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Abstract 

Purpose: The present study was conducted to investigate and classify two groups of healthy children and children 

with Attention Deficit Hyperactivity Disorder (ADHD) by Effective Connectivity (EC) measure. Since early 

detection of ADHD can make the treatment process more effective, it is important to diagnose it using new 

methods.   

Materials and Methods: For this purpose, Effective Connectivity Matrices (ECMs) were constructed based on 

Electroencephalography (EEG) signals of 61 children with ADHD and 60 healthy children of the same age. ECMs 

of each individual were obtained by the directed Phase Transfer Entropy (dPTE) between each pair of electrodes. 

ECMs were calculated in five frequency bands including, delta, theta, alpha, beta, and gamma. Based on ECM, 

an Effective Connectivity Vector (ECV) was constructed as a feature vector for the classification process. 

Furthermore, ECV of different frequency bands was pooled in one global ECV (gECV). Multilayer Artificial 

Neural Network (ANN) was used in the steps of classification and feature selection by the Genetic Algorithm 

(GA). 

Results: The highest classification accuracy with the selected features of ECV was related to theta frequency band 

with 89.7%. After that, the delta frequency band had the highest accuracy with 89.2%. The results of ANN 

classification and GA on the gECV reported 89.1% of accuracy. 

Conclusion: Our findings show that the dPTE measure, which determines effective connectivity between the brain 

regions, can be used to classify between ADHD and healthy groups. The results of the classification have 

improved compared to some studies that used the functional connectivity measures. 

Keywords: Attention Deficit Hyperactivity Disorder; Electroencephalography; Phase Transfer Entropy; Effective 

Connectivity; Classification. 
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1. Introduction  

Attention Deficit Hyperactivity Disorder (ADHD) is 

regarded as a neurodevelopmental disorder starting in 

childhood, although its symptoms can continue into 

adulthood [1]. The prevalence of ADHD in children has 

been estimated by 12.1 and 3.9% among boys and girls, 

respectively [2]. ADHD is characterized by inattention, or 

excessive activity, and impulsivity or their combination. 

Given the prevalence of ADHD and its social consequences 

in childhood and adulthood, its early diagnosis in children 

can make treatment processes and psychological 

interventions more effective [3, 4]. In addition to diagnosing 

ADHD by studying children's behaviors where they should 

be monitored for at least 6 months, examining children's 

brain function using Electroencephalogram (EEG) can 

also help in early the diagnosis of the disease [5]. 

EEG is a very popular modality for examining differences 

in brain function between ADHD and healthy groups due 

to its high time resolution and ease of data recording 

compared to other brain imaging modalities. One approach 

in processing EEG in children with ADHD is extracting 

features from the brain signals and applying machine 

learning algorithms to classify the two groups. Sadatnezhad 

et al. (2011) achieved a classification accuracy of 86.4% 

between the children with ADHD and healthy children 

by extracting fractal features and power of the EEG 

frequency bands [6]. Allahverdy et al. (2011) used non-

linear features of EEG containing fractal dimension and 

obtained 86% of accuracy in classification [7]. Mohammadi 

(2016) improved classification accuracy between the two 

groups by 93.65% using a multilayer neural network 

and a combination of non-linear features [8]. Nazhvani 

et al. (2013) and Mueller et al. (2011) classified the 

healthy children and children with ADHD by extracting 

Evoked Related Potential (ERP) features with 92.1 and 

91% of accuracy, respectively [9, 10]. Another approach in 

EEG processing is investigating the connectivity between 

brain regions that can be functional or effective. Functional 

connectivity provides information on the correlation or 

mutual dependency between recording channels, whereas 

effective connectivity investigates the effectiveness of 

various regions on each other and determines the direction 

and strength of information transmission. Ahmadlou 

(2010, 2011) reported classification accuracies of 87.5% 

and 95.6% for a synchronization pattern in theta and 

delta frequency bands by applying criteria for determining 

functional connectivity, such as Synchronization Likelihood 

(SL) and Fuzzy Synchronization Likelihood (FSL) [11, 12]. 

Pereda (2018) found approximately 95% of classification 

accuracy for a functional connectivity pattern with 280 

features [13]. Recently, Kiiski (2020) used the Weighted 

Phase Lag Index (WPLI) measure as a neuromarker 

for adults with ADHD [14]. WPLI measures the phase 

difference between two signals; and attenuates the effect 

of volume conduction by weighting phase differences 

close to zero-phase lag. Because WPLI is not based on 

signal amplitude, it is insensitive to ADHD-specific spectral 

changes [15, 16]. Kiiski found that the elevated functional 

connectivity in the delta and theta bands was the best 

predictor for ADHD status [14]. 

