthesis method is

proposed for fitting the model to real speech. The

Nelder-Mead simplex method [19] is used as a search

strategy in order to find the optimal physical parame-

ters. An iteration method is performed for vocal fold

fitting and vocal tract fitting to estimate parameters,

because there is interaction between the VF and VT.

For classification, a linear classifier is trained using utter-

ances from each speaker. Currently, a simple linear classi-

fier based on Euclidean distance is used for classification.

Also, since we only have speech data for a small number of

speakers, we evaluate our proposed method as a speaker-

dependent system.
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3. Physical parameters
A method which fits the two-mass model to real

speech is proposed for classifying speech under stress.

Some of the physical parameters characterizing the

vocal folds and the vocal tract are estimated. The two-

mass vocal fold model was originally proposed by

Ishizaka and Flanagan to simulate the process of

speech production [18]. We propose three types of fea-

ture parameters extracted from the two-mass model:

stiffness, vocal tract length, and cross-sectional area of

the entrance of the vocal tract. In the following sec-

tions, we will define these parameters and describe

their characteristics.

3.1 Stiffness

The stiffness parameters are related to muscle tension in

the vocal folds. Generally, the stiffness of the vocal folds

is considered to depend mainly on two muscles: the

cricothyroid muscle (CT) and thyroarytenoid muscle

(TA) [16]. In the two-mass model, coupling stiffness kc
is relative to the tension in the TA muscle, so a high k1
value and a low value for kc represent the contraction of

the CT muscle and relaxation of the TA muscle.

Figure 2 shows a sketch of the model. Each vocal fold

is represented by a mass-spring-damper system, joined

with a coupling stiffness [18]. It is represented as:

mi

d2x1

dt2
þ r1

dx1

dt
þ s1 x1ð Þ þ kc x1−x2ð Þ ¼ F1; ð1Þ

m2
d2x2

dt2
þ r2

dx2

dt
þ s2 x2ð Þ þ kc x2−x1ð Þ ¼ F2: ð2Þ

Tissue elasticity (or ‘spring’) si represents the tension

of the vocal folds, which depends on the contraction of

different muscles. The equivalent tensions are given by:

si xið Þ ¼ k i xi þ ηx3i
� �

; i ¼ 1; 2; ð3Þ

whose notations and variables are documented in Table 1.

Stiffness parameters are the main factors relating to

fundamental frequency, and they can also determine the

amplitude of the glottal area and glottal volume velocity

[20], so source excitation is significantly influenced by

the degree of stiffness. During the production of speech,

the natural frequency of the vocal folds is determined by

both their mass and stiffness. However, in order to

Tube 1 

Tube 2 

m2
m1

Trachea 

m2
m1

Vocal tract 

Ag1Ag2A1A2

L1L2

k2 r2
k1

r1

kc

kc

Figure 2 Structure of the two-mass model used to simulate the vocal folds and the vocal tract. The vocal folds are represented by a mass-

spring-damping system, coupled with a four-tube model. In this model, m denotes a mass, k1 and k2 are linear stiffnesses, kc is the coupling

stiffness connecting the two masses, and r1 and r2 are the viscous resistances. L and A represent the length and cross-sectional area of the vocal

tract, respectively.
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Figure 1 A block diagram of our proposed approach. It includes the three steps necessary to perform classification of stressed speech.
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simplify the estimation algorithm, only the stiffness pa-

rameters are estimated, with mass fixed as a constant.

3.2 Vocal tract length and cross-sectional area

The supraglottic area includes the structures that lie

above the true vocal folds and below the base of the

tongue. The anatomical structures present in this area

that are important to speech production lie posterior to

the epiglottis. They include the ventricle, false vocal

folds, epiglottis, arytenoids, laryngeal aspects of the

aryepiglottic folds, and vestibule [21].

The two-mass model is connected to a four-tube

model representing the vocal tract [18]. The tube model

is constructed using a transmission line analogy involv-

ing n cylindrical, hard-walled sections. The elemental

values of the model are determined by cross-sectional

areas A1 ⋯ An and cylinder lengths l1 ⋯ ln. The total

length of the vocal tract is defined as LVT. The tube

model can be represented by an equivalent circuit, as

shown in Figure 3. The inductances Ln = ρln / 2An, the

capacitances Cn = ln ⋅ An / ρc2, and the resistances

Rn ¼ Sn=A
2
n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρμω=2
p

, where c is the velocity of sound.

Here, the tube model has been limited to four cylindrical

sections of equal length, n = 4. In this study, the model

is limited to only vowel articulation (as vowels were the

subject of the experiments) and modal voice production.

These assumptions greatly simplify the modeling of the

vocal tract and the glottal source. In this paper, we use a

four-tube model to simulate the vocal tract, which

followed the original paper [18]. Furthermore, in the fol-

lowing analysis, we propose A1 as one of our feature pa-

rameters because the other areas, A2, A3, and A4 are less

effective on classification than A1. Thus, we currently

consider the four-tube model to be sufficient.

The model is terminated in a radiation load equal

to that of a circular piston in an infinite baffle.

Ln ¼ 8ρ=3πð Þ
ffiffiffiffiffiffiffiffiffi

πAn

p
, RR = 128ρc/9π2An, where An is

the area of the mouth. The notations and variables

are documented in Table 2.

