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Classification of stable three-dimensional Dirac
semimetals with nontrivial topology
Bohm-Jung Yang1 & Naoto Nagaosa1,2

A three-dimensional (3D) Dirac semimetal (SM) is the 3D analogue of graphene having linear

energy dispersion around Fermi points. Owing to the nontrivial topology of electronic

wave functions, the 3D Dirac SM shows nontrivial physical properties and hosts various

exotic quantum states such as Weyl SMs and topological insulators under proper external

conditions. There are several kinds of Dirac SMs proposed theoretically and partly confirmed

experimentally, but its unified picture is still missing. Here we propose a general framework to

classify stable 3D Dirac SMs in systems having the time-reversal, inversion and uniaxial

rotational symmetries. We show that there are two distinct classes of 3D Dirac SMs. In one

class, the Dirac SM possesses a single Dirac point (DP) at a time-reversal invariant

momentum on the rotation axis. Whereas the other class of Dirac SMs have a pair of DPs

created by band inversion, and carry a quantized topological invariant.
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A
Dirac semimetal (SM) indicates a phase whose low-

energy excitations can be described by pseudorelativistic
Dirac fermions with linear energy dispersion. Before the

discovery of three-dimensional (3D) topological insulators1,2,
graphene3 has been considered as the unique system where the
intriguing properties of two-dimensional (2D) Dirac fermions can
be observed. However, the recent progress in the field of
topological insulators has shown that stable 2D Dirac fermions
exist ubiquitously on the surface of 3D topological insulators1,2.
Moreover, through the careful studies on the topological
phase transition between a 3D topological insulator and a
normal insulator4–8, it is demonstrated that even the 3D Dirac
fermions with the linear dispersion in all three momentum
directions can be observed in the same material if we can reach
the quantum critical point. As the 3D Dirac point (DP) with
fourfold degeneracy does not carry a Chern number, the
degeneracy at the gap-closing point can be easily lifted by small
external perturbations, hence, the 3D Dirac fermions can be
observed only at the single quantum critical point. However, the
approach to the quantum critical point requires the intricate fine-
tuning of the alloy chemical compositions7,8, which limits the
accessibility to the fascinating physics of 3D Dirac fermions in
experiments.

The breakthrough in the search for stable 3D Dirac SMs is
achieved in the recent series of studies on Na3Bi (refs 9,10) and
Cd3As2 (refs 11–14) compounds, where a pair of 3D DPs stably
exist on the kz axis. The stability of the 3D DP in these materials
stems from the fact that the system has additional crystalline
symmetries other than the time-reversal symmetry (TRS) and
inversion symmetry (IS)15–20. For instance, Young et al.15,16 have
proposed that particular space groups allow 3D DPs as symmetry
protected degeneracies. Also, Wang et al. have shown the
symmetry protection of the 3D DPs through the detailed
symmetry analysis of Na3Bi (ref. 17) and Cd3As2 (ref. 18).

In the present paper, we propose a general framework to
classify stable 3D Dirac SMs in systems with TRS, IS and uniaxial
rotation symmetry, which are the most common symmetries of
crystalline solids. Through the careful examination of the
condition for the accidental band crossing (ABC), we have
accomplished the complete classification of stable 3D Dirac SMs,
and uncovered that there are two broad classes of 3D Dirac SMs.
The Dirac SMs belonging to the first class are created via a band
inversion, and have a pair of DPs on the rotation axis away from
the time-reversal invariant momentum (TRIM). On the other
hand, the second class of Dirac SMs have a single DP at a TRIM
on the rotation axis where the band crossing is ensured by the
lattice symmetry. In particular, we find that the first class of 3D
Dirac SMs have nontrivial topological properties. We have
clarified the fundamental relationship between the crystalline
symmetries and the topological property of 3D Dirac SMs, and
demonstrated that the 3D topological Dirac SM generally
mediates the topological quantum phase transition between a
normal insulator and a 3D weak topological insulator (or a
topological crystalline insulator). In fact, the 3D topological Dirac
SM itself is a parent state of 3D topological insulators, which
turns into either a 3D strong topological insulator17,18 or a 3D
topological crystalline insulator when the 3D DP acquires a mass
gap because of symmetry breaking.

Results
Basic principles to create 3D Dirac semimetals. Our strategy to
synthesize a 3D Dirac SM is as follows. Let us consider a system
having both the TRS and IS. In general, the TRS requires
En,m(k)¼ En,k(� k), where En,s(k) indicates the energy eigenvalue
of the n-th band with the spin s¼m, k at the momentum k.

On the other hand, the IS requires En,s(k)¼En,s(� k). Therefore,
under the combined operation of TRS and IS, En,m(k)¼En,k(k),
hence, the energy band is doubly degenerate locally at each k.
Under this condition, whenever an ABC occurs between the
valence and conduction bands, a 3D DP with fourfold degeneracy
can be generated. According to Murakami et al.4–6, such an ABC
can be achieved only under certain limited conditions because of
the strong repulsion between degenerate bands. Namely, only
when the valence and conduction bands have the opposite parities,
an ABC can occur at a TRIM by tuning an external parameter m.
In this case, a 3D DP appears at the quantum critical point
(m¼mc) between a normal insulator and a Z2 topological insulator
(see Fig. 1a). As a band gap opens immediately once mamc, the
DP is unstable. However, in many crystals, the rotational symmetry
as well as TRS and IS presents ubiquitously and constrains the
physical properties of materials. Surprisingly, as we will describe in
detail below, the additional uniaxial rotational symmetry strongly
modifies the condition for ABC, which allows the 3D Dirac SM to
emerge as a stable phase. This is possible because when the valence
and conduction bands have different rotation eigenvalues, the level
repulsion between them can be significantly relaxed as pointed out
by Wang et al.17,18, which eventually leads to the emergence of a
stable 3D Dirac SM phase in the wide range of the parameter space
(see Fig. 1b, c).

To describe an ABC of two bands, each of which is doubly
degenerate because of the simultaneous presence of TRS and IS, a
4� 4 matrix Hamiltonian can be used as a minimal Hamiltonian,
which in general has the following form,

H kð Þ ¼
X3
i;j¼0

aij kð Þsitj ¼
h"" kð Þ h"# kð Þ
h#" kð Þ h## kð Þ

� �
;

where the Pauli matrix s1,2,3 (t1,2,3) indicates the spin (orbital)
degrees of freedom and s0 and t0 are the 2� 2 identity matrices.
hss0 (s,s0 ¼m, k) indicates a 2� 2 matrix, which can be spanned
by t0,1,2,3 and aij(k) are real functions of k. The invariance of the
system under the Cn rotation (the n-fold rotation about a
principle axis) gives CnH kð ÞC� 1

n ¼ H Rnkð Þ, where Rn is the 3� 3
rotation matrix defining the 2p/n rotation in the 3D space21.
Without loss of generality, we can choose the kz axis as the axis of
the Cn rotation. Then along the kz axis on which Rnk¼ k is
satisfied, [Cn,H(k)]¼ 0. Therefore, we can choose a basis in which
both H kzð Þjkx¼ky¼0 and Cn are diagonal, hence, all bands on the kz
axis can be labelled by the corresponding eigenvalues of Cn.
In such a basis, the Hamiltonian can be written as
H kzð Þjkx¼ky¼0¼ d0 þ d1s3 þ d2t3s3 þ d3t3, where d0,1,2,3(kz,m)
are real functions. As the simultaneous presence of TRS and IS
requires the double degeneracy of each state, among d1,2,3, only
one function can be non-zero. Also, as the degenerate bands
should have the opposite spin directions, d1¼ 0. Hence, the
Hamiltonian becomes H kzð Þjkx¼ky¼0¼ d0 þ d kz;mð ÞG, where G is
either G¼ t3 or G¼ s3t3. Then, as the energy gap is given by
2|d(kz,m)|, an ABC can be achieved if and only if d(kz,m)¼ 0.
Here the number of variables (two) is larger than the number of
equations (one) to be satisfied for the band crossing, hence, the
Dirac SM can always be created via an ABC.