Accordingly, in this paper, the directed Phase Transfer 

Entropy (dPTE) was used, which was recently introduced 

to determine the strength and direction of connectivity [17]. 

Contrary to functional connectivity measures introduced in 

the previous studies on EEG of the ADHD group, dPTE 

considers the direction of communication and measures 

effective connectivity. This measure uses phase time series 

of signals as input of Transfer Entropy (TE) function, 

so it has fewer limitations in interpreting connectivity 

of amplitude. TE is a model-free effective connectivity 

measure that investigates linear and non-linear couplings 

[18, 19]. Recent research has investigated the directional 

information transfer by the dPTE measurement in the 

brain regions on the Magnetoencephalography (MEG) 

in various brain disorders including, Alzheimer's and 

Parkinson's [20-22]. Dauwan et al. (2016) used the dPTE to 

examine the connectivity of brain regions in dementia 

with Lewy bodies [23] and Ahmadi et al. (2020) applied the 

dPTE method to decode covert visual attention based on 

EEG [24]. In more recent researches, the Phase Transfer 

Entropy (PTE) measure and the graph theory have been 

used to investigate the brain networks in brain disorders 

with the EEG signals [25-27].  

In this research, the classification method was performed 

between two groups of healthy children and the children with 

ADHD using a dPTE-based connectivity matrix. It was 

hypothesized that feature extraction from Effective 

Connectivity Matrices (ECM) between EEG signals 

obtained by dPTE measure could be a reliable criterion for 

classifying the two groups. To the best of our knowledge, 

this study is the first study that classified the healthy 

children and those with ADHD during an attention task 

using dPTE values obtained from machine learning 

algorithms. 
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The rest of the paper is organized as follows: at first, in 

the “Methods” Section, steps of recording and preprocessing 

of EEG data are described. After that, the procedure of 

constructing an Effective Connectivity Vector (ECV) and 

global ECV are explained. Then, feature selection and 

classification methods are given. In the “Results” section, 

the results of the classifier are presented. In the “Discussion” 

section, the described results are compared with the results 

of the previous research, and conclusions are presented. 

2. Materials and Methods  

2.1. Subjects  

The participants in this study were 121 children who 

were divided into two groups: children with ADHD 

(ADHD group) and healthy children (control group). 

The ADHD group consisted of 61 children (with a mean 

age of 9.62 ± 1.75 years old) whose disease was confirmed 

by an experienced psychiatrist according to the diagnostic 

and statistical manual of mental disorders –fourth edition 

(DSM-IV) criteria. The control group consisted of 60 

children (with a mean age of 9.85 ± 1.77 years old). The 

medical history of the control group was evaluated to 

ensure the absence of psychological disorder, epileptic 

history, drug abuse, and head injury. All the subjects 

participated in the experiment voluntarily, and informed 

written consent was obtained from their parents for their 

participation in the test. This research was approved by the 

Institutional Review Board (IRB) and the Ethics Committee 

of Tehran University of Medical Sciences (TUMS). 

Electroencephalogram signals were recorded by a digital 

device (SD-C24, Sholeh Danesh Co., Tehran, Iran) in the 

Psychology and Psychiatry Research Center at Roozbeh 

hospital (Tehran, Iran) [8]. In this task, a number of images 

were shown to each subject and the subject was asked to 

count the number of characters in each image. Correct and 

incorrect answers of the participants were not considered and 

the task was designed without rewards. During the task, 

EEG was recorded based on a 10-20 standard system by 

19 channels with 128 Hz of sampling frequency and 16 bits 

of resolution. Figure 1 shows an example of these images. 

The duration of recording was dependent on the performance 

of each subject. Data of which are available now in [28]. 

2.2. EEG Pre-Processing 

Pre-processing of brain signals was done by EEGLAB 

toolbox (version 14.1.1) in MATLAB 2018a software. 

These steps were performed according to Makoto’s 

preprocessing pipeline. A band-pass finite impulse response 

(FIR) filter of 1 - 48 Hz was applied to continuous EEG data. 

Channel interpolation was performed by adjacent channels 

for the channels that were incorrectly recorded. EEGs were 

re-referenced to the common average and were decomposed 

using Independent Component Analysis (ICA). Eye blinks 

and muscle artifacts were identified by ICA and were 

manually removed based on their spectra, scalp maps, and 

time courses. Afterward, EEG data were filtered by an offline 

discrete fast Fourier transform in five frequency bands, 

including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

beta (13–30 Hz), and gamma (30–45 Hz). In the filtering 

steps, FIR filters with zero phase shift were used to avoid 

distorting phase response. 