Therefore, the differential equations related to the vol-

ume velocities of the system are:

Rk1 þ Rk2ð Þ Ug

�

�

�

�Ug þ Rv1 þ Rv2ð ÞUg þ Lg1 þ Lg2
� � dUg

dt
þ

L1
dUg

dt
þ R1Ug þ

1

C1
∫t0 Ug−U1

� �

dt−Ps ¼ 0

L1 þ L2ð Þ dU1

dt
þ R1 þ R2ð ÞU1þ

1

C2
∫t0 U1−U2ð Þdt þ 1

C1
∫t0 U1−Ug

� �

dt ¼ 0

⋮

ð4Þ

LR
d

dt
UR þ ULð Þ þ RR⋅UR ¼ 0;

where Rv1 ¼ 12
μl2gd1

A3
g1

, Rv2 ¼ 12
μl2gd2

A3
g2

, Lg1 ¼ ρd1
Ag1

, Lg2 ¼ ρd2
Ag2

,

Rk1 ¼ 0:19ρ

A2
g1

, and Rk2 ¼
ρ 0:5−

Ag2
A1

1−
Ag2
A1

� �h i

A2
g2

.

The length of the vocal tract and its cross-sectional

areas are the main parameters which determine the

Table 1 Notations and variables in the two-mass model

for the vocal folds

Notation/variable Description

mi The masses

xi The horizontal displacements measured
from the rest (neutral) position x0

ri The equivalent viscous resistances

si The force related to tissue elasticity

Fi The force of airflow, which is determined
by subglottal pressure

ki The stiffness coefficients

kc The coupling stiffness

η A coefficient of the nonlinear relations

Ps

Vocal  

Fold

Model

R1 L1 R1 Rn Ln

Cn

Rn Ln

LR RR

Ug U1
Un-1 Un

UR

Lungs Vocal folds A1

Vocal tract

C1

L1

An Mouth

Figure 3 Circuit equivalent of the tube model, representing the production of voiced sound in the vocal tract. Current Ug denotes the

velocity of airflow in the glottis. Inductance, capacitance, and resistance depend on the length and area of the vocal tract.

Yao et al. EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:17 Page 4 of 17

http://asmp.eurasipjournals.com/content/2013/1/17



shape of the vocal tract and have a significant impact on

the distribution of formants. Vocal tract length and

cross-sectional areas of the tube model are computed

from real speech.

3.3 Relationship between physical parameters and

acoustic parameters

In this section, we describe experiments which were

performed to represent the presence of acoustic inter-

action and show the relationship between physical and

acoustic parameters. Aerodynamics in the glottis is mod-

eled using the two-mass model. In order to clarify the

relationship between physical and acoustic parameters,

we will first briefly describe the main equations rep-

resenting the aerodynamics of speech production.

If subglottal pressure is represented as Ps, then air

pressure drops to P11 when air enters the glottis (at the

edge of m1) according to Bernoulli’s equation. The

abrupt contraction in the cross-sectional area at the inlet

to the glottis causes a phenomenon called vena contracta,

which causes the air pressure to undergo an even greater

drop. The drop is determined by the flow measurements of

van den Berg:

Ps−P11 ¼ 1:00þ 0:37ð Þ
ρU2

g

2A2
g1

; ð5Þ

where ρ is the air density, Ug is the volume velocity of glot-

tal airflow, and Ag1 is the cross-sectional lower glottal area,

which is represented by Ag1 = 2lg(x0 + x1), where lg is the

length of the vocal fold and x0 is the displacement when

the vocal folds are in the rest position.

Along masses m1 and m2, pressure drops as a result of

air viscosity:

Pi1−Pi2 ¼
12μdil

2
gUg

A3
gi

; i ¼ 1; 2; ð6Þ

where μ is the air viscosity coefficient and d1 is the

width of m1.

At the boundary between the two masses, the pressure

drop can be calculated by:

P21−P12 ¼
ρU2

g

2

1

A2
g1

−
1

A2
g2

 !

; ð7Þ

where P21 is the air pressure at the lower edge of m2 and

Ag2 is the cross-sectional lower glottal area.

At the glottal outlet, abrupt expansion causes the pres-

sure to recover because of the relatively large area of the

vocal tract. This pressure is given by:

P1−P22 ¼
1

2
ρ
U2

g

A2
g2

2N 1−Nð Þ½ �; ð8Þ

where P1 is the pressure at the inlet of the vocal tract.

Here, the parameter N is defined as N = Ag2 / A1, where

A1 is the area of the entrance to the vocal tract. N de-

notes the difference in area between the outlet of the

vocal folds and the inlet of the vocal tract, which is sig-

nificant to the acoustic interaction between the vocal

folds and the vocal tract [18]. Since glottal area Ag2 does

not change significantly during the oscillation of the

vocal folds, A1 is the parameter relating to the acoustic

interaction.

In Equation 4, it is shown that airflow velocity Ug de-

pends on both the stiffness of the vocal folds and area of

the entrance to the vocal tract A1. Therefore, it is our as-

sumption that parameters k1, k2, kc, and A1 related to

velocity have an impact on acoustic interaction. In this

paper, experiments are performed to represent the pres-

ence of this interaction by showing the relationship be-

tween physical and acoustic parameters. Due to the

presence of these interactions, changes in the oscillation

of the vocal folds affect the distribution of formants, and

different shapes of the vocal tract (length and area) also

influence the glottal source. Table 3 lists the physical

and acoustic parameters.