Moreover, owing to the TRS and IS, d(kz) has a definite parity
under the sign reversal of kz as shown in Methods. In fact, the
parity of d(kz) can be simply determined by the matrix
representation P of the IS. Namely, when P has a diagonal form
such as P¼±t0 or ±tz, d(kz) is even, whereas it is odd if P has
an off-diagonal form P¼±tx. At first, when d(kz) is even,
d kzð Þ � Mþ 1

2 tzk
2
z in the leading order with constants M and tz.

In this case, the system is a gapped insulator (a Dirac SM) when
Mtz40 (Mtzo0). Namely, by taking M as a tunable parameter
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and assuming tzo0, the transition from an insulator (Mo0) to a
3D Dirac SM (M40) can be achieved across the sign reversal of
M (or the band inversion). In particular, the 3D Dirac SM phase

possesses two DPs, which are symmetrically located with respect
to the centre of the rotation axis at kz ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M= tzj j

p
. The Dirac

SMs realized in Cd3As2 and Na3Bi belong to this class17,18.

Table 1 | Classification table for 3D topological Dirac semimetals.

Cn |P| (uA, m,uB, m) f(k±, kz) g(k±, kz) 2D topological invariant HDirac(q) Materials

C2 tz � � � � Not allowed
C2 t0 � � � � Not allowed
C3 tz eip; ei

p
3

� �
bkþ gk� n2D¼ 1 Linear Dirac Na3Bi

17

C3 t0 eip; ei
p
3

� �
bkzkþ þ gk2� Zkzk� þ xk2þ n2D¼0 Linear Dirac

C4 tz ei
3p
4 ; ei

p
4

� �
Zkþ bkzk2þ þ gkzk2� nM¼±1 Linear Dirac Cd3As2

18

C4 t0 ei
3p
4 ; ei

p
4

� �
Zkzkþ bk2þ þ gk2� nM¼ 2sgn(|b|� |g|) Linear Dirac

C6 tz ei
p
2; ei

p
6

� �
bkþ gkzk2þ nM¼±1 Linear Dirac

C6 t0 ei
p
2; ei

p
6

� �
bkzkþ gk2þ nM¼±2 Linear Dirac

C6 tz ei
5p
6 ; ei

p
2

� �
bkþ gkzk2� nM¼±1 Linear Dirac

C6 t0 ei
5p
6 ; ei

p
2

� �
bkzkþ gk2� nM¼±2 Linear Dirac

C6 tz ei
5p
6 ; ei

p
6

� �
Zkzk2þ bk3þ þ gk3� nM¼ 3sgn(|b|� |g|) Quadratic Dirac

C6 t0 ei
5p
6 ; ei

p
6

� �
Zk2þ bkzk3þ þ gkzk3� nM¼±2 Quadratic Dirac

2D, two-dimensional; 3D, three-dimensional.
Classification table for 3D topological Dirac semimetals obtained by an accidental band crossing in systems having Cn rotational symmetry with respect to the z axis. Here Cn ¼
diag½uA;"; uB;" ; uA;# ¼ u�A;" ; uB;# ¼ u�B;"� and b, g, Z, x are complex numbers. For compact presentation, uA,m and uB,m are arranged in a way that 0oarg(uB,m)oarg(uA,m)rp. n2D (nM) indicates the 2D Z2
invariant (mirror Chern number) defined on the kz¼0 plane (nM¼ n2D mod 2.). The 2� 2 Hamiltonian hmm (k)¼ f(k)tþ þ f*(k)t� þ a5(k)tz. In the case of hmk(k), hmk(k)¼ g(k)tx when P¼±tz while
hmk(k)¼ g(k)ty when P¼±t0. The leading order terms of f(k) and g(k) are shown in the table. HDirac(q) describes the effective Hamiltonian near the bulk Dirac point, which is either
HDirac(q)¼ uxqxG1þ uyqyG2þ uzqzG3 (Linear Dirac) or HDirac qð Þ ¼ uxðq2x � q2y ÞG1 þ 2uyqxqyG2 þ uzqzG3 (Quadratic Dirac), where G1,2,3 are mutually anticommuting 4�4 Gamma matrices and ux,y,z are real
constants. Here the momentum q is measured with respect to the bulk Dirac point.
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Figure 1 | Creation of a topological Dirac semimetal via accidental gap closings. (a) The phase transition induced by an accidental band crossing (ABC)

when a single control parameter m is varied in systems with the TRS and IS but lacking the rotation symmetry. The 3D Dirac fermion appears only at the

critical point m¼mc and the ABC mediates the transition between a normal insulator and a strong topological insulator (TI). When an additional uniaxial

rotational symmetry is included, two different phase diagrams can be obtained as shown in b and c. Here we choose the kz axis as the axis for the n-fold

rotation. (b) The Dirac SM persists irrespective of m. The Dirac point locates at a TRIM on the rotation axis. The Dirac SM in Table 2 corresponds to this

case. (c) A stable topological Dirac SM phase appears when mc1omomc2, which mediates the transition between a normal insulator and a weak

topological insulator (WTI) or a topological crystalline insulator (TCI). Here a pair of bulk Dirac points, each of which has fourfold degeneracy at the

gapless point, exist along the rotation axis and approach the Brillouin zone (BZ) boundary as m increases. The Dirac SM in Table 1 corresponds to this case.

