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Abstract: In this study, we propose a method of classifying speech under stress using parameters

extracted from a physical model to characterize the behavior of the vocal folds. Although many

conventional methods have been proposed, feature parameters are directly extracted from waveforms

or spectrums of input speech. Parameters derived from the physical model can characterize stressed

speech more precisely because they represent physical characteristics of the vocal folds. Therefore, we

propose a method that fits a two-mass model to real speech in order to estimate the physical parameters

that represent muscle tension in the vocal folds, vocal fold viscosity loss, and subglottal pressure

coming from the lungs. Furthermore, combinations of these physical parameters are proposed as

features effective for the classification of speech as either neutral or stressed. Experimental results

show that our proposed features achieved better classification performance than conventional methods.
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1. INTRODUCTION

The effects of stress on speech signals have been the

topic of numerous studies. Many factors, such as emo-

tional state, fatigue, physical environment, and workload,

can cause people to experience stress. It has become

increasingly important to study speech under stress in

order to improve the performance of speech recognition

systems, to recognize when people are in a stressed

state, and to understand the context in which a speaker is

communicating.

Researchers have attempted to probe reliable indicators

of stress by analyzing acoustic variables. Some external

factors (workload, background noise, etc.) and internal

factors (emotional state, fatigue, etc.) may induce stress

[1]. The first investigations of emotional speech were

conducted in the mid-1980s, using the statistical properties

of acoustic features in order to detect emotions from speech

[2,3]. It has been found that fundamental frequency (F0)

has different characteristics for each emotion [4], and that

respiration patterns and muscle tension also change [5].

The influence of the Lombard effect on speech recognition

has been examined by Bond and Moore [6] and Hansen [7],

who analyzed selected acoustic features, such as amplitude

and distribution of spectral energy, and found that spectral

energy shifted to higher frequencies for consonants in the

presence of loud background noise. High workload stress

has been proven to have a significant impact on the

performance of speech recognition systems, with speech

under workload sounding faster, softer, or louder than

neutral speech [8,9]. In 2011, Matsuo and Kamano et al.

examined the frequency domain and showed how dif-

ferences in the spectrum of the high-frequency band under

stressful workload conditions could be used to catch people

committing remittance fraud, and their proposed measure

achieved better performance than traditional methods [10].

Furthermore, the Teager energy operator (TEO) [11] has

been investigated for the purpose of stress classification. As

a result, methods based on the Teager energy operator have

been proposed to explore variations in the energy of airflow

characteristics within the glottis [12].

We propose a new classification method, based on the

working mechanisms of the vocal folds, for speech under

stress using parameters estimated from a physical model.

It is believed that the presence of stress can result in

variations in the physical characteristics of physiological

systems. The parameters of a physical model can represent

the influence of speaking style more directly. Therefore a
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physical model is helpful in estimating the parameters of

the physiological system.

In this paper, we concentrate on a method for fitting

the two-mass model to real speech in order to estimate

the physical parameters that characterize the vocal folds.

An algorithm based on the analysis-by-synthesis method

(A-b-S) is proposed for fitting the model to real speech.

The Nelder–Mead simplex method is used to estimate the

optimal physical parameters, and different cost func-

tions are proposed to compare performance in fitting and

classification. As a result, the parameters of the two-mass

model, representing muscle tension in the vocal folds,

vocal fold viscosity loss, and subglottal pressure, are

estimated as features used in the classification of neutral

and stressed speech. In this work, we assume that the

presence of stress has a greater impact on the vocal folds,

and the parameters of the vocal folds are the most

important for the classification. Furthermore, it is difficult

to estimate the parameters of the vocal folds and the

vocal tract at the same time. Therefore, the objective in

our work is to fit the major variation in the vocal folds, and

the parameters of vocal folds are chiefly considered to

show their effectiveness in the classification of stressed

speech.

The paper is organized as follows. In Sect. 2, physical

parameters based on a two-mass model are described as

features for classification. This is followed in Sect. 3 by

the presentation of a fitting algorithm for real speech data

to help estimate the physical parameters. In Sect. 4, experi-

ments are performed to evaluate the obtained parameters

and show their corresponding classification performance

for neutral and stressed speech. Finally, we draw our

conclusions in Sect. 5.

