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Abstract:    Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This 
paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface 
EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) 
or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-
mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface 
EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-
resent different patterns of surface EMG signals. 
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INTRODUCTION 
 

Surface EMG signal recorded from the skin sur-
face over limb muscles in the process of limb 
movement is called action surface EMG (ASEMG) 
signal. Containing the electrical and functional prop-
erties of limb muscle contraction and providing the 
information on the neuromuscular activity from 
which ASEMG signal originates, ASEMG signal has 
been widely applied in rehabilitation and the controls 
of prosthetic devices for the individuals with ampu-
tations or congenitally deficient limbs (Hudgins et al., 
1993; Chang et al., 1996; Kang et al., 1996; Englehart 
et al., 1999; Hu et al., 2005). But to large extent, the 
applications depend on the features extracted from 
ASEMG signal. 

So far, many parameters of ASEMG signal have 
been used to represent the features. In the control 
system which Hudgins et al.(1993) devised for pow-
ered upper-limb prosthesis, he utilized some 

time-domain parameters such as zeros crossings, 
mean absolute value, slope sign changes, etc. Because 
of the random nature of raw ASEMG signal, it was 
also analyzed as a stochastic process. For example, 
Kang et al.(1996) used autoregressive models to 
represent ASEMG signal, and Chang et al.(1996) 
took advantage of the cepstral coefficients of 
ASEMG signal as the control command of 
man-machine interface. Later, some time-frequency 
features of ASEMG signal, such as wavelet coeffi-
cients (Englehart et al., 1999) and relative wavelet 
packet energy (Hu et al., 2005), were used to describe 
the characteristics of ASEMG signal, which is very 
complex, nonstationary and nonlinear (Gupta et al., 
1997; Lei et al., 2001), so there is still much work to 
do so as to make a right decision for different 
ASEMG signal patterns. 

In recent years, nonlinear dynamics has been 
greatly developed and it has been made clear that 
simple nonlinear systems can exhibit highly complex 
behavior (Grassberger and Procaccia, 1983; Parker 
and Chua, 1989; Buczkowski et al., 1998; Kim et al., 
1999; Eke et al., 2002; Sarkar and Leong, 2003). In 
complex signal exists self-similarity phenomenon, in 
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that there is a smaller scale structure that resembles 
the larger scale structure in complex medical signals 
such as EMG, EEG (electroencephalography) and 
ECG (electrocardiograph) signals (Eke et al., 2002). 
Fractal dimension can be applied to determine the 
self-similarity (Eke et al., 2002; Sarkar and Leong, 
2003) and has been applied in surface EMG signal 
(Gupta et al., 1997). However, because ASEMG 
signal’s SNR is very low (Xu and Xiao, 2000), in 
order to get the fractal dimension which accurately 
characterizes the nonlinear characteristics of ASEMG 
signal, a necessary step is to effectively remove noise 
from the ASEMG signal before the fractal dimension 
is estimated. 

In this paper, the authors distinguish two dif-
ferent patterns of ASEMG signals by their fractal 
dimensions from the filtered ASEMG signals. 
 
 
MATERIALS AND METHODS 
 
ASEMG acquisition and preprocessing 

All ASEMG signals were recorded from the 
right forearm flexor of 30 healthy volunteers in the 
EMG room at Hua Shan Hospital in Shanghai, China. 
Two set 2 cm apart, 5 mm diameter electrodes were 
put on the skin surface over the flexor carpi radialis on 
the right forearm along the flexor. The negative elec-
trode was placed nearer every volunteer’s heart than 
the positive electrode to form a differential com-
parator amplifier. The sampling frequency was 1000 
Hz. During the acquiring process, every volunteer 
was instructed to complete two different kinds of limb 
actions: FS (forearm supination) and FP (forearm 
pronation). Two patterns of ASEMG signals lasting 
more than 1000 ms were recorded elaborately from 
every volunteer’s forearm flexor: one during FS and 
the other during FP. Thus, among the 60 sets of 
ASEMG signals acquired, there were two ASEMG 
signal patterns: FS ASEMG signal and FP ASEMG 
signal, 30 sets for each pattern. 

Then, all 60 sets of raw ASEMG signals were 
filtered by a low-pass filter. Major spectral energy of 
surface EMG signal centered in 0~350 Hz (Xu and 
Xiao, 2000), so the cut-off frequency of the low-pass 
filter was set at 350 Hz. Fig.1 shows a raw signal and 
its filtered signal from the same volunteer: the left 
panels for FP and the right panels for FS. Fig.1 shows 

clear that after the raw signal had been filtered, the 
noise, especially the high frequency pulses, is suc-
cessfully reduced and that the amplitude of the signal 
varies between −0.5 and 0.5, and is symmetric. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m-dimension phase space reconstruction 

According to Takens’ theorem, in order to suf-
ficiently disclose information hidden in the medical 
time series, a time series, xi, i=1, 2, …, L, is often 
turned into a new m-dimensional phase space in the 
following way. L is the length of the signal. 

