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SUMMARY 
It is standard practice that a positive reversal test is claimed on the basis of inability 
to reject the hypothesis that two distributions share a common mean direction, and 
thus the claim of a positive reversal test is in fact often based on a lack of 
information. This is unsatisfactory. Therefore it is suggested that positive reversal 
tests should be classified according to the amount of information that was available 
for the test. This amount of information is readily indicated by the critical angle 
(e.g., at the 95 per cent confidence level) between the two sample mean directions 
at which the hypothesis of common mean direction for the distributions would be 
rejected. It is recommended that 5", 10" and 20" be used as the breakpoints in the 
classification. 
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1 INTRODUCTION 

In attempting to reconstruct the ancient history of the 
geomagnetic field it is important to establish, as far as is 
possible, that the palaeomagnetic directions deduced from 
rocks relate to a single component of magnetization, and are 
not contaminated by other components. One stability test 
used as an aid to establish this is the reversal test, which (in 
effect) tests whether two sets of observations (each 
'observation' usually being a site-mean direction), one with 
normal polarity and the other with reverse polarity, could 
have been drawn from distributions with mean directions 
180" apart. The basis of this test is that if the magnetizations 
are contaminated with another component then both the 
normal and the reverse directions would be shifted towards 
the direction of the contaminating component, and they 
would no longer be 180" apart (Cox & Doell 1960). 

In practice, the test is of course performed by inverting 
the observations from one polarity and testing whether the 
two sets of observations could have been drawn from 
distributions. sharing a common mean direction (throughout 
the rest of this paper it is therefore understood that one of 
the two samples has had its directions inverted). Naturally 
this involves forming the null hypothesis that the two sets of 
observations are in fact drawn from distributions that share 
a common mean direction and then determining whether the 
observations are inconsistent with this hypothesis at some 
level of confidence (usually 95 per cent). If they are not 
inconsistent at that level of confidence the null hypothesis is 
accepted, otherwise it is rejected in favour of the alternative 
hypothesis that the distributions do  not share a common 

mean direction (i.e., the original distributions do not have 
mean directions 180" apart). 

If only a small amount of information is available (e.g. 
only a few observations or observations drawn from 
distributions with low precision), then almost inevitably the 
null hypothesis cannot be rejected, irrespective of the 
validity of this hypothesis. The unfortunate aspect of this 
with regard to the reversal test is that this is then claimed as 
being a 'positive" reversal test. Compilation of a global 
palaeomagnetic database (see Van der Voo & McElhinny 
1989; McElhinny & Lock 1990a.b) has highlighted the fact 
that in many instances the claim of a positive reversal test is 
in fact based on just such a lack of information. In contrast, 
a negative reversal test indicates the availability of a 
reasonable amount of information. Clearly this is an 
unsatisfactory situation and there needs to be a simple 
classification indicating the amount of information actually 
available in the claim of a positive reversal test. 

2 PROPOSED CLASSIFICATION 

A simple, yet very effective, measure of the information 
available is the angle yc between the mean directions of the 
two sets of observations at which the null hypothesis of a 
common mean direction would be rejected with 95 per cent 
confidence, given the observed dispersion in the two 
samples. We propose that a 'positive' reversal test be 
classified as 'A' if yC"5",  as 'B' if 5"< y C s  lo", as 'C' if 
10" I y, I 20", and as 'INDETERMINATE' if yc > 20". 

The attribute ' R  is used in the database to indicate that a 
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reversal test has been performed. Thus it is proposed that 
the attributes ‘Ra’, ‘Rb’, ‘Rc’ and ‘Ro’ be used to indicate 
‘positive’ reversal tests with classifications ‘A’, ‘B’, ‘C’, and 
‘INDETERMINATE’ respectively, and that the attribute 
‘R-’ be used to indicate a negative reversal test. 