We first examine how stiffness parameters impact the

distribution of formants. First, we fixed the shape of the

vocal tract and examined how variation in the stiffness

parameters of the vocal folds affects the shift of for-

mants. The vocal tract model was represented by a

standard tube configuration for the vowels /a/ and /e/

[22]. In order to reduce the number of parameters to be

estimated and simplify the proposed method, typical

values were adopted for the configuration of the tube

model. Therefore, as typical values, the length chosen

Table 2 Notations and variables in the two-mass model

for the vocal tract

Notation/variable Description

Ai The cross-sectional areas in the tube model

li The cylinder lengths in the tube model

di The thickness of m1 and m2

Ag1, Ag2 The cross-sectional areas of the glottis

Ug The average volume velocity across the glottal area

c The velocity of sound

ρ The air density

ω The radian frequency

Table 3 Physical and acoustic parameters

Parameter Variable

Physical k1, kc, A1, A2, A3, LVT

Acoustic F0, F1, F2, F3
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for the vocal tract was LVT = 16 cm, with each element

li = 4 cm, and the cross-sectional area was fixed at A1 =

0.8 cm2, A2 = 0.4 cm2, A3 = 3 cm2, and A4 = 8 cm2 for

/a/ and A1 = 1 cm2, A2 = 8 cm2, A3 = 8 cm2, and A4 = 8

cm2 for /e/. When a specific stiffness is checked, the

other stiffness parameters are fixed at typical values. We

changed stiffness parameters k1 (20 to 240 kdyn/cm), k2
(2 to 40 kdyn/cm), and kc (2.5 to 70 kdyn/cm) to exam-

ine variation in formants. Formant estimation is based

on modeling vocal tract frequency response using linear

predictive coding (LPC) techniques. It estimates formant

frequencies from the all-pole model of the vocal tract

transfer function.

Figure 4 shows the relationship between the stiffness pa-

rameters and different formants. It shows that k2 does not

significantly influence formants, but that first and second

formants will shift their location to a lower frequency with

the increase of k1, although there is no significant change

in the third formant (F3). A similar phenomenon occurs

for kc. When kc decreases, F1 also has a tendency to shift

to a lower frequency, while F2 and F3 are less influenced

by the variation of kc. Therefore, it is shown that stiffness

parameters k1 and kc can affect the distribution of for-

mants and that the first and second formants are easily af-

fected by acoustic interaction.

Next, we fixed the configuration of the vocal folds and

examined how variation of the cross-sectional area of

the vocal tract impacts the fundamental frequency (F0)

of speech. Stiffness was fixed at typical values k1 =

80,000 dyn/cm, k2 = 8,000 dyn/cm, and kc = 25,000 dyn/

cm to check how the fundamental frequency changes

with the area function. When checking the impact of a

specific area, other areas and vocal tract length (VTL)

were fixed at typical values for /a/ or /e/. When consid-

ering VTL, all the cross-sectional areas were fixed at

typical values. We then change the cross-sectional area

or VTL to examine their impact on F0. The variation

range for VTL was 13 to 19 cm, and for cross-sectional

area of VT, the range was 0.1 to 20 cm. The algorithm

for estimation of the fundamental frequency of speech is

YIN [23]. It is based on the well-known autocorrelation

method, with a number of modifications that combine

to prevent error.

Figure 5 shows the relationship between the vocal tract

parameters (vocal tract length and cross-sectional area)

and fundamental frequency. It shows that VTL has less

impact on F0 and only determines the distribution of

formants. However, an increase in cross-sectional area

A1 can cause F0 to change significantly. While cross-

sectional areas A2 and A3 also have an impact on F0 to

some extent, but their influence is insignificant com-

pared to A1.

Therefore, it is our conclusion that stiffness of the vocal

folds and cross-sectional area A1 affect both the fundamen-

tal frequency and formants and, further, the interaction be-

tween the vocal folds and the vocal tract.

Figure 4 Impact of stiffness parameters in vocal folds on formants.
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3.4 Parameters representing stress

In Relationship between physical parameters and acous-

tic parameters, the experimental results show that stiff-

ness of the vocal folds and cross-sectional area A1 have

an impact on the interaction between the vocal folds

and the vocal tract. It is believed that the variations in

acoustic interaction differ markedly between neutral and

stressed speech [2], so stiffness and A1 should be se-

lected as parameters for representing stress.

In theory, Equation 8 shows that both the velocity of

glottal airflow and the difference between the area of the

outlet of the vocal folds and the inlet of the vocal tract

have an impact on the pressure difference inside and

outside of the glottis. Thus, the two factors can cause

variations in the airflow patterns in the glottis and thus

are likely to be effective to represent the presence of

stress.

Variation in the stiffness of the vocal folds influences

the time span of glottal opening and closing phases and

causes glottal airflow to accelerate in the glottis, thus

impacting the velocity of glottal airflow. Therefore, we

can also assume that stiffness parameters can be poten-

tial parameters for stress detection.

A1 in the four-tube model is the area of the entrance

to the vocal tract in the supraglottis. Narrowing A1 facil-

itates phonation by decreasing the oscillation threshold

pressure of the vocal folds [24]. Since glottal area Ag2

does not change significantly during the oscillation of

the vocal folds, A1 is the main factor determining the

pressure difference between the inside and outside of

the glottis and has an impact on the acoustic interaction

between VF and VT. Based on these considerations, we

also make the assumption that A1 is an effective param-

eter for stress classification.

4. Estimation method
4.1 Algorithm for fitting

The goal of stress classification is to determine from

speech data if a specific person is under stress when he

or she is speaking. When speech is input to the system,

it is split into several frames, and further estimation of

the physical parameters is performed for each frame.

VTL for each speaker is first calculated; then, the

obtained VTL is input as a known parameter. Then, the

two-mass model is fit to each speech sample to simulate

the vocal folds and the vocal tract. An outline of our

method is shown in Figure 6.