2. PHYSICAL PARAMETERS

A method for classifying speech under stress is

proposed, in which a two-mass model is fitted to real

speech. Some of the physical parameters that characterize

the vocal folds are estimated. The two-mass vocal fold

model was proposed by Ishizaka and Flanagan to simulate

the process of speech production [13]. The physical

parameters proposed as features for classification in the

two-mass model are stiffness, damping ratio, and subglottal

pressure.

2.1. Stiffness

The stiffness parameters, which represent muscle

tension in the vocal folds, are the main factors related to

fundamental frequency. The amplitudes of the glottal area

and glottal volume velocity decrease gradually with

increasing stiffness [14] because variation in the stiffness

of the vocal folds influences the time span of the glottal

opening and closing phases. During this time span,

subglottal airflow is accelerated in the glottis, thus

impacting the velocity of glottal airflow as well as the

glottal source. Therefore, it is our assumption that stiffness

parameters, which reflect the tension of the muscles, can be

a potential factor in stress detection. In the production of

speech, however, the natural frequency of the vocal folds is

determined by both their mass and stiffness. So in order to

simplify the estimation algorithm, the stiffness parameters

are only estimated with mass fixed as a constant.

Figure 1 shows a sketch of the model. Each vocal fold

is represented by a mass-spring-damper system [13], joined

with a coupling stiffness, and is represented as

m1

d2x1

dt2
þ r1

dx1

dt
þ s1ðx1Þ þ kcðx1 � x2Þ ¼ F1 ð1Þ

m2

d2x2

dt2
þ r2

dx2

dt
þ s2ðx2Þ þ kcðx2 � x1Þ ¼ F2; ð2Þ

where mi are the masses, xi are their horizontal displace-

ments measured from the rest (neutral) position, x0 > 0,

and kc is the coupling stiffness. ri denotes the equivalent

viscous resistances, and si refers to the force related to

tissue elasticity. Fi is the force of airflow, which is

determined by subglottal pressure.

Tissue elasticity (or ‘‘spring’’) si represents the tension

of the vocal folds and depends on the contraction of

different muscles. The equivalent tensions are given by

siðxiÞ ¼ kiðxi þ �x3i Þ; i ¼ 1; 2 ð3Þ

where ki are stiffness coefficients and � is a coefficient of

the nonlinear relations.

Generally, the stiffness of the vocal folds depends

mainly on two muscles: the cricothyroid muscle and the

thyroarytenoid muscle. CT and TA represent the weighted

activities of the two muscles. In the two-mass model,

coupling stiffness kc is relative to the tension in the

thyroarytenoid muscle (TA), so a high k1 value and low

kc value represent the contraction of CT and relaxation of

TA [14].

m2

m1 

m2

m1

k2

r2

k1

r1

kc

Vocal tract

P S

Trachea

Fig. 1 The two-mass approximation of the vocal folds.
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2.2. Viscosity

The viscosity of vocal fold tissue has been shown to be

essential in vocal fold oscillation. During phonation, the

viscosity of vocal fold tissue changes owing to hydration

effects [15]. The damping ratio of viscosity has been

estimated by Kaneko, et al. [16] and Isshiki [17]. Results

show that damping ratio has a close correlation with

fundamental frequency, which is a stress indicator [18].

Therefore, in this work, we assume that the damping

ratio is a parameter that varies in a narrow range during

phonation under different conditions. Since the viscosity of

the vocal folds depends mainly on the bulk of the vocal

cords (m1 of our model), the damping ratio for m1 is

considered to be an influential parameter.

The viscous resistance of the vocal folds represents

the stickiness of the soft, moist surfaces during contraction

of the vocal fold. This can be represented as

r1 ¼ 2�1
ffiffiffiffiffiffiffiffiffiffi

m1k1
p

r2 ¼ 2�2
ffiffiffiffiffiffiffiffiffiffi

m2k2
p

; ð4Þ

where �i is a damping ratio, and ki denotes the linear

stiffness of the spring si.

