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1. INTRODUCTION 

In the past decade considerable attention was given to generalizing to dimen-
sion three the classical theory of minimal models of surfaces. This program was 
completed in [Mori88] and the following theorem was proved (for a general in-
troduction, see [Kolhir90]). 

(1.1) Theorem. Let X be a smooth projective three dimensional algebraic va-
riety. There are two kinds of operations, called divisorial contractions and flips, 
such that repeated application of these operations transforms X into a variety 
X' which has the following properties: 

( 1.1.1) X' and X are birationally equivalent; 
(1.1.2) In general X' is not smooth but has only very mild singularities (so-

called terminal singularities); 
( 1.1.3) X' satisfies exactly one of the following alternatives: 
(1.1.3.1) K X' is nef (i.e., it has nonnegative intersection with any curve C in 

X'), or 
(1.1.3.2) There is a morphism g: X' --+ Z onto a lower dimensional variety 

such that K X' has negative intersection with every curve contained in a fiber of 
g. 

This X' is not unique, but only one of the alternatives can occur. Moreover, 
if(1.1.3.1) occurs then it is well understood how the different choices of X' are 
related to each other. 

The importance of this theorem is that despite the fact that we introduce 
some singularities, the variety X' should be considered as much simpler than 
X. In fact X' is the simplest variety within the birational equivalence class 
of X. Thus if we want to study properties of X which are invariant under 
birational transformations then we should consider these properties on X'. 
This approach leads to the proof of several deep structure theorems (see, e.g., 
[Kolhir91, Chapter 3] for a recent survey). 

The aim of this article is to study the above process in families. To be more 
precise, assume that {XI : t E ~} is a one-parameter flat family of smooth 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 535 

projective threefolds. Is it possible to perform the above series of operations 
such that at each step we have a flat family? 

For a family of surfaces we have only one kind of operation, the contraction 
of a (-1 )-curve. Deformation theory tells us that if Co is a (-1 )-curve in Xo 
then there is a flat family of (-1 )-curves {Ct : t E ~} and the contraction gives 
a new flat family of smooth surfaces. Thus everything that we do in the central 
fiber can be done in a neighborhood as well. 

In dimension three the situation is more complicated. The very first step was 
considered already in [Mori82]. It turns out that in the category of algebraic 
spaces a divisorial contraction of Xo can be extended to a divisorial contraction 
of the family {Xt }. It is not clear that the same can be done in the category of 
schemes, let alone in the category of projective varieties. Since projectivity has 
a central role in the three-dimensional theory, this is a troubling prospect. 

One of the main results of the article is that by choosing the sequence of 
contractions and flips with a little care, the above process can be performed in 
such a way that at each step we have a flat projective family of varieties. The 
most interesting part is, of course, the following. 
( 1.2) Theorem. Let XI T be a flat family of smooth projective three-dimensional 
algebraic varieties over a scheme T. There are two kinds of operations, called 
(relative) divisorial contractions and (relative) flips, such that repeated applica-
tion of these operations transforms XI T into X'I T which has the following 
properties: 

( 1.2.1) There is a rational map XI T ... > X'I T which induces a birational 
equivalence on every fiber; 

(1.2.2) In general X' IT is not smooth but every fiber has only very mild 
singularities (so-called terminal singularities); 

(1.2.3) X'IT satisfies exactly one of the following alternatives: 
(1.2.3.1) K x' IT is relatively nef (i.e., it has nonnegative intersection with any 

curve C that is contained in one of the fibers of X' IT), or 
(1.2.3.2) There is an equidimensional scheme ZIT of relative dimension at 

most 2 and a surjective morphism g : X'I T -+ ZIT such that K x' IT has 
negative intersection with every curve contained in a fiber of g . 

This X' is not unique, but only one of the alternatives can occur. Moreover, 
if (1.2.3.1) occurs then it is well understood how the different choices of X' are 
related to each other. 

These results can be used to investigate families of projective threefolds. In 
particular, one obtains the following results: 
(1.3) Theorem (Deformation invariance of plurigenera). Let {Xt : t E T} be 
a flat family of smooth projective threefolds. Assume that T is connected. 

Then hO(Xt , &'x (nK x» is independent of t E T for every n ~ o. 
t t 

(1.4) Theorem (Moduli space for threefolds of general type). Let L be the 
functor "families of three folds of general type modulo birational equivalence" (see 
( 12.7.5) for a precise definition). 

Then there is a separated algebraic space M which coarsely represents L. 
Every connected component of M is of finite type. 
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We are also able to handle complex analytic deformations of projective vari-
eties: 

(1.5) Theorem. Let g : X -+ S be a proper smooth morphism of complex 
spaces. Assume that the fiber Xs is a projective threefold for some s E S. Let 

be any sequence of divisorial contractions and flips. Then there is an open neigh-
borhood s E U C S such that the above sequence can be extended to a sequence 
of fiberwise bimeromorphic maps 

° XIU=X IU···> 

The fibers of X'I U have only terminal singularities. If K x; is nef then K x' / U 

is relatively nef. If there is a Fano contraction gs : X: -+ Zs then there is an 
equidimensional complex space Z I U of relative dimension at most 2 extending 
Zs and a surjective morphism g: X'IU -+ ZIU such that Kx'/u has negative 
intersection with every curve contained in a fiber of g . 

This result has several consequences for possibly nonprojective deformations 
of projective threefolds: 

(1.6) Corollary. Let g : X -+ S be a proper smooth map of complex spaces. 
Assume that the fiber Xs is a projective threefold for some s E S. Then there is 
an open neighborhood s E U C S such that: 

(1.6.1) hO(Xu' &x (nKx)) is independent of u E U for every n 2': o. 
(1.6.2) If Xs is 0/ gener~l type then Xu is projective for every u E U. (Note 

that in general g is not projective over U.) 

Most of the effort to prove (1.2) will be spent on understanding flips on a 
single threefold. This amounts to analyzing the following situation in great 
detail. 

Let f: X -+ Y be a proper bimeromorphic morphism of complex spaces 
which satisfies the following conditions: 

(i) X has only terminal singularities; 
(ii) Y is normal with a distinguished point Q E Y; 
(iii) f-l(Q) consists of a single irreducible curve C eX; 
(iv) The canonical class of X has negative intersection number with C. 
In the above situation we say that f: X ::::> C -+ Y 3 Q is an extremal nbd. 

We usually think of Y as being a germ around Q. 
Extremal nbds come in two types. Both are of considerable interest in the 

study of birational transformations of threefolds. The two types are distin-
guished by the exceptional set of the map f. This can be either one- or two-
dimensional. 

If the exceptional set is one dimensional then it coincides with c. We will 
say that the extremal nbd is isolated. In this case Ky is not IQ-Cartier. 

Ifthe exceptional set is a divisor then Ky is IQ-Cartier; in fact, Y is terminal 
at Q. We will say that the extremal nbd is divisorial. 
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While these two cases are very different, the local computations along the 
curve C are very similar. Frequently it is very hard to tell which case occurs, 
even when an extremal nbd is given by explicit equations. In some sense the 
divisorial case can be considered as the degenerate version of the isolated con-
traction case, though at the moment we cannot attach any clear meaning to this 
statement. 

Building on results of [Mori88] we prove two results about extremal nbds. 

(1.7) Theorem (Reid's conjecture about general elephants). Let f: X:> C -+ 
Y 3 Q be an extremal nbd. Then the general member of 1-K x 1 and the general 
member of 1- Kyl have only DuVal singularities. 

(1.8) Theorem. Let f : X :> C -+ Y 3 Q be an isolated extremal nbd. Let 
t E JQ c &y be a general element of the ideal of Q and let H' = (t = 0). Then 
H' is either a cyclic quotient singularity or one of the following singularities 
described by the dual graph of their minimal resolution. 

Triple points: 
2 
0 

0 0 0 (dihedral quotient) 
3 2 2 

or 
2 
0 

0 0 0 0 (dihedral quotient) 
3 2 2 2 

Quadruple points: 
2 
0 

0 0 0 (dihedral quotient) 
4 2 2 

or 
2 
0 

0 0 0 (tetrahedral quotient) 
3 2 3 

or 
2 
0 

0 0 0 0 (not a quotient singularity) 
2 2 3 2 

0 
2 
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Quintuple point: 

JANos KOLLAR AND SHIGEFUMI MORl 

2 
o 

o - 0 - 0 (icosahedral quotient) 
3 2 4 

The basic idea of the proof of these results is the following method. Let 
f : X ::) C -+ Y 3 Q be an extremal nbd. Assume that we already have a 
member DE 1- iKxl. Consider the following exact sequence: 

0-+ &x(Kx) -+ &x(-(i - I)Kx) -+ &D(-(i - I)KxID ) -+ O. 

Since Hl(X, &x(Kx)) = 0, we know that every section of 

HO(D, &D(-(i - I)KxID)) 

lifts to a section of HO (X , & x ( - (i - I)K x)). If we understand D sufficiently 
well then this way we get some information about the general section of 
&x(-(i - I)Kx)' 

In principle one could start with a very large i, but in practice this is very 
difficult. Fortunately in [Mori88] it was shown that one can always find a D 
for i = I or 2. 

Chapter 2 contains the proof of (1. 7). In most cases this was already done 
in [Mori88, Chapter 9]. The proof of the remaining cases is similar. It uses the 
above observation and computations similar to those in [Mori88]. 

The easy part of (1.8) is done in Chapter 3. This is the case when the general 
member of 1 - Kyl has a type A singularity. In fact in this case one can 
forget about X and prove directly that the general hyperplane section of Y 
has a cyclic quotient singularity. This approach also points to a weakness of the 
method that we use. The general member H of I&xl containing the curve C 
will sometimes have fairly complicated singularities while its image H' c Y is 
simpler. This is so since the curve C c H corresponds to a (-I )-curve in the 
resolution of H. Therefore it seems very natural to forget about X and work 
directly on Y. Unfortunately we do not know how to do this. 

In Chapter 4 those extremal nbds that do not have points of index greater 
than 2 are considered. To complete some results of Chapter 2, divisorial nbds 
are also considered. The methods used are independent of [Mori88]. As an 
application we show that certain nbds with index four points cannot be isolated. 
Chapter 5 is devoted to the study extremal nbds with three singular points. Such 
nbds can never be isolated, thus we do not need to study them in greater detail. 

Chapters 6-10 contain the rest of the proof of (1.8). The basic idea-as 
presented above-is very simple, but in practice it requires long computations 
and a thorough knowledge of the infinitesimal structure of the extremal nbd. 
In several cases our results are more complete than is strictly necessary for the 
proof of (1.8). 

The proof that flips are continuous in families is given in Chapter II. The 
main problem is for one-parameter families. Assume that f : X t ::) Ct -+ 
~ 3 Qt is a one-parameter family of extremal nbds. It is easy to see that 
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the Yt glue together into a four-dimensional space 'Y. If H~ is a general 
hyperplane section of Yo through Qo then we can view 'Y as the total space 
of a two-dimensional family of deformations of H~. Therefore we can hope to 
understand the canonical modification of 'Y if we understand sufficiently the 
deformation theory of H~. 

In most cases H~ is a quotient singularity, and exactly this aspect of their 
deformation theory was analyzed in [KSB88, §3]. In the remaining case Ho is 
a rational quadruple point. Their deformation theory was recently analyzed in 
detail by [de Jong-van Straten88]. Using their analysis [Stevens91b] obtained 
the necessary results for quadruple points. 

We would also like to point out that this method gives a new proof of the 
existence of flips using only the existence of flips in the semistable reduction 
case. At the moment, however, this proof is considerably longer than the original 
one. 

Chapter 12 contains the proof of (1.2) Theorem and the proof of the appli-
cations (1.3-1.5). It also contains several auxiliary results that may be useful in 
different situations too. 

Finally, in Chapter 13 flips are studied in more detail. We prove that all 
the cases not excluded so far do indeed occur and we determine the flip in 
the exceptional cases. We hope to discuss the flip for the two main series in a 
subsequent paper. 

These computations show that the behavior of extremal nbds in families can 
be quite complicated. For example if I: X t :J Ct - ~ :') Qt is a one-parameter 
family of extremal nbds and Co is an irreducible curve then it can easily happen 
that Ct is reducible for every t f:. O. Since our procedure of flipping is to flip 
one curve at a time, this shows that the procedure 01 flipping is not continuous 
in families. Of course, we know that the end result is continuous. 

We also give an example of an extremal nbd X:J C with its flip X+ :J C+ 
such that the curve C has many irreducible components but the curve C+ is 
irreducible (13.7.1). 

Finally in an appendix we make a list of nonsemistable isolated extremal 
nbds and collect all the results about them that are scattered all over the article_ 

We believe that similar computations will yield a complete description of 
divisorial extremal nbds or extremal nbds with reducible central curve as welL 
However, the article is long enough already as it is, and therefore we restrict 
ourselves to treating the divisorial extremal nbd case only if not much extra 
work is required. 

Some of the results of this article were announced in [Mori89,90] and 
[Kolhir90]. 

Terminology. (T.l) By a three-dimensional extremal curve neighborhood we 
mean the germ of a three-dimensional complex space X along a compact curve 
C that satisfies the following properties: 

(T.1.1) There is a germ of a complex space Y:') Q and a proper bimeromor-
phic morphism I: X:J C - Y:') Q such that C = 1-1(Q). 

(T.1.2) -Kx is Q-Cartier and I-ample. 
(T.2) A three-dimensional extremal curve neighborhood X :') C is called 
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terminal (resp. canonical) if X has terminal (resp. canonical) singularities. 
(T.3) The curve C will be called the central curve of X:::> C. 
(T.4) A three-dimensional extremal curve neighborhood X :::> C is called 

isolated if f: X\ C --+ Y\ Q is an isomorphism. Otherwise it is called divisorial. 
If X:::> C is divisorial then the exceptional set of f contains a divisor. 

(T.5) In this paper the expression extremal nbd means a three-dimensional 
extremal curve neighborhood with terminal singularities and irreducible central 
curve. 

(T.6) Let g: U --+ V be a proper bimeromorphic morphism of normal and 
irreducible complex spaces. Let E cUbe the exceptional set. Assume that 
dimE:::; dim U - 2 and that -Ku is IQ-Cartier and g-ample. 

By the flip of g (or, if no confusion is likely, by the flip of U) we mean 
a proper bimeromorphic morphism of normal and irreducible complex spaces 
g + : U+ --+ V with exceptional set E+ such that 

(T.6.1) dimE+ :::; dim U+ - 2 and 
(T.6.2) Ku+ is IQ-Cartier and g + -ample. 
In general the flip may not exist but it is unique if it does. 
A superscript + will always refer to a flip. 
(T.7) Let k[x l ' ••• , xn] be a polynomial ring and let G be an abelian group. 

A function 0: : {Xl' .•. , Xn} f-+ G is called a G-weight. This will be abbreviated 
as G-wt or even wt if no confusion is likely. 0: can be multiplicatively extended 
to a map 

0: : {all monomials in Xl' ..• , Xn } --+ G. 

If f = L alxl is a polynomial or powerseries in the variables Xl' ... , xn then 
for g E G we define 

fa=g = L alxl , 
a(x1)=g 

which will be called the wt g part of f. 
If G is ordered then we define 

We will use these notions in two cases. First, when G ~ Zn . This coincides 
with the terminology of [Mori88, 2.5]. Second, when G = JR (or a subgroup of 
JR). The "order" defined in [Mori88, 2.5] is thus an JR-wt (or a Z-wt) in the 
current terminology. We decided to change since here we need the wt function 
to blow up, and the generally accepted terminology is "weighted blow-up." 

Classification of extremal nbds. (C.I) We will use the following notation for 
terminal singularities. 

An index one terminal singularity is the same as an isolated cDV point. We 
will say that an index one terminal singularity has type cA, cD, or cE if the 
general hyperplane section is a DuVal singularity of type A, D, or E. A smooth 
point is considered to have type cA. We extend this terminology for higher index 
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points as follows: 

name description index 
cAIn (xy + f{zn, t) = O)/Zn(1, -1, a, 0) n?1 

cAx/2 2 2 (x + y + g{z, t) = 0)/Z2{0, 1, 1, 1) 2 
where mu1tog ? 4. 

cAx/4 2 2 (x +y +h{z, t)=0)/Z4{1, 3,1,2) 4 
cD/n quotient of an index one cD point n=I,2,3 
cE/n quotient of an index one cE point n = 1,2 

Thus, for instance, an index one cA type point is also called cA/1. We will 
frequently leave out the /n part of the notation if no confusion is likely or the 
index is not specified. This will be used most frequently with cA, which refers 
to any terminal singularity of type cAIn. Note that cA does not include cAx/n. 

The following table shows the relationship between the notation of [Mori88] 
and the current notation. 

germ of an extremal nbd 
IA,IA v 

IC 
IIA, IIB, IIv 

III 

threefold singularity 
-> cA/n, cAx/2, cD/n, cE/n (n ? 2) 
-> cAIn (n ? 2, cyclic quotient) 
..... cAx/4 
..... index one point 

In the above notation the letter A, D, or E also indicates the cover of the 
general member of 1 - KI. We reproduce the list of [Reid87, p. 393] (with a 
typographical error corrected). 

name 

cAIn 

cAx/2 

cAx/4 

cD/2 

cD/3 

cE/2 

cover of general elephant 
n·1 Ak _ 1 ~ Akn - I 

A 2:1 D 
2k-1 ---+ k+2 

4·1 
A2k- 2 ~ D2k+1 

2· 1 
Dk+1 ~D2k 

D 3:1 E 
4 ---+ 6 

E 2: 1 E 
6 ---+ 7 

(C.2) Let f: X J C -> Y 3 Q be an extremal nbd (isolated or divisorial). 
Let Ex c X be a general member of 1- Kxl and let Ey = f{Ex) c Y. Note 
that Ey need not be a general member of 1 - Kyl if the nbd is divisorial. 

(C.3) An extremal nbd f: X J C -> Y 3 Q is said to be semistable if Ey 
is a DuVal singularity of type A. (This definition is slightly more general than 
the one in [Kawamata88].) 
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(C.4) A semistable extremal nbd X:J C -+ Y 3 Q is said to be of type klA 
if Ex has only one singular point. It is said to be of type k2A if Ex has two 
singular points. (There are no other cases.) 

(C.S) An extremal nbd X :J C -+ Y 3 Q is said to be of type kAD if Ex 
has a point of type An (n 2:: 4) and a point of type D2m (m 2:: 1). (D2 is by 
definition two points of type AI.) An extremal nbd X :J C -+ Y 3 Q is said 
to be of type k3A if Ex has three points of type AI' A2 ' and An (n 2:: 1). 

(C.6) An extremal nbd X :J C -+ Y 3 Q is said to be of type cD if it has 
exactly one singular point of index at least 2 and this is a cD type point. Thus 
the index is 2 or 3. An extremal nbd X :J C -+ Y 3 Q is said to be of type 
cE if it has exactly one singular point of index at least 2 and this is a cE type 
point. Thus the index is 2. An extremal nbd X :J C -+ Y 3 Q is said to be of 
type cAxj2 if it has exactly one singular point of index at least 2 and this is a 
cAxj2 type point. Thus the index is 2. 

(C.7) An extremal nbd X :J C -+ Y 3 Q is said to be of type I I A (resp. 
lIB, IC, lIv) if it has exactly one singular point P of index at least 2 and 
locally at P theextremalnbd X:J C 3 P isoftype lIA (resp. lIB, IC, lIv) 
(cf. [Mori88, Appendix A)). (A type IA point does not describe an extremal 
nbd sufficiently. In the new terminology extremal nbds with I A points are: 
kIA, k2A, kAD, k3A, cD, cE, cAxj2.) 

2. GENERAL MEMBERS OF 1 - KI 
(2.1) Definition. Let E be a surface with a curve C (which may be empty) 
and let 7C : M -+ E be a resolution such that the exceptional curves for 7C 

and the irreducible components of 7C -1 (C) form a divisor, say F , with normal 
crossing. We denote by /:i(M -+ E :J C) the dual graph of the divisor F. If 
C = 0, (resp. 7C is the minimal resolution, C = 0, and 7C is the minimal 
resolution) then we may simply write/:i(M -+ E) (resp. /:i(E:J C), /:i(E». 
An irreducible curve in F , say D, is denoted by its name D or by • (resp. 0) 
if D is contained (resp. not contained) in the proper transform of C by 7C, 

and if D is proper then we attach the number _(D2) to the vertex. We may 
omit the numbers if it does not cause confusion as in (2.2). 
(2.2) Theorem. Let f : X :J C -+ Y 3 Q be an extremal nbd. Then the 
general member Ex of 1- Kxl and Ey = f(Ex) E 1- Kyl have only DuVal 
singularities. To be precise, the minimal resolution of Ey dominates Ex and 
we have the list depending on the singularities of X :J C. (In the text, k is the 
axial multiplicity of a certain point of X and different from the k in the labels 
like klA). 

(2.2.1) Cases lA, IA ~ IIA( +II/): In this case, Ex 1> C; 
(2.2.1.1) cA( +II/): /:i(Ex) = /:i(Ey) is Amk- I 

(klA) 0 - ••• - 0 
~ 

mk-I 

(2.2.1.2) cD /3( +II/): /:i(E x) = /:i(Ey) is E6 , 
(2.2.1.3) IIA( +II/): /:i(E x) = /:i(Ey) is Dk+2, 

where m and k are the index and the axial multiplicity of the non-Gorenstein 
point. 
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(2.2.1') Cases II: cAx/2, cD/2, cE/2: In this case, Ex 1J C and X :::> C is 
divisorial; 

(2.2.1'.1) cAx/2: ,1.(Ex) = ,1.(Ey) is D4 , 

(2.2.1'.2) cD/2: ,1.(Ex) =,1.(Ey ) is D2k , 
(2.2.1'.3) cE/2: ,1.(Ex) = ,1.(Ey) is E7 , 

(2.2.1'.4) II": ,1.(Ex) = ,1.(Ey) is Dk+2, 
where k is the axial multiplicity of the non-Gorenstein point. 
(2.2.2) Case IC: (Ey, Q) is Dm and ,1.(Ex :::> C) is 

o 

0- ... - 0- o-e 
'-v-" 

m-3 

where m, the index of the IC point of C, is odd and 2: 5 . 
(2.2.2') Case lIB: In this case, X :::> C is divisorial. (Ey, Q) is E6 and 

,1.(E x :::> C) is 

o 

0-0 - 0 - o-e 

(2.2.3) Case exceptional I A + I A: The two IA points are an ordinary point 
of odd index m 2: 5 and a cA point of index 2 and axial multiplicity k, and 
we have (Kx'C) = -112m. (Ey,Q) is D2k+m' SingEx is Am_I +D2k 
(Am_I + AI + AI if k = 1) and ,1.(Ex:::> C) is 

(kAD) 

o 

o - ... - 0 - e - 0 - ... - 0-0 
'-v-" 

m-I:::>:4 

(2.2.3') Case I A + I A + II I: In this case, X :::> C is divisorial. The two 
IA points are both ordinary and of indices 2 and m (odd, 2: 3). Furthermore 
(Ey, Q) is D m+2' The graph ,1.(E x :::> C) is 

(k3A) 

o 

0-'" - 0- e-o 
'-v-" 

m-I 

(2.2.4) Casesemistable IA+IA: (Ey, Q) is Akm+ln-I and ,1.(Ex:::> C) is 

(k2A) 0-···-0 -e- 0-···-0 
'-v-' '-v-" 

km-I In-I 

where m and k are the index and the axial multiplicity of a singular point of 
X on C and I and n are those of the other singular point. 
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(2.2.5) Gorenstein case Ex ~ Ey are smooth, Ex 1> e, and (Ex· e) = 1. 

(2.3) Definition. The non-Gorenstein extremal nbds X:::> e are divided into 
cases as follows. In the cases (2.2.1.1) (resp. (2.2.3), (2.2.3'), (2.2.4)), we say 
that X :::> e is k1A (resp. kAD, k3A, k2A) by listing the singularities of Ex 
(or equivalently, those of E~). In the rest of (2.2.1) and (2.2.2), we classify 
X :::> e by its unique non-Goren stein point. 

(2.4) Remark. (2.4.1) For isolated extremal nbds X, Ey is a general member 
of 1- Kyl by 1- Kxl ~ 1- Kyl· 

(2.4.2) The assertion that 1- Kxl has a DuVal member for extremal nbds 
X:::> e ~ pi is completed in this chapter (special case of Reid's general elephant 
conjecture). 

(2.4.3) From the 5 cases of the table in [Mori88, (B)], our division comes out 
as follows: 

(2.4.3.1) Case lA, IIA, IA-, or II' (and one III point): (2.2.1), (2.2.1'); 
(2.4.3.2) Case Ie or lIB: (2.2.2), (2.2.2'); 
(2.4.3.3) Case two IA points of indices m, 2 (and one III point): (2.2.3), 

(2.2.3'), (2.2.4); 
(2.4.3.4) Case two IA points of indices :2: 3: (2.2.4); 
(2.4.3.5) Case Gorenstein X: (2.2.5). 
(2.4.4) In the cases (2.4.3.4) and (2.4.3.5), our (2.2) is proved in [Mori88, 

(9.9.3) and (B.2)] (cf. also [Mori88, §10]). In the case (2.4.3.1), our (2.2) is 
partly proved by [Mori88, (7.3)] (cf. also [Mori88, §10]) and [Reid87, (6.4.B)]; 
we still need to prove 

(2.4.4.1) the nonexistence of type III points in case (2.2.1'), 
(2.4.4.2) the divisoriality of X:::> e in case (2.2.1'), and 
(2.4.4.3) il(Ex) is D4 in case (2.2.1'.1). 
The assertions (2.4.4.1) and (2.4.4.2) follow from (4.5) and (4.7) and (2.4.4.3) 

is done in (4.8.5.7). The divisoriality of (2.2.2') is done in (4.5). As for case 
(2.2.3'), the divisoriality is proved in Chapter 5. Thus it remains to treat the 
cases (2.4.3.2) and (2.4.3.3) in this chapter. 

In our cases, we have a "good" member in 1- 2Kxl by [Mori88, (7.3)(ii)]. 
Therefore the following is important in our proof. 

(2.5) Lemma. Let X :::> e be an extremal nbd with DEI - 2K xl such that 
D n e = {P} for some PEe. Then the natural map 

o H (X, &'x(-Kx)) -+ &'D(-Kx) 

is surjective, where &'D ( - K x) is the stalk at P. 
Proof. From the short exact sequence 

0-+ &'x(Kx) -+ &'x(-Kx) -+ &'D(-Kx) -+ 0, 
we have o 0 I H (&'x(-Kx)) -+ H (&'D(-Kx)) -+ H (&'x(Kx)) ' 
where the last term is zero by the Grauert-Riemenschneider vanishing theo-
rem. 0 
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For the proof of (2.2), we will use the notation of [MoriSS, (S.S) and (S.9)]. 
We start with a general 

(2.6) Lemma. (2.6.1) Let a ~ 1 and let L I , ... ,La and M I , ... ,Ma be 
i-invertible &c-modules such that EB j L j is i-isomorphic to EB j M j . Then, after 
renumbering Mj's, we have i-isomorphisms L j ~ M j for all i. 

(2.6.2) Let Land M be locally i-free &c-modules and 

(2.6.2.1) 0 ---> L ---> E ---> M ---> 0 

an i-exact sequence of &c-modules. If HI(C, L0M0(-I)) = 0 for the sheaf 
L0M0(-I) (forgetting the i-structure), then the i-sequence is i-split. 
Proof. (2.6.1) is standard. (2.6.2) is reduced to lifting the i-homomorphism 
idM to an i-homomorphism M ---> E by considering (2.6.2.1)0M0(-I) . This 
follows from the vanishing of HI. 0 

(2.7) Lemma. Let X ~ C ~]pl be an extremal nbd that is locally primitive. 
Then 

CIsc(X) 0~c Pic1(C) ~ QL(C) 

are isomorphisms (cj [MoriSS, (S.9.1)(ii)]), where Pic1(C) denotes the set of 
i-isomorphism classes of i-invertible &c-modules. 
Proof. The homomorphisms induce isomorphisms Pic X ~ Pic C ~ Z [MoriSS, 
(1. 3)] and their quotient isomorphisms C (C (X) /Pic X ~ Pic1 (C) /Pic( C) 
~ QL(C)/Z by the local primitivity [MoriSS, (1.S)]. 0 

(2.7.1) Remark. (2.7.1.1) We note that (2.7) applies to our cases (2.2.2) and 
(2.2.3), and we may identify these for simplicity of notation. 