2.3. Measuring ECV 

Effective Connectivity (EC) was investigated between 

all pairs of channels by dPTE in five frequency bands. The 

dPTE is a measure based on TE that determines the 

strength and direction of connectivity. TE is a model-

free implementation of the Wiener’s Principle of Causality 

and it can be expressed in terms of information theory 

as follows: “How much additional information does the 

past state of process X contain about the future observation 

of a value of Y given that, we already know past state 

of Y?” [18, 19]. For determining information transfer from 

X to Y, TE can be written based on conditional mutual 

information (or the difference between the amounts of 

two mutual information values) or time series probability 

functions as follows (Equation 1): 

TExy= ∑ P(Yt+|Y,X)
log P(Yt+|Y,X)

log P(Yt+|Y)

 

 (1) 

 

Figure 1. An example of the images shown to the 

children during the recording of the signals [29] 
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Where  is an interaction delay between X and Y.  

Lobier (2014) developed the concept of TE, called 

PTE, to study the transfer of information between two 

signals using the instantaneous phase [17]. Accordingly, 

instantaneous time series of the signals are extracted 

and applied as input to the TE function using the Hilbert 

transform (Equation 2). 

PTExy= ∑ P(Y)P(X)P(Y)
log P(Y|Y,X)

log P(Y|Y)

 

 (2) 

Where the probabilities are obtained by building 

histograms of phase estimates in an epoch. For this study, 

dPTE, as described in the studies by Engels and Hillebrand 

was used [21, 22] (Equation 3): 

dPTExy= 
PTExy

PTExy+ PTEyx
 (3) 

The dPTE indicates the direction of information 

transmission and determines which signal is a directional 

transmitter and which signal is a directional receiver of 

information relative to each other. The dPTE is bounded in 

the range of 0.5<dPTExy≤1 when information flows 

preferentially from a time series X to time series Y, when 

signal X is receiving concerning signal Y, 0≤ dPTExy <0.5. 

If this value is equal to 0.5, it means that there is no 

preference in the direction and strength of information 

transmission between the two signals. The procedure 

described in [22] was implemented to determine dPTE 

parameters, such as interaction delay (), histogram 

calculation method, and the number of bins. For each 

subject in each frequency band, dPTE calculations were 

performed on 8-second time windows. ECMs were averaged 

over the windows, providing an ECM for every subject 

in each frequency band (see Figure 2a). 

Directed connectivity matrices are usually not symmetric. 

The dPTE matrix is also not symmetric, although according 

to dPTE calculation, the two triangular parts are trivially 

related: dPTExy =1 – dPTEyx. As a result, both triangles 

express direction and strength of connectivity and do not 

provide more information than each other [30]. 

For each subject, the upper triangle of ECM was 

converted into a vector by placing the elements together 

in a row. This vector was called ECV. In this way, an 

ECV was obtained for each subject in each frequency 

band. Therefore, the ECV vector had 171 entries 
(19*19)-19

2
, 

representing EC values between every pair of electrodes 

 

 

Figure 2. Example of ECV of one subject in the ADHD group. a) For every subject, and for every frequency band, an ECM 

was computed using dPTE. b) From every ECM, the upper triangular entries, consisting of the pair-wise connectivity between 

all possible combinations of electrodes were extracted. An example of an ECV in the delta band is shown in the bottom 

plot in. c) An ECV was computed for every frequency band and they were pooled together to obtain a single global ECV  

 a) Effective Connectivity Metrix (ECM) per frequency band 

 

Delta ECM 

 

 b) Delta Effective Connectivity Vector (Delta ECV) 

 

c) global ECV (gECV) 
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(see Figure 2b). In addition to ECV in each frequency 

band, ECVs were put together for each individual to 

create the global ECV (gECV). Given five frequency 

bands, the gECV will have 855 entries (855 entries = 171*5 

frequency bands) (see Figure 2c). The ECV in each 

frequency band and gECV were used for classification 

analysis. 

2.4. Feature Selection and Classification 

Feature selection and classification procedures were 

performed in two modes. In the first mode, a set of features, 

including ECVs of all individuals in each frequency band 

were used. Therefore, classification results were reported 

in each frequency band. In the second mode, the gECV 

constructed by ECV in five frequency bands was used. 