In the first step, estimation of VTL is performed. Since

VTL has no impact on the glottal source, it can be esti-

mated separately. Because VTL varies with each speaker,

all of the neutral speech data for vowel /a/ from each

speaker is used to estimate the vocal tract length of that

speaker. Here, we mainly consider the neutral speech for

each speaker in the database. During VTL estimation,

real speech from a database is analyzed using LPC to ob-

tain the spectral envelope. The stiffness parameters are

fixed at typical values and are taken as an input. The

two-mass model is then fit to the neutral speech of each

Figure 5 Impact of vocal tract length and cross-sectional area of vocal tract on fundamental frequency.
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speaker to estimate the parameters of vocal tract length

and cross-sectional area. Nelder-Mead simplex method

[19] is used to search for the optimal values for fitting. For

each speaker i, the probability distribution Pi(LVT(i, k)) of

VTL LVT(i, k) for all neutral speech is calculated, and we

choose the one with the highest probability as the esti-

mated vocal tract length.

LVT ið Þ� ¼ argmax LVT i;kð ÞPi LVT i; kð Þð Þ: ð9Þ

The detailed fitting procedure is the same as that used

for vocal tract fitting described below, which is shown in

Figure 7. Equation 12 is used as the cost function.

In the next step, the estimated VTL of this speaker,

which was obtained during the first step, is used, and

the two-mass model is fit to the real speech to estimate

the other physical parameters. Fitting the model to real

speech poses a difficulty: estimation of too many param-

eters may make the fitting method unstable. The solu-

tion to this problem is to split the process into two main

parts so that the VF and VT are fit with two different

cost functions. However, the existence of interaction be-

tween VF and VT makes it impossible to fit VF and VT

separately, and changes in the stiffness parameters and

in A1 in the tube model can influence both formants

and the glottal source. An alternative is to perform iter-

ation when fitting the vocal folds and the vocal tract.

Thus, an iteration method is used for vocal fold and

vocal tract fitting, which are accomplished as follows.

Figure 8 shows the structure of the fitting algorithm.

For vocal tract fitting, stiffness parameters are fixed at

typical values and are taken as an input to vocal tract fit-

ting. The parameters for the cross-sectional areas are

then estimated. Next, the obtained areas are used as an

input for vocal fold fitting, and the two-mass model is fit

to estimate the new stiffness parameters. When current

stiffness differs significantly from the typical value, the

corresponding formants are also affected, and some vari-

ations can occur. In such cases, vocal tract fitting needs

to be performed again. We take iterations for the two

parts until the results reach convergence.

The detailed structure of vocal tract fitting and vocal

fold fitting is shown in Figures 9 and 10. Vocal tract fit-

ting includes two steps. First, real speech from a data-

base is analyzed using LPC to calculate the spectral

envelope. In the second step, a simulation is performed

using the two-mass model to produce speech using an

initial area function. The same spectral envelope is cal-

culated from the simulated speech and is compared with

the one obtained in the first step to find the difference

between them. The difference between the simulated

spectrum and the target spectrum is represented by a

cost function. The area function is then varied, and glot-

tal flow is simulated until the cost function reaches a

minimum. Optimal values of the physical parameters are

then estimated using the Nelder-Mead simplex method

[19]. Cost function 2 is used in vocal tract fitting. In this

paper, we utilize four cost functions in order to compare

classification performance, which are described in Cost

functions for vocal tract fitting.

The Nelder-Mead algorithm is a simplex method for

finding the minimum of a function involving several var-

iables. It is a direct search method and does not require

the calculation of a derivative. We use the Nelder-Mead

method based on the comparison of the values of the

cost function at the n + 1 vertices for n-dimensional de-

cision variables to solve our optimization problem. Here,

we select A1, A2, A3, and A4 as variables in vocal tract

fitting. Each calculation will generate a new vertex for

the simplex. If this new point is better than at least one

of the existing vertices, it replaces the worst vertex. The

simplex vertices are changed through reflection, expan-

sion, shrinkage, and contraction operations in order to

find an improved solution to estimate the parameters.

Optimal values of the physical parameters are esti-

mated using the Nelder-Mead simplex method, which

is implemented to search for the optimal physical pa-

rameters to minimize the cost function.

Vocal fold fitting uses the same process as vocal tract

fitting, with the difference that the residual signal is

obtained using LPC analysis, and the spectrum of the re-

sidual signal is available to construct the cost function 1

Real speech

VTL estimation for each speaker

Estimated VTL 

Estimation of physical 

parameters

Segmentation

(fixed frame)

k1,kc,A1,A2 A3,A4

All samples for /a/ from neutral 
speech of each speaker 

Figure 6 Block diagram showing the outline of our method.

Log | P (w) |

Two-mass model

Initial VTL and 
Area parameters speech

LPC

LPC

Real speech

Cost function

Log | P (w) |

Change VTL and 
cross-sectional area 

Typical VF
parameters

Figure 7 Block diagram showing the details of estimation of

vocal tract length.
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in Figure 10 for vocal fold fitting. It is used to evaluate

the difference in the spectrum of the residual signal in

vocal fold fitting, which is described as:

C ¼

X

fs=2

i¼1

S� ωið Þ−S ωið Þj j2

X

fs=2

i¼1

S ωið Þj j2
; ð10Þ

where S(ω) and S*(ω) are the power spectrums of the re-

sidual signal for simulated and real speech, respectively.

Here, we select the stiffness parameters k1, k2, and kc as

variables for vocal tract fitting.