3 PERFORMING THE TEST AND 
CLASSIFICATION 

The actual test used to determine whether the two samples 
could have been drawn from distributions sharing a common 
mean direction depends on the number of observations in 
each sample, and on whether the two distributions share a 
common precision. Throughout, it is assumed that the 
distributions are Fisherian (Fisher 1953). If there are several 
observations in one sample but only a single observation in 
the other sample, then a test should be performed on the 
isolated (single-sample) observation (see e.g., McFadden 
1990) to see if it is discordant with the observations from the 
other set. If there are five or more observations in both sets 
and the hypothesis of a common precision cannot be 
rejected then the test may be performed as set out by 
McFadden & Lowes (1981). If there are fewer than five (but 
more than one) observations in either sample then the 
likelihood is that there is insufficient information available 
to reject the hypothesis of a common precision even when 
the precisions are substantially different. Thus it is prudent 
to revert to simulation without the assumption of a common 
precision (see e.g. McFadden 1990). If the precisions are 
different, it suggests that some problems may still exist in 
isolating a single component of magnetization in at least one 
of the polarity samples. However, this need not necessarily 
invalidate a reversal test, and (as in the previous situation) it 
is possible to use simulation without the assumption of a 
common precision. 

3.1 Notation 

Let 

xi = xi ,  + . . * + XiNi, 
= y , ,  +. - - +y, ,  

zi = zi, + . * . + Zi“ 
where i = 1 or 2 (i.e., the two polarities) and (xc j ,  yii, zij) are 
the direction cosines of the jth observation from the ith 
polarity. The length of the vector sum of the Nj unit vectors 
for each polarity is then 

Ri = (Xi’ + Y; + Z?)’l2. (2) 

The length of the vector sum of all N = N, + N, unit vectors 
is 

R = [ ( X ,  + X,)’ + (Y, + Y2)’ + (2, + 22)2]1’2. (3) 

or, equivalently, if y is the angle between the two mean 
directions then 

R2 = R: + RZ + 2R,R2 ws y. (4) 

Thus if R, is the critical value of R associated with the 
critical angle y,, then 

RE = R: + RZ + 2R1R2 cos Y,. (5) 

Three other statistics that will be needed are the estimates 

N. - 1 ki =I 
Ni - Ri 

of the distribution precisions K ~ ,  the weighted sum 

S, = k ,R ,  + k2R2 (7) 

(8) 

of resultant lengths, and a weighted overall resultant length 

R ,  = (2’ + p2 + 2’)le?, 
where 

2 = k ,X ,  + k2X2,  

P= k,Y, + k2Y2, 

2 = k , Z ,  + k2Z2.  

An alternative representation for R ,  is 

R i  = (k ,R, ) ,  + (k2R2),  + 2k,Rlk,R2 cos y. 

(9) 

3.2 Test on an isolated observation 

If only a single observation (i.e. an isolated observation) is 
available for the one polarity, choose the indices so that 
N2 = R,  = 1. Naturally it is not possible to estimate K ~ ,  but 
if it is assumed that the distributions share a common 
precision (and it is not possible to test this assumption) then, 
under the null hypothesis of a common mean direction, the 
isolated observation should be just another random 
observation from the same distribution as the Nl 
observations. Thus, as with a fold test (McFadden 1990), it 
is simply a matter of testing whether the isolated 
observation is discordant with the other observations. It 
follows from McFadden (1982, equation 14) that 

(11) 
( R ,  + l)(N,- R J  

R1 
cos yc = 1 - 

with p = 0.05. If the observed angle yo exceeds y, then the 
hypothesis of a common mean direction may be rejected at 
the 95 per cent confidence level. Otherwise the reversal test 
is considered to be positive, but is classified according to the 
angle y,. 

It must of course be recognized that this test is weak, and 
every attempt should be made to obtain more observations. 
The major problem is that all of the information available 
for classification comes from the one polarity; no 
information comes from the polarity with only one 
observation. Thus, to indicate this lack of information from 
the one polarity, it is proposed that an ‘I’ (for isolated) be 
appended to the classifications as ‘AI’, ‘BI’, and ‘CI’, and 
that the attribute be written in the database as ‘Rai’, ‘Rbi’, 
or ‘Rci’. 

3.3 Test with several observations per pohnty and a 
common precision 

Watson (1956) has shown that 

M N .  - Ri) 3 ~Z”i -1) l  (12) 

where the symbol ‘ 3 ’ is to be read as ‘is distributed as’ and 
x’, is the chi-square distribution on v degrees of freedom. 
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where F[v, p ]  is the F distribution on v and p degrees of 
freedom. Traditionally the test has been performed by 
choosing the subscripts so that k ,  > k ,  and accepting the 
null hypothesis of a common K if k J k ,  does not exceed Fo.05 
(the value that the relevant F-distributed variable will 
exceed with probability 0.05). This is in fact a two-tailed test 
at the 90 per cent confidence level, but in this application it 
is probably sensible since the reversal test itself can easily be 
performed by simulation if there is any question about a 
wmmon K. 