(2.7.1.2) If P is a primitive point of index m, then one can associate to npU 
(n E Z) a divisor [n/m]P on C with i-structure &c([n/m]P)U c &cu(nPU). 
This is compatible with the above identification. 

(2.S) Lemma. Assume that the canonical lifting d of C to the canonical cov-
ers of X at arbitrary non-Gore.!!!tein points are smooth. Then every locally i-free 
&c-module E is of the form EBL j for some i-invertible &c-modules L j . 
Proof. We only treat &c-modules E of rank 2 since other cases are similar. 
Let X be Gorenstein outside of two points P and R, which are of indices m 
and n, respectively, where m > 1 and n ~ 1. Let L be a direct summand 
of E such that rkL = 1 and degL ~ deg(E / L). Then Land E / L are i-
invertible sheaves by the induced i-structures. Let qlcL = degL + a l pU + b l RU 
and qldE/L) = deg(E/L) + a2PU + b2RU, where 0 ~ ai' a2 < m and 0 ~ 
b l , b2 < n. If degL > deg(E/L) , then we have degL0(E/L)0(-I) by 

q1c(L0(E/L)0(-I)) = qlc(L) - qlc(E/L) 

= (degL - deg(E/L) - 2) + (m + a l - a2 )P" 

+(n+b l -b2 )R". 
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Thus E ~ L$(EjL) if degL > deg(EjL) (2.6). If degL = deg(EjL), then 
we can choose L so that a l 2: a2 • Then E ~ L$ (E j L) from 

qle(L®(EjL)®(-I)) = -1 + (a l - a2 )PU + (n + bl - b2 )RU. 0 

Alternative proof. let u = l.c.m. {m, n}. We can take an u-sheeted cover pi --
C which ramifies at P, R. Then the i-decomposition corresponds to a Zu-
invariant decomposition of a locally free Zu -module on pl. 0 

(2.9) When we want to prove the nonexistence of an isolated extremal nbd 
X:) C with certain condition (say A), it often helps to assume some genericity 
assumption. It is done in the following way. Let X t :) Ct be a flat deformation 
of X :) C such that X = Xo :) C = Co and X; :) Ct satisfies A if It I « 1 , 
where X tO is the germ of X t along Ct. If we show that X t :) Ct is not an 
isolated extremal nbd for t :I 0, then neither is X :) C [Mori88, (1 b) and 
(10)]. There are two types of constructions for X t :) Ct • 

(2.9.1) Given a point P E C, we deform the equation of (XU, pU) and 
extend it to the deformation of X:) C . 

L-deformations and L'-deformations are such examples. We will give an 
explicit construction for an example of the other type. 
(2.9.2) Lemma. Let X :) C be an extremal nbd with a point P of index m 
and J a C -laminal ideal of width w. Assume that the canonical cover at P is 
given as 

XU = (XI' x 2 ' x3' x 4 ; ¢» :) d = xI-axis 
and JU = (x2 , x 3' x:), where XI' ... , x 4 and ¢> are Zm-semi-invariants and 
¢> == X~X3 mod JU leI for some r> o. If wt¢> == wtx: (resp. wtx2 , wtx;x: 
for some i > 0) mod (m), then there is a flat deformation Xt :) Ct 3 Pt (t E d, 
a small disk) of X :) C 3 P such that: 

(2.9.2.1) Ut(XtO - Vt) = (X - V) x d:) U/Ct - Ct n Vt) = (C - C n V) x d 
and Pt is the only singular point of Vt on Ct ' for a sufficiently small nbd Ut Vt 
of UtPt in UtXt . 

(2.9.2.2) The trivial extension of J to X tO - Vt extends to Ct-laminal ideal 
Jt such that UtSpec&'xjJt = (Spec&'xjJ) x d, which is compatible with the 

t 
identification of(2.9.2.1). 

(2.9.2.3) The canonical cover XtU at Pt ' CtU , and JtU are given in exactly 
the same way as XU, d, and JU above except that the equation for X/ is 
¢>t=¢>+tx: (resp. ¢>+tx2 , ¢>+tx;x:). Hence, (x4 ,x2 ,x3) isa (l,w,w)-
monomializing i-basis of the second kind of Ie :) Jt at PI (resp. Pt is ordinary 

t 

and (x4 , x3) is a (1, w)-monomializing i-basis of Ie :) JI at Pt ' x;x: ap-
t 

pears in ¢>I with a nonzero coefficient) for t:l o. 
This is similar to [Mori88, (9.7) (a)] and can be proved in the same way except 

that XI is known to have only terminal singularities (cf. [Mori88, (10.7)]). 
(2.10) The case of IC. Let P be the IC point of index m and 
(YI' Y2' Y4)jZm(2, m - 2,1) be the coordinates for the canonical cover pU E 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 547 

d c X~ given in [Mori88, (A.3)) so that d is parametrized by (t2, t m- 2, 0) . 
In this case, P is the only singular point of X on C [Mori88, (B.1)]. Since 
y~-2 _ y~ and Y4 generate the defining ideal of d, they form an i-free i-
basis of gr~&'x' It is easy to see that n = dy, /\ dY2/\ dY4 is an i-free i-basis 
of gr~wx' Then q1e(wx) = -P~ and D = {y, = O}/Zm E I - 2Kxl by 
(D· C) = 2/m. By 

° * I * I ~ q1e(grdw )) = q e(w ) = -q e(w) = P , 

one has ° * # deg(gre(w )) = TL(P) = -U(-l) =-1 
because 

U(x) = Min{z E Z I mz - x E 2Z+ + (m - 2)Z+} 

[Mori88, (8.9.1)(iii)). Thus gr~(w*) = w* /F~(w*) ~ &'e(-I) and 
Jfl(&'x(-Kx )) = Jfl(F~(w*)). Hence a general section S E HO(&'x(-Kx )) 
is written as (A' Y4 +.u' (y~-2 - y~))/Q near P, where A E &'X and .u E &'x# 
with wt.u == 5 mod (m). By (2.5), we see that ,1.(0) f. O. Hence S induces a 
section s of gr~(w*) = F~(w*)/F~(w*) and s is a part of an i-free i-basis 
of gr~(w*) at P. This induces an i-exact sequence 

,* b #) (2.10.1) 0 --+ (a) --+ gre(w ) --+ ( + 5P --+ 0, 

where a, b E Z, a 2: 0, and (c + d p#) in general denotes the element of 
CI(X) corresponding to c+dp# E QL(C) by (2.7). This is because Y4/Q and 
(y~-2 _ y~)/Q have wt == 0, m - 5 mod (m), respectively. We claim an 
i-isomorphism 

(2.10.2) 
First we recall that m is odd and m 2: 5 since P is an IC point. By 

(2.10.1)®gr~w, we have an i-exact sequence 

(2.10.3) 0 --+ ((a - 1) + (m -I)P#) --+ gr~&' --+ (b + 4p#) --+ O. 

By ip (l) = 2 [Mori88, (6.5)], we have deggr~&' = -1. By 

deg((a - 1) + (m - l)P#) = a-I and deg(b + 4p#) = b 

[Mori88, (8.9.1)(iii)], we have a + b = O. Hence from 

q1e((a - 1) + (m - I)P# - (b + 4p#)) = q1e(2a - 1 + (m - 5)P#) = 2a - 1 2: -1, 

we see that (2.10.3) is i-split by (2.6). Since H'(C, gr~&') = 0 by [CKM88, 
14.5.8], we have b 2: -1 and hence (a, b) = (0,0) or (1, -1). Whence 
(2.10.2) follows if (a,b)=(O,O) or m=5. Assuming (a,b)=(I,-l) and 
m 2: 7, we will derive a contradiction. By (2.10.I)®w~2, we have an i-exact 
sequence 

#' # 0--+ (-1 + (m - 2)P) --+ grew --+ (-1 + 3P) --+ O. 
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I 0 I I By H (X, wx ) = 0 and grew::: &'d- 1) , we have H (C, grew) = 0 whence 
-1 :s deg( -1 + 3pU) = T L( -1 + 3pU) = -2. This is a contradiction and (2.10.2) 
is proved. Hence 

(2.10.4) 
We claim that s is a nowhere vanishing section of the locally free sheaf 

gr~(w*) ::: w*®gr~&'. In case m ~ 7, we have gr~(w*) ::: &'e ED &'e or 
&'eED&'e(-I) by (2.10.4) and s(P)"# 0 E gr~(w*)0C(P) whence s is nowhere 
vanishing. In case m = 5, we have gr~(w*) ::: &'e ED &'e(l) and s(P) = 
()"(O)· Y4 + ,u(0)· (y~-2 - y~))/n E gr~(w*) 0 C(P) is a generic element because 
),,(0) and ,u(0) are independent constants by (2.5). Thus s is nowhere vanishing 
and the claim is proved. We study Ex = {s = O} E 1- Kxl. Since s is a 
nowhere vanishing section of gr~(w*) ::: w*®gr~&', Ex is smooth on C-
{P}. The canonical cover E~ at P is defined by Y4 + Y2(···) + YI ( ... ) = O. 
Thus (Ex, P) = (Y I ' Y2)/7l.m(2, m - 2) has only DuVal singularities, whence 
so is Ey by (K x . C) = O. For the precise result, we express (Ex, P) = 
(XI' x 2' x 3; x IX2 = x;), where XI = y~, x 2 = Y; , and X3 = YIY2 . The 
curve C is the image of d , the locus of (t2, tm- 2) ,where C is the locus of 
(i, sm-2 ,s) in the embedding of (Ex, P), where s = tm . Then it is easy to 
check. 
(2.10.5) Computation. Let (E, P) be an Am_I-singularity 

(E, P) = (XI' x 2 ' x 3 ; X I X 2 = x;) 

and C be the locus of (i, sm-2 , s) . Then A(E ::) C) is 
o 

0-··· - 0- 0-. 
'-..-' 

m-3 

Thus we are done in the case Ie. 
(2.11) The case of lIB. Let (X, P) be 

(Y I ' Y2' Y3' Y4; cp)/7l.4 (3 , 2,1,1; 0) 
with C the (quotient of the) locus of (t3, t2 , 0,0) [Mori88, (A.3)], where 

2 3 
cP = (YI - Y2) + 'II 

and 'liE (Y3'Y4) satisfies wt'll=.2 mod (4) and 'II(0,0'Y3'Y4)~(Y3'Y4)3. 
The last condition comes from the classification of terminal singularities 
[Reid87, (6.1)(2)]. In this case, P is the only singular point of X on C 
[Mori88, (B.1)]. Since Y3 and Y4 generate the defining ideal of d, they form 
an i-free i-basis of gr~&'x. By residue, 

n _ dYI /\ dY2 /\ dY3 /\ dY4 _ dY2 /\ dY3 /\ dY4 
u - Res cp - 8cp/8YI 
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is an i-free i-basis of gr~wx with wtn == 1 mod (4). We see ip (l) = 2 
as follows. Using the parametrization (t3, t2 , 0, 0) of d and i-free i-basis 
(Y3' Y 4) of gr~&'x' we see the following on d c XU : 

° 3 grew Ie = &'et Q le= &'e tdt 1\ dY3 1\ dy4 , 

/\
2 1 1 3 3 4 9 
(gr c&') ® Qc Ie = &'e(t Y3) 1\ (t Y4) ® d(t ) = &'e t Y3 1\ Y4 ® dt. 

Thus (cf. [Mori88, (2.2)]) 

/\2 1 1 8 ° (gr c&') ® Q c = t grew. 

Hence i p (1) = 2 as claimed because t4 is the coordinate of C at P. Hence 
deg gr~w = -1 and deg gr~&' = -1 [Mori88, (2.3.2)]. Thus we see gr~w:::= 

(-1 + 3pU) and gr~&' :::= (3pU)ffi( -1 + 3p U) with i-structures using their i-
free i-bases at P above. Let D = {Y2 = 0}/Z4. Then DEI - 2Kxl by 
(D· C) = 1/2. By 

one has ° * U deg(grc(w )) = TL(P) = -U(-I) =-1 
because 

U(x) = Min{z E Z 14z - x E 2Z+ + 3Z+} 

[Mori88, (8.9.1)(iii)]. Thus gr~(w*) :::= &'c(-I) and a generic section S E 

HO(&,x( -K x)) vanishes along C, i.e., S E HO(F~(w*)). Hence S = (A· Y3 + p. 
Y4)/Q for some A and p E &'x. We see that A(O) and p(O) E C are generic by 
(2.5). We study Ex = {s = O} E 1- Kxl. We see that S induces a section s of 

gr~(Q/) :::= (gr~w/~(-l)®gr~&':::= (O)ffi(l) 

such that s(P) is generic in gr~(w*) ® C(P). Thus s is nowhere vanishing, 
whence Ex :J C and Ex is smooth on C - {P}. Eliminating Y 4 ' we see that 

- . 3 2 
(Ex ,P):::=(YI'Y2' Y3;1»/Z4(3,2, I) WIth C the locus of (t ,t ,0), where 

- 2 3 1> = (Yt - Y2) + Y3(CY3 + ... ) E C{YI' Y2' Y3} 

for some C E C* by independence of A(O) and p(O). We claim that we may 
take 
(2.11.1) 
modulo multiplication by units and Zm -automorphisms fixing C. First by 
the Weierstrass preparation theorem, we may assume ¢ = Y; + I(Y2' Y3)Y 1 + 
g(Y2' Y3) with wtl == 3 and wtg == 2 mod (4). Since ¢(t3, t2 , 0) = 0, we 
see 1==0 and g == y~ mod (Y3). Hence we may assume 1= 0, after replacing 
Y1 by Yt + 1/2. Since wt(g-Y~)/Y3 == I and wtY2 == 2 mod (4), we see that 
g == y~ mod (yi). Thus we have (2.11.1) by C E C* . Then it is easy to check 
(cf. [Reid87, (4.10)]). 
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(2.11.2) Computation. Let 
232 

(E, P) = (Y" Y2' Y3; Y3 - Y2 + Y3)/Z4(3, 2, 1; 2) 

and C c E be the locus of (t3 , t 2 , 0). Then (E, P) is D5 and /:1(E ~ C) is 

o 

0- 0 - 0 - 0-. 

Thus 1- Kxl has a Du Val member in case IIB. 
(2.12) The case of two IA points P, R with indices m, 2 and a III point 
S. We know that sizp = 1, m is odd, and wp(O) = (m - l)/2m [Mori88, 
(6.2)(ii)] and that ip(l) = iR(l) = is(l) = 1 and gr~&' ~ &'(-1) EB &'(-1) 
[Mori88, (2.3)]. We start with the set-up. 

(2.12.1) Lemma. We can express 

(X, P) = (Y I ' Y2' Y3' Y4; a)/Zm(l, (m + 1)/2, -1,0; 0) ~ (C, P) 

= YI-axis/Zm' 
(X, R) = (zl' z2' Z3' z4; P)/Z2(1, 1,1,0; 0) ~ (C, R) = ZI-axis/Z2' 
(X, S) = (WI' w 2' w 3' w 4 ; y) ~ (C, S) = wI-axis, 

using equations a, p, and y such that a == YIY3 mod (Y2' y3)2 +(y4), P == ZI Z3 
2 d 2 mod (z2' z3) + (Z4)' an y == WIW3 mod (W2' w 3' w 4) . 

Proof· We express (X, P) = (Y I ' Y2' Y3' Y4; a)/Zm(al ' a2 , -aI' 0; 0) and C 
as the locus of (tl , t 2, 0,0), where a l and a2 are positive integers such that 
(a l a2 , m) = 1. By wp(O) = (m - 1)/2m, we have a2 = (m + 1)/2 [Mori88, 
(4.9)(i)]. By sizp = 1 = U(a l a2) , we have a l a2 :::; m and a l = 1. We 
need only to replace Y2 by Y2 - y~m+I)/2 to get the assertion for (X, P). We 
can attain a == YIY3 because P is a cA point [Mori88, (B.1)(g)]. The rest is 
similar except for P == zIz3 and y == w I W 3 ' which follow from iR(l) = 1 and 
is(l) = 1 and [Mori88, (2.16)]. 0 

We will improve the set-up in two steps. 

(2.12.2) Lemma. The point P is ordinary, that is, 

(X, P) = (Y I ' Y2' Y3)/Zm(l, (m + 1)/2, -1) ~ (C, P) = yl-axis/Zm. 
Proof. Assuming that P is not ordinary, we will derive a contradiction. By 
the assumption, we may assume a == YIY3 mod (Y2' Y3' Y4)2. Applying L-
deformation at R, we may assume that R is ordinary (2.9.1) and hence p = 
z4' We see that {Y2' Y4} and {z2' z3} are the i-free i-bases of gr~&' at 
P and Q. By (2.12.1), we see gr~w ~ (-1 + m21 pU + RU) and gr~(w*) ~ 

(-1 + mtl pU + RU). Thus HO(w*) = HO(F~(w*)). Let D = {Y I = O}/Zm' 

Then DE 1- 2Kxl by (D· C) = l/m. By (2.5), there exists s E HO(F~(w*)) 
inducing (Y2 +YI&'x)/Q E &'D(-Kx )' Thus s induces a global section s of 
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gr~(w*) :::: gr~&®gr~(w*), which is a part of i-free i-basis at P. Hence we 
have an exact sequence 

o , '0 o --+ grew --+ gr e& --+ (gr e& / grew) --+ O. 

It is split because gr~w:::: &( -1) and gr~&:::: &( -1) EI7 &( -1). Then it is i-
split at R because i-bases of gr~w and gr~& have wt == 1 mod (2). Hence 
gr~& / gr~w is an i-invertible sheaf such that qle(gr~& / gr~w) = qle(gr~&)
qle(gr~w) = -1 + R~ . Applying (2.6) to 

o '0 rn-1 ~ q1dgrew ) - q1e(gre&/grew ) = -2-P , 

we have an i-splitting 

(2.12.2.1) gr~&:::: (-1 + rn; 1 P~ +R~) 4(-1 +R~). 

We may further assume that Y2' z2' and w2 (resp. Y4' z3' and w4) are the 
i-free i-bases of (-l+m2"'p~+R~) (resp. (-l+R~)) at P, R,and S,by 
making coordinate changes to the ones in (2.12.1). Let J be the C-laminal 
ideal of width 2 such that J/P~& = (-1 + m2"' P~ + R~). Then {Y2' Y3' Y;} 
form an i-basis of J at P. By replacing Y3 by an element of the form 
Y3 + Y;(···) if necessary, we may assume a == Y'Y3 + cy; mod J~ leI for some 
c E C. If c =1= 0 then I:::) J is (1,2, 2)-monomializable at P, and if c = 0 
we may still assume that I:::) J is (1,2, 2)-monomializable at P by (2.9.2). 
In the same way, we may assume that I :::) J is (1, 2, 2)-monomializable at 
S. At the ordinary point R, I:::) J is (1, 2)-monomializable. Thus we have 
i-isomorphisms , ~ 

gr (&, J):::: (-1 +R), 
2,0 (rn - 1 ~ ~) gr (&, J):::: -1 + -2-P + R , 

gr2,,(&, J):::: gr'(&, J)®2®(1 +P~):::: (P~), 

3,0 2,0 _, (rn-l~) gr (&, J):::: gr (&, J)®gr (&, J):::: -1 + -2-P , 

gr3 " (&, J) :::: gr2" (&, J)®gr,(&, J) :::: (-1 + P~ + R~) 
by [Mori88, (8.12)]. Hence we have an i-isomorphism and i-exact sequences 

grl(w, J):::: (-1 + rn; 1 p~) , 
0--+ (-1 + rn; 1 pU + RU) --+ gr2(w, J) --+ (-1 + (rn - l)P~) --+ 0, 

( rn + 1~) 3 ~ ~ 0--+ -1 + -2-P --+ gr (w, J) --+ (-2+ (rn -l)P +R) --+ O. 

Thus Hl(W/p4(W, J)) =1= 0, which is a contradiction. Thus (2.12.2) is proved. 
o 
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(2.12.3) Lemma. The point R is ordinary, that is, 

(X, R) = (Zl' Z2' z3)/Z2(1, 1, 1) ::) (C, P) = zl-axis/Z2' 
Proof. We will assume that R is not ordinary whence 

2 p == ZI z3 mod (z2' z3' z4) . 

As in the proof of (2.12.2), we have a split exact sequence 0 ---+ gr~OJ ---+ gr~&' ---+ 
(gr~&' / gr~OJ) ---+ 0 which is f-split at P. Since f-free f-bases of gr~OJ and 
gr~&' at R have wt 1 and {O, I} mod (2), it is also f-split at R. Thus we 
have f -exact sequences 

0---+ ( -1 + m ~ 1 pU + RU) ---+ gr~&' ---+ (-1 + pU) ---+ 0, 

U 1 ( m + 1 U u) 0---+ (-1 + (m - I)P ) ---+ gr eOJ ---+ -2 + -2-P + R ---+ O. 

Hence HI(OJ/F~OJ) i- 0 and (2.12.3) is proved. 0 

(2.12.4) As in the argument for (2.12.2), we have an f-isomorphism 

gr~&' ~ (-1 + m ~ 1 pU + RU) E17( -1 + pU + RU). 

Let J be the C-Iaminal ideal such that J/F~&, = (-1 + mil pU + RU). Af-
ter an (equivariant) change of coordinates if necessary, we may assume that 
(Y2' z2' w2) (resp. (Y3' z3' w4» are f-free f-bases of (-1 + milpU + RU) 
(resp. (-1 + pU + RU», whence J = (W2' w3' w;) at S. Replacing w3 by an 
element == w3 mod (w2' w4)2 if necessary, we may further assume 

2 2 2 2 
Y == WIW3 + CIW4 + C2W4W2 + c3w2 mod (W3' w2 ' W2W4' w4) . Ie 

2 for some cl ' c2 ' c3 E C. We note that y == w I W 3 + CI W 4 mod J. Ie' 
(2.12.5) Lemma. The general member Ex of I-Kxl has singularities Am-I' 
AI' and An at P, R, and S, respectively, and is smooth elsewhere, and 
/l(E x ::) C) is 

o 

0-"'-0-.-0-"'-0 
~ '-".-' 

m-I n 

where n is some integer ~ 1. We have n = 1 if cl i- 0 when m ~ 5 or if 
(c l ' c2' c3) i- (0, 0, 0) when m = 3. 

Proof. We have an f-isomorphism gr~(OJ*) ~ (0)E17(-1 + mt3pU ). Let D = 

{YI = O}/Zm E 1- 2Kxl as before. We treat the case m ~ 5. Then gr~OJ* ~ 

&'e EB &'e( -1) and HO (&'( - K x» = HO(gr~( OJ* , J». The general section s E 

HO (&'( - K x» induces (Y2 + ... ) /0. up to some units whence induces a nonzero 
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global section s of gr~w*. Hence s is nowhere vanishing and the defin-
ing equations of Ex = {s = O} are Y2' z2' and w2 mod F~& up to 
units at P, R, and S. Then Ex is smooth outside of P, R, and S, 
(Ex, P) ~ (Yl' Y3)/Zm(l, -1), (Ex, R) ~ (zl' z3)/Z2(1, 1), and (Ex, S) ~ 
(WI' w 3 ' w 4 ; y), where 

y(wI , w3' w4 ) == WIW3 + cl w;mod(w3' w;)(w3, w4 )· 

We are done in case m ~ 5. In case m = 3, we can see that gr~w* ~ (0)$(0) 
and HO (& ( - K x)) - HO (gr~w *) , and we get a similar assertion on Ex except 
that y == WIW3 + (C3t2 + c2t + cl)w; for some generic t E C. Thus we are done 
incase m=3. 0 

(2.12.6) Lemma. If m ~ 5, then ci =f. 0 and n = 1 in (2.12.5). 
Proof. Assume that m ~ 5 and ci = O. By WI w3 E J . Ie' we have W3 E 

F 3(&, J) and gr2(&, J) = &eW2EB&ew; at S. Thus we have i-isomorphisms 

Thus we have 

grl (&, J) = (-1 + pU + RU), 

gr2,o(&,J)= (_I+m;l p U+ RU), 

gr2,1(&, J) = grl(&, J)®2 ~ (-1 + 2pU). 

grl(w,J)~ (_I+m;l pU), 

o --t (-2 + m; 3 pU + RU) --t gr2(w, J) --t (-1 + (m - I)PU) --t 0, 

and HO (w / F3 (w, J)) =f. 0 , which is a contradiction. 0 

(2.12.7) Lemma. If m = 3, then (cI , c2' c3) =f. 0 and n = 1 in (2.12.5). 

Proof. Assume that (cI , c2' c3) = O. Then w3 E F~&. Changing WI and w3' 
we may further assume y = w IW3 + J(w2, w4 ) where J is a power series in 
w2 and w4 of order d ~ 3. Then we have X(&/F~&) = O(n2) by (2.18.8) 
below because 2· ldege (( -1 + pU + RU)) + 1 / d ::; O. This contradicts (2.12.9) 
below. 0 

(2.12.8) Lemma. 

X(& /F~&) ::; ~n3 (ldegegr~& + ~) + O(n2). 

Proof. An argument similar to the proof of [Mori88, (8.12)] shows 

n 1 3 I &x,s/(F~&)s 2 
X(& / Fe&) ::; -6 n ldegegr e& + len C{ } /( )n + O(n ), 

WI' w2' w4 w2' w4 
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where we used the ordinarity of P and R. By the equation WI W3 = g(W2' w 4 ) 
above, it is easy to see that 

[nidI 
(Fn B) _ ~ ( )n-di i + ( [n/d]+I) 

C(7 S - L...J W 2 , W 4 W3 W3 ' 
i=1 

and hence 
&' I(Fn&,) n3 

len x ,s C S n < _ + O(n2). 0 
C{wI' w 2 ' w4 }/(w2 , w 4 ) - 6d 

The following is a rather general lemma. 
(2.12.9) Lemma. Let J: X ---> (Y, Q) be a proper bimeromorphic morphism 
oj an irreducible reduced 3-Jold to a 3-Jold singularity (Y, Q) such that C = 
J- I (Q) is I-dimensional. Then Jor an arbitrary number c > 0, there exists a 
number M (c) such that 

x(&' IK) ~ M(c) + c· rk(&, IK) 

Jor an arbitrary ideal K c &'X defining C (as a set), where rk(&, I K) is the sum 
oj len,(&' I K)c! Jor the generic points oj C. 
Proof. Since dim C = 1, let L be an J-ample line bundle on X. Since 
J·J.(L- I ) = L- I on X - C, we see that 

J = L ® (Image of] J.(L- I ) ---> L -I) 

is an ideal defining C such that L $n _ J for some n > O. Let 
&' x = Jo :J JI :J ... :J Ja = J 

be ideals such that Annih( JJ Ji+ I) is a prime ideal Pi and JJ Ji+ I is a torsion-
free &'IPi-module (i = 0, ... , a-I). Let A = aJ1+1I (J1 E Z, 11 E [0, a-I]). 
Then 

SI1(L$n) ® Jv _ J{.Ie}, 

where J{.Ie} = JI1 . Jv . Hence 

SI1(&,$n) ® L ®11 ® J IJ _ J{).}IJ{MI} 
v v+1 . 