Here, we use the residual signal from LPC analysis to

estimate the parameters of the vocal folds. The LPC

model is based on a mathematical approximation of the

vocal tract. We use it to remove the effect of the vocal

tract and obtain the residual signal to estimate the stiff-

ness parameters with generated cost functions. In order

to make a comparison with the spectrum of the residual

signal from real speech, an LPC inverse filter is used for

the simulated speech to obtain the residual signal. Our

target here is to evaluate the similarity of the spectrums

of residual signals both from real and simulated speech

instead of representing the source wave. The aim of this

paper is to classify speech under stress. It is believed that

the main differences between neutral and stressed

speech are focused on the harmonic structure of the

spectrum of residual signal [11]. Thus, in this study,

obtaining the residual signal using LPC can work well

for showing the harmonic structure of the spectrum.

4.2 Cost functions for vocal tract fitting

As for the definition of cost function 2, we utilized four

different cost functions in order to compare their classi-

fication performance.

Figure 8 Structure of the main fitting algorithm. It includes three parts: (1) estimation of VTL, (2) vocal fold fitting, and (3) vocal tract fitting.

Figure 9 Block diagram showing the detailed structure of our

vocal tract fitting method.

Two-mass model

Initial stiffness 

parameters

Simulated

speech

FFT

FFTLPC

Real speech

Cost function1

Residual signal

Change stiffness parameters

LPC

Residual signal

Power spectrum

Figure 10 Block diagram showing the detailed structure of our

vocal fold fitting method.
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4.2.1 Formant (CF1−F2 )

The presence of stress causes an increase in the vari-

ability of airflow characteristics due to differences in

the muscle tension of the vocal folds. This should

cause changes in acoustic interaction around the false

vocal folds, thus having an impact on the first and sec-

ond formants (F1 and F2). Thus, F1 and F2 are calcu-

lated from the spectral envelope to define a cost

function:

CF1−F2 ¼ α1 F�
1−F1

� �2 þ α2 F2
�−F2ð Þ2;

α1 ¼
1
�F1

; α2 ¼
1
�F2

;
ð11Þ

where the asterisk denotes the target value for real

speech. The weights are given the values α1 and α2 to

normalize the different target parameters to the same

range, and the overbar denotes mean values over the

target region.

4.2.2 RMS distance of spectral envelope (Crms)

CF1-F2 only focuses on the frequency of the first two

formants, which is not accurate enough to describe

the spectrum. Thus, we find a set of all-pole model co-

efficients, the cost function of which can be defined as

the root mean square (RMS) distance between the

spectral envelope of simulated speech and the original

speech:

Crms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

logP ωið Þ− logP� ωið Þj j2
s

P ωð Þ ¼ 1

A ωð Þj j2
¼ 1

X

P

k¼0

ake
−jωk

�

�

�

�

�

�

�

�

�

�

2
: ð12Þ

4.2.3 Itakura-Saito distance of spectral envelope (CI-S)

The Itakura-Saito distance is a measure of the perceptual

difference between an original spectrum and an approxi-

mation of that spectrum. It was proposed by Fumitada

Itakura and Shuzo Saito in the 1970s and can be de-

scribed as:

CI‐S ¼
1

N
∑
N

i¼1

P ωið Þ
P� ωið Þ−log

P ωið Þ
P� ωið Þ−1: ð13Þ

4.2.4 Envelope and formant (CE-F)

The cost functions Crms and CI-S catch the difference be-

tween the rough shapes of the spectral envelopes, but

they neglect local information when locating the form-

ant. Since only the first two formants are affected by the

oscillation of the vocal folds, the characteristics of F1
and F2 should be the chief focus. We propose matching

the spectral envelope initially in the first iteration, and

then, in the next iteration, the characteristics of the

formant are fully considered:

C
1ð Þ
E‐F ¼ 1

N

X

N

i¼1

logP ωið Þ− logP� ωið Þj j2 n ¼ 1;

C
nð Þ
E‐F ¼ α1 F�

1−F1

� �2 þ α2 F�
2−F2

� �2

þ w1 H�
1−H1

� �2 þ w2 H�
2−H2

� �2
n≥2;

ð14Þ
where F1, F2, H1, and H2 refer to the frequency and amp-

litude of the first and second formants and n is the iter-

ation number.

It would be helpful to evaluate the accuracy of the fit-

ting method to show that the proposed method works

well. However, it is difficult to compare the simulated

values with the actual values because sensors are not

available to measure the actual values for human beings.

In this paper, we calculate the error in acoustic features

between real and simulated speech to describe the ac-

curacy of the fitting method.

Using the fitting method described above, the optimal

simulated speech corresponding to the inputted real

speech can be obtained. Some acoustic features like F0,

F1, F2, F3, and F4 can also be estimated from the simu-

lated speech. In order to describe the accuracy of the fit-

ting method, we calculate the error in F0, F1, F2, F3, and

F4 between real and simulated speech. Here, cost func-

tion CE-F is used.

ErrF0
¼ F0−F

�
0

� �

ErrF1
¼ F1−F

�
1

� �

ErrF2
¼ F2−F

�
2

� �

ErrF3
¼ F3−F

�
3

� �

ErrF4
¼ F4−F

�
4

� �

;

ð15Þ

where the asterisk denotes the target value for real

speech.

We calculate the errors from simulated and real speech

for all the samples for vowels /a/ and /e/ and show the

distributions of the errors as shown in Figure 11. Simu-

lated results using these four cost functions are shown in

Figure 12. The errors, as shown in Figure 11, are smaller

in F0, F1, and F2 (±3 Hz) to obtain higher accuracy. How-

ever, the errors in F3 and F4 may be increasing, because

the cost function chosen places more emphasis on the

first and second formants, which are believed to be more

important for stress classification. Thus, based on the dis-

tributions of errors, it is shown that the proposed method

provides reliable accuracy for the fitting to real speech.