With the assumption of a common K, it follows from 
McFadden & Lowes (1981, equation 29) that 

Y, t R, - (R%/Rl  + R 2 )  
2(N - R ,  - R 2 )  

'IN-' 

= (;) -1, 

with p = 0.05. Using equation (5) this gives the critical angle 
between the two mean directions as 

( N  - R l  - R2)(Rl  + R2) 

RIR,  
cos y, = 1 - 

If the observed angle yo exceeds yc then the hypothesis of 
a common mean direction may be rejected at the 95 per cent 
confidence level. Otherwise the reversal test is considered to 
be positive, but is classified according to the angle y,. 

It should be noted that if N, = R ,  = 1 then equation (15) 
reduces to equation (1 1). 

3.4 Test with several observations per polarity using 
simulation 

Watson (1983) suggested 

as a test statistic that may be used regardless of the 
populations sharing a common precision. As a point of 
interest, if k ,  = k ,  = k then 

V = 2k(R1 + R ,  - R ) .  (17) 
Clearly V is zero if the site-mean directions are the same, 
and increases with increasing dispersion of the site-mean 
directions. Thus the null hypothesis of a common mean 
direction may be rejected if V is too large. Unfortunately, V 
does not have a convenient distribution in small samples 
(Watson 1984), but it is a simple matter to simulate the 
distribution of V (see McFadden 1990) as follows. 

(1) Calculate the observed value V, of V. 
(2)  Assuming Fisher distributions, under the null 

hypothesis of a common mean direction, simulate a new set 
of observations (xij ,  yii, zij) by choosing tgij and tqii from a 
set of pseudo-random numbers uniformly distributed in the 
interval [0,1] and then calculating 

-In [ t e i j ( 1  - e-2kl) + e ~ ~ " ' ]  
2ki 

12.. = 

oij = 2 arc sin 6 

[there are several similar equations for generating 
pseudo-random variates from a Fisher distribution, but this 
particular form gives the best performance, see Fisher, 
Lewis & Willcox (1981)], 

l p . . = 2 n t  .. 

and 

xij = cos 9, cos qij, 

P I '  

yij = cos 13, sin qij, 

z.. = sin 6.. 
SJ . 

(3) Calculate the simulated value V, of V. 
(4) Repeat steps (2) and (3) to obtain loo0 simulated 

values V,, . . . , Vlm 
(5) Order the simulated values V,, . . . , V,, from 

smallest to largest as v,, . . . , vl, (in practice this ordering 
is performed by creating a linked list as the values are 
simulated). 

(6) v, is then the critical value for Vo at the lOO(1 - p )  
per cent level, where A is the largest integer not exceeding 
[lOOO(l - p )  + 11. As before, p = 0.05 for the 95 per cent 
confidence level. 

It follows from equation (16) that the critical value R,, of 
R ,  is given by 

(18) 
v* R,,= S, - - , 
2 

and from equation (10) that 

Again, if the observed angle yo exceeds y, then the 
hypothesis of a common mean direction may be rejected at 
the 95 per cent confidence level. Otherwise the reversal test 
is considered to be positive, but is classified according to the 
angle y,. 

4 USE OF SUFFICIENT STATISTICS 

In order to perform each of the tests, all that is required is 
N,,  R , ,  N,, R, ,  and the angle yo between the two mean 
directions. Thus it is a simple matter to perform any of the 
tests even if only the mean directions, the numbers of 
observations, and the sufficient statistics R ,  and R ,  are 
available. Similarly, if only the mean directions, the 
numbers of observations, and either of the sufficient 
statistics ki or ( L Y ~ ~ ) ~  is available for each polarity, then the 
tests can be performed by inverting either equation (6) or 

to obtain Ri. This is particularly useful if the observations 
have been obtained from several rock types having different 
within-site precisions and an analysis has been performed to 
determine the between-site precisions; it is then preferable 
to perform the test using the estimate of the between-site 
precision. 
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5 APPLICATION OF TEST 

Application of the suggested classification to 535 results 
from the literature indicates that it provides a realistic 
method of appraising the reversal test. The data were in fact 
extracted from the global palaeomagnetic database 
(McElhinny & Lock 1990a,b) by searching for all those 
entries on which it was possible to perform a reversal test. 
There are 2444 results in the database, which covers all data 
available in the literature for the years from approximately 
1975176 to 1988. 