Hence if K + J{.Ie} I K + J{MI} is of rank n). along Supp(&' I P) of dimension 
1, then there is an injection 

(L®11 ® JvlJV+I)$n;. ---> K + J{.Ie} IK + J{MI} 

whose cokernel is of finite length. There exists A(C) , which is independent 
of K, such that if A = aJ1 + 11 ~ A(C) and Supp(&' I PrJ is a curve then 
X(L®11 ® Jvl Jv+l ) ~ c. Hence if A = aJ1 + 11 ~ A(C) , then 

(2.12.9.1) X(K + J{.Ie} IK + J{)'+I}) ~ n). . c, 
where n). is as above if dim Supp(&' I Pv ) = 1 and n). = 0 otherwise. Since 
K:J J{A} for A» 0, (2.12.9.1) implies 

X(K + J{u} IK) ~ c· rk(K + J{u} IK) 
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for some a < A(C). It remains to give a lower bound of x(&' I K + J{u}). For 
each a < A( c) , we choose one sequence of ideals 

~ {u} (7x = 10 :J I, :J ... :J Ib = J 

such that Annih(I)lj+,) = Q j is a prime ideal and 1)lj+, is a torsion-free 
&' I Qj-module of rank 1 (i = 0, ... , b - 1). If X(/j + Kllj+, + K) < 0, then 
dim Sup¢ I Q j = 1 and 

I) I j+, ~ I j + Kllj+, + K. 

Thus X(/j + Kllj+, + K) ;::: min{O, X(I)lj+,)} and X(&'IK + J{u}) ;::: M(c) + 
c· rk(&, I K + J{u}), where 

( b-' ) 
M(c) = Minu L min{O, X(I) I j+,)} - c . rk(&, I J{u}) , 

1=0 

where Minu is the minimum taken over all a < A(C). Hence we have (2.19.2). 
o 

It seems worthwhile to remark. 

(2.12.10) Corollary. The inequality in [Mori88, (8.12.ii)] is strict. 

Now (2.2.3') is proved in the case IA+IA+III except the divisoriality, which 
will be treated in Chapter 5. 

(2.13) The case of two IA points P, R with indices m, 2. We know that P 
is a cA point, sizp = 1, m;::: 3 [Mori88, (B.1)]. We start with the set-up. 

(2.13.1) Lemma. We can write 

(X, P) = (Y" Y2' Y3' Y4; a)/Zm (1, a, -1,0; 0) :J (C, P) = y,-axisIZm , 

(X, R) = (z" z2' z3' Z4; P)/Z2(1, 1,1,0; O):J (C, R) = z,-axisIZ2 

using equations a and P and an integer a such that a == Y'Y3 mod (Y2' Y3)2 + 
(Y4) , ml2 < a < m, and (a, m) = 1. 
Proof. This is similar to (2.12.1). We only need to prove a > m I 2, which 
follows from 1 > wp(O) + wR(O) = (m - a) 1m + 112 [Mori88, (4.9)]. 0 

We recall £(P) = lenpl(i2) 11#2) where 1# is the defining ideal of cU in 
(X# ,P#) and £(R) is defined similarly. 

(2.13.2) Lemma. We have £(P) = 0 or 1 and ip(l) = 1. 
Proof. This follows from a == Y'Y3 and [Mori88, (2.16)]. 0 

(2.13.3) Lemma. We have either 
(2.13.3.1) £(R)=O or 1, iR(l)=l,and gr~&'C:=&'EB&,(-l); or 
(2.13.3.2) £(R) = 2, iR(l) = 2, m is odd, P is ordinary, a = (m + 1)/2, 

and gr~&,c:=&,(-l)EB&,(-l). 
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Furthermore in case (2.13.3.2), X:J C has a small deformation X t :J Ct so 
that X t has three singular points on Ct. 
Proof. The assertion on iR (l) follows from the one on £(R) by [Mori88, 
(2.16)]. We assume £(R) ~ 2 and denote it by r. Thus we may choose 
p == z~ Zi mod (z2' z3' Z4)2 ,where i = 3 (resp. 4) if r == 1 (resp. 0) mod 
(2). If we extend the deformation p+tz~-2Zi=0 of (X,R) to a deformation 
X t :J Ct 3 R t of X :J C 3 R, which is trivial outside of a small nbd of R, 
then X t has two IA points and one III point on Ct and P + t <-2 Z i = ° is the 
equation for (Xt,Rt) (cf. [Mori88, (4.12.2)]). Hence r=2 by (2.12.3). Since 
X t :J Ct is a trivial deformation of X :J C in a nbd of P, we have the rest of 
the assertion by (2.12). 0 

First we treat the special case (2.13.3.2). 

(2.13.4) Lemma. The assertion (2.2.3) holds in the case (2.13.3.2). 
Proof. The argument is quite similar to (2.12). As in (2.12.4), we have an 
£ -isomorphism 

gr~&' ~ ( -1 + m ; 1 ptt + Rtt) Ef:J( -1 + p" + R"), 

and let J be the C -laminal ideal such that J / F~&, = (-1 + m2, p" + Rtt). We 
may assume that (Y2' z2) (resp. (Y3' z3)) are £-free £-bases of (-1 + m2, p" + 
R") (resp. (-1 + ptt + Rtt)) , Jtt = (z2' Z4' zi)' and 

2 2 2 2 2 
P == Z, Z4 + c, Z3 + C2Z2Z3 + c3z2 mod (z4' z3' z2 z 3' z2) . Ie 

at R for some c,' c2' C3 EC. We note that P==z~z~+c,zi mod J"I". The 
following (2.13.5) corresponds to (2.12.5). The fact that (c" c2 ' c3 ) i= (0, 0, 0) 
follows from the classification of terminal 3-fold singularities [Reid87, (6.1)]. 
The assertion that c, i= ° if m ~ 5 is proved in the same way as (2.12.6). Thus 
(2.13.4) is proved. 0 

(2.13.5) Lemma. Assume that c, i= ° when m ~ 5, or (c" c2 ' c3) i= (0, 0, 0) 
when m = 3. Then for a general member Ex of 1- Kxl, !l(Ex:J C) is 

o 

o - ... - 0 - • - 0 - ... - 0 - 0 -0 
~~ m-' 2k-3 

where k (~2) is the axial multiplicity of (X, R) . 
Proof. The only difference from (2.12.5) is the analysis of the singularity 

(Ex, R) ~ (z" z3' Z4; 71)/71..2(1,1,0; 0) 
-. - 22 2 -

where P satIsfies P == Z'Z4 + z3 mod (z4' Z3)(Z4' z3) and ord P(O, 0, z4) = 
- 2 2 k k < 00. It is easy to see that P = Z, Z4 + z3 + Z4 modulo formal 71..m -

automorphisms in (z" z3' z4). Thus it is reduced to the following explicit 
computation (cf. [Reid87, (4.10)]). 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 

(2_13_6) Computation. Let 
2 2 k 

(E, R) = (Z" Z3' Z4; Z,Z4 + Z3 + Z4)/Z2t1, 1,0; 0) 
and C = z,-axis /Z2' where k 2: 2. Then (E, R) is D2k and /l(E:J C) is 

o 

• - 0 - ..• - 0 - 0 -0 
~ 

2k-3 
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(2.13.7) In the rest of this chapter, we assume the case (2.13.3.1) unless 
otherwise mentioned. 

We choose an i-splitting gr~&' ~ LffiM (2.8) such that degL = 0 and 
degM = -1 (2.13.3.1). Let J be the C-Iaminal ideal of width 2 such that 
J / F~&, = L. For an i-invertible sheaf F with an i-free i-basis! at a point 
T of index n, we can give an equivalent definition of qldeg(F, T) E [0, n) as 
qldeg(F, T) == -wt! mod (n). (This is because (d, P~) and (d, R~) are 
smooth.) 

(2.13.8) Theorem. qldeg(M, R) = 1 . 
Proof. We assume qldeg(M, R) = O. Then M ~ (-1 + iP~) for i = 0, 1 , or 
(m-a) since Y2' Y3' and Y4 form an i-basis of gr~&' at P. By qlc(gr~(j)) = 
-1 + (m - a) P~ + R~ , we have 

gr~(j) ~ gr~&'"®gr~(j) ~ L0gr~(j)ffi( -2 + (m - a + i)P~ + R~). 
By m - a + i :::; 2m - 2a < m, we have H' (gr~(j)) =1= O. This is a contradiction 
to H'«(j)/F~(j)) = 0 because of H'(gr~(j)) = O. 0 

(2.13.8.1) Remark. For comparison with [Mori88, (9)], it might be worthwhile 
to mention 

qldeg(M, R) = 1 
qldeg(M, P) = m - a 

iff i(R) + q(R) =1, 
iff i(P) + q(P) =1. 

(2.13.9) Lemma. The case (2.2.4) holds if qldeg(M, P) = m - a. 

Proof. We have an i-isomorphism M ~ gr~(j). We may assume that Y2 
is an i-free i-basis of M at P. Let D = {y~a-m = O}/Zm (note that 
2a > m). It is easy to see D E 1- 2Kxl by (D· C) = (2a - m)/m. By 
HO(&'(-Kx )) = HO(F~«(j)*)), its general section s induces a section s of 
gr~(j)* ~ L0(gr~(j))'~(-') EEl (0). The projection of s to (0) is nonzero be-
cause Y2/n is an i-free i-basis of (0) at P and s induces an element of 
the form Y2/Q + . .. up to units, where Q is an i-free i-basis of gr~(j) at 
P. Thus s is nowhere vanishing, whence Ex = {s = O} is smooth outside 
of P and R. The analysis of (Ex, P) and (Ex, R) is the same as [Mori88, 
(9.9.3)]. 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SS8 JANOS KOLLAR AND SHIGEFUMI MORI 

(2.13.10) Lemma. We assume qldeg(M, P) =I- m - a in the case (2.13.3.1). 
Let k be the axial multiplicity of R. Then P is ordinary, m is odd ~ 5, and 
a = (m + 1)/2. After changing coordinates, we may assume 

(X, P) = (YI' Y2' Y3)/Zm(1, (m + 1)/2, -1) ::J (C, P) = YI-axis/Zm' 
(X, R) = (z\, Z2' z3' z4; P)/Z2(1, 1, 1,0; 0) ::J (C, R) = zl-axis/Z2; 

Y2 and Y3 are i-free i-bases of Land M at P, respectively; z3 (resp. Z4) 
and z2 are i-free i-bases of Land M at R, respectively, 

L = (m ; 1 p" + R") (resp. L == (m ; 1 p")) , 

M = (-1 + p" + R"), 

I ::J J has a (1, 2)-monomializing i-basis (Y3' Y2) at P, I ::J J has a 
(1, 2)-monomializing i-basis (z2' z3) (resp. a (1,2, 2)-monomializing i-basis 
(z2,z4,z3) of the second kind) at R, p = z4 (resp. p == zlz3+z; mod 
(z; , z3' z4)(z2' z3' z4» if k = 1 (resp. k ~ 2); and an i-splitting 

gr2(&, J) == (2p i )Ef1 (-1 + m; 1 pi + R"). 

Proof. Proof will be given in a few steps. 
(2.13.10.1) Assuming that qldeg(M, P) =I- m - a and that P is not ordinary, 

we will derive a contradiction. We may assume a == YIY3 mod (Y2' Y3' y4)2 
by (2.13.1). Thus Y2 and Y4 form an i-free i-basis of gr~& at P, and we 
may assume that they are i-free i-bases of Land M, respectively, because 
qldeg(M, P) =I- m - a. Hence M == (-1 + R U). By the deformation a + ty; 
(2.9.2), we may assume that I ::J J has a (1,2, 2)-monomializing i-basis 
(y 4' Y2' Y3) at P. We may further assume that R is an ordinary point by 
(2.9.2). Hence L == «m-a)PU+RU) and gr2,1(&, J) == M®2®(p") == (-I+P"). 
Hence 

grl (w, J) == M®gr~w == (-1 + (m - a)P") , 

gr2,o(w, J) == L®gr~w == «2m - 2a)P") , 

gr2, \w, J) == gr2, 1(&, J)®gr~w == (-2 + (m - a + I)PU + R"), 

gr3,o(w, J) == gr2,o(w, J)®M == (-1 + (2m - 2a)P" + R"), 

gr3, I(W, J) == gr2, \w, J)®M == (-2 + (m - a + I)P"). 

Thus we have a contradiction HI (w/ F4(W, J» =I- 0 by m - a + 1 ::; 2m - 2a < 
m. Thus P is ordinary. 

(2.13.10.2) We will prove that m is odd ~ 5 and a = (m + 1)/2. If 
a = m - 1 , then qldeg(M, P) = m - a by qldeg(M, P) == -wtY2 == -wtY3 . 
This is impossible and thus a::; m - 2. Whence m ~ 5 by m - 2 ~ a > m/2. 
As in (2.13.10.1), we may assume that R is ordinary by (2.9.2). Hence L == 
«m-a)P"+R") and M== (-I+P"+R") by qldeg(M, P) == -wtY2 or -wtY3 
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mod (m). We have 

gr\w, J) ~ Mflygr~w ~ (-1 + (m - a + I)P"), 

g/'o(w, J) ~ Lflygr~w ~ «2m - 2a)P") , 

2 I ®2 ~ ° " " gr' (w,J)~M ®grcw~(-2+(m-a+2)P +R), 

gr3,o(w, J) ~ LflyMflygr~w ~ (-1 + (2m - 2a + I)P" + R"), 

3 I ®3 ~ ° " gr' (w,J)~M ®grcw~(-2+(m-a+3)P). 

559 

By m > 2m - 2a 2: m - a + 2, we see that HI(wIF4(w, J)) = 0 only if 
2m - 2a + 1 = m, that is, a = (m + 1)/2. 

(2.13.10.3) Since gr~&' has an i-free i-basis {Y2' Y3} at P and {z2' z3} 
(resp. {Z2' z4}) at R if k = 1 (resp. k 2: 2) , the assertions on Land M 
follow from qldeg(M, R) = 1 (2.13.8). For the i-bases of J, we only have to 
show that (z2' z4' z3) is a (1, 2, 2)-monomializing i-basis of I :J J of the 
second kind at R assuming k 2: 2 because J" = (z~, z3) if k = 1. Assume 
k 2: 2 (hence J" = (z~, z3' Z4)) and that p == ZI z3 + cz~ mod J" In for some 
c E C. If c = 0, then z3 E F3(&" J) and gr2, I(&" J) ~ M®2, whence 

gr2,o(w, J) ~ Lflygr~w ~ (-1 + (m - I)P" +R"), 

2, I ®2 ~ ° ( m + 3" ") gr (w,J)~M ®grcw~ -2+-2-P +R , 

which implies a contradiction: HI (wi F 3(w, J)) =I- o. Thus c =I- 0 and the 
assertion on i-basis is proved. In particular, the assertion on p follows. 

(2.13.10.4) By gr2,1(&" J) ~ M®2 if k = 1 (resp. M®2fly(R") if k 2: 2), 
we have gr2(&, , J) ~ &'C Ell &'c( -1) as &'c-modules. It is easy to see that 
the i-free i-basis at R of gr2(&" J)I&'c has wt i= 0 mod (2) by the argu-
ment for (2.13.8) and by m 2: 5. To determine the i-splitting of gr2(&" J) 
(cf. (2.9)), it is therefore enough to disprove the i-isomorphism gr2(&, , J) ~ 
(m2"1 P")4( -1 + 2P" + R") when m 2: 7 (we note that this i-splitting is what 
we want if m = 5). Indeed, from this i-splitting, we have 

gr2(w, J) ~ (-1 + (m _ I)P" + R")4 (-1 + m; 3 p") , 
3 ~ ( m + 5" ") gr(w,J)~(O)Ell -2+-2-P+R , 

which implies a contradiction HI (wi F4(W, J)) =I- O. Thus we have 

gr2 (&' , J) ~ (2P")4 (-1 + m ~ 1 p" + R"). 0 
(2.13.11) Lemma. We use the notation and assumptions of(2.13.1O). We have 
that HO(&'(-Kx )) = HO(F2(w*, J)) and a general section s of HO(&'(-Kx )) 
induces a section s of gr2(w* , J) such that 
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(2.13.11.1) S generates L®gr~o/ c gr~w* at P, and 
(2.13.11.2) if m 2:: 7 then s is a global generator of (0) in the i-splitting of 

(2.13.10) 
2 * - ( m + 5 U u) gr (w ,J) ~ (0)E9 -1 + -2-P +R . 

If m = 5, we have the same assertion possibly after changing the i-splitting 
of gr2(w* , J). 
Proof. We see HO(&'(-Kx » = HO(F2(W* , J» by 

° ° * ° I * H (gr (w ,J» = H (gr (w ,J» = 0 (2.13.10). 

Let D= {YI =O}/Zm E 1-2Kxl and let 0 bean i-free i-basis of grOw at P. 
By (2.5), Y2/Q E &'D(-Kx) lifts to a section of HO(F2(W*, J». Since Y2 is a 
part of an i-free i-basis of gr2(&" J), we see that s is nonzero. If m 2:: 7, 
then s must generate (0) because HO(C, (-1 + mt5 pU + RU» = O. If m = 
5, then we see ~(&,(-Kx» -» gr2(w*, J) ® CCP) using yi/Q E &'D(-Kx)· 
Then s ~ HO(C, (RU» in the i-splitting of gr2(w*, J) and we have the same 
conclusion. 0 

(2.13.12) Lemma. We assume the notation and assumptions of(2.13.10). Then 
the case (2.2.3) holds. 
Proof. Let s E HO(&,( -K x» be a general section. If m = 5, we change the 
i-splitting of gr2(&" J) for which (2.13.11) holds. Depending on the value of 
k , we treat two cases. 

(2.13.12.1) Case k = 1. We claim that the image of s in gr~w* generates 
L®gr~w* ~ (1) (c gr~w*) at P and R and vanishes at some point S (¥= 
P, R). Indeed the generation at P is proved in (2.13.11). If s does not 
generate L®gr~w* = gr2,0(w* , J) at R, s is not a part of an i-free i-basis 
of gr2,0(w* , J) at R because 

2 I * 1812 - ° * qldeg(gr ' (w ,J), R) = qldeg(M ®grcw, R) ¥= O. 
It contradicts (2.13.11) and our claim is proved. Then it is easy to see that 
Ex = {s = O} E I-Kxl is smooth outside of P,R, and S, (Ex'P) ~ 
(YI ,y3)/Zm(1, -1), and (Ex, R) ~ (ZI' z2)/Z2(1, 1). We choose coordinates 
at S so that (X, S) = (WI' w 2' w 3) :::) (C, S) = WI-axis and J = (W2' wi) 
at S. Using a generator 0 of &'(Kx) at S, we see Qs E (W IW2) + (w2' w3)2 
because s vanishes at S to order 1. Since Os is a part of a free basis of 

2 2 2 gr (&', J) at S, we have Os == fwlw2 + gW3 mod (w2' W3)(w2 , w 3) for 
some units f and g. Thus (Ex, R) is an Al point and we are done in case 
k = 1. 

(2.13.12.2) Case k 2:: 2. We see that the image of s in gr~w* gener-
ates L®gr~w* ~ (RU) outside of R by (2.13.11). Then Ex = {s = O} E 
I-Kxl is smooth outside of P and R, (Ex, P) ~ (Yl' Y2)/Zm(l, -1). Using 
an i-free i-basis Q of &'(Kx) at R, we see that the image of s in gr~w* 
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is ZI z4/Q at R. Since s is a part of an i-free i-basis of gr2(w*, J) at R, 
we have Qs == ZI Z4 + fZ3 mod JU I U at R for some unit f. Eliminating 
z3' we see that (Ex, R) := (zi' z2' z3; P)/7L.2 (1 , 1,0; 0), where P satisfies 
- 2 2 2 -P == zi z4 + z2 mod (z2' Z4)(Z2' Z4) and ordp(O, 0, Z4) = k. Then we can 
apply (2.13.6). D 

By (2.2) and (2.13), we see the following. 

(2.13.13) Theorem. Let f: X :) C -t Y :3 Q be an extremal nbd with C := pi . 
Then the following are equivalent: 

(2.13.13.1) X:) C is of type kAD. 
(2.13.13.2) X has exactly two non-Gorenstein points on C and is smooth else-

where and (f(E x) ,Q) is not a cyclic quotient singularity for a general member 
Ex ofl-Kxl· 

(2.13.13.3) X:) C is as described in (2.13.3.2) or (2.13.10). 

3. SOME REMARKS ABOUT GENERAL DUVAL ELEMENTS 

[Reid87] conjectured that if X :) C -t Y :3 P is an extremal nbd with the 
contraction map then the general member of the linear systems of Weil divisors 
I-Kxl and I-Kyl have only DuVal singularities. He dubbed this member the 
"general elephant." In fact, he speculated that in even more general situations 
when contraction of an extremal face results in a singular point Z :3 Q, the 
general member of I-Kzl still has a DuVal singularity. He further hoped that 
this will be a key step toward establishing the existence of flips. 

It seems that these conjectures and speculations are very close to being correct 
and they can serve as an important guideline toward understanding flipping 
singularities. In this chapter we present some of the evidence for the conjectures. 
The following theorem describes singularities with a DuVal general element. 

(3.1) Theorem. Let Y :3 P be a threefold singularity. Let P E DEI - Kyl 
and assume that D has only Du Val singularities. Then 

(3.1.1) There is a ramified double cover p : Z -t Y such that Z has canonical 
singularities. 

(3.1.2) For any Wei! divisor W the symbolic power algebra 
co 

L>~?y(kW) 
k=O 

is a finitely generated &y-algebra. In particular, 
co 

fw: l(W) = Projy(E&y(kW)) -t Y 
k=O 

is a proper map whose exceptional set consists of finitely many curves over P. 
(3.1.3) l(Ky ) has only pseudoterminal singularities, and l(-Ky ) has only 

canonical singularities. 
Proof. By [Shokurov91, 3.4] Ky + D is log terminal. Let B E 1- 2Kyl be a 
general member. Let p : Z -t Y be the double cover of Y ramified along B. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



562 JANos KOLLAR AND SHIGEFUMI MaRl 

By the adjunction formula, 

Kz = p*(Ky + !B) 
is Cartier and K z is log terminal (cf. the proof of [Shokurov91, 2.9]). Thus Z 
is canonical. This shows (3.1.1), which in tum implies (3.1.2) by [Kawamata88]. 

Let y' = Y(Ky ) and let D' c y' be the proper transform of D. Then 

KD, = K y ' + D'ID' = O. 
By assumption, D has only DuVal singularities, hence for any partial resolution 
(even for possibly nonnormal ones) K D' = 0 iff D' is normal and is dominated 
by the minimal resolution. In particular, D' has only DuVal singularities. K y ' 

is icKyfample, thus D' contains the exceptional locus of icKy)' [Stevens88, §5] 
implies that y' has only pseudoterminal singularities. 

The same argument shows that y* = l(-Ky ) has pseudoterminal singularities 
along the proper transform D* of D. (Y*, D*) is log terminal and D* E 
1 - Ky. 1 . Thus D* contains all points where Ky. is not Cartier, hence y* is 
canonical outside D*. 0 

(3.2) Remarks. (3.2.1) We proved in fact more: any non-Goren stein singular-
ityof l(-Ky ) is pseudoterminal. 

(3.2.2) In view of this result the natural set-up for extremal nbds might be to 
consider extremal nbds with canonical singularities. If in all cases 1- Kyl has a 
general DuVal element then we have established a beautiful equivalence between 
isolated extremal nbds with canonical singularities and possibly reducible central 
curves and non-Gorenstein threefold singularities with a general DuVal element. 

(3.3) Theorem. Let Y 3 P be a threefold singularity. Let P E DEI - Kyl 
and assume that D is a cyclic quotient (Du Val) singularity. Then 

(3.3.1) The general hyperplane section P E HeY has a cyclic quotient 
singularity at P; 

(3.3.2) The pullback of H to l(Ky ) has cyclic quotient singularities; 
(3.3.3) The pullback of H to l(-Ky ) has semi-log-canonical singularities 

[KSB88, Chapter 4]; 
(3.3.4) If Yn ---> Y is the n-sheeted cyclic cover ramified along H then the 

general member of 1- Ky 1 again has only cyclic quotient (DuVal) singularities. 
n 

(3.4) Corollary. Let f: X :J C ---> Y 3 P be a semistable extremal nbd. Then 
the general hyperplane section P E HeY has a cyclic quotient singularity. 

We start the proof with some lemmas: 

(3.5.1) Lemma. Let x E X be a three dimensional pseudoterminal singularity 
and let XED E 1-K x I. Assume that D is a cyclic quotient (Du Val) singularity. 

(3.5.1.1) Then in suitable local coordinates xED c X can be written as 

[0 E (z = 0) c (xy + f(zm, t) = O)]fZm(1, -1, a, 0). 

(3.5.1.2) If h E &x is such that h = t + zg for some powerseries g then 
in suitable local coordinates (h = 0) c X has the form (xy + 7Czm) = 0). 
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Moreover we may assume that 

x-axis = x-axis; 
y-axis = y-axis. 

563 

(3.5.1.3) Let X' ---+ X be the n-sheeted cover given by t,n = t. Let D' eX' 
be the pullback of D. Then in suitable local coordinates x' E D' c X' can be 
written as , , , ,m, 

[OE(Z =O)c(xy +f(z ,t)=O)]/Zm(I,-I,a,O). 

Moreover we may assume that 

x'-axis = pullback of the x-axis; 
y'-axis = pullback of the y-axis. 

Proof. The first claim is clear from the list of pseudo terminal singularities 
[Hayakawa-Takeuchi87]. The other two are easy computations. 0 

(3.5.2) Lemma. Let 0 E S be a normal surface singularity. Let g : S' ---+ S be 
a proper birational morphism which has the following properties: 

(3.5.2.1) g-I(O) C s' is a chain of smooth rational curves intersecting trans-
versally; 

(3.5.2.2) If s' E S' is a singular point then in suitable local coordinates S' 
can be written as 

((a, m) = 1), 

where g-I(O) = (z = 0). 
Then 0 E S is a cyclic quotient singularity. 

Proofof(3.3). Let y' and D' be as in the proof of (3.1). By the proof of (3.1), 
D' is dominated by the minimal resolution of D. Therefore every singularity 
of D' is a cyclic quotient. 

Look at the following exact sequence: 

o ---+ COy' ---+ &'y' ---+ &'D' ---+ O. 

Since Rl g*coy, = 0, this gives a surjection 

HO (&'y') ---+ HO (&'D') ---+ O. 

Let D ~ (uv - w d = 0). Then the section g*(w) lifts to a section s of 
&'Y'. By lifting generically, we may assume that H' = (s = 0) is normal. 
Let H = g(H'). (3.5.1.2) and (3.5.2) imply that H' and H have only cyclic 
quotient singularities. This shows (3.3.1-3.3.2). 

To show (3.3.4) we take the n-sheeted cover ramified along H' . The pullback 
D~ of D' to Yn is a member of 1-KY,I. (3.5.1.3) describes the local structure 
of D~ and so by (3.5.2) Dn = gn(D~) is a cyclic quotient singularity. 

To see (3.3.3) we consider (Yn)<-Ky) and (l(-Ky))n (the n-sheeted cover of 
l(-Ky) ramified along the proper transform of H). These are both small mod-
ifications of Yn such that the anticanonical class is relatively ample. Therefore 
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they are isomorphic. Since (Yn)(-Ky) has canonical singularities by (3.1) the 
same holds for (l<-Ky»)n. Now [KSB88,5.1] implies that the proper transform 
of H has only semi-log-canonical singularities. 0 

The proof of (3.3) implies the following result: 

(3.6) Corollary. Let f : X ::) C ---+ Y 3 P be a semistable extremal nbd. 
Assume that the general DEI - Kxl contains C. Let C c H E I&'xl be a 
sufficiently general member. Then at every point PEe one can choose local 
coordinates such that PEe c HeX is given as 

o E (x-axis) c (t = 0) c (xy - zdn + tf(x, y, z, t) = O)/Zn(1 , -1, a, 0). 