2.3. Subglottal Pressure

Subglottal pressure is the pressure of the airflow in the

trachea below the glottis. This is the main factor used by

speakers to control phonation when producing speech.

Subglottal pressure affects the amplitude of speech signals

and fundamental frequency. Higher subglottal pressure

causes higher airflow velocity, thus, it has an impact on

glottal flow. It can therefore be considered as one of the

feature parameters for classifying stressed speech.

Aerodynamics in the glottis is modeled with a set of

equations proposed by Ishizaka and Flanagan [13]. If the

subglottal pressure is represented as Ps, air pressure drops

to P11 when air enters the glottis (at the edge of m1)

according to Bernoulli’s equation. The abrupt contraction

in cross-sectional area at the inlet to the glottis causes a

phenomenon called vena contracta, which makes the air

pressure undergo a greater drop. This drop is determined by

the flow measurements of van den Berg:

Ps � P11 ¼ ð1:00þ 0:37Þ
�U2

g

2A2
g1

; ð5Þ

where � is air density, Ug is the volume velocity of glottal

airflow, and Ag1 is the cross-sectional lower glottal area,

which is represented by Ag1 ¼ 2lgðx0 þ x1Þ, where lg is the

length of the vocal fold. x0 is the displacement when the

vocal folds are in the rest position.

Along masses m1 and m2, pressure drops as a result of

air viscosity:

Pi1 � Pi2 ¼
12�dil

2
gUg

A3
gi

; i ¼ 1; 2 ð6Þ

where � is the air viscosity coefficient, and d1 is the width

of m1.

At the boundary between the two masses, the pressure

drop can be calculated by

P21 � P12 ¼
�U2

g

2

1

A2
g1

�
1

A2
g2

 !

; ð7Þ

where P21 is the air pressure at the lower edge of m2, and

Ag2 is the cross-sectional lower glottal area.

At the glottal outlet, abrupt expansion causes the

pressure to recover because of the relatively large area of

the vocal tract. This pressure is given by

P1 � P22 ¼
1

2
�
U2

g

A2
g2

½2Nð1� NÞ�; ð8Þ

where P1 is the pressure at the inlet of the vocal tract. Here,

the parameter N is defined as N ¼ Ag2=A1, where A1 is the

input area to the vocal tract. N denotes the difference in

area between the outlet of the vocal folds and inlet of the

vocal tract, and is significant in the acoustic interaction

between the glottal source and the vocal tract.

Finally, force Fi acting on the masses is calculated by

Fi ¼ ðPi1 þ Pi2Þ=2. When the glottis is closed, forces are

calculated by

F1 ¼ d1lgPs x1 � �x0 or x2 � �x0

F2 ¼
d2lgPs; if x1 > �x0; x2 � �x0

0; if x1 � �x0

�

:
ð9Þ

The two-mass model can be represented as a vocal

fold model connected to a four-tube model. The four-tube

model is constructed using a transmission line analogy

involving four cylindrical, hard-walled sections terminat-

ing in the radiation load of a circular piston in an infinite

baffle. The element values are determined from cross-

sectional areas A and cylinder lengths L.

In this study, we consider the fitting of two-mass

model to vowels because only the voiced sound can cause

vibration of the vocal folds, so all of the segments for

vowel /a/ are chosen as training data and testing data, and

the evaluation is performed for each speaker. Since all the

training and testing data are for /a/, the variation in the

shape of the vocal tract is relatively minor across

speakers. Our aim in this work is stress classification,

therefore, an assumption is made that the effect of the

vocal tract is smaller than that of the vocal folds and thus

the parameters in the tube model are fixed as constants for

vowel /a/.

Moreover, the objective is stress classification and our

main consideration in this work is the characteristics of

the vocal folds under the stressed condition. The param-

eters of the vocal folds are more essential and effective

for stress classification because the vocal folds are mainly

affected when stress occurs [12]. Therefore, in this work,
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we first concentrate on the parameters of the vocal folds,

and the vocal tract parameters will be considered in the

future.