A histogram of the antipodal angles between the two 
polarities is shown in Fig. 1, the width of each cell being 5”. 
If a particular test is to receive the classification ‘A’, then 
the supplement of its antipodal angle must be less than the 
critical angle at the 95 per cent level of confidence (in order 
to pass the test), and this critical angle must not exceed 5” 
(in order to classify the available information as ‘A’). Thus a 
prerequisite for the ‘A’ classification is that the antipodal 
angle exceeds 175”. Similarly, a prerequisite for the ‘B’ 
classification is that the antipodal angle lies between 170” 
and 175”, and for the ‘C’ classification is that the antipodal 
angle lies between 160” and 170”. This maximum possible 
classification is indicated in Fig. 1. 

Naturally one first has to decide which test to use, based 
on the available observations. If one of the polarities has 
only one observation then the isolated-observation test must 
be used, otherwise one of the multiple-observation tests is 
used. If there are multiple observations for each polarity 
then the hypothesis of a common kappa is tested. If this 
hypothesis is rejected then the alternative hypothesis of 
different kappas is accepted and the ‘Different Kappa’ test is 
performed (using the simulation given in Section 3.4). If the 
null hypothesis of a common kappa has not been rejected, 
but either of the polarities has fewer than five observations 
then a ‘Simulation’ test (Section 3.4) is performed anyway. 
Finally, if the hypothesis of a common kappa has not been 
rejected and each polarity has at least five observations then 
the ‘Distribution’ test (Section 3.3) is performed (on the 
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Figure 1. Histogram of antipodal angles for data extracted from the 
global database. 

Table 1. Reversal test classifications for data from the global 
palaeomagnetic database. 

Type of test 

Multiple observations for each polarity 
Clessification Total 

Isolated 
observation Common Kappa 

Different 

F 

I 

C 

B 

A 

Total 

14 

96 

19 

2 

0 

131 

Kappa 
Distribution Simulation 

42 26 39 121 

10 82 18 206 

58 43 33 153 

26 8 12 48 

4 1 2 I 
140 160 104 535 

assumption that the distribution of the test statistic is 
known). The classifications resulting from these tests are 
shown in Table 1 and Fig. 2. 

With the isolated-observation test we know a priori that 
there is very little information available, so it is no surprise 
to see that the results are totally dominated by 
‘INDETERMINATEs’ and that there are no ‘A’ class- 
ifications. With the ‘Distribution’ test, there are at least 10 
observations with five for each polarity, so there is a 
reasonable amount of information. The domination by ‘C‘ 
and ‘F‘ classifications is therefore as expected. With the 
‘Simulation’ test, at least one of the polarities has fewer than 
five observations, so there is not a lot of information (but 
more than in the isolated-observation tests). Again the 
results are dominated by ‘INDETERMINATEs’, but not as 
strongly as for the isolated-observation tests. With the 
‘Different Kappa’ test, there is sufficient information to 
reject the null hypothesis of a common kappa, and, again as 
expected, the results are dominated by ‘C‘ and ‘ F  
classifications. 

A histogram of the classifications, irrespective of 
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Figure 2. Histogram of the reversal test classifications, according to 
calculation type, for data from the global database. 
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Classifications 
F i  3. Histogram of the reversal test classifications for data from 
the global database. 

calculation type, is shown in Fig. 3, and a comparison of this 
with Fig. 1 clearly illustrates the value of performing the 
classification. For example, of the 94 results for which the 
antipodal angle was within 5" of the ideal MOO, in only seven 
cases was the information sufficient to classify the test as 
'A?. 

6 AVAILABILITY OF SOFTWARE 

A program for IBM-compatibles to perform the tests and 

classification in this paper may be obtained from BMR via 
PLM. 
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