(3.7) Remarks. (3.7.1) It is possible that if Y 3 P is a threefold singularity 
such that the general member of 1 - Kyl has a DuVal singularity then the 
general hyperplane section P E HeY has a rational singularity at P. In fact, 
we should get a very limited class of rational surface singularities, though much 
larger than just quotients and quadruple points. 

(3.7.2) It seems to be true-as illustrated by (3.1.3)-that the proper trans-
form of H on l(Ky ) is simpler than the proper transform on l(-Ky ). Therefore 
it seems reasonable to try to prove the existence of a nice member H by finding 
its proper transform on l(Ky ). In many cases this seems possible. 

(3.8) Example. There is an interesting construction that can be used to create 
a slew of isolated extremal nbds (with canonical singularities in general) starting 
with one. It goes as follows: 

Let Y 3 P be a threefold singularity such that the general member of I-Kyl 
has a DuVal singularity. Then we construct y' and D' as before. Let C c D' 
be the exceptional curve. Now take a smooth curve ~ in D' which does not 
pass through any of the singular points. Blowing up ~ we get a new threefold 
Y and D ~ D' is the proper transform of D' . Clearly locally along D, D is a 
member of I-Kyl. The proper transform C of C is contractible and this way 
we get a new threefold singularity which has a member of 1-KI isomorphic to 
D. This way we also get new examples of isolated extremal nbds (with canonical 
singularities in general). 

Unfortunately it is very hard to understand what the new example will be 
like. It seems that in most cases it will have fairly complicated nonterminal 
canonical singularities. 

One interesting special case is when we start with a terminal singularity as Y 
and pick any small modification as y'. Thus we can get examples of extremal 
nbds without starting with one. 

4. INDEX TWO NBDS 

The aim of this chapter is to give a fairly complete description of extremal 
nbds with index two points only. The methods are completely elementary. None 
of the machinery of [Mori88] is used. The classification will then be used to 
disprove the existence of certain types of nbds with index four points. In order 
to prove some results in Chapter 2 we also describe divisorial extremal nbds 
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with index two points only. During the proof very little is gained by assuming 
that the central curve is irreducible, in fact, we need to understand some cases 
where it is not. Therefore we will consider the following general situation: 

(4.1) Cases to be considered. In this chapter, f: X ::) C - Y 3 Q denotes 
a three dimensional extremal curve neighborhood as in (T.l). We assume fur-
thermore that X has only points of index one and two. We do not assume that 
C is irreducible. 

(4.2) Theorem. Let f: X ::) C - Y 3 Q be as in (4.1). Assume that X ::) 
C - Y is isolated. Let P E C be a point of index 2. Then 

(4.2.1) P is the only singular point and in appropriate coordinates pU E X~ 
is given by the equation 

2 
(X1X 2 + P(X3 ' X 4 ) = 0)/Z2(1, 1, 1,0) 

and d is the x I-axis. 
(4.2.2) X+ has at most one singular point with equation 

x IX 2 + P(X3' x 4 ) = 0 

and C+ is the xI-axis. (Same p as above but no group action and x3 instead 
of xi)· 

(4.2.3) Y is a rational triple point given by the 2 x 2-minors of 

( ZI Z2 Z3 ) 
Z2 Z5 P(zl' z4) • 

( 4.2.4) C is irreducible. 
The proof uses a construction that will be used later in the divisorial case. 

Therefore we give it in the general setting. 

(4.3) Construction. Let f: X ::) C - Y 3 Q be as in (4.1). Let C j be the 
irreducible components of C . Since X has only points of index one and two, 
mj = -2K x • C j is a positive integer. Let E j e X be the union of mj disjoint 
discs transversal to C j and let E = L: E j • Then EEl - 2K x I , hence we can 
take the corresponding double cover X' - X ramified along E. X' has only 
index one terminal singularities. Let E' e X' be the preimage of E. The 
natural map E' - E is an isomorphism. Let D = f(E) e Y and let y' - Y 
be the corresponding double cover ramified along D. We have a contraction 
map r : X' - y'. By construction, K x' is trivial along the fibers of r. 
Therefore y' has a cDV point. (If f is divisorial, then y' will have a double 
curve.) Thus we have the following diagram: 

E eX+--- E' e X' 

DeY D'e y' 
The double cover construction gives a Z2-action on r : X' - y' and the 

quotient is f: X - Y. The fixed point set of the action on y' is precisely 
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D' . Since y' is a cDV point, it is a hypersurface in ((;4 , thus it can be written 
down explicitly in principle. This will enable us to get equations for X and Y. 

If the nbd is isolated then E -+ D is an isomorphism outside the origin, 
in fact, it will turn out to be an isomorphism. In particular, D is smooth. If 
f contracts an exceptional divisor SeX then the general fiber F of S is 
a (-1 )-curve, hence E· F = 2. Therefore D will have a double curve along 
the image of S and will be smooth elsewhere. If E is chosen generically then 
D will have an ordinary double curve along the image of S (i.e., two branches 
intersecting generically transversally). 

(4.4) Proof of (4.2). This will be done in several steps. 

(4.4.1) Claim. Let the assumptions be as in (4.2). In suitable local coordinates 
(Y i ) for y' C ((;4, Z2 acts with wts (1,1,0,0) and D' = (Y1 = Y2 = 0). Therefore 
C is irreducible. 

Proof. We may assume that the coordinates are eigenvectors and Y 1 , ••• , Yj 
are those with wts 1. Thus D' = (Yl = ... = Yj = 0) n y' . Hence j = 1 or 2. 
If j = 1 then D' is Cartier. On the other hand, since r is an isomorphism 
outside the origin and E' is r -ample, D' cannot be Cartier. Hence j = 2 
and (Yl = Y2 = 0) must be contained in y'. D' is irreducible and this implies 
that C is irreducible. 0 

(4.4.2) Claim. We can further change Y i such that y' = (Y 1Y3+Y2P(Y;, Y4) = 
0). Wts stay as above. 

Proof. Since (Y 1 = Y2 = 0) c y', its equation can be written in the form 
Ylg + Y2 h = 0. If wt(g) = wt(h) = 1 then Ylg + Y2h E (Yl' Y2)2 , which 
implies that y' is singular along (Yl = Y2 = 0). This is impossible. Thus 
wt(g) = wt(h) = 0. Since y' is a double point, either g or h must contain a 
linear term. Say g contains Yj. By wt reasons j = 3 or 4. Now in the usual 
way we can normalize the equation in the required form. By wt reasons only 
even powers of Y 2 can occur in p. 0 

(4.4.3) End ofproofof(4.2). With this explicit equation we can easily compute 
everything. X is obtained by blowing up (Y2 = Y3 = 0) and dividing by the 
group action. This gives us one singular point with the required equation. X+ 
is obtained by blowing-up (Y2 = Y1 = 0) and dividing by the group action. 

To get equations for Y, the invariants ofthe Z2 action on C[Y1 ' Y2' Y3' Y4] 
are 

2 2 
ZI=Y2 Z2=Y1Y2 Z3=Y3 Z4=Y4 ZS=Yl· 

We get exactly the equations given by the minors of the above matrix. A hyper-
plane section given by z4 - cZ1 = ° (where c is a general constant) is easily 
seen to define a rational triple point. This completes the proof of (4.2). 0 

For future reference we note the following consequence of this proof: 

(4.4.4) Corollary. Assume (4.1) and the notation of(4.3). If D' is non-Cartier 
then C is irreducible and Y is a triple point. In particular, the nbd is isolated. 
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Proof. By the proof of (4.4.1), if D' is not Cartier then D' is irreducible and 
smooth. C is also irreducible since D' is. As we saw at the end of (4.3), the 
nbd is isolated since D' is smooth. 0 

(4.4.5) Corollary. Let X :J C be as in (4.2). Assume that X 3 P is a cyclic 
quotient singularity. Then X:J C is unique up to analytic isomorphism. 
Proof. In this case the coefficient of x 4 in p is not zero, thus we can introduce 
a new coordinate z~ = P(zl ' Z4) and the equations for Y become the 2 x 2-
minors of 

( Zl z2 Z3) , . 0 
z2 z5 z4 

(4.4.6) Corollary. An isolated extremal nbd X :J C cannot have a point of 
index 4 and a point of index 2. 
Proof. By [Mori88, 1.10] this nbd is imprimitive, in fact, it has a double cover 
X :J C which is etale outside the singular points. Above the index four point 
X has an index 2 point. Let Q E X be the index two point. By (4.2) its 
double cover is smooth. If we write Q E X ~ (:3 /Z2 (I , 1, 1) then any plane 
through the origin is invariant under the Z2 action. We pick one such plane 
E , which has transversal intersection with the curve C = C". If we pick this 
E as the ramification divisor in the construction (4.3) then the fourfold cover 
X' ....... X ....... X will be Galois with Galois group Z4' 

If X :J C ....... Y is the contraction map then from (4.2) we obtain that Y 
is isomorphic to the quotient of y' = (YlY3 + Y2P(Y; , Y4) = 0) by an action 
of Z4' Let Ii be a fixed generator of Z4' Then 1i2 acts with wts (2, 2, 0, 0) 
mod 4. 

Since Y ....... Y is etale outside the origin, the Z4/Z2 action on D' = (Yl = 
Y2 = 0) has no fixed points outside the origin. This implies that Ii acts via 
(Y3' Y4) I--t (-Y3' -Y4)' Ii acts on Y1 via multiplication by ±R. We can 
assume that it acts via R. Since the equation of Z' has to be an eigenfunc-
tion, this implies that depending on the parity of the exponent of Y 4 in p the 
action has wts 

(1,1,2,2)mod4 or (1,3,2,2)mod4. 
To obtain the extremal nbd X we blow up the plane (Y2 = Y3 = 0) and we 
divide out by the action of Z4' Explicit computation gives that the index four 
point of X:J C is given as 

2 
(Y 1Y3 + P(Y2' Y4) = 0)/Z4' 

where the wts are 

(1 , 1, 1, 2) mod 4 or (1, 3, 3, 2) mod 4. 
A glance at the list of terminal singularities [Mori85] shows that these singular-
ities are not terminal. 0 

It is worthwhile to remark that the above construction gives examples of 
isolated extremal nbds with log-terminal singularities of indices 4 and 2. 
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( 4. 5) Theorem. An isolated extremal nbd cannot have any of the following types 
of singularities: 

(4.5.1) A type /Iv point, 
(4.5.2) A type lIB point. 

Proof. If the nbd X :J C has a point of type I IV then it is imprimitive 
[Mori88, 6.11]. Its double cover has a point of index two and the central curve 
is reducible. By (4.2) there is no such isolated nbd. 

If the nbd X :J C has a point of type lIB then it has an L-deformation 
[Mori88,4.7] to an isolated nbd that has a point of index 4 and a point of index 
2. Thus (4.4.6) implies (4.5.2). 0 

Now we turn to the divisorial nbds of index two. First we study the configu-
ration of the curves of C . 

(4.6) Proposition. Let X :J C be as in (4.1). If all points have index one then 
C is irreducible. If P is a point of index two then P is the only point of index 
two. C has at most three components, they all pass through P and they do not 
intersect elsewhere. 
Proof. We use the notation of (4.3). Let X' :J C' ---+ C be the double cover of 
C. Let HI C y' be a general hyperplane section and let H2 = (* HI' Since 
y' is a cDV point and ( is crepant, we see that HI is a DuVal singularity 
and H2 ---+ HI is dominated by the minimal resolution. Since C' c H2 ' this 
implies that: 

(4.6.1) Two components of C' intersect in at most one point; 
(4.6.2) At most three components of C' intersect at any point; 
(4.6.3) The components of C' are smooth and rational. 
Let Ci be the components of C, and let C; be the preimage of Ci • C; is 

irreducible since the covering is locally irreducible at the points of E. C; ---+ Ci 
is ramified at the points of C n E and at the index two points. On each Ci 
there are precisely two ramification points by (4.6.3). Thus each Ci contains 
at most one index two point. 

(4.6.1) implies that two components of C cannot intersect at an index one 
point. Thus there is at most one index two point, all components of C pass 
through P and they do not intersect elsewhere. By (4.6.2) there are at most 
three components. 0 

(4.7) Theorem. Let X :J C be as in (4.1). Then we have one of the following 
cases. In each case we specify the type of the index two point, the minimal 
resolution of the general member of I&'xl, and the general member of I&'yl. We 
use the following notational conventions: 

• denotes the proper transforms of the components of C. These have selfin-
tersection (-1). Minus the selfintersection of a curve is written under it. We do 
not indicate the selfintersection if it is (-2) (for 0) or (-1) (for .). 

0-'" - 0 
3 3 
'-...-' 

m 

indicates that there are (m - 2) curves with selfintersection (-2) in between. 
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For m = 1 the above symbol denotes 

List of possibilities: 

o 
4 

( 4.7.1) Isolated nbds. The singularity has type cA and H x is 

.- 0-···-0 
3 3 --..--

m 

0- ... - 0 
3 --..--

m 

(4.7.2) Index one points only. Then the nbd is divisorial and Hx is 

.- 0-···-0 --..--
m 

569 

In the remaining cases there is exactly one index two point P and the nbd is 
divisorial. 

(4.7.3) P has type cA iff Hx has log-terminal singularities. We have the 
following cases: 

(4.7.3.1) C has one component: 
(4.7.3.1.1) 

(4.7.3.1.2) 

(4.7.3.1.3) 

(4.7.3.1.4) 

0-.- 0-···-0 

o 
3 

3 3 --..--
m 

0-0-.-0 
4 

o 
3 

o - 0 
3 

• 

o - 0 - 0 
3 

• 
(4.7.3.2) C has two components: 
(4.7.3.2.1) 

(4.7.3.2.2) 

• - 0 - .•• - 0 -. 
3 3 --..--

m 

o - • - 0 - •.• - 0 -. 
3 3 --..--

m 
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(4.7.3.2.3) 

(4.7.3.2.4) 
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o 
3 

• 

• - 0-"'-0 
3 3 
~ 

m 

o - 0 -. 
3 

• 
(4.7.3.3) C has three components: 
(4.7.3.3.1) 

• 

• - 0 - ••• - 0-. 
3 3 
~ 

m 

( 4.7.4) If X has a type cAx point then H x has a log-canonical singularity: 

o 

0-0-0-. 
3 

o 

(4.7.5) If X has a type cD point then Hx has a log-canonical singularity: 

o o 

0-0- ... -0-0-0-. _____ 3 

m 

where m:2: 0. For m = ° this is the configuration of(4.7.4). 
(4.7.6) If X has a type cE point then either H x has a log-canonical sin-

gularityas in (4.7.5) with m ~ 1; or Hx is not log-canonical and is given 
by: 

0-0- 0-0-0 

• - 0 - 0 
3 

(4.8) Proof. We use the notation of (4.3). By (4.4.4) D' c y' is Cartier and 
the Z2-action is given by wts (0,0,0,1). Thus for a suitable choice of coordinates 
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we can write the equation of y' as sg(x, y, z, s) + h(x, y, z) = 0 where 
D' = (s = h = 0). By wt reasons only even powers of s occur. Thus we can 
write the equation in the form 

2 2 (4.8.1) s g(x,y,z,s )+h(x,y,z)=O. 
The equation of Y is now given by 

( 4.8.2) tg(x, y, z, t) + h(x, y, z) = 0 2 (t = s ). 
Since r is crepant, y' cannot be smooth, in particular, multoh 2: 2. 

Knowing the general member of I&yl tells us very little about the general 
member of I&xl in general. Therefore we will proceed in the following round-
about way. First we find 'the general Z2-invariant member of l&y,l. Via pull-
back we will be able to determine the general Z2-invariant member of l&x,l. 
This is possible since r is crepant and therefore very well behaved. Taking the 
quotient will then give the general member of I&xl. Let H. denote the general 
member of 1&* I and let H~ denote the general Z2-invariant member of 1&., I . 
We have the following diagram: 

H x eX+---- H~ c X' 

Hy c Y +---- H~ c y' 
We will distinguish several cases. 
(4.8.3) Case 1. multog = O. 
The assumption means precisely that Y is smooth. We can change coordi-

nates to bring the equation of Y to the form 
2 (4.8.3.1) s + h(x, y, z) = O. 

(4.8.3.2) Lemma. If y' = (i + h(x, y, z) = 0) defines a cDV point then for a 
generic linear form I in three variables 

2 s + h(x , y, z) = l(x , y, z) = 0 
is a Du Val singularity. 
Proof. By [KSB88, 6.9] BoY' has only rational hypersurface singularities. The 
proper transform of the linear system lx, y, zl has one possible base point on 
Bo y' at the point corresponding to the s-axis on the exceptional divisor. This, 
however, is not on BoY'. Thus the proper transform of l(x, y, z) = 0 has 
only rational singularities. Since i + h(x, y, z) = l(x, y, z) = 0 defines a 
double point, this implies that it is a DuVal singularity. 0 

(4.8.3.3) Proposition. If H~ has a DuVal singularity then Hx has only log-
terminal singularities. 
Proof. Since r is crepant, this implies that H~ is dominated by the mini-
mal resolution of H~, in particular, it has only DuVal singularities. Thus any 
quotient of it has log-terminal singularities. 0 
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(4.8.3.4) Cases where H~ has a DuVal singularity. By (4.8.3.3) we need to 
enumerate those cases where Hx has log-terminal singularities only. 

The only log-terminal points of index two are given by 
0- ... - 0 
3 3 
'-v-' 

m 

To this we have to attach the proper transforms of the components of C and 
then we can have the minimal resolutions of some DuVal singularities. Since 
Hy has a DuVal singularity, the only combinatorial condition for the configu-
ration is that repeated contraction of (-1 )-curves gives the minimal resolution 
of a DuVal singularity (or the empty diagram if Hy is smooth). To enumerate 
all cases note first that certain configurations cannot occur as subconfigurations. 
Two of these are 

o - 0 - 0 

and 
• 

o 
3 

0-0-0-0 
3 

• 
Now it is easy to see that if a (-1) curve is adjacent to a (-2)-curve inside 

0- ···-0 
3 3 
'-v-' 

m 

then we get one of the cases (4.7.3.1.3,1.4, or 2.4). Otherwise all (-I)-curves 
are adjacent to (-3) or (-4)-curves. It is very easy to list all possibilities. 0 

(4.8.4) Case 2. multog > o. 
The assumption means precisely that Y is singular. Also, this implies that 

multoi g 2: 3. y' has a double point, hence multoh = 2. Therefore, in 
suitable coordinates the equation of y' becomes 

222 
S g(x, y, s ) + z - h(x , y) = o. 

We can write h = II where I has no multiple factors. The singular curve of 
D' is given by s = z = f = o. The normalization of D' is given by 

T -/(x, y) = 0 where z = zf(x, y). 

By construction this normalization is E' , which is smooth. Therefore multol < 
2. E' has two components if multo' = 0 and one if multo I = 1. Therefore 
we can write the equation of y' in one of the following forms: 

(4.8.4.1) l g(x , y, l) + Z2 - f(x , y)2 = 0 if C is reducible, 

(4.8.4.2) l g(x, y, l) + z2 - f(x, y)2/(x, y) = 0 if C is irreducible. 

The double curve of y' is given by s = z = f = o. We will see later (4.9.4) 
that X' is obtained from y' by blowing up s = z = f = O. Therefore, X' 
and X are explicitly computable in terms of the above equations. We will need 
the explicit computations only in the case when the double curve is smooth, 
therefore, we postpone it. 
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(4.8.4.3) Case 2.1. C reducible and multo! = 1 . 
The equation then becomes i g(y , i) + z2 - x 2 = O. H~ is given by 

y = const·i and it has a DuVal singularity. This case is covered by (4.8.3.4). 
(4.8.4.4) Case 2.2. multog = 1. 

We may assume that x appears in g with nonzero coefficient. Then H~ is 
given by y = const· i and it has a DuVal singularity of type D. This case is 
again covered by (4.8.3.4). 

The remaining case is harder. 
(4.8.5) Case 2.3. multog > 1 . 

The equation must contain a cubic term, which is therefore in ll. In the 
reducible case 1;his is only possible for multo! = 1, which we treated already. 
Thus we may assume that C is irreducible and multo! = multo I = 1 . 

Depending on whether the linear terms of ! and I are independent or not, 
we can bring the equation cI> of y' to one of the following forms: 

(4.8.5.1) cI>: i g(x, y, i) + z2 - ix = 0 if independent, 

(4.8.5.2) cI>: i g(x, y, i) + z2 - icy + xn) = 0 (n ~ 2) if dependent. 
The double curve is given by the equation s = z = y = O. Blowing it up 

we obtain X'. We will need the chart that covers the index two point of X. 
This can be obtained by substituting y = y's and z = z's. The equation of 
the index two point becomes 

(4.8.5.3) (g(x, y's, i) + z,2 - y'\ = 0)/Z2(0, 1, 1, 1) if independent, 
(4.8.5.4) 

, 2 ,2 ,2, n . 
(g(X,YS,S )+Z -y (yS+X )=0)/Z2(0, 1, 1, 1) If dependent. 

(4.8.5.5) Notation. For a monomial M the symbol MEg will mean that M 
appears in g with nonzero coefficient. 
(4.8.5.6) Proposition. Assume that we are in case (2.3). The following are 
equivalent: 

(i) H~ has a DuVal singularity. 
(ii) The index two point on X has type cA. 
(iii) i E g. 

Proof. If H~ has a DuVal singularity then Hx has log-terminal singularities. 
By [KSB88,3.10] if a Cartier divisor on a terminal singularity is log terminal 
then the terminal singularity has type cA. Thus (i) implies (ii). (ii) ::::} (iii) 
can be read off from (4.8.5.3-4.8.5.4). (Note that x 2 E g does not imply that 
it is cA.) 

Assume (iii). If we assign Q-wts to the variables by 

a(x,y,z,s)=(!,!, L *), 
then every monomial in the equations (4.8.5.1-4.8.5.2) will have a-wt at least 
one and 422 . 423 cI>a=1 = as + z - y x respectIvely, as + z - y 
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and a =f:. 0 by (iii). Thus H~ is a deformation ofthe DuVal singularity E6 • 0 

(4.8.5.7) Proposition. The index two point on X has type cAx iff i f/. g and 
x 2 E g. If this is the case then the general member of I - K x I is D 4 . 

Proof. The first statement can be read off from (4.8.5.3-4.8.5.4). Looking at 
(4.8.5.3-4.8.5.4) again we see that the hyperplane section s = const . y' has an 
A3 singularity. By [Reid87, p. 393] this implies the second claim. 0 

For future reference we note the following. 

(4.8.5.8) Lemma. (i) The surface singularities (z2 - y3 -/i = 0) and (z2_ 
y3s -/i = 0) are semi-log-canonical [KSB88, Chapter 4]. 

(ii) Any small normal deformation of a Gorenstein semi-log-canonical double 
point is either a DuVal singularity, or a cusp or a simple elliptic singularity. In 
the last two cases, if E denotes the reduced exceptional curve of the minimal 
resolution then k = _E2 is I or 2 [KSB88, 5.6]. 

(iii) Any small deformation of a simple elliptic singularity with k = 1 (these 
have equation z2 +y3 +S6 +a/s2 = 0; (4a3 +27 =f:. 0)) is either simple elliptic 
or a Du Val singularity. 

Proof. The first statement is an easy computation. The proof of the second is 
outlined in [KSB88,5.6]. The third one is again an easy computation. 0 

(4.8.6) Case 2.3.1. Independent linear forms, i f/. g. 
y' can be viewed as the total space of a deformation of the pinch point 

2 2 0 S b· . 2 . I rf . I' z - y x = . u stltutmg x = y + s gIves a nonnorma su ace smgu anty 
S = (z2 - y3 _/S2 = 0) and H~ is a small deformation of S. Therefore 
H~ is either log-canonical or DuVal. The latter is impossible by (4;8.5.6). 
From the classification of [Kawamata80] we see that the only possibilities are 
simple elliptic with selfintersection (-3) or a cusp with exactly one curve with 
selfintersection (-3). H~ is obtained from H~ by blowing up the origin. The 
deformation from S to H~ is equimuitiple, therefore, H~ =BoH~ is a flat 
deformation of BoS, BoS has only one singularity above the origin given by 
h . (,2 ,3 ,2 2 0) Th ' h . I I . I t e equatIOn z - y s - y s = . us Hx as a smg e og-canomca 

singularity at the origin of the new chart. We complete the description of this 
case using the following 

(4.8.6.1) Lemma. Let X :::> C be an extremal nbhd. Assume that C is irre-
ducible. Let HeX be a normal member of I&'xl containing C. Assume that 
H has a singular point, which is an index two 'L2-quotient of a simple elliptic or 
cusp singularity with k :::; 2. Then the minimal resolution of H is given by one 
of the following diagrams: 
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For the simple elliptic case: 

For the cusp case (m > 0): 

o 

o 

0- 0-0-. 
3 

o 

o 

0-0- ... -0-0-0-. 
~3 

m 

575 

Proof. The 112 quotients of CUSpS and of simple elliptic singularities are de-
scribed in [Kawamata80].There is no required 1l2-quotient if k = 1. For k = 2 
we get the following possibilities: 

o o 

0-*-*- ... -* -*-0 
, J 

m 

where among the * there is exactly one curve with selfintersection (-3), the rest 
have (-2). In the relative canonical divisor the curves * appear with coefficient 
( -1) , the curves 0 with coefficient (-!). Thus the proper transform of C is 
adjacent to one of the curves 0, call it B. There is a unique curve * adjacent 
to B . If this curve has selfintersection (-2) then repeated contraction of (-1)-
curves leads to a contradiction. Thus this curve has selfintersection (-3) and 
repeated contraction of (-1 )-curves gives the D m+3 configuration. Now it is 
clear that we cannot have any other singularities on H. 0 

(4.8.7) Case 2.3.2. Dependent linear forms, i fI. g. Equation (4.8.5.4) de-
fines a cDV point, hence multog(x, y's , i) ::; 3. The possible terms that can 

2 2' 3 . occur of degree at most three are x ,xs ,xy s, and x . We have to consIder 
separately the cases when we have one of the first three possibilities or x 3 • 

(4.8.7.1) Proposition. The index two point on X has type cAx or cD iff x 2 E 
g or xy E g or xi E g. In these cases Hx has a log-canonical singularity. 
Proof. It is clear from (4.8.5.4) that X has type cAx or cD iff x 2 E g or 
xy E g or xi E g. To see that H x has a log-canonical singularity we assign 
Q-wts to the variables by 

a(x, y, z, s) = (1, L L i)· 
Then the a-wt of every monomial in the equation (4.8.5.2) is at least one and 

2 3 22 4 2 6 22 4 <1>,,=1 = Z - Y + ax s + bxs + cxys + ds + ey s + fys 
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where at least one of a, b, c is not zero. For a sufficiently general u we take 
the hypersurface section x = ui . This gives us the equation 

z2 - i + ii[e] + ys4[UC + J] + s6[u2a + ub + d]. 

We claim that this defines a simple elliptic singularity with k = 1 . To see this 
we blow up the origin and introduce new coordinates z = zl/ s , y = yl/ S to 
obtain 

1/ 2 1/3 1/ 2 2 1/ 3 4 2 
Z - Y s + Y s [e] + y s [uc + J] + s [u a + ub + d]. 

A routine discriminant computation gives that the homogeneous quartic in 
(yl/ ,s) has no multiple roots for general u if at least one of a, b, c is not 
zero. Therefore this equation defines a simple elliptic singularity with k = 2. 
By (4.8.6.1) we get the case (4.7.4). 