5. Classification
Evaluation of the physical parameters is speaker

dependent. The structure of the classification method is

shown in Figure 13.
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During the training process, all of the speech samples

from a specific speaker are labeled as neutral or stressed

speech. The labeled speech is segmented into fixed

frames, and all of the frames are fit using the two-mass

model to estimate the proposed parameters. A linear

classifier based on minimum Euclidean distance is

trained for the classification, using the estimated phys-

ical parameters from all of the frames.

During testing, test speech is input into the system

and split into frames, and the trained linear classifier

then separates them into neutral or stressed speech. We

use Euclidean distance to make a final decision for

speech data with several frames. For a test sample with

K frames, the feature vector of the ith frame is Vi. We

calculate its Euclidean distance di(Vi, aN) di(Vi, aS) to

the neutral and stressed classes, respectively, where aN
and aS are the average vectors of classes for neutral and

stressed speech. The final decision is made for the test

sample using the following equation:

j ¼ arg max ∑
K

i¼1
d1 V i; aNð Þ; ∑

K

i¼1
di V i; aSð Þ

� 	

j ¼ N or S:

ð16Þ

A K-fold cross-validation method was used in the

training and testing process, and K was set to 4. Using

this method, the data set was divided into four subsets,

and for each classification, one of the subsets was used

as a test set and the other three subsets were combined

to form a training set. The final result was obtained by

calculating the average classification rate across four

trials.

6. Evaluation
6.1 Database and experimental setup

In the experiments, we used a database collected by the

Fujitsu Corporation containing speech samples from

eleven subjects (four males and seven females) [24]. To

simulate mental pressure resulting in psychological

stress, the speakers performed three different tasks while

having telephone conversations with an operator, in

order to simulate a situation involving pressure during a

telephone call.

The three tasks involved (a) concentration, (b) time

pressure, and (c) risk taking. For each speaker, there are

four dialogues with different tasks. In two dialogues, the

speaker was asked to finish the tasks within a limited

amount of time, and in the other dialogues, there is re-

laxed chat without any task.

All of the data comes from telephone calls, so the

sampling frequency was 8 kHz. Segments with the

vowels /a/ and /e/ were cut from the speech and se-

lected as samples. The experiments were conducted for

each speaker, and all of the results were speaker

Figure 11 Error distributions of F0, F1, F2, F3, and F4 between

real and simulated speech. The cost function used is CE-F.
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dependent. The number of samples was different for

each speaker. The range of the total number of samples

is from 100 to 250 for each vowel from each person. We

randomly chose six speakers (three males and three fe-

males) from eleven subjects to test classification per-

formance. A K-fold cross-validation method was used in

the classification experiments, in which K was set to 4.

Using this method, the data set was divided evenly into

four subsets, and for each classification, one of the sub-

sets was used as a test set and the other three subsets

were combined to form a training set. The final result

was obtained by calculating the average classification

rate across four trials. The samples were analyzed with

12-order LPC, and the frame size chosen to perform the

experiment was 64 ms, with 16 ms for frame shift.

For configuration of the two-mass model, the follow-

ing values were adopted, using typical values for males:

m1M = 1.25 × 10−4 kg, m2M = 2.5 × 10−5 kg, lgM =

0.014 m, d1M = 0.0025 m, d2M = 5 × 10−4 m, ζ1M = 0.1,

ζ2M = 0.6, x0 = 2 × 10−4 m, and Ps = 500 Pa. The vocal

tract model was represented by a tube model, and the

number of elements was limited to four cylindrical sections

of equal length. Typical values used for configuration for

females were as follows: m1F = 4.56 × 10−5 kg, m2F = 9.1 ×

10−6 kg, lgF = 0.01 m, d1F = 1.79 × 10−3 m, d2F = 3.6 ×

10−4 m, ζ1F = 0.1, ζ2F = 0.6, x0 = 2 × 10−4 m, and Ps =

500 Pa. Furthermore, the ranges for the control param-

eters were k1 = 10 to 140 kdyn/cm, k2 = 2 to 14 kdyn/

cm, kc = 4 to 45 kdyn/cm, VTL = 13 to 19 cm, and A1,

A2, A3, A4 = 0.2 to 20 cm.

Figure 12 Simulation results of fitting for neutral and stressed speech. Spectrums for original speech (top) and simulated speech with four

cost functions (CF1‐F2 , Crms, CI-S, and CE-F) under neutral (left column) and stressed (right column) conditions. In this figure, C1 = CF1‐F2 , C2 = Crms, C3 = CI-S,

and C4 = CE-F.

Stressed speech

Feature

Linear classifier

Trained linear classifier

Segmentation

(fixed frame)

Segmentation

(fixed frame)

Neutral speech

Test speech

Labeled stressed speech

Labeled neutral speech

Method

Figure 13 Block diagram of our classification method. A linear classifier is used for the training and testing process.
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6.2 Results for cost functions

In the first evaluation, we estimated the vocal tract

length of all of the speakers, and two comparisons were

made. First, we estimated the cross-sectional area func-

tion using the vocal tract fitting method with the four

proposed cost functions and then the shape of the vocal

tract was fixed at the obtained values (length and area).