 
y1={x1, x1+τ, … x1+(m−1)τ}  
y2={x2, x2+τ, … x2+(m−1)τ} 
… 
yi={xi, xi+τ, … xi+(m−1)τ} 
… 
yN={xN, xN+τ, … xN+(m−1)τ} 
 

where N is the number of the points in the phase space 
(N=L−(m−1)τ), m is embedding dimension and τ is 
time delay. Because real ASEMG signal is finite and 
noisy, an appropriate τ must be chosen to ensure that 
the elements of yi are independent and that the same τ 
can be used for all embedding dimension m. Many 
methods proposed for obtaining appropriate time 
delay τ include the autocorrelation function, the mu-
tual information and C-C method (Kim et al., 1999). 
Due to its convenience and fast calculation, in this 
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Fig.1  Raw signal and filtered signal (a) and (b) are re-
spectively raw FP signal and FS signal of the same volun-
teer; (c) and (d) are respectively the filtered signals of the
signals on (a) and (b) 
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paper the autocorrelation function is adopted to get 
the time delay τ which is determined by the first 
zero-crossing of the autocorrelation function. An 
embedding dimension m should satisfy the condition 
(Parker and Chua, 1989): m≥2D+1 where D is the 
fractal dimension of real medical signal. 
 
Fractal dimension 

Fractal dimensions have multiple definitions, but 
one thing in common: their value is usually a 
non-integer, fractional number, hence this dimension 
is referred to as fractal. The existing fractal dimen-
sions include Hausdorff dimension, box dimension, 
information dimension, correlation dimension and so 
on (Sarkar and Leong, 2003). In this paper, the cor-
rection dimension (Dc) of time series is used as fractal 
dimension. Dc introduced by Grassberger and Pro-
caccia (1983) is widely used in many fields for the 
characterization of strange attractors. In fractal 
analysis, Dc determines how the distribution of signal 
set scales up/down with decreasing/increasing radius 
of each hypersphere (Sarkar and Leong, 2003). In the 
GP algorithm for Dc, correlation integral function is 
applied as follows: 
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is Heaviside unit function, and dij is a Euclidean dis-
tance between points yi and yj in the reconstruction 
phase space. Dc can be estimated by 
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An appropriate r range must be chosen in order 

that Dc can describe the structure of self-similarity in 
surface EMG signal. 

 
Choosing r range for ASEMG signal with finite 
sampling points 

r is the side length of the hypersphere. Choosing 
an appropriate r range for the Heaviside function is 

worrisome business requiring much computation time. 
For the signal with infinite sampling points, r should 
be set r→0. But for real signal, the finite sampling 
points force us to calculate the fractal dimension at 
larger r. In this paper, we get the r range by observing 
the results of the following experiment. From the half 
minimum of the distances between any two points in 
reconstruction space to the maximum of the distances, 
the large range is divided into 99 equal intervals with 
100 points. The value at the points is regarded as r. 
From small to large, the points are identified by the 
number k from 1 to 100. Then according to Eq.(3), for 
all identical pattern of signals, log(Ic(r)) is plotted 
against log(r) in the same plot. Fig.2 shows log(Ic(r)) 
vs log(r) for the filtered signal. According to 
Buczkowski et al.(1998)’s study, it is noticeable from 
Fig.2 that there are several dimensions for every 
signal no matter what is FP or FS signal. The values at 
the middle flatter curve of log(Ic(r)) vs log(r) are 
chosen as r, so the points (k) are about from 10 to 20 
for filtered FP or FS signal. With the same method, 
we get the points (k: 10 to 20) for raw FP or FS signal. 
Therefore, from the r value at k=10 to the r value at 
k=20, the small range is set as the r range within 
which Dc is calculated according to Eq.(3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
RESULTS 
 

The fractal dimensions of 60 sets of filtered 
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Fig.2  The plot of log(Ic(r)) vs log(r) to determine an ap-
propriate r (a) for filtered FP signals and (b) for filtered FS
signals 
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signals and those of 60 sets of raw signals are calcu-
lated according to Eq.(3). The fractal dimension is the 
slope coefficient of the fitting straight line of the 
middle flatter curve (k: from 10 to 20) of log(Ic(r)) vs 
log(r) in Fig.2. The fractal dimensions are distributed 
on Fig.3a and Fig.3b. Fractal dimensions from raw 
signals distribute more dispersedly than those from 
filtered signals. The fractal dimensions of raw signals 
obviously disperse between 0.5 and 3.0, no matter 
whether they are of the FS signal or of the FP signal. 
The fractal dimensions of the FS signal are mixed 
together with those of the FP signal. Though the 
fractal dimensions of filtered signals are distributed 
between 0.5 and 3 too, the range becomes narrower if 
the fractal dimensions of filtered FP signal or of fil-
tered FS signal are considered alone: 1.5~3 for fil-
tered FS signal and 0.5~2 for filtered FP signal. Most 
fractal dimensions of filtered FS signal are bigger 
than those of filtered FP signal. Obviously, FS signal 
can possibly be distinguished from FP signal by their 
fractal dimensions of filtered signals but not by those 
of raw signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In pattern recognition, whether a parameter can 
be regarded as a feature, which describes the general 
characteristics of the signals belonging to the same 
pattern and by which different patterns of signals are 
classified, depends on two characteristics. One is that 
the dispersion for the same cluster (pattern) should be 
as low as possible. Usually, the dispersion is meas-
ured by the standard deviation (SD). The smaller the 
SD of the features belonging to the same cluster is, the 
lower is the dispersion. The other is that the distance 
between the mean features belonging to different 
clusters should be large. The distance is called the 
cluster-to-cluster distance and can be calculated by 