At this point we should note that one can get a simple elliptic singularity even 
when a = b = c = O. These will correspond to some extremal nbds with a cE 
type point and to some with nonterminal singularities. 0 

(4.8.7.2) Proposition. If x 3 E g but x 2 rf. g, xy rf. g, xi rf. g, then H~ is 
a small deformation of S = (z2 + i + S8 = 0). The deformation is equivariant 
with respect to the group action (x, y, s) ----> (x, y, -s). 
Proof. We assign Q-wts by the formula 

a(x, y, z, s) = a, t, L i)' 
then every monomial in g will have a-wt at least one and 

2 3 3 2 cI> (>=1 = Z - Y + ax s where a f- O. 

The substitution x = i gives the singularity S. 0 

(4.8.7.3) Computation. Let us consider a small deformation of S = (z2 + i + 
S8 = 0), equivariant with respect to the group action (x, y, s) ----> (x, y, -s) . 
The following is the list of all possible nearby fibers: 

(i) z2 + i + S8 + ays6 = 0 (Equisingular deformation; E14 in [AGV85, pp. 
184-185]), 

( .. ) 2 3 8 2 2 0 k 11 Z + y + s + y s = (Cusp with = 1; T2 3 8 in [AGV85, pp. 
184-185]), 

( ... ) 2 3 6 2 2 0 3 I II h k 111 Z + y + s + ay s = (4a + 27 f- 0) (Simp e e iptic wit = 1 ; 
JIO in [AGV85, pp. 184-185]), 

(iv) certain Du Val singularities. 

Proof. One can use general results about deformations of unimodal singularities 
[AGV85] but the easiest method is to do it from scratch. 0 

(4.8.7.4) Computation. Consider a singularity z2 + y3 + S8 + ays6 = 0 with 
'lyaction (x, y, s) ----> (x, y, -s). Blow up the origin and take the quotient to 
get a surface germ H. The minimal resolution of H is given by the following 
diagram where • indicates the proper transform of the exceptional curve of the 
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0-0- 0-0-0 

• - 0 - 0 
3 

This completes the proof of (4.7). 0 

577 

It should be noted that for divisorial contractions the description given by 
(4.7) is not entirely satisfactory. One could try to describe them using Y and the 
image of the exceptional surface. This approach also has theoretical advantages. 

(4.9) Theorem. Let X, Y be normal algebraic varieties. Assume that Kx and 
Ky are Q-Cartier and that X and Yare smooth in codimension two. Let 
f : X -+ Y be a proper birational morphism. Assume that - K x is f-ample and 
that the dimension of every fiber is at most one. Then 

( 4. 9.1) The exceptional set is a Q-Cartier divisor; call it E (with reduced 
structure); 

(4.9.2) B = f(E) has pure codimension two; 
(4.9.3) f.YYx(-mE)) = I~m) (IB is the ideal sheafof B, I~m) denotes sym-

bolic power); 
(4.9.4) X ~ Projy L:=o/~m). 

Proof. There is a codimension three closed subset S c Y such that Y - Sand 
X - f- 1(S) are both smooth. Therefore 

X - f- 1(S) ~ BB-S(Y - S). 

If E denotes the divisorial part of the exceptional set with reduced structure 
then we get that 

* -1 KX_rl(S) ~ f (Ky_s) &;(9(E - f (S)). 

Since f- 1 (S) has codimension at least two in X this implies that 

Kr1 ~ f* (K~l) 0 &(nE) , 
where n is a common multiple of the indices of X and Y. In particular, E 
is Q-Cartier and - E is f-ample. Therefore E is the whole exceptional set. 
This shows (4.9.1). (4.9.2) is clear. To see (4.9.3) first note that 

f..(&x( -mE))IY - S = (IBIY - S)m = 11m)IY - S. 
Let i: Y - S -+ Y be the injection. By the definition of symbolic powers, 

iJIBIY - S)m = 11m). 
Therefore (4.9.3) is established once we show that 

iJf..(&x( -mE))IY - S) = f..(&x( -mE)). 
This follows from the general principle: 
(4.9.5) Proposition. Let g : U -+ V be a proper morphism. Let S c V be 
a closed subset such that the codimension of f- 1 (S) in U is everywhere at 
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least two. Let Y be a sheaf on U that satisfies Serre's condition S2 (e.g., U is 
normal and Y is reflexive). Then g*Y = i* (g*Y\ V - S), where i : V - S -+ V 
is the injection. 

Finally (4.9.4) is essentially a reformulation of (4.9.3). 0 

(4.9.6) Corollary. Let the assumptions be as in (4.9). Then BeY uniquely 
determines X. This applies, in particular, if X and Yare threefolds with 
terminal singularities and f: X -+ Y is the contraction of a divisorial extremal 
nbd. 
(4.9.7) Corollary. Let X, Y be threefolds with terminal singularities. Let f: 
X -+ Y be a proper birational morphism such that -Kx is f-ample and that 
the dimension of every fiber is at most one. Let T be the spectrum of a complete 
local ring and let X / T be a flat deformation of X. Then 

( 4. 9.7.1) The morphism f extends to a morphism F : X -+ Y where Y / T 
is flat; This defines E and B; 

(4.9.7.2) &'x(-mE) 0&'x ~ &'x(-mE); 
(4.9. 7.3) I~m) 0 &'y ~ 11m ) ; 

(4.9.7.4) (B c Y) is a flat deformation of (B c Y). 
Proof. Since RIJ:.&'x = 0, (4.9.7.1) follows from [Wah176] (cf. (11.4)). 

Next we claim that the sheaves &'x( -mE) are all S3 . This is a local question. 
Let g : Z -+ X be the index one cover (with group G) around a point of X. 
Then E' = f- I (E) is a Cartier divisor and 

&'x( -mE) = (G -invariant part of) g* (&'z ( -mE')). 

Therefore &'x(-mE) is a direct summand of the S3 sheaf g*(&'z(-mE')) ~ 
g*(&'z) . 

This implies (4.9.7.2) using (12.1.8). Since &'x(-mE) is f-ample, 
RI f*&,x( -mE) = 0 [KMM87, 1-2-3], hence again by [Wah76l] we obtain 
(4.9.7.3). Finally (4.9.7.4) is just a reformulation of earlier statements. 0 

(4.10) Alternate description of index two divisorial nbds. By the previous re-
sults we can also describe index two divisorial nbds by specifying the pair 
BeY. Here Y is a cD V point, thus easily understandable via equations. 
The curve B is unknown at the moment. Let us note first that we cannot 
expect that B is easy to describe. 
( 4.10.1) Proposition. Let f: X -+ Y be a divisorial contraction and let BeY 
be the image of the exceptional divisor. If B is a complete intersection (inside 
Y) then Y is smooth, B is planar, and X has only index one points. 
Proof. If Y is defined by p = q = 0 then by (4.9.4), X is obtained by blowing 
up the ideal (p, q). In particular, X has only complete intersection points, 
hence X has only index one points. Explicit computation of the blow-up shows 
that B(p, q) Y is singular along the preimage of the origin unless the required 
conditions are satisfied. 0 

(4.10.2). Now let us consider index two nbds in more detail. In the cases 
when Y is not smooth, the description provided during the proof of (4.7) 
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determines the curve B explicitly. As in (4.8.4) we get the following equations 
for Y: 

2 2 Y = (tg(x, y, t) + z - !(x ,y) = 0) B = (t = z = ! = 0) 

or 
2 2 Y = (tg(x, y, t) + z - f(x, y) l(x, y) = 0) B = (t = z = ! = 0). 

Thus we need to consider the case when Y is smooth. Then the equation of 
D is given by !(x, y, z) = 0 and B is the double curve of D. 

(4.10.3) Lemma. With the above notation, multo! = 3. 

Proof. Since i - ! = 0 defines a cD V point, multo!:::; 3. B is not empty 
so multo! > 1. If multo! = 2 then in suitable coordinates! = z2 - h(x, y) 
and the double curve of ! = 0 is contained in z = o. Therefore B is planar, 
hence a complete intersection. This is impossible by (4.10.1). 0 

(4.10.4) Computation. In the cases when Y is smooth, the following are the 
general hyperplane sections of y': 

(4.7.3.1.2): E6 ; 

(4.7.3.1.4): E8 ; 
(4.7.3.2.2): D.; 
(4.7.3.2.4): E7 ; 

(4.7.3.3.1): D •. 

(4.10.5) Normal form of ! for D reducible. (4.7.3.3.1): D has three compo-
nents, so ! is the product of three factors, all smooth at the origin by (4.10.3). 
i +! defines a compound D. point, thus at least two of the linear terms of 
the three factors are independent. We can write! in the form 

! = xyh(x, y, z) where multoh = 1. 

(4.7.3.2.2): D has two components, so ! is the product of two factors. One 
of them is smooth at the origin by (4.10.3). We can choose that to be x. i + ! 
defines a compound D. point, thus the quadratic term of the other factor is 
not a multiple of x 2 • We can write ! in the form 

2 ! = x(y - p(x, z)) where multop ~ 2. 

The double curve contains x = l - p = 0, which is planar. There must 
be another component, coming from the double curve of l - p = o. Let 
p = g(x, Z)2h(X, y) where h has no multiple factors. Then y = g = 0 is the 
double curve of l- P = o. The normalization of l- p = 0 is y,2 - h = 0 . 
This has to be smooth. Therefore we can write ! as 

2 2 ! = x(y - g(x , z) h(x, z)) where multog ~ 1, multoh = 1. 

(4.7.3.2.4): D has two components, so ! is the product of two factors. One 
of them is smooth at the origin by (4.10.3). We can choose that to be x. i + ! 
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defines a compound E7 point, thus the quadratic term of the other factor is a 
multiple of x 2 • Hence we can write f in the form 

f = x(x2 + 2g(y, z)x + p(y, z)). 

The double curve contains x = p = 0, which is planar. There must be another 
component, coming from the double curve of x 2 + 2g(y, z)x + p(y, z) = o. 
Let p2 - i = q(x, z)2h(x, y), where h has no multiple factors. Then y+ g = 
q = 0 is the double curve of x 2 +2g(y, z)x+p(y, z) = O. Since z2 + f defines 
a cE7 point, multoP ~ 3. Therefore multoq = multoh = 1. We may assume 
that q = y to get the normal form 

222 f = x(x + 2g(y, z)x + g(y, z) + y h(y, z)) where multoh = 1. 

(4.10.6) Normal form of f for D irreducible. These cases seem much harder 
and we do not have complete results. For (4.7.3.1.2) B has a triple point and 
for (4.7.3.1.4) a quadruple point. These can be computed using the methods 
of (13.6.2). Moreover, for (4.7.3.1.2) we seem to get every triple point with 
irreducible tangent cone. 

Concerning (4.7.3.1.4) we give only two examples: 

(4.10.7) Examples. (4.10.7.1) The monomial curve B = im[t I--> (t4, t9 , tiS)] 
is the double curve of the surface 

D = (z3 - 3x3/z+ / +x9y = 0). 

The normalization of D is smooth. 
(4.10.7.2) The monomial curve t I--> (t4, t5 , t7) cannot be the double curve 

of any surface triple point. 

Proof of (4.10.7). All the partials of z3 - 3x3l z + y5 + x 9 y vanish along B, 
thus B is contained in the double locus of D. Next view D as a family of 
curve singularities parametrized by x. For x = 0 we have z3 + i = 0, this 
has p a = 4. In the general fiber we have at least 4 nodes. Since Pais upper 
semicontinuous [Teissier80], there are no other singularities in the general fiber. 
Thus Pa is constant, hence we have simultaneous normalization in the family. 
Therefore the normalization of D is smooth. 

For the second part we claim that, in fact, no triple point is contained in 
the symbolic square of the ideal of the curve. If we give Z-weights to the 
variables by a(x, y, z) = (4, 5, 7) then it is sufficient to consider weighted 
homogeneous elements of the symbolic square of a-degree at most 21. Now a 
quick computation gives the result. 0 

Finally we should address the question whether the above examples do lead 
to an extremal contraction f: X ----; Y. The positive answer is supplied by the 
following: 

(4.10.8) Proposition. Let Y = ((:3 and let D = f(x, y, z) be a surface germ 
and let B = SingD. Assume that B is a curve and that B is an ordinary double 
curve on D outside the origin. Assume furthermore that 

(i) the normalization of D is smooth, 
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(ii) B is not planar, and 
(iii) i - f = ° defines a cDV point. 
Then there is an extremal nbd f: X ---t Y such that B is the image of the 

exceptional divisor. X has a single point of index two and no other points of 
index larger than one. 
Proof. The singular locus of y' = (i - f = 0) is the curve B inside the 
s = ° plane and along it y' has generically AI singularities. s t-+ -s gives 
a Z2-action on y' whose fixed point set is D' ~ D. The resolution of the 
DuVal locus given in [Reid83, 2.6] gives a crepant morphism J' : X' ---t y', 
which is relatively projective, the exceptional divisor S' c X' is tQ-Cartier, and 
the Z2-action lifts to X'. Moreover X' has isolated cDV singularities. To 
see this we have to exclude the possibility that there is a singular curve F c X' 
which maps to a point Q E y' . However, blowing up this curve yields a crepant 
exceptional divisor dominating a point of y'. This is impossible since y' is 
cDV. 

Now take X = X' jZ2 with the natural map f : X ---t Y. Every singular 
point of X is the Z2-quotient of a cDV point. We want to prove that they 
are all terminal. We need to check the fixed points of the Z2-action only. Let 
(J be a generator of Wyl. We can assume that under the Z2-action (J is anti-
invariant. Since J'* ((J) is a generator of W X' locally everywhere, at an isolated 
fixed point the quotient has index two. Such points are canonical by [KSB88, 
6.12], and by the list of [Hayakawa-Takeuchi87] they are also terminal. 

The non isolated fixed points of the Z2-action an X' are on the proper trans-
form E' of D'. E' is tQ-Cartier since J'* (D') = E' + 2S'. E' lies on a 
hypersurface singularity and, therefore, it is also Cartier. E' is smooth outside 
the origin since we blew up the double curve. This implies that E' is normal, 
hence smooth by the assumption (i). Therefore X' is smooth along E' and X 
is smooth along the image of E'. 0 

(4.11) Next we use the previous results to describe extremal nbds of type !Iv . 
We already saw in (4.5) that such nbds are always divisorial. We will use the 
double cover construction of (4.3) in the following setting. 

(4.11.1) Notation. Let X :J C ---t Y 3 Q be an extremal nbd of type I IV . By 
[Mori88, 6.1] the nbd is imprimitive, thus there is a double cover (X :J C) ---t 

(X :J C) , which is etale outside the singular point. Note that C is reducible. If 
E c X is a transversal disc, let E be its preimage. Now we can take the double 
cover of X ramified along E to obtain J' : X' :J C' ---t y'. By construction 
X' j X is Galois with Galois group Z4' Since X is an extremal nbd with a 
single index two point, we already described it somewhere in (4.8). Thus we 
have to identify y' and the group action to describe X:J C ---t Y 3 Q . 
(4.11.2) Theorem. Let X :J C ---t Y 3 Q be an extremal nbd with a type I IV 
point. Let y' be as above. Then in suitable coordinates 

, 2 2 2 2 , 
Y = (s g(x, s ) + Z - Y = 0) B = (y = z = t = 0) 

y=y'jZ4 wt(x,y,z,s)=(2,2,0,1). 
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The minimal resolution olthe general member 01 I&'xl is given by the diagram: 

o 

0- 0 

o 

o 
4 

- 0 - 0 

o - 0 -. 

Proof. Consider first the possibility that Y is smooth. Then Y' is given by 
an equation S2 - I(x, y, z) = 0, where by (4.10.3) multo I = 3. z = 1=0 
defines D', which in our case has two components. Also, the Z4-action inter-
changes the two components of D' , hence I has even multiplicity, a contradic-
tion. Thus Y is singular and (since C is reducible) we can write its equation 
in the form 

(l g(x, y, l) + z2 - I(x, y)2 = 0). 
We have to extend the Z2-action (0, 0, 0, 1) to a Z4 action. Let the Z4-action 
be given by wts (a, b, c, d). We know that 

(2a, 2b, 2c, 2d) = (0, 0, 0, 2) mod 4. 
Since the action is free, at most one of a, b, c, d can be zero. On the other 
hand, the quotient is an index two singularity. The list of those tells us that 
exactly one of a, b, c is zero. Thus wt(s) = 1 and among a, b, c one is 0, 
the other two are 2. 

Assume first that multo I ~ 2. Then g contains a linear term (4.8.5), say 
x. Since 0 = wt(Z2) = wt(s2g) = 2 + wt(x) , this implies that wt(x) = 2. 

Now compute the blow up of the singular set s = z = I = o. The chart 
where we get the index four point is given by 

2 ,2 ,2 
g(x, y, s ) + Z - F = 0, 

l(x,y)-sF' =0, 
where z = Z's and 

wt(x, y, s, F', Z') = (2, wt(y) , 1, wt(f) - 1, wt(z) - 1). 
g contains a linear term, thus we can use the first equation to eliminate x and 
the second equation becomes 

,2 ,2 2 , 
(4.11.3) I(ep(y, s, Z ,F ), s ) -sF = o. 
By definition of I IV the wt of the above equation has to be two. Thus wt(f) = 
wt(sF') = 2. 

The Z4-action interchanges the two components of D' given by (z - I = 0) 
and (z + I = 0). Therefore wt(z) = 0 hence wt(y) = 2 and 

wt(x, y, s, F' , Z') = (2, 2, 1, 1, 3). 

Since (4.11.3) defines a l/v point, Z,2 must appear in the equation with 
nonzero coefficient. This is only possible if I contains x with nonzero coeffi-
cient. This contradicts the starting assumption that multo I ~ 2 . 
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Thus multo! = 1 and we can write the equation as 
, 2 2 2 2 Y = (S g(X, S ) + z - y = 0). 

The Z4-action interchanges the two components of D' given by (z - y = 0) 
and (z + y = 0). Therefore wt(z) =I- wt(y). z and yare symmetric, thus we 
can assume that wts are (2, 2, 0, 1). This shows the first part of the theorem. 

To see the second part we take H~ = (z - ax2 - bs4 = 0) where a, bare 
general constants. We claim that this gives the required resolution for Hx. To 
get X' we have to blow up s = z = y = o. The important chart is given by 

, , d h . y = y s, z = z s an we get t e equatIOns 
2 ,2,2 . , 

g(x, s ) + z - y = 0 (equatIon for X ), 
, , 2,4 . , 

Z S - ax - bs = 0 (equatIOn for Hx) 
and 

wt(x, y' , z' , s) = (2, 1 , 3, 1). 
By [Mori85, 12.3] multog ~ 4. The two equations give a singularity whose 
resolution we want to determine. This is made possible by the following obser-
vation: 

If we blow up the origin then we get a chart x = x" s , y' = y" s, z' = z" s , s = 
"d . s an equatIOns 

-(" ") ,,2 ,,2 _ 0 gx,s +z -y -, 
" ,,2 b,,2 0 Z - ax - s = . 

From here we can eliminate z" to get 

(4 11 4) ,,2 ( ,,2 b ,,2)2 -(" ") . . y = ax + s + g x ,s 
multog ~ 4 since multog ~ 4. Now (4.11.4) defines a simple elliptic or a cusp 
singularity, and their resolution is well understood. Everything else is a routine 
computation. 0 

(4.12) Example. For completeness sake we give an example of an extremal 
nbd of type I lB. [Mori88, Appendix B] gives the local description. We will 
try to put together the simplest case as follows: 

XU = (x2 _ / + z2 _ t2 = 0) , 

d = (x 2 - / = z = t = 0) , 

H" = (xz + yt2 = 0), 

wt(x,y,z,t)=(3,2, 1, 1). 
Explicit computation of the minimal resolution of H gives the diagram 

0-0- 0-0-. 

o 0 - 0 
343 
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This contracts to an A2 point and as in (13.8) leads to an example of an 
extremal nbd with a type I I B point. 0 

5. NBDS WITH THREE SINGULAR POINTS 

The following is the main theorem of this chapter. 

(5.1) Theorem. Let f : X :J C ---+ Y 3 Q be an extremal nbd with three 
singular points. Then f is divisorial. 

This (5.1) completes the proof of (2.2.3') as remarked in (2.4). We have the 
following description by (2.12.1-2.12.3). 

(5.2). Under the notation and assumptions of (5.1), let P, R, and S be the 
singular points of X with index P ~ index R ~ index S. Then we can 
express 

(X, 0) = (XI' x2 ' x3) :J (C, 0) = xI-axis, 
(X, P) = (Yp Y2' Y3)/Zm(1, (m + 1)/2, -1) :J (C, P) = yl-axis/Zm, 
(X, R) = (zl' z2' z3)/Z2(1, 1, 1) :J (C, R) = zl- axis/Z2 , 

(X, S) = (WI' w2 ' w3 ' w4 ; y) :J (C, S) = wI- axis 

using an odd number m (~3) and equation y == W I W 3 mod (W2' w 3 ' W 4)2 , 
where 0 E C - {P , R, S} is an arbitrary point chosen for simplicity of the 
subsequent computation. 

Unless otherwise mentioned, we will fix the meaning of these symbols above 
and pU and RU in (2.12) throughout this chapter. 

(5.3) Remark. (5.3.1) By (2.12.5)-(2.12.7), we know that (f(D) , Q) is a 
Dm+2-point and (D, P) is an Am_I-point for a general member D of 1- K xl 
through C as explained in (2.12.7). 

(5.3.2) By (1.10) and (8.9.1) of [Mori88], we see 

ctc(X) ®-!c {f- invertible &'c-modules}/isomorphisms 
qi 
~ QL(C) ~ Z. 

The proof of (5.1) consists of several steps. The first step is to write down f-
splittings for gr~&' and gr~&' explicitly so that we can write down infinitesimal 
thickenings of C in subsequent arguments. 

(5.4) Proposition. Under the notation and assumptions of(5.1), we have the 
f -isomorphism 

(5.4.1) 

and 
m - 1 # # 

qlc&'c(Kx) = -1 + -2-P + R , 

qlc&'c((m - 2)Kx) = -1 + p# + RU• 
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Furthermore we have an i-splitting 

(5.4.2) 

where D and D' aregeneralmembersofl-Kxl and 1-(m-2)Kxl, respectively, 
and we are using the notation &'C<E) = &'d~&'x(E) for an i-invertible &'x-
module &'x(E) . 
Proof. The i-isomorphism (5.4.1) is given in (2.12.4). From the i-isomor-
phisms 

gr~«(O~(-I») ~ (-1 + m; 1 p" + R"), 

gr~«(O~(-m+2») ~ (-1 + (m - l)P" + R") 

given in (2.12), we see C is contained in the base loci of 1 - Kxl and 
1- (m - 2)Kxl, that is, 

o 0 I 
H (&'x(-Kx)) =H (Fc&'x(-Kx)) , 
001 H (&'x{{2 - m)Kx) = H (Fc&'x{{2 - m)Kx))· 

Let (E, P) = {YI = O}/Zm. Then E E 1- 2Kxl by (E· C) = 11m. From the 
i -exact sequence 

o ~ (Ox ~ &'x(-Kx) ~ &'E(-Kx) ~ 0 

and HI «(Ox) = 0, we see the surjection 

(5.4.3) 

We claim that the natural i-surjection 

(5.4.4) F~&,x( -Kx) - gr~&'®&'( -Kx) = &'cED&'c{{m - 3)Kx) 

induces a surjection 

(5.4.5) 

To see (5.4.5), we first assume m> 3. Then Y21dYI/\dY2/\dY3 E &'E( -Kx) lifts 
to s E HO(F~&'x(-Kx)) (5.4.3). Then the image s of s by (5.4.4) generates 
the first factor because s generates the trivial &'C mod IE at P. So (5.4.5) is 
a surjection. If m = 3, we lift another Y31dYI /\dY2 /\dY3 together, and (5.4.5) 
is again surjective. Thus if m = 3, (5.4) is done. We assume m > 3 for (5.4). 
Then just like (5.4.3), we see the surjection 

o I (5.4.6) H (Fc&'x(-(m - 2)Kx)) - &'E(-(m - 2)Kx) 

because HI (&'x{{4 - m)Kx)) = 0 by 4 - m < O. We consider the i-surjection 

F~&'x(-(m - 2)Kx) - gr~&'®&'x(-(m - 2)Kx) 
(5.4.7) = &'c{{3 - m)Kx)ED&'c 

- &'C (second projecton). 
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We claim that (5.4.7) induces a surjection 

° I ° (5.4.8) H (Fc&'x(-(m - 2)Kx)) - H (&'d. 

Indeed, similarly to (5.4.5), one can see it by lifting Y3/(dy, /\ dY2 /\ dY3)m-2 
by (5.4.6) to s' E ~(F~&'x(-(m - 2)Kx)). Now (5.4.5) and (5.4.8) prove 
(5.4.2). 0 

(5.5) Proposition. Under the notation and assumptions of (5.4), we have the 
nonzero vector space HO(X, &'x(D' - D)) =I- O. Let 0: be a general element of 
HO(X, &'x(D' - D)). Then the homomorphism 0: : &'x( -D') ---- &'x( -D) is an 
i-injection, which is an i-isomorphism outside pU. Furthermore the induced 
i-injection Q : &,d-D') ---- &'c(-D) is an isomorphism &'d- 1) ~ &'c(-I) of 
invertible sheaves if we forget i-structures. 
Proof. This follows from the i-isomorphism 

&'c(D' - D) ~ (m ~ 3 pu) , 
which was given in the proof of (5.4). 0 

We will fix the meaning of D, D' , 0:, and Q above for the rest of this chapter. 

(5.6) Proposition. Let the notation and assumptions be as in (5.5). By making 
coordinate changes to the coordinates in (5.2), we may assume that 

(5.6.1) (x2, Y2' z2' w2) (resp. (x3, Y3' z3' w4 )) forms i-free i-bases of the 
i-invertible sheaf &'( -D) (resp. &'( -D')) at 0, P, R, and S, respectively; 

(5.6.2) 0: : &'( -D') ---- &'( -D) sends (x3, Y3' z3' w4 ) to (x2, yim- 3)j2y2 , z2' 
w2 ) ; 

(5.6.3) y = W 1W 3 - G(w2, w4 ) for some G E (w2, W 4 )2C{W2 , w4 }, where y 
is the equation in (5.2). 
Proof. The first assertion follows from (5.4). Then 0: sends 

(m-3)j2 ) 
(X3'Y3,z3'w4) to (ux X 2 ,UyYI Y2,u z z2,uw w2 

for some units ux ' uy , uz , and Uw at 0, P, R, and S. Then we replace 
( ) b -I ( -I -I - I) pU ( Y2 resp. Z2' w2' x2 Y uy Y2 resp. U z z2' Uw w2' Ux x 2 at resp. 

RU, S, 0), which attains (5.6.2). By making a coordinate change at S leav-
ing w2 and w4 fixed, we may attain (5.6.3) because (X, S) is an isolated 
singularity and y == w IW 3 mod (w2, w3' w4 )2 by (5.2). 0 

2 The following deformation procedure allows us to make G E (w2 , w 4 ) X 

C{w2 ' w4 } in (5.6) general keeping other properties. 

(5.7) Lemma. Let the notation and assumptions be as in (5.6). Let ~ be an 
arbitrary power series in (w2, W 4 )2C{w2, w4 }. Let (X/' S/) :J (C/, S/) be the 
deformation of (X , S) :J (C , S) given by 

{y + t~ = O} :J wI-axis (t E d, a small disk). 
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Let X t ~ Ct be the twisted extension of (Xt' St) ~ (Ct , St) by (w2' w4). Let 
D , D' , and a be trivially extended outside a small nbd of S and extended to 
(Xt' St) by {W2 = O}, {W4 = O}, and W2/W4' which are consistent. If X ~ C 
is isolated, then a nearby nbd Xta ~ Ct is an isolated extremal nbd satisfying 
(5.2), (5.4), (5.5), and (5.6) except that G is replaced by G - tr5 . 

This is similar to (2.9) and we omit the proof since it is similar to that of 
(2.9). 

From now on in this chapter, we assume that f is isolated because of (5.7) 
(cf. (5.24)). Thus we may assume the following. 