Therefore, stiffnesses k1, k2, kc, damping ratio �1, and

subglottal pressure Ps are selected as control parameters,

which represent the parameters to be estimated, to generate

the features for stress classification. After defining a target

cost function, we can estimate the physical parameters by

fitting the two-mass model to real speech.

3. ESTIMATION METHOD

3.1. Algorithm for Fitting

Figure 2 shows the structure of the fitting algorithm.

Fitting the two-mass model to real data involves two steps.

First, a pre-emphasis filter is used to flatten the speech

spectrum before spectral analysis. The aim is to compen-

sate the high-frequency part of the speech signal that

was suppressed during the human sound production

mechanism. The pre-emphasis filter used here is HðzÞ ¼

1� �z�1, where � ¼ 0:97. Since we mainly focus on the

modulation effect at the glottal source of speech, input

speech is then analyzed using linear predictive coding

(LPC), which removes the influence of formants and lip

radiation, and emphasizes the glottal source, to obtain the

residual signal. Then, some target values can be determined

to measure the spectrum of the residual signal.

In the second step, each set of control parameters

is considered separately. After that, simulation can be

performed using the two-mass model to generate speech

using the given control parameters. In order to make a

comparison with the spectrum of the residual signal

from the real speech, LPC analysis is also performed for

the simulated speech to obtain the residual signal, and

the same target values are calculated. By inverse filtering

of LPC, the parameters of the vocal folds can be estimated

correctly. Next, the target values are compared with the

ones obtained in the first step in order to observe the

difference between them. The difference between the

simulated target values and the measured target values

from real speech can be represented by a cost function.

The control parameters are then varied and the speech is

simulated until the cost function reaches a minimum.

The Nelder-Mead algorithm [19] is a simplex method

of finding the minimum of a function involving several

variables. It is a direct search method and it does not

require the calculation of a derivative. We use the Nelder-

Mead method based on the comparison of the values of

the cost function at the nþ 1 vertices for n-dimensional

decision variables to solve our optimization problem. Here,

we select k1, k2, kc, �1, and Ps as variables. The calculation

of each time will generate a new vertex for the simplex.

If this new point is better than at least one of the existing

vertices, it replaces the worst vertex. The simplex vertices

are changed through reflection, expansion, shrinkage and

contraction operations in order to find an improved solution

for the control parameters. Optimal values of the physical

parameters are estimated by the Nelder-Mead simplex

method, which is implemented to search for the optimal

physical parameters to minimize the cost function.

3.2. Cost Function

In this paper, we utilize four different cost functions in

order to compare their performance in classification.

3.2.1. Fundamental frequency and spectral flatness mea-

sure (F0-SFM)

When stress occurs, the fundamental frequency and

spectrum of the glottal source are affected. The harmonic

structure of the spectrum loses clarity in the high-frequency

band, and the spectrum becomes smooth and irregular. The

spectrums of residual signals are shown in Fig. 3. The part

of high frequency in the spectrum is marked by red circles.

This irregularity can be quantified with a ‘‘spectral flatness

measure’’ (SFM). The spectral flatness is calculated by

dividing the geometric mean by the arithmetic mean of the

power spectrum:

Two-mass 
model

Speech 

Analysis

AnalysisLPC 
Real speech 

Cost function

Residual signal 

Change control 
parameters 

Control
parameters

LPC 

Target 
values 

Residual signal 

Fig. 2 Structure of algorithm.

(a) Neutral speech

(b) Stressed speech

SFM=0.928

Mean=24.1

Var=91.4

SFM=0.962

Mean=21.5

Var=41.8
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Fig. 3 Spectrum of residual signals for a male speaker.
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SFM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

M�1

n¼0

SðnÞ
M

s

1

M

X

M�1

n¼0

SðnÞ

; ð10Þ

where SðnÞ is the magnitude of bin number n. The

distributions of SFM for neutral and stressed speech for a

male speaker are shown in Fig. 4.