We used [k1, kc] to check classification performance for

neutral and stressed speech using only the cost function

for the vocal folds in Equation 10. In the second com-

parison, we estimated stiffness parameters [k1, kc] with

varied vocal tract, so cost functions both for VF and VT

were used to perform the fitting, and iteration was

performed. Here, varied VT denotes that the parameters

for cross-sectional area are also estimated by fitting the

two-mass model instead of being fixed as constants. Fi-

nally, the performance of cost functions CF1‐F2 , Crms, CI-S,

and CE-F was evaluated using the classification rate of [k1,

kc]. We used a linear classifier for classification, and the

average classification rate for all of the speakers was calcu-

lated. The results are shown in Figure 14.

The results illustrate that classification performance is

improved when vocal tract values are variable. In this

case, the cost functions for the vocal tract are used, and

formants are also considered, which results in more in-

formation about the frequency domain of the speech be-

ing available, making the estimated results more reliable.

Furthermore, we compared the performance of different

cost functions. Our results show that the stress classifi-

cation rate for CE-F is higher than for the other cost

functions. Since CE-F can match the rough shape of the

spectral envelope and also effectively catch the charac-

teristics of F1 and F2, which have been proven to be sen-

sitive to the interaction between the VF and VT, the

classification of stressed speech is improved.

6.3 Results for physical parameters

In the second evaluation, VTL was first estimated for

each speaker, and further evaluations were based on the

obtained vocal tract length. Here, we selected cost func-

tion CE-F, which achieved the best performance in classi-

fication during the first evaluation. The purpose of this

evaluation was to verify which parameters in the stiffness

and area functions are related to stress and then check

the classification performance of these parameters in

comparison to traditionally used features.

6.3.1 Evaluation of vocal tract length estimation

A comparison was first made to evaluate the vocal tract

length estimation for each speaker. In this experiment,

segments with the vowels /a/ and /e/ were selected as

samples. However, the samples for /a/ and /e/ were not

mixed together. The two vowels were first used for

evaluation separatelyand then the average recognition

rate for the two vowels was calculated to show the ex-

perimental results. The physical parameters were esti-

mated using the proposed fitting method, and the

estimated parameters were used as features to perform

the stress classification. The evaluation results for VTL

estimation are shown in Figure 15. Features of physical

parameters [k1, kc] were compared for their classification

performance before and after VTL estimation. Our re-

sults show that the performance of [k1, kc] is improved

by the estimation of VTL. Since a speaker’s vocal tract

Figure 14 Average classification results of four cost functions:

CF1‐F2 , Crms, CI-S, and CE-F. The results for varied VF and fixed VT are

the classification rate when the stiffness parameters are estimated

with fixed VTL and cross-sectional area. Varied VF and varied VT

denote that the parameters for stiffness and cross-sectional area are

estimated by fitting the two-mass model to real speech.

Figure 15 Comparison of performance of physical parameters

k1 and kc before and after VTL estimation.
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length is calculated from the neutral speech of that spe-

cific speaker and used as a known value for the estima-

tion of other physical parameters, improvement in

classification can be achieved by improving the accuracy

of VTL estimation.

6.3.2 Evaluation of stiffness parameters of the vocal folds

In this evaluation, we focused on the stiffness parame-

ters of the vocal folds, and the effect of each stiffness

parameter on stress recognition was then examined. The

physical parameters k1, k2, kc, A1, A2, A3, and A4 were

estimated from varied VF and varied VT values with es-

timated VTL, and other physical parameters were fixed

at the typical values described in Database and experi-

mental setup. We focused on the evaluation of k1, k2,

and kc. The classification performances of {[k1]}, {[k1,

kc]}, and {[k1, k2, kc]} for different speakers are shown in

Figure 16. These results that stress classification per-

formance is improved when kc is considered. k1 and kc,

therefore, are the parameters which are effective in stress

classification. However, average classification accuracy

decreases when taking k2 into account. It suggests that

k2 is not effective in the classification of neutral and

stressed speech; therefore, it is sufficient to select k1 and

kc as feature parameters in further evaluations.

6.3.3 Evaluation of parameters of the cross-sectional areas

of the vocal tract

We focused on each parameter of the cross-sectional

area individually, and each area’s impact on stress recog-

nition was then examined separately. The parameters k1,

k2, kc, A1, A2, A3, and A4 were estimated with varied VF

and varied VT values. The parameter sets {[k1, kc]}, {[k1,

kc, A1]}, {[k1, kc, A1, A2]}, and {[k1, kc, A1, A2, A3]} were

also evaluated. Their performance is shown in Figure 17.

Among the results, we first consider sets {[k1, kc]} and

{[k1, kc, A1]}. The results show that stiffness [k1, kc] is a

better parameter for classifying stressed speech. When

A1 is taken into account, classification performance is

further improved. This suggests that A1 is an important

parameter strongly related to stress. When A1 is increas-

ing, it indicates that the area in the supraglottis is broad-

ening. This results in a decrease in the pressure

difference inside and outside of the glottis, causing vari-

ation in the airflow pattern and further changes in the

interaction around the false vocal folds. Considering the

performance of sets {[k1, kc, A1]}, {[k1, kc, A1, A2]}, and

{[k1, kc, A1, A2, A3]}, we found that they have roughly

the same classification accuracy. This illustrates that per-

formance cannot be greatly improved by taking A2 and

A3 into account and that A2 and A3 probably have only a

small effect on acoustic interaction. It appears that A1 is

sufficient to classify stressed speech from neutral speech,

which agrees with the conclusion of our first evaluation.