At the quantum critical points (m¼mc1 or m¼mc2), the energy dispersion along the kz direction is quadratic while the dispersion along the kx and ky
directions is linear (linear Dirac SM) or quadratic (quadratic Dirac SM) or cubic (cubic Dirac SM).
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On the other hand, when d(kz) is odd, d(kz)Eukz in the leading
order with a constant u. In this case, there is a single 3D DP at
kz¼ 0. Then the system is nothing but a stable 3D Dirac SM with
a single DP at the centre of the rotation axis. Considering the full
periodic structure of the Brillouin zone (BZ), both kz¼ 0 and
kz¼p, that is, the TRIMs on the rotation axis, are the possible
locations of the DP. The candidate Dirac SM systems such as
b-cristobalite BiO2 (ref. 15) and distorted spinels16 proposed by
the recent theoretical studies belong to this class. In these systems,
P¼±tx representation is realized due to the non-symmorphic
space group symmetry of the system with two sublattice degrees
of freedom. Namely, the system is invariant under the inversion
with respect to a lattice site followed by a partial translation
between sublattice sites. As the sublattices are interchanged
through the symmetry operation, P can have an off-diagonal form
of P¼±tx. In distorted spinels, the compound IS combined with
additional twofold rotation and time-reversal symmetries gives
rise to a single DP at the T point of the BZ16. On the other hand,
there are three bulk DPs in b-cristobalite BiO2 at the three
symmetry-related X points15. At each X point, the system has a
uniaxial fourfold rotation symmetry with the compound IS P
consistent with our theory.

In conclusion, when the material has the TRS, IS and uniaxial
rotation symmetry simultaneously, there are two different ways to
obtain a stable Dirac SM phase. One is through an ABC (or a
band inversion), which gives rise to a stable 3D Dirac SM with a
pair of 3D DPs on the axis of the rotation (see Fig. 1c). This class
of Dirac SMs appears when the IS is represented by P¼±t0 or
±tz. The other case is when the system naturally supports a 3D
DP at a TRIM on the rotation axis due to the symmetry of the
system (see Fig. 1b). Such a Dirac SM can exist when the IS is
represented by P¼±tx. The intrinsic properties of the relevant
3D Dirac SM phases are summarized in Tables 1 and 2,
respectively. Up to now, we have considered only the leading
order terms of d(kz). However, when the higher order terms are
included, the number of DPs can be increased as a pair of DPs
can always be created whenever an additional ABC happens.
However, independent of the total number of DPs, the Dirac SM
with P¼±t0,z always has an even number of DPs away from the
TRIM, whereas the Dirac SM with P¼±tx having an odd
number of DPs always possesses a single DP at a TRIM.

Classification table. The classification of the 3D Dirac SM phases
can be performed rigorously by imposing the TRS, IS and Cn

rotation symmetry to the minimal 4� 4 Hamiltonian H(k). In the
simultaneous presence of the TRS and IS, the Hamiltonian can
always be written as H kð Þ ¼

P5
i¼1 ai kð ÞGi, where Gi indicates

4� 4 hermitian matrices satisfying {Gi, Gj}¼ 2dij, which guar-
antees the double degeneracy of eigenstates at each k (see
Methods). The precise functional form of ai(k) can be fixed by
imposing the Cn rotational symmetry using the basis under which
both Cn and H(k) are diagonal along the kz direction21. The
results of the complete classification are concisely summarized in
Tables 1 and 2. Because of the TRS, the rotation operator
becomes Cn ¼ diag½uA;"; uB;"; u�A;"; u�B;"�, where each component
u can be written as u ¼ exp i 2pn pþ 1

2

� �	 

with p¼ 0,1,..., n� 1

and A, B indicate the orbital degrees of freedom. Hence, only two
components of Cn are independent.

The properties of the 3D Dirac SM generated via ABCs are
shown in Table 1. In general, the ABC requires the valence and
conduction bands to have different Cn eigenvalues. Namely, {uA,m,
uA,k} and {uB,m, uB,k} should not have common elements to avoid
interband hybridization. However, in the case of C2 invariant
systems, {uA,m, uA,k}¼ {uB,m, uB,k}¼ {i, � i}, hence, the ABC is
not allowed. On the other hand, the systems with C3, C4 and C6

symmetries can support 3D Dirac SM phases. Although the
detailed structure of the Hamiltonian H(k) depends on the
specific symmetries of the corresponding system, there are only
two different types of low-energy effective Hamiltonians near the
bulk gap-closing point. In the first case, after some suitable
unitary transformations, the effective Hamiltonian near each of
the bulk DP can be written as

HDiracðqÞ � qxtx þ qyty þ qztz 0
0 � qxtx � qyty � qztz

� �
;

where the momentum q is measured with respect to the DP. This
is the Hamiltonian for the conventional Dirac fermion (the linear
Dirac fermion), which is composed of two Weyl fermions having
the Chern number þ 1 or � 1, respectively. Whereas in the case
of the C6 invariant system with the uA;"; uB;"

� �
¼ ei

5p
6 ; ei

p
6

� �
, the

effective Hamiltonian is given by

HDiracðqÞ �
ðq2x � q2yÞtx þ 2qxqyty þ qztz 0

0 �ðq2x � q2yÞtx � 2qxqyty � qztz

 !
:

Note that this DP is composed of two double-Weyl fermions,
which have the Chern number þ 2 or � 2, respectively21,22.
Hence, we call this gapless fermions as the quadratic Dirac
fermions.

The physical properties of the 3D Dirac SM with a DP at the
centre of the rotation axis are summarized in Table 2. As the IS
flips the orbitals in this case (P¼±tx), the doubly degenerate
states at each momentum on the kz axis have different orbitals

Table 2 | Classification table for 3D Dirac SMs with a single Dirac point.

Cn |P| uA,m f(k±, kz) gz(k±, kz) HDirac(q) Material

C2 tx ei
p
2 kzF

1ð Þ
1 kx;y
� �

� iF
1ð Þ
2 kx;y
� �

akx þ bky Linear Dirac Distorted spinels16

C3 tx � � � Not allowed

C4 tx e� ip4 F
2ð Þ
1 kx;y
� �

� ikzF
2ð Þ
2 kx;y
� �

ak± Linear Dirac BiO2
15

C6 tx e� ip6 kzF
3ð Þ
1 kx;y
� �

þ iF
3ð Þ
2 kx;y
� �

ak± Linear Dirac

C6 tx e i3p6 kzF
3ð Þ
1 kx;y
� �

þ iF
3ð Þ
2 kx;y
� �

F
3ð Þ
3 kx;y
� �

þ iF
3ð Þ
4 kx;y
� �

Cubic Dirac

3D, three-dimensional; SM, semimetal.
Classification table for 3D topological Dirac SMs in systems having Cn rotational symmetry with respect to the z axis when P¼±tx. In this Dirac SM phase, the location of the 3D Dirac point is fixed
either at the centre or the edge of the rotation axis, that is, at a time-reversal invariant momentum on the rotation axe. Here Cn ¼ diag½uA;"; uB;" ; uA;# ; uB;#� ¼ diag½uA;" ; � uA;" ; u

�
A;" ; � u�A;"� and a, b are

complex numbers. For compact presentation, arg(uA,m) is fixed to be � p
2 	 argðuA;"Þ 	 p