(5.8) Proposition. Let Gv be the homogeneous part of degree v of G in (5.6). 
Then for any n, we may assume that G2, G3, .. , , Gn are all general homoge-
neous polynomials (by replacing X with its nearby extremal nbd). 

(S.9)Due to (5.8), we will assume that G2 and G3 are general in the rest of this 
chapter. 

(5.10) Proposition. Under the notation and assumptions of(5.6) and (5.9), we 
have an i-splitting 

such that 

qlc&'c(-2D) = 2qlc&'c(-D) = -1 + (m - l)pi , 
, ,m + 1 i 

qlc&'c( -D - D ) = qlc&'cC -D) + qlc&'c( -D ) = -1 + -2 -P , 

qlc(N) = 2pi , 

for some i-invertible subsheaf N. Such an N is unique and is given by 

N = G2(a, 1)· &'c( -2D')(S). 

In particular, (G2(X2, x3), G2(y~m-3)/2Y2' Y3)' G2(z2' z3)' w3) forms i-free i-
bases of N at 0, P , R, and S, respectively. 
Proof. By (5.2), we see an i-exact sequence 

~2 \ 2 
0--+ S gr c&' --+ gr c&' --+ Cs . w3 --+ O. 

By ai&,c( -2D') = &'c( -iD - (2 - i)D') c S2 gr~&' for i E [0, 2], we see an 
i-splitting 

S2gr~&' = &'c(-2D)47&'c(-D - D')47G2(a, 1) '&'c(-2D') , 

because G2 is general. In the stalk of gr~&' at S, we have 
2 W\W3 = G2(w2, W4) = G2(a, 1)· w4 ' 

whence G2(a, 1) ·&'c(-2D')(S) c gr~&'. The uniqueness is obvious because 
&'c( -2D) ~ &'c( -D - D') ~ &'c( -1) and N ~ &'C if we ignore i-structures. 0 
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(5.11) Remark. In view of the definition of qlc(F) [Mori88, (8.9.1)] for a 
locally i-free &c-module on C ~ pi , the following are easy to see. 

(5.11.1) If u: F - G is an (i-)injection of locally i-free &c-modules that is 
generically an isomorphism, then qlc(F) ~ qldG) , that is ,qldG)-qlc(F) E 

z+p# + Z+R# . Furthermore u is an i-isomorphism iff qlc(F) = qlc(G). 
(5.11.2) If 0 - F - G - H - 0 is an i-exact sequence oflocally i-free 

&c- modules, then qldG) = qlc(F) + qldH ). 

(5.12) Proposition. Under the notation and assumptions of (5.10), let J3 be 
the ideal such that F~& :> J3 :> F~& and J31 F~& = N. Then we have an 
i-exact sequence 

(5.12.1) 

and i-isomorphisms 

(5.12.2) 

where 

F~& 1 F~J3 ~ &c( -3D)Ei'7&c( -2D - D'), 

F~J3IF~& ~ N®gr~&, 

m - 3 # # qlc&c(-3D) = -1 + -2-P +R , 
, # qlc&c( -2D - D) = -1 + R . 

Proof. The kernel of the natural i-surjection J3 - N is F~&, which proves 
2 3...s> 3...s> I the first i-exact sequence. By Fc& :> J3 :> Fc C.7 , we have Fc C.7 :> FCJ3 :> 

F~&. Since J3®Ic - F~J3IF~&.C gr~& factors through N®gr~&, we have 
an i-homomorphism u : N®gr~& - F~J3IF~&. Let v be the natural i-
homomorphism &c( -3D)Ei'7&c( -2D - D') - F~& 1 F~J3' It is easy to see that 
u and v are injections by 

3 J3 = (G2 (X2 , x3 )) + (X2' x3) at O. 

We see that the natural i-isomorphism °3 : [;3 gr~& - gr~& is an i-isomor-
phism outside S by (5.2). Since S is an ordinary double point, we have 

lens Coker03 = is (3) = [32 /4] = 2 

[Mori88, (4.9.ii)]. Thus 

(5.12.3) 

By (5.11.1) applied to u and (5.10), we have 

qlc(F~J31 F~&) ;::: qlc(N®gr~&') 
= q1d&c( -D - 2D')Ei'7&cC -3D')) + 2. 

(5.12.4) 

By (5.11.1) applied to v, we have 

(5.12.5) qlc(F~& 1 F~J3) ;::: qlc(&c( -3D)Ei'7&c( -2D - D')). 
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Since (5.12.4)+(5.12.5) reduces to the equality (5.12.3) by (5.11.2), we see that 
(5.12.4) and (5.12.5) are both equalities, whence u and v are i-isomorphisms 
(5.11.1). 0 

(5.13) Proposition. If we ignore i-structures, then (5.12.1) is split and has a 
unique splitting submodule, say, N, ~ &'C. The sheaf N, has the following 
generators: 

3 2 0: G2(X2, x 3) + ( ... )X2 + ( ... )X2X3, 
• 2G ( (m-3)/2 ) (b (m-3)/2 3 b 2 ) P . y, 2 y, Y2' Y3 + Up' oY, Y2 + 'Y2Y3 ' 

3 2 R: G2(Z2' Z3) + ( ... )Z'Z2 + ( ... )Z,Z2 Z3' 
3 2 S: W3 + ( ... )W2 + ( ... )W2W4 , 

where up E &'c,p is a unit and bo' b, E C* are general with respect to the 
coefficients of G 2 . 

Proof. By qlc&,C<-2D') = -1+2PU and qlc&'c(-2D-D') = -l+RU, we have 

-2D' - 2Ep '" -2D - D' - ER 

in a small enough nbd X of C, where Ep = {Y, = O}/Zm and ER = {z, = 
O} /Z2 are considered Weil divisors on X. Let P be a meromorphic function 
on X such that p·&'x(-2D'-2Ep)=&'x(-2D-D'-ER) and p sends bases 

2222 2 2 2 2 2 
(X3 ' YIY3 ' Z3' W4 ) to (u OX2 ' UpY2Y3' URZ I Z2 Z3' USW2 w4 ) 

for some units uo ' up, uR ' and Us of &'x,o, &'x,p, &'X,R' and &'x,s' respec-
tively. We may assume us(S) = 1 by multiplying p by a constant. Since G2 
and G3 are general, we can find bo , bl ' co' ci E C* , which are general with 
respect to G 2 and 

3 2 G3(W2, W4 ) = G2(W2, w4)· (COW2 + CIW4) + (bOW2 + b,W2W4 )· 

Using a in (5.6), we see ap .&,(-2D' - 2Ep) C &'x(-3D) , whence 

{boap + b,P + G2(a, I)}· &'x( -2D' - 2Ep) C J3· 

We denote its image in gr~( J3) by M, and we note that M ~ &'c( -1) . 
First we work in a neighborhood of S. Since W3 E J3 (5.10) and I~ C J3 , 

we see that 
I 4 

(FC J3)S :J W3(W2, W3' W4 ) + (W2, W3' W4 ) • 

I Since y = 0, G2 E J3 (5.10), and Gv E FCJ3 ('Vv ~ 4), we see 
321 G2(w2, W4 ) + (bOW2 + blw2W4 ) == WIW3 mod FCJ3' 

We see that M is generated at S by 
2 3 2 {boap + blP + G2(a, I)}. w4 = us' (bOW2 + blw2W4 ) + G2(W2, W4 ) 

321 == WI' {W3 + (. --)W2 + (- --)W2W4 } mod FC J3-
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Hence M(S) c gr~J3 is the splitting sub sheaf NI . 
Then, at P, we see that 

{b P b P G ( )} 2 2 (b (m-3)/2 3 b 2 ) 2 (m-3)/2 ) 
00: + I + 2 0:, 1 YlY3 = up oYI Y2 + IY2Y3 +YI G2(YI Y2' Y3 

is a generator of N I . 0 

(5.14) By (5.3.1), the singularity (f(D) , Q) is a Dm+2-point and (D, P) is 
an Am_l-point, where D is as in (5.4). From this it is easy to see the following. 

(5.15) Lemma-Definition. There exist sections SI' S2 E HO(&D) such that the 
multiplicity of C in {SI = O} is 2 and S2 = y~. (unit) on the germ (D, P). 
These lift to sections SI and S2 E HO(&x) by HO(&x) - HO(&D) because 
HI(&(-D)) = HI(WX ) = O. We willfix the meaning of Sl and S2 in the rest 
of this chapter. 

(5.16) Proposition. (5.16.1) We have Sl E HO(J3) and its image SI in gr~J3 
is a global generator of NI in (5.13). 

(5.16.2) We have S2 E HO(F~J3) and, in the Taylor expansion of S2 in 
(D" , p"), Y~ appears with a nonzero coefficient. 

Proof. We have HO(F~&) = HO(F~&) (5.4) and HO(F~&) = HO(J3) (5.10). 
Hence Sl' S2 E HO(J3). Since sliD vanishes to order 2 along C, we see that 
Sl rt HO(F~&). Thus SI E HO(NI) is a global generator of NI == &c by (5.13). 
If s2 rt HO(F~J3)' then its image S2 in gr~J3 is also a global generator of 
NI for the same reason. Then one can see, at 0, that s21D = S2(XI ' 0, x 3) = 
xi' (unit). This contradicts the choice of S2 in (5.2.1). Thus S2 E HO(F~J3)' 
and the rest is obvious from the choice of S2' 0 

(5.17) Proposition. Let SEHo(&x) beagenerailinearcombinationofsi and 
s2' Then we have the congruence relations (up to multiplication by unit) at the 
following points. 

3 0: S == G2(X2 , x 3) mod Fc&' 
2 3 

P: S == Y I G2(Y2' Y3) mod Fc&, 
3 R : S == G 2 (z 2' Z 3) mod F c& , 

3 
S : S == W3 mod Fc&' 

This follows from (5.13) and (5.16.1). 

(5.18) To study S at P, we will make a weighted blow-up at P. To simplify 
the notation, we make the coordinate change Y i 1-+ u; I Y i (i = 1 , 2, 3). Let a 
and r be the Z-wts (cf. (T.7)) 

( m -1 ) r(YI ' Y2 ' Y3) = m - 1, -2-' 1 . 

(5.19) Proposition. We have a(s) = 2m and res) = m. 
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(5.19.1) If m 2: 5, then su=2m (up to multiplication by constant) is a general 
linear combination of all the monomials of a-wt 2m in (Y2' Y3)2 and s,=m is 
squarefree. 

(5.19.2) If m = 3, then we have (up to multiplication by constant) 
2 

Su=2m = YI G2(Y2' Y3) + H(Y2' Y3)' 
where H is a homogeneous cubic polynomial which is squarefree and prime to 
G2 · 
Proof. We have a(s) = 2m by (5.17) and r(s) = m by (5.16.2). First we 

Th 2 2 (m+l)j2 m-I 2 2 (m-3)j2 3 h 
assume m 2: 5. en YIY3' YI Y2Y3' YI Y2' Y2 Y3' YI Y2 are t e 
only monomials in (Y2' Y3)2 with a-wt 2m. Since all the elements in (F~&) p 

have a-wt > 2m, we see that all the elements in (F~J3)P have a-wt > 2m 
by (5.12) and m 2: 5. Thus the first part of (5.19.1) follows by (5.13) and 
(5.16.1). Furthermore Y;Y3' Y2y~m+l)j2 ,Y~ are the only monomials with r-wt 
m in (Y2' Y3)2. Thus the second part of (5.19.1) follows from (5.13), and 
(5.16.2) by Bertini's theorem. When m = 3, (5.19.2) follows also from (5.13), 
and (5.16.2) by Bertini's theorem. 0 

(5.20) Let H = {s = O}, 7C: H -+ (H, P) be the a-blow-up (cf. (10.3)), C 
the proper transform of C by 7C, and E = 7C -I (P) red. 

(5.21) Lemma. (5.21.1) E c P(I, mtl , m - 1) is isomorphic to a plane nodal 
cubic (i.e., pi with one node) with singularity at PI = (1 : 0 : 0) , and 

(H, PI) ~ (x, y, z; yz) ::) (E, PI) = {x = O} 

with C = x-axis. 
(5.21.2) If m 2: 5, then the singular locus of H consists of C and the two 

points P2 = (0: 1 : 0) and P3 = (0: 0: 1) such that 

(H, P2) ~ (x, y)/Z(m+l)j2(I, 1) ::) E = x-axis/Z(m+l)j2' 
- m-3 
(H,P3)~(uI,u2,u3;¢)/Zm_l(m-2, -2-' l;m-3)::)E 

= {u 3 = O}/Zm_1 ' 
where p(¢) = m - 3 and ¢p=m-3 is squarefree for Z-wt p(u l , u2 ' u3) = (m -
2, m23 , 1). 

(5.21.3) If m = 3, then the singular locus of H consists of C and three 
AI-points E E - {PI}. 
Outline of proof. It is easy to see that En VI is a cubic curve with exactly one 
node (cf. (10.3)). Then the rest follows from (5.19) by direct computation. 
We only make two comments. The assertion on p follows from that on r in 
(5.19.1). When m = 3 , the three singular points of H come from the singular 
locus D + (y I) of the ambient space of the a-blow-up. 0 

(5.22) Computation. Assume m 2: 5. Under the notation of (5.21), 
.6.( (H , P3 ) ::) (E, P3 )) 
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(m-5)/2 
,.-"-.. 

o 
2 

• - 0 - ... - 0 - 0 -0 
2 2 3 2 

(5.23) Conclusion. Since H has nodes everywhere along C, the inverse image 
of C in the minimal resolution H' of H is CI'Il C2' , where C/ ~ C2' ~ Wi 
and the proper transform E' of E fits in t::.(H :::) C) as follows 

o C' - 0 
2 I 2 

I~I, 
o-o-o-···-o-E - 0 
2 3 2 2 (m+I)/2 

o C'- 0 
2 I 2 

\ I 

I 
C' -0 

2 2 

(m ~ 5), 

E'- 0 
2 

(m = 3), 

/ I , 
o C2 - 0, 
2 2 

f · , 2 , 2 (c. (to.5)). Usmg (2mDIH' C) = 1, we can show (CI ) = (C2 ) = -1 and 
(EY = -5 if m ~ 5 (-6 if m = 3) by computing the pullback of 2mDIH 
on H'. 

Hence (f(H), Q) is a D4-point and f is divisorial. Thus (5.1) is proved. 0 

(5.24) Remark. (5.24.1) Since small deformations of an extremal nbd are not 
proved to be extremal nbds, the argument in this chapter only shows the divi-
soriality of f. 

(5.24.2) One can define "formal" extremal nbd that are formal schemes X 
along C:::: Wi in the usual way. Then it does not seem hard to prove that small 
deformations of a formal extremal nbd is extremal. Then our argument shows 
further that (f(H), Q) is a D4-point for a sufficiently general formal extremal 
nbd. 

6. GENERAL MEMBERS OF I&'xlc; ISOLATED cD/3 CASE 

We consider the following set-up in this chapter unless otherwise mentioned 
explicitly. 

(6.1) Let f : X :::) C -+ Y :3 Q be an isolated extremal nbd with only one 
non-Gorenstein point P such that X :::) C has a I A point at P and (X, P) 
is a cD/3 point. Let Hx be a general member of I&'xl through C and let 
Hy = f(Hx)' Let t::.x = t::.(Hx :::) C) and t::.y = t::.(Hy). Let 

2 3 (X,P)::::(x,y,z,u;u +z +g(x,y)+···)/Z3(1, 1,2,0;0) 
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with nonzero homogeneous cubic part g in x and y [Reid87, (6.1)] or 
[Mori85, Theorem 23]. Then g, up to linear transformations in x and y 
does not depend on the choice of such coordinates. If g is squarefree (resp. 
has simple and double factors, is the cube of a linear factor), we say that P is 
a simple (resp. double, triple) cD point. 

Our main results in this chapter are the following. 

(6.2) Theorem. Under the notation and assumptions of( 6.1), assume that i p( 1) 
= 1. Then we have the following: 

(6.2.1) X is smooth outside of IA point P, which is a simple or double cD 
point with £(P) = 2 and we have an £- isomorphism 

(6.2.1.1) gr~&' ~ (P#)4J(O). 

(6.2.2) 2C = D· D" for general members DE IKxl and D" E 12Kxl. 
(6.2.3) Hx is normal, and d x and d y consist of smooth rational curves 

intersecting transversely and their configurations are as follows. 
Case of simple cD point P. 

(6.2.3.1) 

o 
3 

• - 0- 0-0 
I 3 2 3 

d x 

o 
3 

0- 0-0 
223 

d y 

Case of double cD point P. 

(6.2.3.2) 

o 
2 

• - 0 - 0- 0-0 
I 3 2 3 2 

o 
2 

0- 0- 0-0 
2 2 3 2 

o 0 
2 2 

d x d y 

(6.2.4) Let X :J C be a germ of a 3-fold along C ~ pI which need not be 
an extremal nbd. If X :J C has the properties in (6.2.1), then it is an isolated 
extremal nbd of type cD. (An example is given in (6.11).) 

(6.3) Theorem. Under the notation and assumptions of(6.1), assume ip (1) > 
1. Then i p( 1) = 2 and we have the following: 

(6.3.1) X is smooth outside of IA point P, which is a double cD point with 
£(P) = 3 or 4, and we have an £- isomorphism 

r l ...., ~ { (PU)4J(-1 + 2PU) if£(P) = 3, 
(6.3.1.1) g cC7 - (O)4J(-1 +2p#) if£(P) = 4. 

(6.3.2) 4C = D· D' for general members D and D' of IKxl. 
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(6.3.3) Hx is normal, and d x and d y consist of smooth rational curves 
intersecting transversely and their configurations are as follows. 

o 
2 

• - 0- 0 - 0-0 
I 2 3 2 3 

o 
2 

0- 0-0 
2 2 3 

o 0 
2 2 

d x d y 

(6.3.4) Let X:> C be a germ of a 3-fold along C:::::]pl which need not be an 
extremal nbd. If X :> C has the the properties in (6.3.1), then it is an isolated 
extremal nbd of type cD. (Examples are given in (6.17) and (6.21).) 

We need the following lemma for the proof of (6.2.4), (6.3.4). 

(6.4) Proposition. Let X :> C be the germ of a 3-fold along C :::::]pl which 
need not be an extremal nbd. Assume that X has only terminal singularities on 
C and that the proper transform d of C to the canonical cover (Xu, pU) of 
(X, P) is smooth at an arbitrary singular point P. Let I U be the defining ideal 
of d in (Xu, p U). Then using the notation l(P) = lengthp tt(Iu(2) IIU 2 ) , we have 

(6.4.1) (Kx ' C) = q1deg(gr l &) - 2 + L (1 + l(P) - 1) , 
p mp 

where P runs over all the singular points of X on C and m p is the index of 
P. 
Proof. We may give the homomorphism tYl in [Mori88, (2.2)] the l-structure 
at P by 

U 1\2 U U(2) 0 
tY l : (I II ) C9 Q ctt --- grcttWxtt, 

where tYlP(e 1\ f) C9 gdh = gde 1\ df 1\ dh and Q~ is given the l-structure 
Q~ C Q~tt at P. This defines an l-homomorphism 

- 2 
iii : 1\ (gr l &)~Q~ --- gr~w, 

which is an isomorphism outside of singular points. At P, we have 

(XU, pU) = (x, y, z, u; ¢) :> d = x-axis, 

for some ¢ == xf(P)y mod (y, Z, U)2. Then z 1\ u (resp. dx) is an l-free 
. - 2 I I 0 l-basls of A (gr &) (resp. Qd at P. Furthermore gr CW has an l-free l-

basis 

R dx 1\ dy 1\ d z 1\ du dx 1\ d z 1\ du dx 1\ d z 1\ du 
eSctt A. = ± A.y = ± 'P 'P xf(P) 
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Thus Im(a1") is generated by dx /\ dz /\ du and lenCokera 1" = f.(P) - 1, 
which proves our claim (6.4.1) because 

qldegn~ = -2 + ~)mp - l)/mp- 0 
p 

(6.5) Let us express the cD point as 
(X, P) = (Y p Y2'Y3'Y4 ; a)/Z3(1, 1,2,0; 0) :::)y1-axis/Z3, 

using an equation a such that a == yi(P)y; mod (Y2' Y3' Y4)2 with i = 2 (resp. 
3,4) if f.(P) == 2 (resp. 1,0) mod 3 [Mori88, (2.16)]. 

Then 
(6.6) Lemma. P is the only singular point of X on C. 
Proof. It is enough to derive a contradiction assuming that X has a type III 
point R on C with iR (I) = 1 and that X is smooth outside of P and 
R (6.1). By deformation method (2.9), we may assume f.(P) = 2 [Mori88, 
(4.12.2)]. Then Y3 and Y4 form an f.-free f.-basis of gr~& ~ &EB&(-I). 
Hence, after a possible coordinates change, we claim an f.-isomorphism 

(6.6.1) gr~& ~ (O)ffi( -1 + p"), 

where Y4 (resp. Y3) is an f.-free f.-basis of (0) (resp. (-1 + p#)) at P. 
Indeed if otherwise, we have gr~& ~ (P#)ffi( -1) (2.8), which implies gr~w ~ 

gr~w®gr~& ~ (0)ffi(-2 + 2P") and H\w/F~w) t= O. This is a contradiction 
and (6.6.1) is proved. Let J be the C-laminal ideal of width 2 such that 
J/F~& = (0) in the decomposition (6.6.1). Since P is a cD point, we know 
that y; and yi as well as Y:Y2 appear with nonzero coefficients in the Taylor 
expansion of a. By deformation a + tY~ = 0 of (X, P) (2.9), we may further 
assume that P is a simple cD point. Let D = {Yl = O} E 1 - Kxl and let 
s E HO(&x) be a lifting of Y4 E &D by HO(&x) - &D. Then s induces a 
section s of gr~&, which is a part of the f.-free f.-basis of gr~&. Thus s is 
nowhere vanishing (6.6.1) and Ex = {s = O} E I&xl is smooth outside of P 
and R. Since s == Y4· (unit) mod F~&, it is easy to see that 

(Ex, P) = (Yp Y2' Y3 ; a) /Z3 (1, 1, 2; 0), 

where a == yi + g(YI 'Y2) mod (Y 1 ' Y2' y 3)4 with a squarefree cubic part g in 
Yl and Y2. By the computation (6.7.1), Llx is 

b 
.-"-. 

o 0-···-0 
322 

0- 0 - 0 - • - 0 - ••. - 0 
3 2 3 1 2 2 
~ 

a 

for some a 2: b such that a 2: 1, where Aa+b at the right-hand side comes 
from (Hx' R). Since Llx forms an exceptional set, we see a = 1 and b = 0 
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and that ~y is A2 • This means (Hy, Q) and hence (Y, Q) is Gorenstein. 
This is a contradiction and (6.6) is proved. 0 

(6.7) Computation. Let (D, P) be a normal surface singularity 

(D, P) = (YI ' Y2' Y3; 0!)/Z3(1, 1,2; 0) :J C = yl-axis/Z3. 

Let a be the Z-wt a(YI' Y2' Y3) = (1, 1, 2) (T.7). Then in each of the fol-
lowing cases, ~(D :J C) consists of smooth rational curves and C' intersects 
transversely with configuration as listed. 

(6.7.1) O!q=3 = O!q=3(YI ' Y2' 0) is squarefree and O!q=6(0, 0,1) =f. ° 
o 
3 

• - 0 - 0-0 
3 2 3 

o 
2 

• - 0 - 0 - 0-0 
3 2 3 2 

o 
2 

where • - 0 - 0 intersects the central]P1 (0) at 00, and three 0 at the three 
3 2 3 2 

roots of O!q=6(0, 1, Y3) = ° with respect to a certain coordinate system of the 
central ]pI . 

2 (6.7.3) O!q=3 = YIY2 and O!q=6(YI' 0, Y3) is square-free 

o 
2 

• - 0 - 0 - 0-0 
2 3 2 3 

o 
2 

where 0 - 0 intersects the central]pl (0) at 00, • - 0 at 0, and two 0 at the 
2 2 2 3 3 

two nonzero roots of O!q=6(1, 0, Y3) = ° with respect to a certain coordinate 
system of the central ]pI . 

A similar argument shows 

(6.8) Lemma. If ip (l) = 1, then (6.2.1) holds. 

Proof. By ip (l) = 1, we see l(P) = 2 [Mori88, (2.16)]. Thus Y:Y2 appears 
in O! and P is not a triple cD point. Assume that gr~&' -j. &' EB &'. Then 
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gr~& ~ &( 1) ED &( -1) and gr~& ~ (1 )ffi( -1 + pU) as in (6.6.1). A general 
global section s of &x vanishing along C induces a section s of gr~& which 
lies on the first factor (1) and vanishes at a point R( =I P) to order 1. Then 
Ex = {s = O} E I&xl has a point of type A at R and the analysis at P is 
the same as that in (6.6). Hence the same computation for (6.6) induces a 
contradiction. Thus gr~& ~ & ED & and it has an i-free i-basis {Y3' Y4} at 
P, whence (6.2.1) follows. 0 

We first prove (6.2) in two steps. 

(6.9) Lemma. Let X :J C be a germ oj a 3-Jold along C ~ p' which has 
the properties in (6.2.1). Let J be the C -laminal ideal oj width 2 such that 
J/F~& = (pU) in the i-splitting (6.2.1.1). We will use the coordinates in (6.5) 
and assume that Y3 (resp. Y4) is an i-Jree i-basis oj (pU) (resp. (0)) in the 
i-splitting (6.2.1.1) by modifying them. Then 

(6.9.1) We have an i-splitting 

(6.9.1.1) gr2(&, J) = (pu)ffi(2pu) 

such that gr2" (& , J) = (2PU) and gr2, ° (& , J) ~ (pU). By changing coordi-
nates ifnecessary we may assumeJurther that Y3 (resp. Y2) is an i-Jree i-basis 
oj (pU) (resp. (2PU)) in the i-splitting (6.9.1.1). 

(6.9.2) X:J C is an isolated extremal nbd and hence (6.2.4) holds. 
(6.9.3) Let DE IKxl and D" E 12Kxl be general members. Then D nD" is 

defined by J. In particular, D· D" = 2C and (6.2.2) holds. 