The cost function can be defined as a weighted sum

of the squared difference between target values from the

simulated speech and from the real speech, and can be

represented as:

C1 ¼ �1ðF
�
0 � F0Þ

2 þ �2ðSFM
� � SFMÞ2;

�1 ¼ 1=F0; �2 ¼ 1=SFM;
ð11Þ

where the asterisk denotes the target value from real

speech. The target values here denote the values of F0 and

SFM. The weights are given the values �1; �2 to normalize

the different target values to the same range, and the

overbar denotes mean values over the target region. The

frequency band of the spectrum was limited to 3,000–

4,000Hz for calculating the spectral flatness measure.

3.2.2. F0 and statistical information (F0-Stat)

The high frequency bands of the spectrum become

disordered when stress occurs. Because of the lack of clear

harmonic structure, it is difficult to represent the spectrum

using only fundamental frequency. Therefore, the mean

and variance of the spectrum are used to describe the

irregularity in the high frequency band. Figure 5 shows

the distribution of mean and variance for a male speaker,

sample 180. As can be seen when stress occurs, values for

mean and variance fall (mean ¼ 21:5, and variance ¼ 41:8

in Fig. 3(b)). The cost function is defined as

C2 ¼ �1ðF
�
0 � F0Þ

2 þ �2jmeanðS�ðnÞÞ �meanðSðnÞÞj2

þ �3jvarðS
�ðnÞÞ � varðSðnÞÞj2; ð12Þ

where �1 ¼ 1=F0, �2 ¼ 1=meanðSðnÞÞ and �3 ¼

1=varðSðnÞÞ are used to normalize target values to the

same range. The overbar denotes mean values over the

target region. The frequency band of the spectrum was

limited to 3,000–4,000Hz.

3.2.3. Spectrum and histogram (Spect-Histo)

A histogram can be used to calculate statistical

characteristics, including mean, variance, entropy, and

third-order moments. It more accurately represents the

spectrum of the glottal source. A frequency histogram

refers to the probability mass function of the magnitude of

the spectrum. More formally, the frequency histogram is

defined by

HðkÞ ¼ M � BðX ¼ kÞ; ð13Þ

where X represents the magnitude of the spectrum,M is the

number of frequency bins in the spectrum, and B denotes

the probability of X ¼ k. Thus a concatenated cost function

can be defined as the spectral distance in the low-frequency

band and the histogram distance in the high-frequency

band, which can be represented as

C3 ¼ W1

X

M

n¼1

ðS�ðnÞ � SðnÞÞ2 þW2

X

L

j¼1

ðH�ðkjÞ � HðkjÞÞ
2

W1 ¼ 1

,

X

M

n¼1

ðSðnÞÞ2; W2 ¼ 1

,

X

L

j¼1

ðHðkjÞÞ
2; ð14Þ
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Fig. 4 Distribution of SFM for spectrum of residual signals.
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Fig. 5 Distributions of mean and variance of spectrum

of residual signal for neutral (green) and stressed

speech (red).
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where SðnÞ and S�ðnÞ represent the spectrums of simulated

speech and real speech, respectively. Note that M and L

are the number of bins for the spectrum and the histogram.

A partition of the speech frequency band for F0-Stat was

performed to determine the high-frequency band between

3,000–4,000Hz; however, this partition is coarse. Auto-

matic separation of the low- and high-frequency bands

might help us derive a more effective cost function for

fitting. This separation is performed by detecting the

periodic feature of the harmonic, described as follows

Step 1: Spectrum is split into (overlapping) frames. Frame

length is fixed as the frequency band including three

harmonic structures.

Step 2: Autocorrelation is calculated for each frame.

Step 3: Zero-crossing for the autocorrelation is computed

to classify whether it has a clear harmonic structure in this

frame.

Step 4: Separation point is determined by an abrupt

increase in zero-crossing.

3.2.4. Modified spectrum (Spectrum)

The spectrum of the residual signals has a flat upper

envelope, and information on harmonic structure mainly

exists in spectral peaks rather than in spectral valleys.

Therefore, the spectrum is cut with a threshold to remove

the lower valley section, and only the upper section

representing harmonic structure is used to calculate

spectral distance, as shown in Fig. 6, which is a power

spectrum of speech from a male speaker, with the threshold

chosen as �20 dB. Spectral distance can then be calculated

to evaluate the similarity between the spectrums of real and

simulated speech.