2. But the same result holds even if arg(uA,m) is shifted by p. The real functions F(1,2,3) are given by
F
ð1Þ
i¼1;2 ¼ c

ð1Þ
i kx þ d

ð1Þ
i ky , F

ð2Þ
i¼1;2 ¼ c

ð2Þ
i ðk2x þ k2y Þþ d

ð2Þ
i kxky , F

ð3Þ
i¼1;2;3;4 ¼ c

ð3Þ
i ðk3þ þ k3� Þþ id

ð3Þ
i k3þ � k3� where c

ð1;2;3Þ
i and d

ð1;2;3Þ
i are real constants. The 2� 2 Hamiltonian hmm(k)¼ f(k)tþ þ f*(k)t� þ a1(k)tz

where a1(k)¼ ukz with a real constant u, and hmk(k)¼ gz(k)tz. The leading order terms of f(k) and gz(k) are shown in the table. HDirac(q) describes the effective Hamiltonian near the bulk Dirac point,
which is either HDirac(q)¼ uxqxG1þ uyqyG2þ uzqzG3 (Linear Dirac) or HDiracðqÞ ¼ uxðq3þ þ q3� ÞG1 þ iuyðq3þ � q3� ÞG2 þ uzqzG3 (Cubic Dirac), where the momentum q is measured with respect to the bulk
Dirac point with q±¼ qx±iqy. Here G1,2,3 are mutually anticommuting 4�4 Gamma matrices and ux,y,z are real constants.
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and opposite spin directions. Therefore, the band crossing
between degenerate bands requires {uA,m, uB,k}-{uB,m, uA,k}¼ |
contrary to the previous case. Moreover, owing to the additional
constraint of uA,m¼ � uB,m, the Dirac SM phase with a single DP
cannot exist in the system with C3 invariance, whereas the
systems with C2, C4, C6 symmetries support it (see Methods). One
interesting prediction of Table 2 is that when the system has C6

symmetry with uA;" ¼ � ei
3p
6 , the low-energy Hamiltonian near

the DP can be written as

HDiracðqÞ �
ðq3þ þ q3� Þtx þ iðq3þ � q3� Þty þ qztz 0

0 �ðq3þ þ q3� Þtx � iðq3þ � q3� Þty � qztz

 !
:

Note that this DP is composed of two triple-Weyl fermions,
which have the Chern number þ 3 or � 3, respectively21. Hence,
we can call this gapless fermion as the cubic Dirac fermion. For
the other cases in Table 2, the effective Hamiltonian near the DP
is simply described by the ordinary linear Dirac fermions.

Topological properties of the 3D Dirac semimetals. One
important characteristic of the 3D Dirac SM generated by an ABC
is that it carries a quantized topological invariant although it is a
gapless SM. In fact, the band inversion associated with the ABC is
the common origin of the presence of the 2D topological invar-
iant and the emergence of bulk DPs. As shown in Table 1, in each
case, a quantized 2D topological invariant can be defined on the
kz¼ 0 plane where the ABC occurs. First of all, as the kz¼ 0 plane
can be considered as a 2D system with TRS, a 2D Z2 invariant n2D
is well-defined on it23,24. Moreover, because of the simultaneous
presence of the TRS and IS, n2D can be determined by the parities
of the occupied bands at TRIM25. Therefore, when the valence
and conduction bands have the opposite parities (P¼±tz), the
band inversion on the kz¼ 0 plane, which generates a pair of bulk
DPs, changes n2D by 1, that is, Dn2D¼ 1. This can be contrasted to
the case when two bands have the same parity (P¼±t0), in
which Dn2D¼ 0.

On the other hand, the presence of additional crystalline sym-
metries allows us to introduce new topological invariants26–28.
In particular, when the system has either C4 or C6 symmetry, the
kz¼ 0 plane carries an integer topological invariant (the mirror
Chern number) because of the mirror symmetry of the
system29,30. Here the mirror symmetry appears because of the
simultaneous presence of the p rotation (Rp) with respect to the kz
axis and the IS. Then, the combined operation of the IS and p
rotation defines the mirror symmetry M¼PRp, which connects
the Hamiltonian H(kx, ky, kz) and H(kx, ky, � kz), hence, the
system is invariant under the mirror symmetry (M) in the kz¼ 0
plane. As M2¼ � 1, the Hamiltonian can be block-diagonalized
with each block characterized by the mirror eigenvalue ±i,
respectively. Then, the Chern number can be defined in each
block (C±i), separately. Although the total Chern number
Cþ iþC� i¼ 0 because of the TRS, the difference nM 

1
2 Ci �C� ið Þ (the mirror Chern number) can be non-zero. Note
that Rp exists only in systems with the C4 or C6 symmetry with
the corresponding Rp ¼ C2

4 or Rp ¼ C3
6 , respectively. Therefore,

the C3 invariant system is characterized only by the 2D Z2
invariant n2D, whereas the system with the C4 or C6 symmetry has
both the Z2 invariant n2D and the mirror Chern number nM,
where nM and n2D are equivalent up to the modulo 2. In Methods,
we have described how the mirror symmetry manifests in the
system in terms of the effective Hamiltonian H(k). When either
n2D or nM is non-zero, the 3D Dirac SM supports 2D surface
Dirac cones when a surface parallel to the kz axis is introduced.
The number of 2D Dirac cones on one surface is given by |nM|
(|n2D|) when the system has the C4 or C6 (C3) symmetry.

Lattice model and generic phase diagram. Let us illustrate the
intriguing properties of the 3D topological Dirac SM phases in
Table 1 by studying lattice Hamiltonians numerically. For con-
venience, we choose the C4 invariant systems with P¼ t0 or
P¼ tz corresponding to the 6th or 7th row of Table 1, respec-
tively. However, the main features of the phase diagram can be
applied to all cases in Table 1 because the overall structure of the
phase diagram is solely determined by the single function a5(k),
whose leading order functional form is the same in all cases. The
detailed information about the lattice Hamiltonian is presented in
Methods. Figure 2 summarizes the main properties of the lattice
Hamiltonian. In general, the system supports four different
phases as shown in the phase diagram. The phase transition is
always accompanied by an ABC on the kz¼ 0 or kz¼ p plane, in
which a pair of 3D bulk DPs are either created or annihilated.
Whenever an ABC happens, it also changes the 2D topological
invariant of the corresponding 2D planes.

There are two different types of insulators in the phase
diagram. One is a normal insulator, which does not carry a
topological number, and the other is either a weak topological
insulator or a topological crystalline insulator, in which both the
kz¼ 0 and kz¼p planes have nontrivial 2D topological
invariants. The system with P¼±tz supports a weak topo-
logical insulator, which has the Z2 topological index of
(n0; n1n2n3)¼ (0; 001) because n2D¼ 1 in both the kz¼ 0 and
kz¼p planes. On the other hand, when P¼±t0, n0,1,2,3¼ 0
independent of the band inversion because every band has the
same parity. However, it is possible to obtain a topological
crystalline insulator, as both the kz¼ 0 and kz¼ p planes can have
the non-zero mirror Chern number of nM¼ 2. In fact, it is to note
that the weak topological insulator in the system with P¼±tz
can also have finite mirror Chern numbers. However, for
convenience, we mainly focus on the Z2 invariant to characterize
the system with P¼±tz.