A2 and A3 do affect F0 to some extent, which was illus-

trated in Figure 5, so they have some influence on

acoustic interaction and, further, on stress classification;

however, we believe their influence is insignificant. The

characteristics of the vocal tract also affect stress classifi-

cation to some extent. Since A2 and A3 represent the

shape of the vocal tract, [k1, kc, A1, A2, A3] can achieve

some improvement in the recognition rate, but the in-

crease is very small, which suggests that A2 and A3 are

less important for stress classification than A1.

Figure 16 Illustration of classification results for physical

parameters of the vocal folds. The performance of stiffness

parameters k1 and kc shows their effectiveness for

stress classification.

Figure 17 Classification results for physical parameters of the

vocal tract. The performance of cross-sectional area parameter A1
shows its effectiveness for stress classification.
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6.3.4 Evaluation for proposed physical parameters

As a result of our evaluation process, parameter set [k1,

kc, A1] was proposed. Figure 18 shows the distribution

results for k1, kc, and A1 with an estimated VTL. These

results show that the proposed parameters are effective

for stress classification. The estimated values of the pa-

rameters are limited in range, and these ranges corres-

pond to the actual range of human beings. As this

distribution shows, stiffness and area of the entrance to

the vocal tract are good indicators of stressed speech.

Under stressed conditions, the value of k1 becomes rela-

tively large, kc smaller, and A1 increases compared with

the same parameters under neutral conditions. This in-

dicates that stress causes variation in the muscle tension

of the vocal folds and that the area at the entrance to

the vocal tract in the supraglottis becomes wider when

the speaker is under stress.

We then compared the performance of proposed pa-

rameters [k1, kc, A1] with traditionally proposed features,

namely [SFM, F0], [TEO], and [MFCC]. The results are

shown in Figure 19. As our experimental results show,

[SFM, F0], which characterizes the vocal folds, works

well in classifying stressed speech. This shows that the

characteristics of the vocal folds play a very important

role in stress classification. MFCC, which represents

vocal tract information, is also effective for stress classifi-

cation, illustrating that the characteristics of the vocal

tract also affect stress classification to some extent,

which agrees with our previous results in Figure 17.

The results shown in Figure 19 demonstrate that our

proposed physical parameters outperform the features

traditionally used for stress detection, which suggests

that parameters estimated from a physical model are

more effective at representing stress during phonation

than traditional methods. Results show that [k1, kc, A1]

has the best stress recognition performance of the

physical parameter sets. This illustrates that stiffness

of the vocal folds and the cross-sectional area at the

entrance to the vocal tract in the supraglottis are the

factors which are most impacted when a speaker is

under stress.

Neutral speech

Stressed speech

Figure 18 Distributions of estimated parameters k1, kc, and A1

for neutral and stressed speech.

Figure 19 Performance of proposed features compared with

traditional methods.

Table 4 Classification rates with different numbers of

mixtures

Number of mixtures

1 2 3 4 5 6

Classification rate (%) 61.57 66.63 71.47 71.88 71.22 71.24

Figure 20 Performance of proposed features using Gaussian

mixture models. The number of mixtures is set to 4.
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6.4 Results of Gaussian mixture modeling

In this section, we modeled the features using Gaussian

mixture model (GMM), which are widely used statistical

classifier. Two GMM models were trained, one for neu-

tral speech the other for stressed speech.

The data set for each speaker was divided evenly into

four subsets, and for each classification, one of the sub-

sets was used as a test set and the other three subsets

were combined to form a training set. The final result

was obtained by calculating the average classification

rate across four trials by a K-fold cross-validation

method. In order to increase the amount of training

data, the GMMs were trained using training set from

three male speakers. The testing set of three male

speakers and all of the data from female speakers were

combined to generate the testing data used in this

experiment.

We performed an experiment to find the best number

of mixtures which corresponds to the best performance

for proposed features [k1, kc, A1]. Table 4 shows that the

best performance is obtained when the number of mix-

tures equals to four. When we increased the number of

mixtures, the classification rate decreased, and it also

makes the GMM more complicated. Therefore, the

number of mixture components of the GMM was set to

four, which obtained the best performance. The features

for [SFM, F0] [TEO-FM-VAR], [MFCC], [k1, kc], and [k1,

kc, A1] were modeled using GMMs with four mixture

components. Classification performance is shown in

Figure 20, which shows that improvement is achieved

for each feature. However, the increase in classification

rates is small because of the lack of training data. If we in-

crease the size of training data significantly, major gains in

classification rate should be achieved. Here, it is

recommended that a GMM with four mixture compo-

nents is acceptable for improving stress classification.

7. Conclusion
In this paper, we explored more effective features for the

classification of neutral and stressed speech based on a

physical model. To achieve this target, a two-mass

model characterizing the properties of the vocal folds

and the vocal tract was used to simulate speech produc-

tion. Physical parameters including stiffness of the vocal

folds, vocal tract length, and cross-sectional area of the

vocal tract were investigated and estimated using a

method that fits the two-mass model to real data. Cost

functions were used as targets to reach more reliable re-

sults. The obtained parameters were used as physical

features to classify stressed speech. We concluded that

the two parameters: (1) stiffness of the vocal folds and

(2) the area at the entrance to the vocal tract in the

supraglottis, which is related to the velocity of glottal

airflow and acoustic interaction between the vocal folds

and the vocal tract, are key indicators of stress during

phonation. The average performance in the classification

of speech under stress was improved by 10% to 15%

using the proposed features, compared to traditional

methods of stressed speech classification. In the future,

our work should be focused on the exploration of pa-

rameters for a speaker-independent stressed speech clas-

sification system.
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