Proof. We note IU = (Y2' Y3' Y4) and JU = (Y2' Y3' Y;) at pU. Since (X, P) 
is a cD point, we may assume 

_ 2 2 U U 
Q = Y 4 + Y, Y2 mod I J 

by a change of coordinates because Y'Y3 (resp. Y;) appears with zero (resp. 
nonzero) coefficient in the Taylor expansion of Q. Thus (Y4' Y3, Y2) is a 
(1 , 2, 2 )-monomializing i -basis of I :J J at P of the second kind and JU = 
(Y2' Y3). We see gr'(&, J) ~ (0), gr2,o(&, J) ~ (pU) , and gr2, '(&, J) ~ 
gr'(&, J)®2®(2PU) ~ (2PU) [Mori88, (8.10)]. Hence we get (6.9.1.1) by (2.6), 
and (6.9.1) follows. From (6.9.1.1) follows that gr~F6(&, J) is ample on C 
by gr~F6(&, J) ~ gr6(&, J) ~ $3 gr2(&, J) ~ &(1)ED&(I)ED&(1)ED(2). Thus 
C is contractible in X and (Kx·C) =-1/3 (6.4),whence(6.9.2) follows. We 
also see that 

Hence 
HO(&(iKx)) - HO(gr2(&(iKx ) ' J)) for i = 1,2 

by HO(gri(&(iKx )' J)) = 0 (j = 0, 1). Let Si E HO(&(iKx)) be such that 
its image globally generates the ith factor (0) in (6.9. 1. 1)®&(iKx) for i = 
1,2. Let Di = {Si = O} E liKxl and Ii be the defining ideal of Di . Then 
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J = II + 12 + F3(&" J) and J# = 11# + 12# + J#I#. Thus J# = 11# + 12# and we 
also see that J = II + 12 outside of P because F3(&" J) = I J outside of P. 
Hence J = II + 12 and we are done. 0 

(6.10) Lemma. Under the notation and assumptions of( 6.1), assume that i p( 1) 
= 1. Then (6.2.3) holds. 
Proof. Let the notation and assumptions be as in (6.9). A general section s of 
HO(&,x) vanishing on C is of the form s=aY4+···+bY2Y3+CY~+··· with 
general a, b, c E C by (6.8) and (6.9.1.1). Thus it induces a global section s 
of gr~&' ~ &' EB &' which is nowhere vanishing since s is a part of basis of 
gr~&' at P, whence Hx = {s = O} El&'I is smooth outside of P. At P, we 
have Y 4 = Y(Y I ' Y2 , Y3) = ... + a' Y2Y3 + b' Y~ + ... with general a', b' E C and 

(Hx' P) = (Y I ' Y2' Y3; P)/Z3(1, 1,2; 0) ~ C = y l -axis/Z3, 

where p = O!(Y" Y2' Y3' y). Let • be the Z-wt '(Y" Y2' Y3' Y4) = (1, 1, 2, 3) 
(T.7). Since Y4 does not appear in O!, we see that 

If P is a simple cD point, then YIY3 and Y2Y3 do not appear in O! and yi 
appears in O!, whence PT=3 = O!T=3(YI' Y2' 0) and PT=6(0, 0,1) =1= O. Thus 
we can apply (6.7.1). To get (6.2.3), we only need to mention that (.2) = -1 
follows from (C· KH ) = (C· Kx) < O. Assume now that P is a double cD 

x 
point. By changing coordinates, we may further assume O!T=3 = Y~Y2 and we 
see that Y~ and yi appear in O!T=6 (say, with coefficient 1 for simplicity). If 

, , 3 ,2 6 3 PT=6(0, Y2' Y3) = O!T=6(0, Y2' Y3' a Y2Y3 + b Y2) = b Y2 + Y3 + ... 
is not squarefree for general a' and b' , it has a multiple factor that is a poly-
nomial in a', b', and yi's. Thus PT=6(0, 1, Y3) = b,2 + yi + ... is asquare 
because Y2 is not a factor of PT=6(0, Y2' Y3)' which is impossible because of 
yi. Thus we can apply (6.7.2) and the rest is the same as the simple case. 0 

(6.11) Example. Let Z ~ C be a germ of a smooth 3-fold along C ~ pi 
such that NCfz ~ &'C EB&'c' Let P E C and let (ZI' z2' z3) be coordinates of 
(Z, P) such that (C, P) = z,-axis. Let (X, P) ~ (C, P) be a cD point as in 
(6.5) with O! == Y~Y2 mod (Y2' Y3' y4)2 . For suitable GI and G2 such that 0 < 
G, < G2 « 1, (y~, Y4' Y,Y3) form coordinates for U = (X, p)n{G, < IY~I < G2} 
by the implicit function theorem. Thus zi = y~ , z2 = Y4' and z3 = YIY3 patch 
(X, P) and Z - (Z, P) n {lz,1 ~ GI} along U. Thus X ~ C is an isolated 
extremal nbd of type cD by (6.2). 

Thus (6.2) is proved, and we now treat the case ip (l) ~ 2. 
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(6.12) Lemma. If ip (1) ~ 2, then i p (1) = 2 and i(P) = 3 or 4. 
Proof. By [Mori88, (2.16)], we have ip (1) = 1 + [i(P)j3]. It is enough to 
disprove i(P) ~ 5. Let i be such that a == y1(P\ mod (Y2' Y3' y4)2 as in 
(6.5). By deformation a + ty:(Pl-3Yj = 0 of (X, P) (2.9), we get an isolated 
extremal nbd X' :J C with a cD point of index 3 and a III point on C 
[Mori88, (4.12.2)] because i(P) - 3 ~ 2. This contradicts (6.6) and we are 
done. 0 

We treat the case i(P) = 3 first. 

(6.13) Lemma. If i(P) = 3, then (6.3.1) holds. 
3 4 Proof. By a == YIY4 mod (Y2' Y3' Y4) , we see that Y2 and Y3 form an i-free 

i-basis of gr~& at P. 
To prove (6.3.1.1) first, we will derive a contradiction assuming that gr~& 'f. 

(pU)ElJ( -1 + 2pU). Then we have gr~& ~ (2PU)ElJ( -1 + p U). We may further 
assume that Y2 (resp. Y3) is an i-free i-basis of (2PU) (resp. (-1 + pU)) 
after a change of coordinates. Let J be the C -laminal ideal of width 2 such 
that JjP~& = (2p tt ). We note JU = (Y2' yi, Y4) at pU. Since we are going to 
derive a contradiction, we may assume that yiyi appears in a by deformation 
a + tyiyi (2.9.2). Replacing Y3 by Y3' (invariant unit), we may assume a == 
y~Y4 + yiyi mod JU IU , where I U = (Y2' Y3' Y4)' Then u = YIY4 + yi generates 
the torsion part ~ C{yl}j(yi) of JUjJUIU, whence p 3(&, J)U = (u) + JUIU. 
Hence gr2(&, J)U = &C1Y2 E9 &CIY4 and yi == -YIY4 mod p 3(&, J)U. Thus 
gr2, 1(&, J) ~ grl(&, J)®2(b(pU) ~ (-1) because J is a nested c.i. outside of 
P. We note that grl (& , J) ~ (-1 + pU) and gr2, 0 (& , J) ~ (2PU) with i-free 
i-bases Y3 and Y2 at P, respectively. We claim that the following natural map 
is an i-isomorphism 

(6.13.1) (i=O,1). 

Since J is a nested c.i. outside of P, we only need to check (6.13.1) at P. 
We see that 

p3(&, J)tt = IU Jtt + (u) 

== (Y2Y3' y~ , Y3Y4) + (u) mod p4(&, J)tt 
4 tt ==(Y2Y3'Y3Y4'U) modP (&,J) 

because uY3 = Y~ + Y1Y3Y4 E p4(&, J)U . By a == yiu mod JU Itt, we have 

2 3 h3 4 U a==y1u+gY1Y2Y3+ Y3 modP (&, J) 

for some g and a unit hE C{YI ' Y2' Y3' Y4} because P is a cD point. Thus 
Y~ == -yi(u + gYIY2Y3) mod p4(&, J)tt and gr3(&, J)tt = &CIY2Y3 E9 &c.u at 
ptt. Furthermore from Y~ == -YIY3Y4 above, we see that Y3Y4 == YI (U+gYI Y2Y3) 
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in gr3(&" J)" . Thus (6.13.1) is proved. Hence we have i-isomorphisms 

grl(w, J):= grl(&, , J)®gr~w:= (-1), 

gr2,o(w, J) := gr2,o(&" J)®gr~w:= (p"), 

gr2, I (w, J) := gr2, I (&' , J)®gr~w := (-2 + 2P") , 

gr3,o(w, J):= gr2,o(&" J)®grl(&" J)®gr~w:= (-1 + 2P") , 

gr3, I (w, J) := gr2, I (&', J)®gr l (&', J)®gr~w®(P") := (-2 + p"). 

Thus HI(W/p4(W, J» =f:. 0, which is a contradiction, and (6.3.1.1) is proved. 
By changing coordinates if necessary, we assume that Y3 (resp. Y2) is an 

i-free i-basis of (p") (resp. (-1 + 2P"» in (6.3.1.1) in addition to (6.5). 
We note J" = (y;, Y3' Y4) at p". We will derive a contradiction assum-
ing that Y1Y; does not appear in a. Then we may further assume a == 
ytY4 mod I" J" by replacing Y4 by Y4 + YIY; . ( ... ). Hence Y4 E p3(&" J)" 
and we have i-isomorphisms gr2, l(&" J) := grl(&" J)®2 := (-1 + p") and 
gr2(&" J):= gr2,o(&" J){Bgr2, l(&" J):= (P"){B(-l +p") by (2.6). By chang-
ing coordinates, we may assume that Y3 (resp. Y;) is an i-free i-basis of 
(p") (resp. (-1 + p"» in the i-splitting. Let K be the ideal such that 
J :J K :J p3(&" J) and K/p3(&, , J) = (p") in the above i-splitting. By 
[MoriSS, (S.14)], K is a C-Iaminal ideal of width 3 and a nested c.i. out-
side of P. By K":J (Y~'Y3'Y4)' we have K" = (Y~'Y3'Y4) at p". By 
[MoriSS, (S.14.1)], grl(&" K) = grl(&" J):= (-1 + 2P") and gr3,o(&" K) = 

gr2,o(&" J) := (p"). We claim that (Y2' Y3' Y4) is a (1, 3, 3)-monomializing 
i-basis of I:J J of the second kind at P. Indeed by a == Y:Y4 mod I" J" , we 
have a==Y:Y4+gy~ mod I"K" for some unit gEC{Y1 'Y2'Y3'Y4} because P 
is a cD point. Thus the claim is proved. Hence by [MoriSS, (S.12)], we have 
gr2(&" K) := grl (&', K)®2 := (-1 + p") and gr3, I (&', K) := grl (&', K)®3® 
(3P") := (0). Hence 

gr3 (&' , K) := gr3, ° (&' , K){Bgr3, I (&' , K) := (P"){B(O) 
by (2.6). Then as in the argument for (6.9.2), we can see that Spec(&'x/K) = 
D· D' for some D E I&'xl and D' E IKxl. This means Spec(&'x/K) moves 
in D', which is a contradiction. Hence P is a double cD point and (6.3.1) 
holds. 0 

(6.14) Lemma. Let X :J C be a germ oj a 3-Jold along C := pI that has 
the properties in (6.3.1) and that i(P) = 3. Let J be the C-laminal ideal oj 
width 2 such that J/P~&' = (p") in the i-splitting (6.3.1.1). We will use the 
coordinates in (6.5) and assume that Y3 (resp. h) is an i-Jree i-basis oj (p") 
(resp. (-1 + 2P"» in the i-splitting (6.3.1.1) by modifoing them. Then we have 
an i-splitting 

(6.14.1) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 601 

such that gr2, I(&" J) = (0) and gr2,0(&" J) ~ (P#). By changing coordinates 
if necessary we may assume further that y 3 (resp. y 4) is an i-free i-basis of 
(P#) (resp. (0» in the i-splitting (6.14.1). 

Proof. Since P is a double cD point, YlY~ appears in 0:. Then 0: == y~Y4+YlY~ 
mod [# J# after a change of coordinates. Hence y~ == -y~Y4 mod F3(&" J) 
and gr2, I(&" J)# = &'e1Y4 at p# as in the argument for (6.13). Thus 

gr2, 1 (&', J) ~ grl (&', J)®2®(2P#) ~ (0), 

which implies (6.14.1) by H1(C, gr2, I(&" J)®gr2,0(&" J)®(-I) = O. 0 

(6.15) Lemma. Let the notation and assumptions be as in (6.14). Then X:) C 
is an isolated extremal nbd of type cD with i(P) = 3, whence (6.3.4) holds. 
Furthermore the assertions (6.3.2) and (6.3.3) hold. 
Proof. We treat as X the formal completion of X along C until C is proved 
to be contractible in (6.15.1), after which the assertions on the completion and 
the original X are equivalent by comparison theorems. By grl (&' , J) ~ (-1 + 
2p#) and (6.14.1), we see that HO(&'(Kx » = HO(F2(OJ, J» and HO(&'(Kx »-
HO(gr2(OJ, J» as in the argument for (6.9.3). Similarly we see HI(&,X) = O. 
We note that the same argument does not lead to a contradiction as in the proof 
of (6.14) because J# is not a c.i. ideal. 

(6.15.1) In this paragraph, we will prove that C is contractible (whence 
(6.3.4» and (6.3.2). Since gr(OJ, J)2 ~ (-P#)ffi(O) , a general global section 
s E HO (&' (K x» induces a global section s of g r2 (OJ, J) which is a global 
basis of (0). So D = {s = O} E IKxl is smooth outside of P. We claim that 
D is a normal surface with only rational singularities and 

(6.15.1.1) 4C '" KxlD as Weil divisors on D. 
Since P is a double cD point, we may further assume that 

3 2 # # 
0: == Y1Y4 + Y1Y2 mod J [ 

after a change of coordinates. Since s == nY3 mod F3(OJ, J)# at p# for some 
i-free i-basis n of OJ at P, D# is defined in X# by Y3 = Y(YI ' Y2' Y4) for 

3 some Y E C{YI 'Y2' Y4} n F (&', J). Hence 
(D, P) ~ (Yl' Y2' Y4; P)/7l.3(1, 1,0; 0):) C = y l -axis/7l.3 , 

where P = O:(Y\' Y2' y, Y4). Using the notation of (6.16), we see 
2 Pp=3 = O:p=3(Y\ ' Y2' Yp=2' Y4) = O:P=3(YI ' Y2' 0, 0) = Y\Y2 

because P is a cD point. Since Ylel == 0, Yp=2 is divisible by Y2 whence 
Yp=2(Y1 ' 0, Y4) = O. Hence 

Pp=6(Y\ ' 0, Y4) = O:P=6(Y\ ' 0, Yp=5(Y\ ' 0, y4), Y4) = O:p=6(Y\ ' 0,0, Y4) 

since Y1Y3 does not appear in 0:. Then Pp=6(Y\' 0,Y4) =Y~Y4+CY; for some 
c E C· because Y; appears in 0:. In particular, (D#, p#) is a point of type D 
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and we can apply (6.16) to (D, P) ~ C . Then it is easy to see that the pull-up 
of the Q-Cartier Weil divisor 4C of D is given by 

5/3 
o 

4 11/3 \0/3 4/3 2/3 
.-0- 0-0-0 

where the numbers denote the multiplicities. Since (.2) = -1 by (K D • C) = 
2(Kx · C) < 0 (6.4), we see (&'D(4C)· C) = -1/3. Since (D#, p#) is a point of 
type D, 4p# is Cartier for every Weil divisor p# on (D#, p#). Thus &'D(4C) 
is an i-invertible &'D-module at P. Hence &'D( 4C) c::::' &'DUK x) near P for 
some i and we see that i == 1 mod (3) by (&'D(4C)· C) == (&'D(Kx) . C) 
mod Z. Hence KxlD - 4C is a Cartier divisor and we have (6.15.1.1) by 
(&'D(4C). C) = (Kx ' C) = -1/3 (6.4). Thus from the exact sequence 

o ---+ &'x ---+ &'x(K x) ---+ &'D( 4C) ---+ 0, 

we have a surjection HO(&'x(Kx» - HO(&'D(4C» = HO(&'D) by H\(&'x) = O. 
Hence for another general D' E IKxl, we see D· D' = 4C. Thus (6.3.2) 
follows for the completion. In particular, (6.3.4) holds. Hence (6.3.2) holds as 
explained above. 

(6.15.2) Let U be a general global section of &'x vanishing on C. Then 
U=AY\Y3+,uy4+··· for general A,,uEC by (6.14.1). The divisor Hx={u= 
O} E I&'xl is smooth outside of P because the image of U globally generates 
gr2,0(&" J) c::::' &'C c grb&' . Then 

(Hx' P) = (Y\ 'Y2' Y3; n)jZ 3(1, 1,2; 0) ~ C = y\-axis/Z3, 

where n = a(y\ ' Y2' Y3' lIY\Y3 + ... ) with general 1I E C. Since a = cy; + 
yiY4 + dy~ + Y\Y; + ... for some c, d E C* as in (6.15.1), it is easy to see that 
(6.7.3) applies. The rest is the same as (6.10) and (6.3.3) follows. 0 

(6.16) Computation. Let (D, P) be a normal surface singularity 

(D, P) = (Y\, Y2' Y4 ; a)/Z3(1, 1,0; 0) ~ C = y\-axisjZ3' 
2 Let p be the Z-wt p(y\, Y2' Y4) = (1, 1, 3) (T.7). Assume that a p=3 = Y\Y2 

and that a p=6(Y\' 0, Y4) is squarefree. Then ~(D ~ C) consists of smooth 
rational curves and C' intersecting transversely, and its configuration is 

o 
2 

• - 0 - 0 - 0-0 
2 2 3 2 

(6.17) Example. Let Z ~ C be a germ of a smooth 3-fold along C c::::']p\ such 
that N~/z c::::' &'C ffi &'(-1). Let P E C and let (z\, z2' z3) be coordinates of 
(Z, P) such that (C, P) = z\-axis and z2 (resp. z3) is a generator of &'C 
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(resp. &'(-1)) in the splitting of N~/z. Let (X, P):J (C, P) be a cD point 
as in (6.5) with a == yiY4 mod (Y2' Y3' y4)2 . As in (6.11), ZI = yi ' Z2 = YIY3' 
and z3 = Y;Y2 patch (X, P) and Z - (Z, P) n {izil $; e l } for some el > 0, 
and we have an isolated extremal nbd X:J C of type cD such that i(P) = 3. 

Now (6.3) is proved in the case i(P) = 3. 
(6.18) Lemma. Assume i(P) = 4. Then (6.3.1) holds. 
Proof· Since a == Y~Y3 mod (Y2' Y3' y4l , Y2 and Y4 form an i-free i-basis of 
grb&' at P. By deformation a+tyiY4 = 0 of (X, P) (2.9.2), X tO :J Ct 3 Pt is 
a cD point of index 3 and i(P) = 3. Since Y;Y2 appears in a+tyiY4 by (6.14), 
so does Y;Y2 in a. In particular, P is a double cD point. If (6.3.1.1) does not 
hold, then we have grb&' ~ (2PU)Et( -1) (2.8) and grbw ~ (pU)Et( -2 + 2PU) . 
This implies a contradiction HI(W/F~w) =f. 0, whence (6.3.1.1) and hence 
(6.3.1) hold. 

(6.19) Lemma; Let X :J C be a germ of a 3-fold along C ~]pl that has the 
properties in (6.3.1) and that i(P) = 4. By changing the embedding (-1 + 
2pu) c grb&' in (6.3.1.1) and by changing the coordinates in (6.5), we may 
assume further that Y4 (resp. Y2) is an i-free i-basis of (0) (resp. (-1+2pU)) 
in the i-splitting (6.3.1.1) and 

4 2 2 3 U (6.19.1) Y1Y3 + Y4 + YIY2 == 0 mod Fe&' . 
Proof. We may assume that Y4 and Y2 are i-free i-bases of the components 
(0) and (-1 + 2PU) in (6.3.1.1). By changing the embedding (-1 + 2PU) c 
grb&', we can find a unit u at P such that Y4 and Y2 + CUY1Y4 are also £-
free i-bases of the components (0) and (-1 + 2PU) of some i-splitting like 
(6.3.1.1) for each c E C. Replacing Y4 by Y4 • (unit), we may assume u = 1. 

_ 4 d ( )4 F 2 m>U d _ 4 2 By a = Y 1 Y 3 mo Y 2 ' Y 3 ' Y 4 ,we see Y 3 E CO an a = Y I Y 3 + P . Y 4 + q . 
Y;Y2Y 4 + r· YIY; mod F~&,U for some p, q, r E &'c, p such that p(O)r(O) =f. O. 
Replacing Y2 by Y2 - q(0)YIY4/2r(0) , we may assume q = 0 as explained 
above. Multilying Y2 and Y4 by units, we attain (6.19.1). 0 

Under the notation and assumptions of (6.19), let L (resp. M) be the 
component (0) (resp. (-1 + 2PU)) in the i- splitting (6.3.1.1). Let E c gr~&' 
be the saturation of L 2 + M2 and let K be the ideal such that F~&, :J K :J F~&, 

such that K/ F~&, = E. Then 
(6.20) Lemma. Under the above notation and assumptions, we have 

(6.20.1) (6.3.4) holds. 
(6.20.2) Spec(&'x/K) = D n D' for two general members D and D' E IKxl. 

In particular, (6.3.2) holds. 
(6.20.3) (6.3.3) holds. 

2 2 I· ®2 ®2 Proof. We have gr c&' ~ S gr e&' outslde of P, whence E = L EB M out-
side of P. Since F~&,U = (Y3' Y; , Y2Y4' Y;) by a == Y~Y3 mod (Y2' Y3' Y4)2 , 
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we see 
2 U 2 

grc&' = &'CIY3 EB&'CIY2Y4 EB&'dY2 

and EU = &'CIY3 EB &'clyi by (6.19.1). Thus gr~&,/E ~ LfbM. We also see 
that Lu2 (pU) c E U by Y; = -Y, (y; + Y:Y3) and that E U / Lu2 (pU) ~ Mu2 (3pU) 
by Y; == -Y:Y3 mod &'cIY;/Y, . This induces an i-exact sequence 

o ~ L®2(pU) ~ E ~ M®2(3pU) ~ 0 

which is i-split by L ®2(pU) ~ M®2(3pU) ~ (pU) and (2.6). We will see K U = 
(Y3' Y;) using E U = &'CIY3 EB &'c1yi. Indeed by (Y3, Y;) c KU , it is enough to 
see that Y2 = Y3 = 0 defines 2CU in XU because &' / K is of length 4 at the 

. . f C S· 2 . d 4 ( )2 genenc pomt 0 . lOce Y4 appears 10 0: an 0:-Y'Y3 E Y2' Y3' Y4 ' we see 
Y; E (Y2' Y3)&'xl . Thus we have KU = (Y3' yi) as claimed. Thus K is locally a 
c.i. ideal outside of P and KU is a c.i. ideal at pU. In particular, gr~K ~ E ~ 
(PU)ffi(PU). Thus C is contractible as in the argument for (6.9), and (6.3.4) 
follows from (6.4). We also see that &' / K has a filtration whose subquotients 
are &'c ~ (0), L ~ (0), M ~ (-1 + 2pu), and LfbM ~ (-1 + 2pU). Then 
as in the argument for (6.9), one can see that HO(&'(Kx )) = HO(&'(Kx)fbK), 
that HO(&'(K x)) generates gr~wfbgr~K ~ (O)ffi(O), and that K = I, + 12 
for defining ideals I, and 12 of general members D and D' of IK xl. Thus 
(6.20.2) is proved. Because of the above filtration, we also see that a general 
section s of &'x vanishing on C is of the form s = AY4 + 'uY'Y3 + ... at P 
with general A, ,U E C. Since its image into gr~&' = (O)ffi( -1 + 2PU) globally 
generates (0), Hx = {s = O} E I&'xl is smooth outside of P. At P we have 

(Hx' P) = (Y" Y2' Y3; a)/Z3(1, 1, 2; 0) :::) C = Y,-axis/Z3 , 

where a = O:(Y, ' Y2' Y3 ' vY'Y3 + ... ) with general vEe. Since 0: = CY; + 0 . 
Y:Y4 + Y:Y3 + dyi + ey,yi + ... for some c, d, e E C· (6.19), it is easy to see 
that (6.7.3) applies. The rest is the same as (6.10), and (6.3.3) follows. 0 , 
(6.21) Example. Let Z :::) C be a germ of a smooth 3-fold along C ~ lP' such 
that NCfZ· ~&'cEB&,(-I). Let P E C and let (z"z2,z3) be coordinates 
of (Z, P) such that (C, P) = z,-axis and z2 (resp. z3) is a generator of &'c 
(resp. &'(-1)) in the splitting of N~/z. Let (X, P) :::) (C, P) be a cD point 
as in (6.5) with 0: == Y:Y3 mod (Y2' Y3, Y4)2. As in (6.11), z, = Y:, z2 = Y4 
and z3 = Y;Y2 patch (X, P) and Z - (Z, P) n {lz,1 ~ e,} for some e, > 0, 
and we have an isolated extremal nbd X:::) C of type cD such that i(P) = 4. 

Thus the proof of (6.3) is completed. 
The following lemma will be needed in the proof of the more general (13.11). 

(6.22) Lemma. Let X:::) C 3 P be an isolated extremal nbd of cD/3 type. Let 
H be a general member of I&'xl through C and let Ho be another member such 
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that d(Ho :J C) is equal to one of the two configurations for d x in (6.2.3.1-
6.2.3.2). Then d(H:J C) = d(Ho :J C) . 
Proof. Let us use the coordinates (6.5) for (X, P). We may also assume that 
(H, P) is defined by Y4 = Y(Y, ' Y2' Y3) in (X, P) such that a(y" Y2' Y3 ' y) 
satisfies (6,9.1) or (6.9.2) (cf. (6.10)). Since (Ho, P) has the same configuration 
as one of (6.7), (Ho, P) is isomorphic to one of (6.7.1-6.7.2) by [Laufer73] 
(cf. (13.8.2) for details). In particular (Ho' P) is also defined in (X, P) by 
an equation Y4 = c5(Y, ' Y2' Y3) for some c5. Then we note 

a u=3(Y' ' Y2' Y3' y) = a u=3(Y' ' Y2' Y3' c5) 
for (J = (1, 1, 2) because a does not have the term Y 4. Since (6.7.1) is 
distinguished from (6.7.2) by the squarefreeness of the (J = 3 part of the 
equation, we see d(H:J C) = d(Ho :J C) . 

7. GENERAL MEMBERS OF I&'xlc; ISOLATED IIA CASE 

We consider the following set-up in this chapter unless otherwise mentioned 
explicitly. 

(7.1) Let f : X :J C ---+ Y 3 Q be an isolated extremal nbd with only one 
non-Gorenstein point P such that X :J C has a I I A point at P. Let H x 
be a general member of I&'xl through C and let Hy = f(Hx). Let d x = 
d(H x :J C) and d y = d(Hy) . 

Our main results in this chapter are the following. 

(7.2) Theorem. Under the notation and assumptions of(7.1), assume that ip(l) 
= 1 and gr~&':::: &' EB &'. Then we have the following: 

(7.2.1) X is smooth outside of IIA point P with .e(P) = 1 and we have an 
.e -isomorphism 

(7.2.1.1) gr~&' :::: (pU)EB(2pU). 

II III fi I II d III (7.2.2) 2C = D . D or genera D E 12Kxl an D E 13Kxl. 
(7.2.3) Hx is normal, and d x and d y consist of smooth rational curves 

intersecting transversely and their configurations are as follows. 

o 0 
4 4 

• - 0- 0 -0 0- 0 -0 
'422322 

d x d y 

(7.2.4) Let X:J C be a the germ of a 3-fold along C:::: p' that need not be 
an extremal nbd. If X :J C has the properties in (7.2.1), then it is an isolated 
extremal nbd of type IIA such that ip(l) = 1 and gr~&':::: &'EB&'. (An example 
is given in (7.6.4).) 
(7.3) Theorem. Under the notation and assumptions of(7.1), assume ip(l) = 1 
and gr~&' i:. &' EB &'. Then we have the following: 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



606 JANOS KOLLAR AND SHIGEFUMI MORI 

(7.3.1) Outside of IIA point P with £ (P) = 1, X has exactly i singular point 
(i = 0 or 1), which is of type III if any. Furthermore we have i-isomorphisms 

(7.3.1.1) 

(7.3.1.2) 

where J is the C-laminalidealofwidth 2 with JIF~&, = (l-i+pU) in (7.3.1.1). 
(7.3.2) 2kC = D·D" for general DE IKxl and D" E 12Kxl, where k is the 

axial multiplicity at P. 
(7.3.3) Hx is normal, and d x and d y consist of smooth rational curves 

intersecting transversely and their configurations are as follows. 

o 
4 

0-. - 0- 0-0 
2 I 4 2 2 

d x 

o 
4 

0- 0-0 
222 

d y 

(7.3.4) Let X ~ C be the germ of a 3-fold along C ~ pI which need not be 
an extremal nbd. If X ~ C has the the properties in (7.3.1), then it is an isolated 
extremal nbd of type IIA such that ip(l) = 1 and gr~&' ~ &' EB &'. (Examples 
are given in (7.9.4).) 

(7.4) Theorem. Under the notation and assumptions of(7.1), assume ip(1) ~ 
2. Then i p ( 1) = 2 and we have the following. 