The 3D Dirac SM phases can also be distinguished in two
different ways. At first, when the Dirac SM phase has a non-zero
topological invariant in either the kz¼ 0 plane or the kz¼ p plane,
we can call it a topological Dirac SM as the Dirac SM carries
stable 2D Dirac cones on the surface. Similarly, a topologically
trivial Dirac SM can be defined when the system does not have
any topological invariant in both planes. However, in both cases,
independent of the presence of the 2D topological invariants, the
3D Dirac SM phase is stable because the symmetry of the system
and occupies a finite region in the phase diagram.

Figure 3 shows the evolution of the Fermi surface of the
topological Dirac SM system with a slab geometry whose surface
normal is parallel to the [100] direction. The translational
symmetry of the system in the yz plane is maintained. Here we
first pick the states touching the Fermi level (EF) and then plot the
wave function amplitudes of the corresponding state localized on
the first five layers from the top surface. The red colour indicates
the states localized on the [100] surface, whereas the bright blue
colour corresponds to the 3D bulk Dirac states. In the case of the
topological Dirac SM with n2D¼ 1 in the kz¼ 0 plane, a 2D
surface Dirac cone appears on the ky axis centred at the G point as
shown in Fig. 3a. Here the two bulk DPs give rise to the finite
intensity on the kz axis located symmetrically with respect to the
G point. When the Fermi energy (EF) is near the bulk DP (EF¼ 0
at the DP), the bulk and surface states are decoupled, and the
surface states form an isolated closed loop. As EF increases, the
Fermi surface topology evolves continuously, and when the bulk
and surface states start to overlap, the 2D surface state is
deformed to the Fermi arc structure. Namely, the Fermi arcs of
3D Dirac SM emerge simply because of the deformation of the 2D
Dirac cone, which exists due to the fact that n2D¼ 1 on the kz¼ 0
plane. As such an evolution of the surface spectrum occurs
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continuously, the Fermi arc states can appear even when EF¼ 0 if
the parameters of the model Hamiltonian are tuned properly.

The energy spectrum of the topological Dirac SM with nM¼ 2
on the kz¼ 0 plane also shows a similar variation as described in
Fig. 3b. As nM¼ 2, there are two 2D surface Dirac cones on the ky
axis. As EF increases, the surface Dirac cones evolve to Fermi arcs
when the surface and bulk states overlap. As the number of
surface Dirac cones is two, the number of surface Fermi arc is also
doubled as compared with the case shown in Fig. 3a. It is worth to
note that in both cases shown in Fig. 3a,b, the energy dispersion
near the bulk 3D DP is basically the same, that is, the bulk state
shows the linear dispersion relation in all three momentum
directions. This clearly shows that the number of Fermi arcs of
the topological Dirac SM is irrespective of the dispersion of the
bulk states.

It is worth to stress that the physical origin of the surface Fermi
arcs in the 3D Dirac SM is clearly distinct from that of the Weyl
SM which has twofold degeneracy at the gap-closing point. In the
Weyl SM, the Chern number carried by the bulk gapless point
(Weyl point) guarantees the emergence and stability of the Fermi
arc states31–33. As the Chern number of the Weyl point is purely
determined by the energy dispersion around the Weyl point, the
number of Fermi arcs in the system with a fixed number of Weyl
points strongly depends on the energy dispersion near the Weyl
point. In conventional Weyl SMs with the linear dispersion
around the Weyl point, the number of Fermi arcs on one surface
of the sample is equal to the number of Weyl point pairs in the
first BZ. On the other hand, in the case of Weyl SMs with double
(triple)-Weyl fermions whose dispersion is quadratic (cubic)
along the two momentum directions but linear in the third
direction, the number of Fermi arcs is double (triple) of the
number of the Weyl point pairs21,22. However, in contrast to the
case of the Weyl SM, the physical origin of the surface states of
the 3D Dirac SM is independent of the energy dispersion of the

3D bulk Dirac fermions. Because of the simultaneous presence of
the TRS and IS, the Chern number of each 3D DP is zero. Here
the number of the Fermi arcs on the surface of the sample is
solely determined by the 2D topological invariant on the kz¼ 0
(or kz¼p) plane irrespective of the energy dispersion around the
3D DP. Therefore, although the low-energy Hamiltonian near the
3D bulk DP is the same, the number of Fermi arcs can be
different depending on the 2D topological invariant of the system
as shown above.

Discussion
Up to now, we have considered the system with a uniaxial
rotation symmetry together with TRS and IS. As most crystals
have a larger symmetry with multiple rotation axes, it is
important to understand how our theory can be applied to these
systems. First of all, it is worth to note that the location of the two
DPs can be anywhere on the rotation axis in the case of the Dirac
SMs with P¼±t0,z in Table 1. Therefore, the primary rotation
axis should be the line connecting the two DPs in this case. Even
if there are multiple pairs of DPs in the BZ, we can easily specify
the primary rotation axis for each pair of DPs by using the fact
that the centre of the rotation axis locates at a TRIM and the
relative orientation of different rotation axes should satisfy the
crystalline symmetry. Once the primary rotation axis is specified,
we can apply our classification scheme to each pair of DPs. On
the other hand, in the case of the Dirac SM with P¼±tx in
Table 2, the role of the additional crystalline symmetry is more
significant because the DP locates at a TRIM where the system
generally has a higher crystalline symmetry. At this point, it is
useful to note that the threefold rotation symmetry prohibits a DP
at a TRIM according to Table 2. In fact, this imposes a strong
constraint to the allowed position of the DP, and we can rule out
the G point as a possible location of the DP because the space
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groups allowing the fourfold degeneracy at the G point always
have a threefold rotation symmetry (see Methods and also ref. 15).
Therefore, a DP can locate only at a TRIM on the BZ surface.
Even if the point group symmetry of the crystal contains many
rotation axes, the symmetry on the BZ surface can be much lower
and the system often has a uniaxial rotation symmetry at a TRIM
on the BZ surface. For example, in both b-cristobalit BiO2 and
distorted spinels, there is a uniaxial rotation symmetry at the
momentum where each DP presents. In this situation, it is
straightforward to apply our theory. To sum up, although the
point group symmetry of the crystal has multiple rotation axes,
the local symmetry at the momentum where each DP presents is
much lower, hence, our theory can be applied to crystalline solids
in general.

We conclude with a discussion about the stability of the 3D
Dirac SM under the influence of the Coulomb interaction and
disorder. Simple power counting shows that the long-range
Coulomb interaction is a marginally irrelevant perturbation to the
3D Dirac fermions with the linear dispersion34–36. Hence, various
physical properties of the 3D Dirac SM can receive logarithmic
corrections because of the long-range Coulomb interaction
similar to the cases of 3D Weyl SM35–37 and graphene38–40. On
the other hand, as the disorder is irrelevant according to the
power counting, we expect the Dirac SM state can be stable at
least against weak disorder effect. However, as the crystalline
symmetry is important for the protection of the DP, strong
disorder can induce nontrivial physical consequences to 3D Dirac
SM phase, especially when the interaction and disorder effect are

considered simultaneously34. Moreover, in the case of the
quadratic Dirac SM and the cubic Dirac SM, the effect of the
interaction and disorder can be more significant. As the in-plane
dispersion becomes either quadratic or cubic in the momentum
space, which strongly enhances the low energy density of states, it
is expected that the interaction and disorder can even bring about
new exotic quantum phases. For instance, according to a recent
theoretical study, an exotic non-Fermi liquid state can appear in a
3D SM having quadratic energy dispersion in the momentum
space41. As the interplay between the long-range Coulomb
interaction and nontrivial screening because of the enhanced low
energy density of states is the fundamental origin leading to the
non-Fermi liquid phase, the quadratic Dirac SM and the cubic
Dirac SM are also promising systems to observe novel quantum
critical states.

