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ABSTRACT
As digital libraries and video databases grow, we need methods to assist us in
the synthesis and analysis of digital video. Since the information in video
databases can be measured in thousands of gigabytes of uncompressed data,
tools for efficient summarizing and indexing of video sequences are
indispensable. In this paper, we present a method for effective classification of
different types of videos that makes use of video summarization that is the form
of a storyboard of keyframes. To produce the summarization, we first generate
a universal basis on which to project a video frame that effectively reduces any
video to the same lighting conditions. Each frame is represented by a
compressed chromaticity signature. We then set out a multi-stage hierarchical
clustering method to efficiently summarize a video. Finally we classify TV
videos using a trained hidden Markov model on the compressed chromaticity
signatures and also temporal features of videos that are represented by their
summaries.

INTRODUCTION
Video content classification is a necessary tool for efficient access, understanding

and retrieval of videos. Different methods have been proposed in the literature for video
program classification into predefined categories such as a commercial detection system
(Hauptman and Witbrock, 1998). One successful study carrying out video classification
was performed using a domain method relying on nearest neighbor clustering (Wei et al.,
2000). The positive aspect of this classification method is its simplicity. Each decision
made in the process corresponds to a certain aspect of human visual perception and it is
straightforward to understand the rules. However, like most other research work on video
classification, it did not take advantage of temporal features in video, which is a very
powerful cue in understanding the video content. Therefore we explore the use of hidden
Markov models (HMM) for video classification that can grasp the temporal information
along with the visual information in video.

Previously, we successfully set out a novel illumination-invariant color histogram
approach that performs good video characterization (Drew et al., 1998). In this method
we form 12-vector chromaticity coefficients for any video frame. As well, on the basis of
these coefficients we produce keyframe-based succinct summarized expressions for video
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using a multistage hierarchical clustering algorithm (Drew and Au, 2000). Here we
extend this work to provide the capacity to perform semantic content discrimination tasks
for video. After video characterization and summarization, we obtain two types of
features: (1) chromaticity signatures for keyframes, each of which represents a scene; (2)
temporal features including the durations of scenes in a video sequence and transition
characteristics between scenes. We present a novel method that applies HMM to integrate
the two features for video classification. This is motivated by the fact that a certain type
of videos usually contains a set of frequent scenes that have similar visual information,
such as news and basketball games, and also in most situations those types of videos have
their individual approximately stable temporal pattern consisting of scene duration and
transition characteristics.

The hidden Markov model is a popular technique widely used in pattern recognition
(Rabiner and Juang, 1986). It has good capability to grasp temporal statistical properties
of stochastic processes. The essence of the HMM process is to construct a model that
explains the occurrence of observations (symbols) in a time sequence and use it to
identify other observations sequences. Some researchers have applied HMM for video
analysis and classification. In Nevenka’s study (Dimitrova et al., 2000), HMMs can be
formed using face and text trajectories and then classify the given video into one of four
categories of TV programs: news, commercials, sitcoms and soaps. The key point of this
approach is that the video content for these types of TV programs have to be
satisfactorily characterized by capturing face and text trajectories appearing in the video.
Huang et al. (1999) built an HMM framework using audio and image features for video
classification. Although the use of both audio and visual features can improve
classification accuracy, it can make the system complicated and hard to maintain and
extend. Also, because the visual features are extracted for every frame, the HMM process
needed to carry a great deal of information about the detailed variance between frames
yet lacked consideration of the entire visual trajectory.

In this paper, we set out a video classification method, based on the Hidden Markov
model, which utilizes the chromaticity signatures of keyframes from summarized video
and effectively apprehends the entire temporal feature pattern for different types of
videos. Firstly, we use the illumination-invariant color histogram video characterization
method proposed by Drew and Au (2000) to produce a 12-vector feature for each frame;
secondly, we effectively carry out video summarization using a multistage hierarchical
clustering, obtaining keyframes. Finally, we perform the video classification task using
hidden Markov models. In our experiment, we apply the method to the task of classifying
television programs into the four categories: news report, commercials, live basketball
game, and live football game.

The rest of the papers is organized as follows. Section 2 presents our chromaticity
signature computation and our video sequence summarization scheme. Video
classification method based on HMMs is proposed in section 3. Experimental results are
given in section 4 and in section 5 we present the conclusion and future work.