Let PðnÞ and P�ðnÞ represent the cut-off spectrum of

simulated speech and real speech, respectively. The

normalized cost function can be defined as

C4 ¼

X

M

n¼1

jP�ðnÞ � PðnÞj2

X

M

i¼1

jPðnÞj2

; ð15Þ

where M is the number of bins for the power spectrum.

Figure 7 shows the simulated results with these four

cost functions. In this experiment, the neutral and stressed

speech in Fig. 3 from a male speaker are used to estimate

the corresponding physical parameters by fitting the two-

mass model. The simulated spectrums of residual signals

obtained using the estimated parameters are shown. The

estimated values are shown in Table 1.

4. EVALUATION

4.1. Database and Experimental Setup

In the experiments, we used a database collected by

the Fujitsu Corporation containing speech samples from

eleven subjects (four male and seven female) [10]. To

simulate mental pressure resulting in psychological stress,

we introduced three different tasks, which were performed

by the speakers while conversing on the telephone with an

operator, in order to simulate a situation involving pressure

during a telephone call.

The three tasks involved (A) concentration, (B) time

pressure, and (C) risk taking. For each speaker, there were

four dialogues with different tasks. In two dialogues, the

speaker was asked to finish the tasks within a limited

amount of time, and in the other dialogues there was

relaxed chat without any task.

All of the data is acquired from telephone calls, so the

sampling frequency was 8 kHz. The segments with the

vowel /a/ were cut from the speech and selected as

training samples and testing samples. The experiments

were performed for each speaker. The number of samples

was different for each speaker, and the total number of

samples ranged about 100–250 for each person. We

randomly chose six speakers (three male, three female)

from eleven subjects to show the classification perform-

ance. Linear classifiers based on the minimum Euclidean

distance to reach the classification performance were used.
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Fig. 6 Cut-off spectrum with a threshold. Spectrum

within the dotted line is emphasized for calculation of

cost function.

Fig. 7 Spectrums of residual signals for original speech

(top) and for simulated speech with different cost

functions under neutral (left column) and stressed

(right column) conditions.
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A K-fold cross-validation method was used in classification

experiments, in which K was set to 4. By this method,

the data set was divided into 4 subsets, and for each

classification, one of the subsets was used as a test set and

the other three subsets were combined to form a training

set. The final result was obtained by calculating the average

classification rate across 4 trials. The samples were

analyzed with 12-order LPC and the frame size chosen

to perform the experiment was 64ms, with 16ms frame

shift.

For the configuration of the two-mass model, the

following values were adopted, using typical values

for males: m1M ¼ 1:25� 10�4 kg, m2M ¼ 2:5� 10�5 kg,

lgM ¼ 0:014m, d1M ¼ 0:0025m, d2M ¼ 5� 10�4 m, �2M ¼

0:6, and x0 ¼ 2� 10�4 m. The vocal tract model was

represented by a standard tube configuration for the vowel

/a/ [20], and the number of elements was limited to four

cylindrical sections of equal length. In order to reduce the

number of parameters to be estimated, and simplify the

proposed method, the typical values are adopted for the

configuration of the tube model. For males, the length of

the vocal tract was assumed to be LM ¼ 0:18m, with

each element set to li ¼ 0:045m, and the cross-sectional

areas were A1 ¼ 8� 10�5 m2, A2 ¼ 4� 10�5 m2, A3 ¼

3� 10�4 m2, and A4 ¼ 8� 10�4 m2. For the configuration

for females, the typical values were as follows: m1F ¼

4:56� 10�5 kg, m2F ¼ 9:1� 10�6 kg, lgF ¼ 0:01m, d1F ¼

1:79� 10�3 m, d2F ¼ 3:6� 10�4 m, �2F ¼ 0:6, x0 ¼ 2�

10�4 m. For the vocal tract model, the length of the vocal

tract was set to LF ¼ 0:14m, with each element li ¼

0:035m, and the cross-sectional areas were A1 ¼ 4:85�

10�5 m2, A2 ¼ 2:4� 10�5 m2, A3 ¼ 1:8� 10�4 m2, and

A4 ¼ 4:85� 10�4 m2.