Feature selection is a process that reduces the number of 

features and selects a subset of original features. Since 

dPTE values were used as feature vectors in this study, 

the feature selection process showed how many brain 

connections can be more effective in distinguishing 

between the two groups. Features must first be normalized 

before performing the classification step. Thus, Z-score 

was used in each frequency band to normalize ECV values. 

In this paper, the Genetic Algorithm (GA) was used 

as a feature selection algorithm and the Artificial Neural 

Network (ANN) was used as a classifier. GA is a common 

and reliable method for optimization and feature selection, 

inspired by biological evolution. GA uses repeated mutation 

and recombines parts of the best-known solutions [31]. 

For using GA in the feature selection, a feature vector 

(ECV or gECV) must be considered as a chromosome. 

The presence or absence of each feature in a chromosome 

was determined by the values of 0 and 1, respectively, 

in each gene. First, the population of primary chromosomes 

was determined and the genes on each chromosome were 

assigned random values of 0 and 1. A fitness function value 

was calculated for each chromosome. Iterative steps of the 

algorithm continued until the appropriate value of the fitness 

function was obtained by adjusting the other parameters 

of GA, such as mutation rate and crossover probability. 

In this study, ANN was used as a fitness function in 

such a way that the percentage of classification accuracy 

by ANN was attributed to each chromosome at each 

step of the GA. The three-layered feed-forward Multi Layer 

Perceptron (MLP) with ten neurons in the hidden layer 

was used for fitness computation. The Levenberg-Marquardt 

training algorithm as a kind of backpropagation calculation 

was applied for training the network. Tables 1 and 2 show 

parameters of GA and ANN setting, respectively. 

3. Results 

The proposed algorithm was applied in all five ECVs 

and gECV. The results obtained for classification using 

ECVs are shown in Table 3. As depicted in Table 3, 

accuracy for classification of the two groups was determined 

by ANN in two modes of all the features and the selected 

feature by the GA. For performing cross-validation, the 

K-fold algorithm was used in each classification step. Based 

on k-fold, the dataset was divided into ten folds randomly 

(k=10). Consequently, each fold was used as a test group 

once and nine folds were used as training data. Then, the 

accuracy of classifiers was calculated by averaging the 

Table 1. Parameters of the GA 

Parameter Setting 

Population size 100 

Mutation rate 0.02 

Crossover probability 0.8 

Iteration number 50 

 

Table 2. Parameters of the ANN 

Parameter Setting 

Epoch number 100 

Neurons number in the 

hidden layer 
10 

Training data (%) 70 

Validation data (%) 15 

Testing data (%) 15 

 

Table 3. Accuracy of ANN classification results using 

the k-fold method without and with feature selection 

and number of features selected in each ECV 

ECV 

ANN 

without 

Feature 

Selection 

ANN with 

Feature 

Selection 

Number of 

Features Selected 

by GA (from 172 

Features) 

Delta 72 ±1.21 89.2 ±1.33 86 

Theta 70.2 ±1.52 89.7 ±1.14 90 

Alpha 63.4 ± 1.98 83.4 ±1.32 80 

Beta 68.2 ±1.35 84.7 ±1.27 72 

Gamma 61.3 ±1.77 83.6 ±1.21 96 
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results of ten folds and the related results are illustrated in 

Table 3 in the form of mean and standard deviation.  

In Table 3, the mean and standard deviation for the 

classification of test data in each ECV are given in two 

columns. In the first column, the feature selection process 

was not used and all ECV elements in each frequency band 

were considered as features for each subject. In the second 

column, a feature selection algorithm was used by the GA. 

The number of the selected features per frequency band 

was indicated in the third column. Figure 3 shows the 

average percentage of classification error using the GA 

and ANN for alpha frequency band at 50 iterations.  

As shown in Table 3, in all the frequency bands, in the 

mode where the GA was used for the feature selection step, 

classification was improved compared to the mode where 

the total features of each band were used. Approximately 

20% improvement in classification was achieved for 

each frequency band in feature selection mode. The highest 

value of classification accuracy (89.7%) belongs to the 

ECV in the theta frequency band when the feature selection 

process is performed. After that, the ECV of the delta 

band with 89.2% classification accuracy ranked second 

in the classification process between frequency bands. 

These two percentages of classification accuracy for the 

delta and theta bands were obtained by selecting 86 and 

90 features from 172 features by the GA, respectively. 

In the next step, gECV was used for classification between 

the two groups. Thus, the gECV of the subjects was once 

completely applied to ANN as input, and once again feature 

selection process was performed on the gECV by GA and 

the selected features were used for classification. The results 

for classification using gECV are shown in Table 4. 