ILLUMINATION-INVARIANT VIDEO SUMMARIZATION
We had developed a new low-dimensional video frame feature that is more

insensitive to lighting change, motivated by color constancy work in physics-based
vision, and apply the feature to keyframe production using hierarchical clustering. The
point, vis-à-vis video summarization is that any video is effectively moved into the same
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lighting environment, making it meaningful to project video features onto a precomputed
universal basis set.

Lighting is first discounted by normalization of color-channel bands (Drew et al.,
1998). This step approximately but effectively removes dependence on both luminance
and lighting color. Then image frames are moved into a chromaticity color space. As well
as reducing the dimensionality of color to 2 this also has the effect of removing shading.
In order to make the method fairly robust to camera and object motion, and
displacements, rotations, and scaling, we go over to a 2D histogram derived from DC
components of frames. Chromaticity histograms are then compressed –i.e., we treat the
histograms as images. Here, we use a wavelet-based compression because this tends to
strike a balance between simple low-pass filtering and retaining important details. Using
a 3-level wavelet compression we arrive at 16×16 histograms.

However, we found that compression of histograms could be improved if the
histograms are first binarized, i.e., entries are replaced with 1 or 0. The rationale for this
step is that chromaticity histograms are a kind of color signature for an image, similar to
a palette. In work involving recovering the most plausible illuminant from pixel values in
an image (Finlayson et al., 1997) it was found beneficial to utilize this kind of color
signature. Here, the step of binarizing the histogram not only reduces the computational
burden, since true chromaticity histograms need not be computed, but also has the effect
of producing far fewer negatives in the compressed histogram. Finally, we found that one
further step could substantially improve the energy compaction of the representation: we
carry out a 16×16 Discrete Cosine Transform (DCT) on the compressed 16×16
histogram. After zigzag ordering, we keep 21 DCT coefficients.

Since every image now lives in approximately the same lighting, we can in fact
precompute a basis for the DCT 21-vectors, offline, which can then be reused for any
new image or video. Here we determine a basis set by the Singular Value Decomposition
(SVD) of the DCT 21-vectors. We found that 12 components in the new basis represent
that entire DCT vector very well and that energy compaction worked better using a
spherical chromaticity, rather than the usual linear one. Thus the method we set out here
is to precompute a set of basis vectors, once and for all, and then form the 12-vector
coefficients for any video frame with respect to this basis. So keyframe extraction can be
carried out very efficiently, using only 12-component vectors.

A keyframe is extracted from each of segmented scenes in a video. We use a
hierarchical clustering scheme to segment a video into a sequence of scenes (Drew and
Au, 2000). This method executes a bottom-up multistage temporally merging process
where only adjacent frames or frame groups are merged by calculating their vectors’ L2
distance, as we wished to maintain the temporal order. A threshold of distance is assigned
to determine the final clusters, and each of those clusters corresponds to a scene. Finally,
a keyframe is extracted from the medoid of each cluster.

VIDEO CLASSIFICATION BASED ON HMM
We propose a hidden Markov model based method for video topic classification

using visual and temporal features. We classify videos into four topic categories: news
report, commericials, basketball game and football game.

Hidden Markov Model
In an HMM, there are a finite number of states and the HMM is always in one of

those states. At each clock time, it enters a new state based on a transition probability
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distribution depending on the previous state. After a transition is made, an output symbol
is generated based on a probability distribution, depending on the current state.

In the formal definition of HMM, the hidden states are denoted
}q,,q,{qQ N21 …= , where N is the number of states and the observation symbols are

denoted }v,..,v,{vV M21= , where M is the number of observation symbols. The state

transition probability distribution between states is represented by a matrix
j)}{a(i,A = , where at t) q |1at t Pr(qj)a(i, ij += , and the observation symbol

probability distribution is represented by matrix (k)}{bB j= , where bj(k) is the

probability of generating observation vk when the current state is qj. Initial state
distribution denoted by )1Pr( == tatq iπ  contains the probabilities of the model

being in every hidden state i at time t=1 that is the start point for a HMM.

A HMM is always represented by ),,( πλ BA= . We constructed four HMMs,

corresponding to news, commercials, football game, and basketball game, respectively.
HMM Process

The HMM process consists of two phases, viz. training and classification. Figure.1
shows the training process for the basketball game HMM and classification process for a
given video clip.

Training. The HMM training step is essentially to create a set of hidden states Q
and a state transition probability matrix A for each video topic category. The process of
training a HMM for basketball videos is illustrated as the upper part in Fig.1. The other
three HMMs are trained in the same way.