Finally, let us note that the quantum critical point in Fig. 1c
where the pair creation or pair annihilation of bulk DPs happens
is another interesting venue to observe a new types of quantum
critical phenomena. At the quantum critical point, as the energy
dispersion along the rotation axis is always quadratic, the low-
energy excitation can show highly anisotropic dispersion relations
in the linear Dirac SM and cubic Dirac SM. According to the
recent theoretical study42,43, it is shown that such an anisotropic
dispersion can induce a novel screening phenomenon, which can
induce anomalous distribution of the screening charge around a
charged impurity. To reveal the fascinating physical properties of
the linear Dirac SM and the triple Dirac SM at the critical point
would be another interesting topic for future studies.
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Methods
The classification procedure. The classification of the minimal 4� 4 matrix
Hamiltonian H(k) can be performed as follows. At first, let us impose the TRS on
H(k). The TRS can be represented by the operator Y¼ isyK, where sx,y,z are Pauli
matrices for spin degrees of freedom and K stands for complex conjugation. The
invariance of the Hamiltonian under TRS, that is, H(� k)¼YH(k)Y� 1 gives rise
to the relations h"" kð Þ ¼ hT## � kð Þ and h"# kð Þ ¼ �hT"# � kð Þ, where the superscript
T indicates the transposition. Then, the resulting Hamiltonian with the TRS can be
written in the following way.

HðkÞ ¼ h""ðkÞ h"#ðkÞ
� h�"#ð� kÞ h�""ð� kÞ

� �
;

where the superscript * indicates the complex conjugation. Second, to impose the
IS on the Hamiltonian H(k), we have to determine the matrix representation P of
the IS. As the IS is independent of the spin-rotation, in general, P ¼ p0t0 þ~p �~t,
where~t ¼ tx ; ty ; tz

� �
indicate the Pauli matrices for orbital degrees of freedom and

p0,x,y,z are complex numbers. As the operation of P2 relates the same electronic
states, it should be equivalent to the identity operator up to a global U(1) phase
factor, that is, P2 ¼ p20 þ~p �~pþ 2p0~p �~t ¼ ei2f. Therefore, P should be either

P¼±eif or P ¼ eif p0
!

�~t, where p0
!

� p0
!

¼ 1. To determine f and p0
!
, the following

three relations can be used: (i) [T,P]¼ 0, (ii) PwP¼ 1 and (iii) (TP)2¼ � 1. Then,
the general solution for P is given by P¼±t0 or P¼ cosytz� sinytx with
yA[0,2p].

The invariance of the Hamiltonian under P, that is, H(� k)¼ PH(k)P� 1

combined with the TRS constrains the possible form of the Hamiltonian, which can
be summarized in the following way.

(i) When P¼±t0. H kð Þ ¼ a0 kð Þþ
P5

i¼1 ai kð ÞGi , where G1¼ tx, G2¼ tysz,
G3¼ tysx, G4¼ tysy, G5¼ tz. Hence, hmm ¼ a0þ a1txþ a2tyþ a5tz and hmk¼
(a3� ia4)ty. Here a0,1,2,3,4,5(k) are all real and even under the sign change of k.

(ii) When P¼ cosytz� sinytx. H kð Þ ¼ a0 kð Þþ
P5

i¼1 ai kð ÞGi , where G1¼ mxsz,
G2¼ my, G3¼ mxsx, G4¼ mxsy, G5¼ mz and all a0,1,2,3,4,5 are real functions.
Hence, hmm¼ a0þ a1mxþ a2myþ a5mz and hmk¼ (a3� ia4)mx. Here
a0,5(� k)¼ a0,5(k), a1,2,3,4(� k)¼ � a1,2,3,4(k) and mx¼ cosytxþ sinytz, my¼ ty,
mz¼ � sinytxþ cosytz.

In both cases, an ABC is possible only if the five equations a1,2,3,4,5¼ 0 are
satisfied simultaneously. Here each function ai has four variables including the
three momentum components kx,y,z and one external control parameter m, that is,
ai¼ ai(kx, ky, kz, m). As the number of equations to be satisfied is five, whereas the
number of variables is four, the condition for the ABC cannot be satisfied in
general at a generic momentum k. However, it is worth to note that the above
consideration does not rule out the ABC at non-generic points in the momentum
space with high symmetry. For instance, as pointed out by Murakami4, at the time-
reversal invariant momentum k¼ kTRIM, where k and � k are equivalent, all odd
functions in H(k) vanish. In the case of (ii) with P¼ cosytz� sinytx,
a1,2,3,4(kTRIM)¼ 0. Therefore, an ABC is possible if and only if one condition
a5(kTRIM,m)¼ 0 is satisfied, which can be achieved by tuning one external control
parameter m. This is the reason why the topological phase transition between two
insulators can occur through an ABC at a time-reversal invariant momentum.

Now let us show how the condition for ABC is modified by the presence of the
additional rotation symmetry Cn with respect to the z axis. Here n is restricted to be
n¼ 2,3,4,6 in periodic lattice systems. Using a basis in which both H kzð Þjkx¼ky¼0

and Cn are diagonal, Cn can be represented by a diagonal matrix
Cn¼ diag[uA,m,uB,m,uA,k,uB,k]¼ diag[ap, aq, ar, as], where ap ¼ exp i 2pn pþ 1

2

� �	 

with p¼ 0, 1, ..., n� 1 (ref. 21). For convenience, we express Cn in the
following way:

Cn ¼ eipð
1þ pþ q

n þ p� q
n tzÞ 0

0 eipð
1þ rþ s

n þ r� s
n tzÞ

� �
:

The invariance of the Hamiltonian under Cn leads to

CnHðkþ ; k� ; kzÞC� 1
n ¼ Hðkþ ei

2p
n ; k� e� i2pn ; kzÞ; ð1Þ

where k±¼ kx±iky. From equation (1), we can obtain that

ei
p
nðp� qÞtz h""ðk� Þe� ipnðp� qÞtz ¼ h""ðk� e� i2pn Þ;

ei
p
nðpþ q� r� sÞei

p
nðp� qÞtz h"#ðk� Þeipnðs� rÞtz ¼ h"#ðk� e� i2pn Þ:

ð2Þ

The equations above can be further simplified by considering the constraint on Cn

because of TRS. Namely, as [T,Cn]¼ 0, we can show that exp i 2pn pþ rþ 1ð Þ
	 


¼ 1,

exp i 2pn qþ sþ 1ð Þ
	 


¼ 1 and Cn ¼ diag ap; aq; a�p ; a
�
q

h i
. Namely,

Cn ¼ diag uA;"; uB;"; uA;# ¼ u�A;"; uB;# ¼ u�B;"

h i
. Then equation (2) becomes

ei
p
nðp� qÞtz h""ðk� Þe� ipnðp� qÞtz ¼ h""ðk� e� i2pn Þ;

ei
2p
mðq� rÞei

p
nðp� qÞtz h"#ðk� Þeipnðp� qÞtz ¼ h"#ðk� e� i2pn Þ:

ð3Þ

In general, hmm(k) and hmk(k) can be represented by

h""ðkÞ ¼ f0ðkÞþ fþ ðkÞtþ þ f �þ ðkÞt� þ fzðkÞtz ;
h"#ðkÞ ¼ g0ðkÞþ gþ ðkÞtþ þ g� ðkÞt� þ gzðkÞtz ;

ð4Þ

where f0,z are real functions, whereas fþ , g0±z are complex functions. Also
t±¼ tx±ity. As f0 does not affect the gap-closing, we can neglect it in the
forthcoming discussion. Equation (3) gives the following relations:

ei
2p
n ðp� qÞfþ ðk� ; kzÞ ¼ fþ ðk� e� i2pn ; kzÞ;

fzðk� ; kzÞ ¼ fzðk� e� i2pn ; kzÞ;
ð5Þ

and

ei
2p
n ðp� rÞg0þ zðk� ; kzÞ ¼ g0þ zðk� e� i2pn ; kzÞ;

ei
2p
n ðq� sÞg0� zðk� ; kzÞ ¼ g0� zðk� e� i2pn ; kzÞ;

ei
2p
n ðq� rÞg� ðk� ; kzÞ ¼ g� ðk� e� i2pn ; kzÞ;

ð6Þ

where g0±z¼ g0±gz. The equations (5) and (6) are the key results, which lead to
the full classification of the 3D Dirac SM.

For the classification, we first consider the TRS and IS, which restrict the
possible structure of the Hamiltonian summarized in (i) and (ii). After that the
rotational symmetry is imposed to the Hamiltonian by using the equations (5) and
(6). As shown previously, the most general form of P is given by P¼±t0 or
P¼ cosytz� sinytx with yA[0, 2p]. To determine the matrix representation of P
and Cn, we use the basis in which both the H kzð Þjkx¼ky¼0 and Cn are diagonal. As

noted before, in such a basis, the Hamiltonian should have a diagonal form given
by H kzð Þjkx¼ky¼0 with GA{tz, tzsz}. As d(kz) should have a definite parity under IS

as shown in (i) and (ii), the possible form of P is restricted to be P¼±t0, ±tx,
±tz. In particular, when P¼±t0 or ±tz, d(k) is even under the sign change of
the momentum k, which leads to the 3D topological Dirac SM via an ABC as
summarized in Table 1. On the other hand, when P¼±tx, d(k) is odd under the
sign change of k, which gives rise to a 3D Dirac SM with a single bulk DP as
summarized in Table 2.

Let us describe the constraints from the rotation symmetry in detail. When
P¼±t0, the Hamiltonian hmm(k) and hmk(k) are given by

h""ðkÞ ¼ a1ðkÞtx þ a2ðkÞty þ a5ðkÞtz ;
h"# kð Þ ¼ a3 kð Þ� ia4 kð Þð Þty :

ð7Þ

On the other hand, when P¼±tz,

h""ðkÞ ¼ a1ðkÞtx þ a2ðkÞty þ a5ðkÞtz ;
h"#ðkÞ ¼ ða3ðkÞ� ia4ðkÞÞtx :

ð8Þ

In both cases, fromequations (5) and (6), we can obtain

ei
2p
n ðp� qÞfþ ðk� ; kzÞ ¼ fþ ðk� e� i2pn ; kzÞ;

a5ðk� ; kzÞ ¼ a5ðk� e� i2pn ; kzÞ;
ei

2p
n ðq� rÞgðk� ; kzÞ ¼ gðk� e� i2pn ; kzÞ;

ð9Þ

where fþ (k)¼ (a1(k)� ia2(k))/2 and g(k)¼ (a3(k)� ia4(k))/2. As fþ and g should
be zero on the kz axis, we obtain ei

2p
n p� qð Þ ¼ uA;"u�B;" 6¼ 1 and

ei
2p
n q� rð Þ ¼ uB;"u�A;# 6¼ 1. Hence, the ABC is possible when {uA,m, uA,k}-{uB,m,

uB,k}¼ |, that is, when the valence and conduction bands have no rotation
eigenvalue in common.

Finally, when P¼±tx, the Hamiltonian hmm(k) and hmk(k) are given by

h""ðkÞ ¼ a5ðkÞtx þ a2ðkÞty þ a1ðkÞtz ;
h"# kð Þ ¼ a3 kð Þ� ia4 kð Þð Þtz :

ð10Þ

From the equations (5) and (6), we can obtain

ei
2p
n ðp� qÞfþ ðq� ; kzÞ ¼ fþ ðq� e� i2pn ; kzÞ;

a1ðq� ; kzÞ ¼ a1ðq� e� i2pn ; kzÞ;

ei
2p
n p� rð Þgz q� ; kzð Þ ¼ ei

2p
n q� sð Þgz q� ; kzð Þ ¼ gz q� e� i2pn ; kz

� � ð11Þ

where fþ (k)¼ (a5(k)� ia2(k))/2 and gz(k)¼ (a3(k)� ia4(k)). From the condition
that fþ ¼ gz¼ 0 on the kz axis, we obtain ei

2p
n p� qð Þ ¼ uA;"u�B;" 6¼ 1,

ei
2p
n p� rð Þ ¼ uA;"u�A;# 6¼ 1, ei

2p
n q� sð Þ ¼ uB;"u�B;# 6¼ 1 and u2A;" ¼ u2B;" . Namely, the

following two conditions should be satisfied:

fuA;"; uB;#g
\

fuB;"; uA;#g ¼ |; ð12Þ

uA;" ¼ � uB;": ð13Þ
The physical meaning of these two conditions is as follows. First of all, as the IS

flips the orbitals in this case (P¼±tx), EA,s(kz)¼ EB,s(� kz). Then, the combined
operation of the TRS and IS ensures EA,m(kz)¼EB,k(kz) and EA,k(kz)¼EB,m(kz) on
the kz axis. Note that the orbital index is physically meaningful in this case, because
the angular momentum is a good quantum number on the kz axis. Then, the
crossing between two degenerate bands requires {uA,m, uB,k}-{uB,m, uA,k}¼ |.
Moreover, as (CnP)2¼ (PCn)2 on the kz axis, CnP¼±PCn. However, as the
equation (12) is violated if [Cn, P]¼ 0 is fulfilled, we obtain {Cn, P}¼ 0, which
immediately leads to the equation (13). In fact, the condition uA,m¼ � uB,m means
exp i 2pn pþ 1