In the experiments, the following ranges for the control

parameters were used for all speakers: PS: 200–1,900 Pa,

k1: 10,000–140,000 dyn/cm, k2: 2,000–14,000 dyn/cm,

kc: 4,000–45,000 dyn/cm, �1: 0.05–0.6. The ranges here

selected for the control parameters are sufficiently large to

ensure that our search method is able to simulate different

types of speech. Moreover, they can make our work

applicable to emotional speech recognition. Emotional

speech has larger ranges for physical parameters (e.g.,

the standard value of subglottal pressure for phonation

is 2–8 cmH2O, but 10–12 cmH2O for loud speech), so

the greater search range is advisable for the search

method.

4.2. Comparison of Feature Parameters

By fitting the model to real data, the physical

parameters of speech can be estimated. The obtained

parameters were used as features for classifying speech

into neutral or stressed speech. The purpose of our first

evaluation was to verify which parameters are related to

stress, and whether these parameters are dependent on

speakers. The proposed parameter sets were then compared

to show their classification performance using C4 as the

cost function.

In the first evaluation, the stiffness parameters were

first focused on and the effect of each stiffness on stress

recognition was then examined. The parameters k1, k2, and

kc were estimated with PS ¼ 500Pa, and �1 ¼ 0:1, and

other physical parameters were fixed at the typical values

described in Sect. 4.1. In Fig. 8, receiver operating

characteristics (ROC curves) are shown to compare the

classification performances of k1, k2 and kc separately for

a male speaker. In this result, k1 and kc perform better

than k2 in classifying stressed speech from neutral speech.

The classification performances of f½k1�g, f½k1; k2�g and

f½k1; k2; kc�g for different speakers are shown in Fig. 9. It is

illustrated that the average classification accuracy decreas-

Table 1 Estimated values of physical parameters for four cost functions.

Neutral speech Stressed speech

PS [Pa] k1 [dyn/cm] k2 [dyn/cm] kc [dyn/cm] �1 PS [Pa] k1 [dyn/cm] k2 [dyn/cm] kc [dyn/cm] �1

C1 438 75,460 7,840 22,640 0.16 299 90,780 8,040 8,260 0.32

C2 455 74,030 8,250 21,980 0.14 276 87,440 8,277 7,260 0.32

C3 416 74,270 7,730 20,810 0.17 306 84,290 7,800 7,740 0.31

C4 446 77,360 8,000 22,600 0.14 279 89,170 8,480 7,650 0.34

Fig. 8 ROC curve for stiffness parameters ðk1; k2; kcÞ.
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es when taking k2 into account, and the performance for

stress classification is improved when kc is considered. It is

proved that k2 is not effective in the classification of neutral

and stressed speech, Therefore, it is sufficient to select k1

and kc as feature parameters in further evaluation.

Next, we focused on subglottal pressure, stiffness, and

damping ratio individually, and fixed the other parameters

at typical values. Then the effect of each parameter on

stress recognition was examined. The results are shown in

Fig. 10 (in Figs. 10–16, ‘‘damp’’ is the abbreviation for

‘‘damping ratio’’). For these physical parameters, the

results show that stiffness ðk1; kcÞ achieves the best

classification performance, which means it is strongly

linked to stress. The other two parameters vary in

performance depending on the sex of the speaker. For

males, the results show that the damping ratio can classify

stressed speech well, so it plays a more important role

when male speakers are under stress, whereas for females,

the stress classification rate of PS is higher, which indicates

that subglottal pressure is a better indicator of stress.

Furthermore, classification performance among speakers

differs significantly, which proves that these physical

parameters are dependent on the speakers.