We first summarize all videos in the basketball game training set to extract
chromaticity signatures of keyframes. Then we cluster these signatures and take the
medoids of resulting clusters as hidden states for a HMM. Here we use the CLARANS
clustering algorithm (Ng and Han, 1994). This algorithm is an improved k-medoids
clustering algorithm based on randomized search, which is effective and efficient in
spatial data mining with large data sets.

The state transition probability matrix includes the probabilities of moving from one
hidden state to another. There are at most M2 (M is the number of states) transitions
among the hidden states. Since each of keyframe clusters obtained from the above step
corresponds to a hidden state and each keyframe corresponds to a set of frames, we
calculate the probabilities based on the number of frames falling into these clusters and
the number of frames temporally transiting between clusters.

Classification. In the classification phase, given a target video, we first need to
make an observation sequence and feed it into every HMMs. By evaluating the
probability for each HMM, the target video is assigned into a topic category with the
highest probability of the HMM.

For the observation sequence of the target video, we first summarize the target video
and extract a set of keyframes in time order and take these keyframes as observation
symbols. We then build a temporal and keyframe-based summarized video sequence
(TSV) that is replicating each keyframe a number of times equaling the number of frames
represented by the keyframe in the video sequence, and order these keyframes by time. In
this way, a temporal feature can be maintained in the resulting sequence.

We also need to compute the observation symbol probability matrix B for each
HMM, containing the output probabilities of the observation symbols given a particular
hidden state. We compute these probabilities by the inverse L2 distance that means more
distance between an observation frame vector and a state vector, less probabilities of the
observation frames belonging to the state. We have to calculate this matrix in the
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classification phase because the observation symbols of video keyframes are in an infinite
set so that there is no way to train it in advance. The rationale behind the use of the
distance for the probability is that it is the visual distance or similarity that stands for the
relationship between observations and states in this video case.

We use the Forward algorithm to calculate a probability for each HMM, and thus
choose the video type with the most probable HMM. The Forward algorithm first defines
a partial probability,

∂(t,j)= Pr( observation symbol | hidden state is j ) × Pr(all paths to state j at time t),
which is the probability of reaching an intermediate state, illustrated in Fig. 2(a),

then recursively calculates the probability of observing a sequence given a HMM,

∑ +⋅∂⋅+=+∂
i

ttotfromjiaitjtbjt 1)),(),((),1(),1(

and
1)(),1(),1( =⋅=∂ tatjjbj π .

Finally we calculate the probability for each HMM with the sum of partial
probabilities of reaching every states at the end moment. The forward algorithm is, in
effect, based upon the lattice structure shown in Fig. 2(b). The key is that there is only N
states (nodes at each time slot in the lattice), all the possible state sequences will remerge
into these N nodes, no matter how long the observation video sequence is.

EXPERIMENT RESULTS
We evaluate our classification method by classifying four types of TV programs:

news report, commercials, basketball game, and live football game. We collected 100
video clips of 5 minutes each from TV broadcasting as the training set for each video
category. Another set of 30 video clips for each category was used as the testing set. We
assume that the input videos always belong to one of the four categories of TV program.

Table 1 gives the classification results using four HMMs for the four video
categories. From this table we observe that the classifier can accurately identify
basketball games and football games, but the separation of commercials from news
reports is somewhat less successful, although still impressive. The reason is that these
categories contain much chromatic information and the state duration is usually short in
their models.

CONCLUSIONS
In this paper, we have described a video content classifier based on HMM using

chromaticity signatures from video summarization and their temporal relationship. The
video characterization and summarization method represents the video as a series of
compressed chromaticity signatures. The HMM process uses these signatures and takes
advantage of the temporal feature to train HMMs and evaluate the probability of the
given video being in one of the four categories of TV programs.
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Table 1. Classification results (unit: 100%)

              Result

Expectation
News Commercial Basketball Football

News 80.0 13.3 0 6.7
Commercial 23.3 66.7 6.7 3.3
Basketball 3.3 3.3 93.3 0
Football 0 3.3 0 96.7

  

Figure 1. A HMM classification system                   Figure 2. (a) Illustration of the sequence of
                                                                                      operations required for computation of
                                                                                      partial probability. (b) Implementation of
                                                                                      the computation of partial probability in
                                                                                      terms of a lattice of observations and states.
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