  
dij=||mvi−mvj||                                     (4) 

 
where mvi (mvj) is the mean feature of cluster i (j), that 
is, mvi (mvj) is the mean value of the features of all 
signals belonging to the cluster i (j). Certainly, larger 
value of dij makes a classifier work better.  

The statistical features about the fractal dimen-
sions are listed in Table 1. The mv of filtered FS is 
much bigger than that of filtered FP signal. Both SD 
of filtered FP and FS signals are much less than those 
of raw FP and FS signals. dij between filtered FP and 
FS signals is much larger than dij between raw FP and 
FS signals. In consequence, the fractal dimensions 
from filtered signals, compared to fractal dimensions 
from raw signals, are more appropriately regarded as 
the features. In fact, it is impossible to classify the two 
patterns of ASEMG signals by their raw signal’s 
fractal dimensions. 

 
 

 
 
 
 
 
 
 
 
 
DISCUSSION AND CONCLUSION 
 

In the forearm flexor, there are many muscles 
(e.g. Brachioradialis, pronator teres, flexor carpi ra-
dialis, flexor digitorum superficialis, etc.) taking 
charge of or assisting forearm actions. Major motor 
unit action potentials (MUAPs) of ASEMG signal 

Table 1  Statistical features of the fractal dimensions 
Filtered signals                       Raw signals 

 FP            FS  FP              FS 
mv    1.2771       2.1424              1.9347       1.9248 
dij              0.8653                                     0.0099 
SD     0.2286       0.3166              0.6352       0.5712 
mv: Mean value; SD: Standard deviation; dij: Clus-
ter-to-cluster distance 
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Fig.3  The distribution of fractal dimensions (a) for filtered
surface EMG signals; (b) for raw surface EMG signals.
Asterisk (*) and circle ( ), respectively, symbolize FS and
FP signals 
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analyzed in this study come from the muscles. When a 
volunteer wants to take FS or FP, the motor units 
(MUs) of the muscles responsible for the limb action 
are stimulated by excitation from the ulnar or median 
nerve to actively change the level of the muscles 
contraction, so MUAPs from the muscles are en-
hanced. Most MUAPs from other muscles are not 
enhanced. Because the tissues between MUs and 
surface electrode have the effect of a low pass filter on 
MUAPs, MUAPs from the MUs closer to the surface 
electrode have stronger amplitude and higher fre-
quency, and MUAPs from the farther or deeper MUs 
have weaker amplitude and lower frequency (Xu and 
Xiao, 2000; Hu et al., 2005). MUAP is the basis unit 
of ASEMG signal. Therefore, the properties (such as 
spectral energy distribution) of ASEMG signal 
change with the change of the muscles contribution 
levels. So it is clear that between forearm action and 
its ASEMG signal there is a relationship which can be 
signified by some physical parameters such as am-
plitude, frequency, fractal dimension and so on. 

When fractal dimension is calculated directly 
from the raw ASEMG signal, the fractal dimension 
cannot be used as the feature by which the FS 
ASEMG signal and FP ASEMG signal is identified, 
because the fractal dimensions of two patterns of 
ASEMG signals almost mix together. Obviously, it is 
the noise (in 350~500 Hz) that interferes with the 
accurate calculation of fractal dimension. However, 
the fractal dimensions calculated from the filtered 
signals can represent different patterns of ASEMG 
signals, because the fractal dimensions of FS ASEMG 
signals and those of FP ASEMG signals fall in two 
different regions and the dispersion of fractal dimen-
sions of filtered signals is lower than that of raw 
signals. Lower SD of fractal dimensions implies that 
the fractal dimensions from the same pattern of sig-
nals are less variable, so the fractal dimension with 
lower SD can more accurately describe the general 
nonlinear characteristics of different patterns of 
ASEMG signal.  

The study results demonstrated that the fractal 
dimension can determine the functional characteris- 

 
 
 
 
 

tics of muscles and distinguish different kinds of 
ASEMG signal, even to control limb prostheses. 
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