F0 is dependent on stiffness and subglottal pressure,

while the viscosity of vocal folds is determined by

stiffness and damping ratio. Therefore, the following

parameter sets are proposed: f½PS; k1; kc�g, f½k1; kc; �1�g,

and f½PS; k1; kc; �1�g. Figure 11(a) shows the distribution

results for f½PS; k1; kc�g, in which we estimated PS, k1, and

kc with a fixed damping ratio, while Fig. 11(b) shows the

distribution for f½k1; kc; �1�g, with subglottal pressure fixed

at a typical value. It is illustrated that the proposed

parameters are effective for the stress classification and the

estimated values of parameters are limited in some range,

and these ranges agree with the actual situation for human

beings.

As this distribution in Fig. 11 shows, stiffness, sub-

glottal pressure, and damping ratio are all good indicators

of stressed speech. Under stressed conditions, the value

of PS becomes smaller, k1 becomes relatively large, kc

smaller, and the damping ratio increases compared with the

same parameters under neutral conditions. This indicates

that high stress causes variation in the muscle tension of the

vocal folds. There is also lower subglottal pressure from

the lungs and the vocal folds become more viscous than

under neutral conditions.

We checked the performances of the above parameters

and compare them. In the proposed sets, the stress

Fig. 9 Classification performance for stiffness parameters.

Fig. 10 Performance of each parameter and parameter set.

(a) Distribution for PS, k1 and k c.

(b) Distribution for k1, kc and damping ratio

Neutral speech

Stressed speech

Neutral sp

Stressed speech

Neutral speech

S

Neutral

Fig. 11 Distributions of estimated parameters.
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classification rate of f½PS; k1; kc�g was higher than that of

f½k1; kc; �1�g for female data. This suggests that females are

more likely to exhibit stress vocally through variation in F0

than male speakers, which agrees with the results above.

Furthermore, results show that f½PS; k1; kc; �1�g had the best

stress recognition performance among the physical param-

eter sets. This illustrates that stiffness, damping ratio of the

vocal folds, and subglottal pressure are the factors that are

affected when a speaker is under stress.

4.3. Comparison of Different Cost Functions

In the second evaluation, we also compare

f½PS; k1; kc�g; f½k1; kc; �1�g; f½PS; k1; kc; �1�g with different

cost functions. For cost functions C2 and C3, the low-

and high-frequency bands were separated on the basis of

periodic characteristics of the harmonic in the spectrum. A

linear classifier was used to examine their performance,

and we took the average classification rate for all of the

speakers to compare different cost functions. The results

for different cost functions are shown in Figs. 12–15, and

the average classification performance is shown in Fig. 16.

Results show that cost function C4 yields the best improve-

ment in classification performance.

Since the proposed features are based on physical

characteristics, it would be helpful to compare their

performances with those of traditional features. The tradi-

tional methods include the parameter sets ½F0; SFM�, and

½TEO� FM � VAR�. ½TEO� FM � VAR� is the feature

based on the Teager energy operator (TEO) to detect stress.

It represents the frame-based variation of the frequency

modulation (FM) component of the filtered signal [12]. The

Fig. 12 Classification performance for F0-SFM.

Fig. 13 Classification performance for F0-Stat.

Fig. 14 Classification performance for Spect-Histo.

Fig. 15 Classification performance for Spectrum.

Fig. 16 Average results for proposed parameter sets

with different cost functions.
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results of this comparison are shown in Figs. 12–15. The

proposed physical parameters perform better than the

traditional features used for stress detection. This shows

that parameters estimated from a physical model are more

effective in representing speech under stress.

5. CONCLUSION

In this paper, we proposed more effective features for

the classification of neutral and stressed speech. A physical

model that characterizes the behavior of the vocal folds

was used to simulate speech production. Physical param-

eters (stiffness, damping ratio, and subglottal pressure)

were estimated using a method that fits the two-mass model

to real speech, and different cost functions were used as

targets to make a comparison. The obtained parameters

were used as physical features for the classification of

neutral and stressed speech. The conclusion drawn is that

subglottal pressure from the lungs, muscle tension, and

viscosity of the vocal folds, all of which affect the glottal

source, are key indicators of stressed speech. Future work

should be focused on the estimation of the parameters of

both vocal folds and vocal tract for the classification of

speech under stress.
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