2

� �	 

¼ exp i 2pn qþ 1

2

� �	 

with integers p and q. But this relation cannot

be satisfied if n¼ 3. Therefore, the 3D Dirac SM with a single DP cannot exist in
systems with C3 invariance.
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Absence of the symmetry-protected Dirac point at the C point. Let us explain
why the symmetry-protected DP cannot exist at the G point in the first BZ. Here
we only consider the fourfold degenerate DP, which splits into two doubly
degenerate states away from the band crossing point. At the G point, the repre-
sentation of the space group is equivalent to the representation of the point group,
which is true for both the non-symmorphic and symmorphic space groups. As the
symmetry-protected DP can appear when the space group symmetry at a given
momentum allows a four-dimensional irreducible representation, what we have to
do is to check the presence of the four-dimensional irreducible representation in
the double-valued representation of the relevant point group. It is straightforward
to confirm that among the 32-point groups, only the cubic groups Td, O, Oh

support a four-dimensional irreducible representation in their double-valued
representation44. However, all these cubic groups contain threefold rotation axes.
According to Table 2, an isolated symmetry-protected DP locating at a TRIM is
forbidden if the system has a threefold rotation symmetry. Therefore, we conclude
that the symmetry-protected DP cannot present at the G point in 3D periodic
electronic systems. A similar conclusion is also obtained in ref. 15.

The emergence of the mirror symmetry in the Hamiltonian. Let us briefly
describe how the mirror symmetry manifests in the effective Hamiltonian
H kð Þ ¼

P5
i¼1 ai kð ÞGi. As shown in Table 1, in systems with the C4 or C6 sym-

metry, either f(k) or g(k) becomes zero in the kz¼ 0 plane. Although only the
lowest order terms are shown in Table 1, we can show that the same result holds in
all orders. This means that the effective Hamiltonian can be written as H kð Þ ¼P

i¼1;2;3 a
0
i kð ÞG0

i in the kz¼ 0 plane. Here G0
1;2;3 are three mutually anti-commuting

Gamma matrices. As only three Gamma matrices appear in the Hamiltonian, we
can define a conserved quantity G0

4G
0
5 satisfying H kð Þ;G0

4G
0
5

	 

¼ 0. It is straight-

forward to show that G0
4G

0
5 is equivalent to the mirror operator M in all cases,

hence, the system has the mirror symmetry in the kz¼ 0 plane.

The lattice Hamiltonians. We can construct the lattice Hamiltonians straight-
forwardly by using the information in Tables 1 and 2. For instance, for the C4

invariant system with P¼±tz, that is, 6th row of Table 1, we can use

f ¼ Zðsin kx þ i sin kyÞ;
g ¼ sin kz ½ðbþ gÞðcos ky � cos kxÞþ iðb� gÞsin kx sin ky �;
a5 ¼ M� txy cos kx þ cos ky

� �
� tz cos kz ;

ð14Þ

where Z, b, g, M, txy, tz are real constants. More explicitly,

H ¼
X
k

Z½sin kxcyðkÞtxszcðkÞ� sin kyc
yðkÞtycðkÞ�

þ
X
k

ðbþ gÞsin kzðcos ky � cos kxÞ½cyðkÞtxsxcðkÞ�

þ
X
k

ð� 1Þðb� gÞsin kz sin kx sin ky ½cyðkÞtxsycðkÞ�

þ
X
k

M� txy cos kx þ cos ky
� �

� tz cos kz
	 


cy kð Þtzc kð Þ
h i

;

ð15Þ

where cy ¼ c
y
A;"; c

y
B;"; c

y
A;#; c

y
B;#

h i
. In real space, the Hamiltonian becomes

H ¼ Z
2

X
n

½ � icyntxszcnþ x̂ þ icyntycnþ ŷ þ h:c:�

þ ðbþ gÞ
4

X
n

½ � icyn txsxcnþ ŷþ ẑ � icyntxsxcn� ŷþ ẑ

þ icyn txsxcnþ x̂þ ẑ þ icyn txsxcn� x̂þ ẑ þ h:c:�

þ ðb� gÞ
8

X
n

½ � icyn txsycnþ x̂þ ŷþ ẑ � icyntxsycn� x̂� ŷþ ẑ

� icyn txsycnþ x̂� ŷ� ẑ � icyn txsycn� x̂þ ŷ� ẑ þ h:c:�

þM
X
n

cyntzcn �
txy
2

X
n

½cyn tzcnþ x̂ þ cyn tzcnþ ŷ þ h:c:�

� tz
2

X
n

½cyntzcnþ ẑ þ h:c:�;

ð16Þ

where n indicates the lattice sites and x̂; ŷ; ẑ are the unit lattice vectors along x, y, z
directions. Z indicates the nearest neighbour hopping amplitudes in the xy plane,
(b þ g) denotes the next nearest neighbour hopping amplitudes in the yz and zx
planes, and (b� g) indicates the hopping process along the body-diagonal direc-
tion of the cubic lattice. M indicates the on-site potential difference between the A
and B orbitals, and txy (tz) describes the hopping amplitude difference in different
orbitals along the x, y directions (in the z direction).

Similarly, for the C4 invariant system with P¼±t0, that is, the 7th row of
Table 1, we use

f ¼ Z sin kzðsin kx þ i sin kyÞ;
g ¼ ½ðbþ gÞðcos ky � cos kxÞþ iðb� gÞsin kx sin ky �;
a5 ¼ M� txy cos kx þ cos ky

� �
� tz cos kz

ð17Þ

More explicitly,

H ¼
X
k

Z½sinkxsinkzcyðkÞtxcðkÞ� sinkysinkzc
yðkÞtyszcðkÞ�

þ
X
k

ðbþ gÞðcosky � coskxÞ½cyðkÞtysxcðkÞ�

þ
X
k

ð� 1Þðb� gÞsinkxsinky ½cyðkÞtysycðkÞ�

þ
X
k

M� txy cos kx þ cos ky
� �

� tz cos kz
	 


cy kð Þtzc kð Þ
h i

ð18Þ

In real space, the Hamiltonian becomes

H ¼� Z
4

X
n

½cyn txcnþ x̂þ ẑ � cyntxcn� x̂þ ẑ � cyn tyszcnþ ŷþ ẑ þ cyn tyszcn� ŷþ ẑ þ h:c:�

� ðbþ gÞ
2

X
n

½cyntysxcnþ x̂ � cyn tysxcnþ ŷ þ h:c:�

þ ðb� gÞ
4

X
n

½cyntysycnþ x̂þ ŷ � cyn tysycnþ x̂� ŷ þ h:c:�

þM
X
n

cyntzcn �
txy
2

X
n

½cyn tzcnþ x̂ þ cyn tzcnþ ŷ þ h:c:�

� tz
2

X
n

½cyntzcnþ ẑ þ h:c:�;

ð19Þ

where (bþ g) indicates the nearest neighbour hopping amplitudes in the xy plane,
(b� g) (Z) denotes the next nearest neighbour hopping amplitudes in the xy
(yz and zx) planes. M, txy, tz have the same meaning as above. In both cases, we
have chosen Z¼ 1, b¼ 2, g¼ 1, tz¼ 1 while varying M and txy for the numerical
computation.
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