The results of gECV classification showed that feature 

selection with GA and ANN can classify both healthy 

and ADHD groups with 89.1% accuracy. 

4. Discussion 

In this paper, the connectivity between brain regions 

in the attention task was evaluated in healthy children 

and children with ADHD. Effective brain connectivity 

between the two regions was measured by dPTE. Thus, 

each individual had an average ECM based on the dPTE. 

The ECV for each subject was constructed by converting 

the upper triangular part of the ECM into a vector in all 

five frequency bands. Feature vectors were obtained by 

normalizing ECV values in the two groups. Classification 

between the two groups was performed by ANN in two 

modes. In the first mode, all ECV elements were used 

as features, and in the second mode, a feature selection 

process was performed on ECVs using GA. For combining 

the information from different bands, for every subject, 

ECVs of different frequency bands were pooled in one 

gECV. Classification steps were repeated by gECVs.  

As demonstrated in Table 3, classification accuracy 

between the two groups based on ECVs of delta and 

theta bands was higher than the other frequency bands. This 

result is consistent with the results of the previous research 

that classified two groups with functional connectivity 

features. In Ahmadlou's (2010, 2011) studies, in which 

two groups were classified with SL and FSL measures, 

the best classification features were related to the delta 

and theta frequency bands [11, 12]. In Barttfeld's (2014) 

study, a significant difference was observed in fronto-

occipital functional connectivity in the delta band between 

the two groups [32]. According to the results of our research 

and previous research, it can be concluded that more 

distinction between the healthy and ADHD groups in the 

delta and theta frequency bands can be associated with 

higher levels of hyperactivity, impulsivity, and depressive 

 
Figure 3. Percentage of classification error in alpha 

frequency band by GA feature selection until 50 

iterations 

 

Table 4. Accuracy of ANN classification results using 

the k-fold method without and with feature selection 

and number of features selected in gECV 

 

ANN 

without 

Feature 

Selection 

ANN with 

Feature 

Selection 

Number of 

Features 

Selected by 

GA (from 

855 features) 

gECV 71±1.59 89.1±1.74 422 
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symptoms in the ADHD group. The highest accuracy of 

classification in our study with 89.7% and 89.2%, belongs 

to the ECV of the theta and delta bands, respectively. In 

addition, the classification using the gECV reported 89.1% 

of classification accuracy. The accuracy of the classification 

in our study is better than the results of some previous 

studies in which the two groups were classified based on 

the features of functional connectivity. Ahmadlou (2010) 

reached an accuracy of 87.50%. for the diagnosis of 

ADHD with FSL patterns of EEG functional connectivity 

[11]. The effective connectivity measures contain more 

information than criteria for determining functional 

connectivity. Since the dPTE, in addition to the strength of 

connectivity between regions, indicates the direction 

of information transfer, it can work better in classification. 

The results of the classification in our study were higher 

than some previous studies that used nonlinear features for 

the classification [6, 7].  

As shown in Figure 3, the parameters of the GA were 

properly adjusted for feature selection process. Sufficient 

iterations to search and find the best array of features 

with the least amount of classification error were performed 

by the GA. The feature selection algorithm in the beta 

frequency band provided the lowest number of features 

(72 features) out of 172 features among the frequency 

bands. However, classification accuracy in this frequency 

band was equal to 84.7%. The gECV was constructed 

by putting ECV of each frequency band together. Classifying 

and selecting the features by gECV also produced an 

accuracy of 89.1%, which is less than the classification 

accuracy of the delta and theta bands. This may be due 

to large dimension of the feature vector in gECV, which 

has brought classification response closer to overfitting. 

In both modes, the number of the selected features was 

almost half of the total feature vector in each mode using 

ECVs and gECV, in the feature selection process using 

GA and ANN. 

In conclusion, our results regarding the effective 

connectivity between brain regions in the healthy children 

and the children with ADHD during the attention task 

by dPTE showed that ECV produces more classification 

accuracy in the delta and theta frequency bands (with 

89.2% and 89.7% accuracy, respectively) than higher 

frequency bands. A vector called gECV was constructed 

by the ECV of each subject in the frequency bands, 

which enabled feature selection and classification to 

classify the two groups with 89.1% of accuracy. To the 

best of our knowledge, this study was the first study used 

effective connectivity measure (dPTE) and machine 

learning algorithms (ANN and GA) for classification 

between healthy children and children with ADHD. 

Some of the results of the previous studies used functional 

connectivity measures and non-linear features were 

improved according to the results obtained in this paper. 

Our findings showed that features obtained based on 

dPTE can be reliable for classification between ADHD 

and control groups. 
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