(7.4.1) X is smooth outside of IIA point P with £(P) = 3 or 4 and we have 
an £ -isomorphism 

(7.4.1.1) 1#fiY {(2PU)ffi(-1+3PU) if£(P) = 3, gr (7 '" 

C - (PU)ffi(-1+3pU) if£(P) =4. 

(7.4.2) 2C = D· D" for general DE IKxl and D" E 12Kxl. 
(7.4.3) Hx is normal, and d x and d y consist of smooth rational curves 

intersecting transversely and their configurations are as follows. 

o 
2 

0- 0- 0-0 
2 2 4 2 

II 

o 
2 

0- 0- 0-0 
2 2 3 2 

• - 0 0 0 
I 2 2 2 

d x d y 

(7.4.4) Let X ~ C be a the germ of a 3-fold along C ~ pI which need not 
be an extremal nbd. If X ~ C has the the properties in (7.4.1), then it is an 
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isolated extremal nbd of type IIA such that i p (1) = 2. (Examples are given in 
(7.12.5).) 

(7.5) Let us express the IlA point as 

(X, P) = (Yp Y2' Y3' Y4; a)jZ4(1, 1, 3,2; 2) ::) C = y l -axisjZ4' 

using an equation a such that a == y1(P)Yi mod (Y2' Y3' Y4)2 with i = 2 (resp. 
3, 4) if i(P) == 1 (resp. 3, 0) mod 4 [MoriSS, (2.16)]. We note that i(P) "¥. 2 
mod 4 because of the lack of a variable with wt == 0 mod 4. 

(7.6) Proof of (7.2). By ip (l) = 1 and deggr~& = 0, we see that X is 
smooth outside of P [MoriSS, (2.3.1), (2.15)]. By ip (l) = 1, we also have 
i(P) = 1 [MoriSS, (2.16)] and hence a == Y IY2 (7.5). Then Y3 and Y4 form an 
i-free i-basis of gr~& ~ & EB &. Hence, after a possible coordinates change, 
we have an i-isomorphism 

(7.6.1) 

where Y3 (resp. Y4) is an i-free i-basis of (pU) (resp. (2 PU)) at P. Thus 
(7.2.1) is proved. Let J be the C-Iaminal ideal such that 1 ::) J ::) 1(2) and 
Jjl(2) = (2PU) in (7.6.1). We write I U = (Y2'Y3'Y4) and JU = (Y2'Y;'Y4) 
at pU. Since Y; must appear in a by the description of IIA points, we may 
assume 

_ 2 U U a = Y3 + Y I Y2 mod 1 J 

by changing Y3 by it'Y3 (it E C*). Thus (Y3 , Y4' Y2) is a (1,2,2)-monomializing 
i-basis of 1 ::) J at P of second kind and JU = (Y2' Y4). We see i-isomor-
phisms grl(&, J) ~ (pU), gr2,0(&, J) ~ (2 PU), and gr2, 1(&, J) 
grl (&, J)®2®(pU) ~ (3pU) [MoriSS, (S.10)]. Hence we have an i-splitting 

(7.6.2) gr2(&, J) ~ (2pU)8"1(3pU), 

where Y4 (resp. Y2) is an i-free i-basis of (2PU) (resp. (3pu)) after a possible 
I "- " change of coordinates. From (7.6.2), one sees H (C, grl(o/&>l , J)) = 0 for all 

i ~ 0 and j :::; 3, whence 

(7.6.3) 

by the contractibility of C. From (7.6.2) follows 

° ®" 2 ®" H(w ljF (w 1,J))=0 forj=2,3. 

Thus the induced homomorphism 

HO(w®i) -> HO(gr2(w®i , J)) = HO(((2 _ j)PU)8"1((3 _ j)pU)) 

is a surjection for j = 2,3. Let D" E 12Kxl and Dill E 13Kxl be gen-
eral members. Then from the above, it is easy to see that the natural map 
ID,,?MDfI, -> gr2(w®i , J) is an i-surjection, where the symbol Iz denotes the 
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defining ideal of a subscheme Z . Hence J = I D" + I Dill since J~ is a c.i. ideal. 
Thus (7.2.2) is proved. By (7.6.3) with j = 0, we have a surjection 

HO(pi(&, J)) _ HO(gri(&, J)) for all i. 

Then a general member H x of I&x I containing C is defined at P by an equa-
tion P in which all of Yt Y3' Y2Y3' and Y; appear. This is because YIY3 (resp. 
Y2Y3' Y;) is a part of a basis (at P) of pt(&, J) (resp. p3(&, J), p4(&, J)) , 
which is generated by global sections. Hence we can apply (7.7.1). We note that 
(.)2 = -1 follows from (C·KH ) = (C·Kx ) < o. Thus (7.2.3) follows. We now 

x 
prove (7.2.4). Let us assume only (7.2.1). By (6.4), we see (Kx·C) = -1/4 < o. 
We only have to prove the contractibility of C by (7.2.1.1), which follows from 
the ampleness of 

4 ~4 I $4 gr c& ::J S gr c& == &( 1) EB &(2). 

Thus (7.2.4) is proved. 0 

(7.6.4) Example. Let Z ::J C be a germ of a smooth 3-fold along C == pi 
such that NCfZ == &c EB &c· Let P E C and let (ZI' z2' z3) be coordinates 
of (Z, P) such that (C, P) = zl-axis. Let (X, P) ::J (C, P) be a IIA point 
as in (7.5) with a == YIY2 mod (Y2' Y3' Y4)2. For suitable el and e2 such 
that 0 < el < e2 « 1, (yt, Y~Y4' YIY3) form coordinates for U = (X, P) n 
{el < Iytl < e2} by the implicit function theorem. Thus ZI = yt, z2 = Y~Y4' 
and z3 = YI Y3 patch (X, P) and Z - (Z , P) n {izil ::; et } along U. This 
X::J C is an isolated extremal nbd of type IIA by (7.2). 

(7.7) Computation. Let (D, P) be a normal surface singularity 

(D, P) = (Y t ' Y2' Y3' Y4 ; a, P)/Z4(1, 1,3,2; 2, O)::J C =yl-axis/Z4 • 

Let a be the Z-wt a(Yt, Y2' Y3' Y4) = (1, 1, 3, 2) (T.7). We have the config-
uration of A(D ::J C) in each of the following cases. 

(7.7.1) a u=2 = YtY2 and the coefficient of Y; in a is nonzero, and the 
coefficients of YI Y3' Y2Y3 and Y; in P are nonzero. Then A(D::J C) consists 
of smooth rational curves and C' intersecting transversely with the following 
configuration. 

o 
2 

• - 0 - 0-0 
4 2 4 

(7.7.2) au=2 = YtY2 and the coefficient of Y; in a is nonzero, the coef-
ficient of YtY3 in P is zero, and the coefficients of Y2Y3' Y~Y4' and Y; in 
P are nonzero. Then A(D ::J C) consists of smooth rational curves and C' 
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intersecting transversely with the following configuration. 

o 
3 

• - 0 - 0 - 0-0 
3 2 2 4 

609 

(7.8) In this paragraph, we will prove (7.3.1). By (7.5) and [Mori88, (2.16)], 
we have i(P) = 1, a == YIY2' and that Y3 and Y4 form an i-free i-basis of 
grb&' at P. We note that X has at most one singular point outside of P, 
which is a type III point (say, R) such that iR(l) = 1 [Mori88, (A.3) and 
(B.l)]. Thus X has exactly i singular point (i = 0, or 1), which is of type III 
if any. We also have deggrb&' = -i under the notation of (7.3.1). 

(7.8.1) We first prove (7.3.1.1) when i = O. By (7.8), we have grb&' ~ 
&'( 1) EEl &'(-1) because HI (grb&') = O. In view of (2.8), it is enough for 
(7.3.1.1) to show that X :) C is not isolated (a contradiction) assuming an 
i-isomorphism 

(7.8.1.1) 

where Y4 and Y3 form i-free i-bases of (1+2P U) and (_I+PU). Let J be the 
ideal such that I :) J :) 1(2) and J /1(2) = (1 + 2pU). Then JU = (y 4' Y2' yi) . 
Since yi must appear in a by the description of I I A points, we may assume 

2 U U a == Y3 + YIY2 mod I J 

by changing Y3 by A.·Y3 (A. E C*). Thus (Y3' Y4' Y2) is a (1,2,2)-monomializing 
i-basis of I :) J at P of the second kind and JU = (Y2' Y4). By [Mori88, 
(8.10)], we see i-isomorphisms grl(&',J) ~ (-1 +pU), gr2,0(&',J) ~ 
(1 + 2PU) , and gr2, I(&" J) ~ grl(&, , J)®2®(pU) ~ (-2 + 3pU) and an i-exact 
sequence 

(7.8.1.2) 

Since we are going to show that our X is not isolated, we may replace X 
with its nearby deformation keeping our hypotheses including (7.8.1.1). To be 
specific, we may assume the most general possibility under (7.8.1.2): 

(7.8.1.3) 

This is because the twisted extension X tO :) Ct of the trivial deformation 
(X, P) x C: :) (C, P) x C: by (yiY4 + ty;IY2' YIY3) gives the general case 
(cf. [Mori88, (lb.8)]) for general t with It I « 1 . 

The idea of our proof is to show that a general member of I&'y I containing 
Q has only a rational double point at Q since it implies a contradiction that 
(Y, Q) is Gorenstein. We will begin by finding an auxiliary normal member 
EEl - K x I containing C as well as the usual transversal DEI - K x I . 
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(7.8.1.4) Let D = {Y I = 0}jZ4 E I-Kxl. We note 

(7.8.1.5) F2(&'x(D) , J)j F2(&,x, J) ~ (gr2(&'x(D) , J))Ib&'D ~ c· (Y2jy l ). 

We claim the surjection 

(7.8.1.6) ° 2 2 2 H (X, F (&'x(D) , J)) - F (&'x(D) , J)jF (&'x' J). 
I 2 . I Indeed, we have the equality H (X, F (&'x' J)) = 0 from Hi (gr (&'x' J)) = 

o (all j) and HI(X, FI(&,x' J)) = HI(X, I) = 0, which follows from the 
exact sequence 0 ---+ I ---+ &'X ---+ &'c ---+ O. Thus (7.8.1.6) follows. 

(7.8.1.7) By (7.8.1.6), a general global section S of F2 (&'x (D) , J) restricts 
to ;"·Y2jYI E F2(&'x(D) , J)j F2(&,X' J) for some;" E C* . This S is of the form 
(Y2 + YI ( ... ))jYI ' and it induces a global section s of gr2(&'(D) , J), which is 
a part of an i-free i-basis at P. By (7.8.1.3), s is a nowhere vanishing section 
of gr2(&'(D) , J) and we have an i-isomorphism 

gr2(&'x ( -D), J) ~ (3pU)4&'cs. 

Let EEl - K x I be the divisor defined by s = O. By the above i-isomorphism, 
we see two i-isomorphisms 

I I U grC(&'E) ~ gr (&', J) ~ (-1 + P), 

gr~(&'E) ~ {gr2(&'(D) , J)j&'cs}Ib&' ( -D) ~ (2pU). 

Since the image of s in grb&' is nonzero, E is smooth at general points of C . 
By the construction of E, E is smooth outside of C, whence E is normal. 
Since JU = (sy l , y4), 2eU is a Cartier divisor of E U defined by Y4 = O. 
Thus &'E(2C) is an i-invertible &'E-module and &'E( -2C)Ib&'c ~ (2pU). By 
HI(&'E) = 0, we see PicE ~ PicC ~ Z. Thus 2D n E + 2C rv 0 on E 
and Y~Y4 = 0 is its equation in (E, P). Since ~(&'x) ~ HO(&'E) ' we have a 
global section SI E HO(&,x) such that SI == (unit) ·Y~Y4 mod (sy l ). Also by the 
surjection HO(&,x) - &'D' we have global sections S2' s3 E HO(&,x) such that 

2 ° I S2 == Y4 ' S3 == Y2Y3 mod (YI)· The natural map H (I) 0 &'c ---+ grc&' factors 
through H°(I) 0 &'c ---+ (1 + 2PU) (7.8.1.1), which is a surjection at P. Thus a 
general member Hx through C of I&'xl is normal and has exactly one point 
of type A outside of P as singularities. Now we study (Hx' P) . If we replace 
Y2 by sYI (we note sYI == Y2 mod (Y I )) , then the equation of Hx satisfies 
(7.7.2), because of the sections SI' S2' and S3. As in (7.6), we can compute 
/1(f(H x)). In our case, it is Al since C is contractible. This is a contradiction 
as mentioned earlier. This completes (7.8.1). 

(7.8.2) We prove (7.3.1.2) when i = O. As in (7.8.1), we may assume that Y3 
and Y4 form i-free i-bases of (I+pU) and (-I+2pU) in (7.3.1.1). We have 
i-isomorphisms grl(&, , J) ~ (-1 +2pU) and gr2,o(&" J) ~ (1 +pU). We note 
that Y; does not appear in a because wty; "¥- wta. Thus by I U = (Y2' Y3' Y4) 
and JU = (Y2' Y3' Y;), we may further assume a == YIY2 mod I U JU after 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 611 

changing coordinates. Hence Y2 E F3(&, J) and we have an i-isomorphism 
gr2,1(&, J) ~ grl(&, J)®2 ~ (-1), which has an i-free i-basis y;. Thus we 
have an i -exact sequence 

(7.8.2.1) 

In view of (2.8), we note that (7.3.1.2) is the most general case under (7.8.2.1). 
It is enough for (7.3.1.2) to derive a contradiction assuming an i-isomorphism 

(7.8.2.2) 

which is the second most general case. This is because the twisted exten-
sion X tO ::J Ct of the trivial deformation (X, P) x C: ::J (C, P) x C: by 
(YIY3 + ty; , y 4) satisfies (7.8.2.2) if (7.8.2.1) is i-split for X::J C (cf. [Mori88, 
(lb.8)]). 

The idea of our proof is to show that (f(Hx) , Q) is a rational double point 
for a general member Hx E I&xl containing C. 

Let D = {Y I = O}/Z4 E 1- Kxl. Because of (7.8.2.1), the i-summand (1) 
in (7.8.2.2) is generated at P by an element U E &x p such that u = y; + 
Y3(YI + ... ) after replacing Y3 by A.. Y3 for some A. E C* . Since HO(&x) ---+ &D 
is a surjection, there is a section SI E HO(&x) such that SI = u mod (YI). Since 
SI (P) = 0, we see SI E H°(l) and SI E HO(J) by HO(gr l (&, J)) = O. Thus 
SI induces a section (unit)·u of gr2(&, J) at P. In particular, Y I Y3 and Y; 
appear in SI. Let S2 E HO(&x) be a section extending Y2Y3 E &D. We see that 
S2 E HO(J) and that Y2Y3 appears in S2. Let S E HO(/) be a general section. 
Then, as we saw above, S E HO(J) and the induced section s of gr2(&, J) is 
a basis of the i-summand (1) of (7.8.2.2) at P. Thus its image in grb& has 
exactly one simple zero outside P. Hence Hx = {s = O} E I&xl has exactly 
one singular point outside of P, which we call R. As for (Hx' P), we can 
apply (7.7.1) by the above. 

We claim that (Hx' R) is an Ak point for some k ~ 2. Since (7.8.2.2) 
is the splitting for (7.8.2.1), we can take coordinates (zl' z2' z3) of (X, R) 
such that (C, R) = zl-axis and such that z3 is a basis for both of (pU) in 
(7.3.1.1) at Rand (1) in (7.8.2.2) at R. At R, we have I = (z2' z3) and 

2 J = (z3' z2). Whence 

(7.8.2.3) 

which proves our claim. Since C is contractible, it is easy to see that (H x' R) 
is an A2 point and Il.(H x) consists of smooth rational curves intersecting trans-
versely with the following configuration. 

o 
2 

o - 0 - 0 - • - 0 -0 
4 2 4 1 2 2 
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This means that A(f(Hx)) is AI' which is a contradiction as mentioned earlier. 
This completes (7.8.2). 

(7.8.3) We will treat the case i = 1 for (7.3.1) until the end of (7.8). Let R 
be the type I I I point, which we express as 

(X, R) = (zl' z2' z3' Z4; 1') :> (C, R) = zl-axis, 

using an equation I' such that I' == zl z2 mod (z2' z3' Z4)2 . 
(7.8.4) In view of (2.8) and (7.8), it is enough for (7.3.1.1) to derive a con-

tradiction assuming an i-isomorphism 

gr~&' ~ (-1 + ptt)$(2Ptt) , 

where Y3 and Y4 (resp. z3 and Z4) form i-free i-bases (resp. free bases) of 
(-1 + ptt) and (2Ptt) at P (resp. R). 

The idea of our proof is to construct a nearby deformation of X :> C that 
does not satisfy (7.3.1.1) in case i = o. Since it was proved in (7.8.1), we will 
have a contradiction as required. 

Let (Xt' R) :> (Ct , R) be the deformation of (X, R) :> (C, R) given by 
the equation I' + tZ4 = o. Let XtO :> Ct be its twisted extension by (z3' Z4). 
We now work on X tO :> Ct for sufficiently small t E C* , which we denote by 
X:> C. We also use the same Yj and zk in the same sense for the new X:> C. 

The main point is that X is now smooth outside of P and we have t· Z 4 + 
Zl Z2 E (Z2' Z3' z4)2. Thus we have z4 == (unit) ·Zl z2 in grb&' at R. Hence 
from grb&':> gr~&' , we get an i-isomorphism 

grb&' ~ (-1 + ptt)$( 1 + 2Ptt). 

This contradicts (7.8.1) as mentioned earlier and (7.3.1.1) is now proved. 
(7.8.5) It remains to prove (7.3.1.2). Without loss of generality, we will 

assume that Y3 and Y4 (resp. z3 and z4) form an i-free i-bases (resp. free 
bases) of (ptt) and (-1 + 2Ptt) at P (resp. R). We note that J now defined 
by (7.3.1.1) in (7.3.1) satisfies grl(&, , J) ~ (-1 + 2Ptt) , gr2,O(&" J) ~ (ptt) , 
and the equality at P: gr2, l(&" J) = grl(&" J)®2, which is proved by the 
same argument as (7.8.2). If z; appears (resp. does not appear) in 1', then we 
have the equality at R: gr2,1(&" J) = grl(&" J)®2(R) (resp. grl(&" J)®2). 
We first finish the proof of (7.3.1.2) assuming that z; appears in 1'. In this 
case, we have an i-isomorphism gr2, I (&', J) ~ (0) and the i-exact sequence 

0---+ (0) ---+ gr2(&" J) ---+ (ptt) ---+ 0 

is i-split, whence (7.3.1.2) follows. 
Now we will derive a contradiction assuming that z; does not appear in 

1', that is, gr2,1(&" J) = grl(&" J)®2 at R. In this case, we have an i-
isomorphism gr2,1(&" J) ~ (-1). Then we have 

(7.8.5.1) gr2(&, , J) ~ (0)$( -1 + ptt) , 
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because otherwise we will have gr2(&, J) :: (ptt )ffi(-I) , which implies a con-
tradiction HI(W/F3(W, J)) =1= O. By changing coordinates, we may further 
assume that z3 is also a basis of (0) in (7.8.5.1). The rest of the argument 
is very similar to (7.8.2). To be specific, we can similarly prove that a general 
section s E H°(I) defines a surface Hx which is smooth outside of {P, R}, 
all of YlY3' Y2Y3 and Y; appear in s at P, and z3 appears in s at R. Like 
(7.8.2.3), we have 

s == (unit)· z3 mod (z2' z3' z4)2. 

Since z; does not appear in y, it is easy to see (Hx' R) is an Ak point for 
some k ~ 2. The rest of the argument is the same as (7.8.2). This completes 
(7.8). 
(7.9) In this paragraph, we will prove the rest of (7.3). To prove (7.3.4), we 
treat formal3-folds X along C satisfying the conditions in (7.3.1) for a while. 
We will still use the notation (7.5) at P. 

(7.9.1) Proposition. Let X :) C be a formal 3-fold along C :: pi that need 
not be an extremal nbd. Assume also that X :) C satisfies the conditions in 
(7.3.1). Then X:) C satisfies the condition in (7.3.2). 

(7.9.1.1) Since J is a C-Iaminal ideal of width 2, we have an inclusion for 
arbitrary n ~ 1 : 

grn(&, J) :) (S[n/21gr2(&, J))0grn- 2[n/21(&, J). 

By (7.3.1.2) and grl(&, J) :: (-1 + 2Ptt) (7.3.1.1), we see that all the i-
summands of grn(&, J) have qldeg ~ qldeg( -1 + 2Ptt) = -1/2 for all n ~ 3. 
Thus, by (6.4), we have i-isomorphisms 

gro(w, J):: (-1 + 3Ptt), 
I tt gr (w, J):: (-1 +P), 

g/(w, J):: (O)ffi(-l + 3Ptt), 

and we see that all the i-summands of grn(w, J) have qldeg ~ -3/4 for 
all n ~ 3. Hence we see that HO(X, w):: HO(X, F2(w, J)) and a surjection 
HO(X, F2(w, J)) _ HO(C, gr2(w, J)) :: C and a vanishing HI(X, w x ) = O. 
Let s be a general global section of Wx and E E IKxl be the member defined 
by s = O. We will study the singularities of E. 

(7.9.1.2) Lemma. The term Y3 appears in the equation of Ett at P and we 
have an isomorphism 

(E, P) = (YI ' Y2' Y4; Y IY2 + y;)/Z4( 1, 1, 2) :) C = y l-axis/Z4 , 
where k is the axial multiplicity of X at P. Furthermore, ~(( E , P) :) (C , P)) 
consists of smooth rational curves and C' intersecting transversely with the fol-
lowing configuration: 

k-2 .--.-... 
• - 0 - 0 - ... - 0 -0 

3 2 2 3 
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Proof. As in (7.8), we see that i-free i-bases of the first and the second factors 
of gr2(&, J) are ofthe forms Y3· (unit) + ... and Y4· (unit) + ... ,respectively. 
Since s generates the first factor of the i-splitting of gr2(OJ, J) in (7.9.1.1), 
the first assertion of (7.9.1.2) follows. Since the equation of E U has wt == 3 
mod 4, no powers of y 4 appear in it. It is easy to compute the configuration 
and we have (7.9.1.2). 0 

(7.9.1.3) Lemma. If X does not have a type III point on C (i.e., i = 0 in 
(7.3.1)), then E has exactly one singular point (say, R) outside of P. Further-
more (E, R) is a type A point. 
Proof. By the natural surjection gr2(&, J) _ gr2,o(&, J) == (1 + p U), we see 
gr2,1(&, J) == (-1) by (7.3.1.2). Hence the image s of s in (1 + pU)0OJ is 
nonzero and generates it at P . Thus s vanishes at exactly one point R outside 
of P, and R is a simple zero. This proves (7.9.1.3). 0 

(7.9.1.4) Lemma. If X has a type III point R on C (i.e., i = 1 in (7.3.1)), 
then E is smooth outside of {P, R}. Furthermore (E, R) is a type A point. 
Proof. We see i-isomorphisms gr2,o(&, J) == (pU) and gr2,1(&, J) == (0) as 
in the proof of (7.9.1.3). Thus the image s of s globally generates 
gr2,o(&, J)0OJ == (0). Hence using the notation of (7.8.3) at R, we see that z3 
or z4 appears in the equation of (E, R) in (X, R). Since (X, R) is defined 
by ZIz2 + ... = 0 in (C4 , 0), we see that (E, R) is a type A point. 0 

(7.9.1.5) Lemma. The point (E, R) is always of type AI' and /l(E J C) con-
sists of smooth rational curves and C' intersecting transversely with the following 
configuration. 

k-2 
.--"-. 

o - • - 0 - 0 - .•• - 0 -0 
2 I 3 2 2 3 

Furthermore, we have K XIE 1- k· C and 2K XIE '" 2k . C among Wei! divisors 
on E. 
Proof. By (KE · C) = (2Kx . C) = -1/2 < 0 (6.4), we have (.2) = -1. 
Putting together the results of the above lemmas, we see that the configuration 
of (7.9.1.5) is the only possibility for C to be contractible to a non-Gorenstein 
point (Y, Q). Hence (E, R) is of type Al . From the configuration, it is easy 
to compute (C2) = -1/4k. Since k·d = (Y2) in (Eu, p U), we see that &E(2k· 
C) is i-invertible at P and qldeg(&E(k·C) , P) = 1 and qldeg(&x(2Kx), P) = 
3. Thus we have (7.9.1.5) by (kC· C) = (Kx · C). 0 

(7.9.1.6) Lemma. If D is a general member of 12Kxl, then D· E = 2k· c. 
Proof. Since &(Kx) is an i-invertible &x-module, we have an i-exact se-
quence 

0-+ &x(Kx) -+ &x(2Kx) -+ &E(2k· C) -+ O. 
Since (C2) < 0, we have HO(&E(2k. C)) = C. By HI(X, &x(Kx)) = 0 above 
(7.9.1.1), we have a surjection HO(X, &x(2Kx)) - HO(E, &E(2k· C)) = C. 
Hence we have (7.9.1.6). 0 

Thus the proof of (7.9.1) is completed. 
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(7.9.2) Lemma. (7.3.4) holds. 
Proof. Let X ~ C be a 3-fold satisfying the conditions in (7.3.1). By (7.9.1), 
C is contractible on the completion of X, whence contractible on X. Hence 
X ~ C is an extremal nbd and (7.3.4) holds. 0 

(7.9.3) Proposition. (7.3.3) holds. 

Let X ~ C be an extremal nbd satisfying the conditions in (7.3.1). We will 
prove (7.3.3) in several steps. 

As in (7.9.1.1), we have HI (grn(& , J)) = 0 for all n. Thus 

HI(Fn(&, J)/Fm(&, J)) = 0 

for all n ~ m and HI(Fn(&, J)) = 0 for all n because C is contractible. 
Hence we have a surjection HO(F2(&, J)) _ ~(gr2(&, J)). Let s be a 
general element of HO(!) = HO(F2(&, J)) and Hx E I&xl be the member 
defined by s = O. We will study the singularities of Hx as in (7.9.1.2)-(7.9.1.5). 

(7.9.3.1) Lemma. The terms YIY3' Y2Y3' and y; appear in s at P and 
l1((Hx' P) ~ (C, P)) consists of smooth rational curves and C' intersecting 
transversely with the following configuration. 

o 
2 

• - 0 - 0-0 
I 4 2 4 

Proof. As in (7.8), the i-free i-basis of the first factor (pU) of gr2(&, J) 
is of the form Y3' (unit) +. ". Hence YlY3 appears in s at P. Let D = 

{YI = O}/Z4 E 1- Kxl· Since HO(&x) - &D' the elements Y2Y3 and Y; of 
&D extend to global sections Sl and S2 of &x. Since Sl (P) = S2(P) = 0, we 
see Sl' S2 E H°(I). Since Y2Y3 and Y; appear in Sl and S2 at P, they also 
appear in s at P. The rest follows from (7.7.1). 0 

Since the rest is the same as (7.9.1.3)-(7.9.1.5), we only list the corresponding 
statements. 
(7.9.3.2) Lemma. If X does not have a type III point on C (i.e., i = 0 in 
(7.3.1)), then Hx has exactly one singular point (say, R) outside of P. Fur-
thermore (Hx' R) is a type A point. 

(7.9.3.3) Lemma. If X has a type III point R on C (i.e., i = 1 in (7.3.1)), 
then H x is smooth outside of {P , R}. Furthermore (H x' R) is a type A point. 

(7.9.3.4) Lemma. The point (Hx' R) is always of type AI and l1(Hx ~ C) 
is as in (7.3.3). 

Thus the proofs of (7.9.3) and hence (7.3) are completed. 
(7.9.4) Example. Let i = 0 or 1. Let Z ~ C be a germ of a smooth 3-fold 
along C ~ pi such that N* C/Z ~ &c(1 - i) E9 &c( -1). Let P and R E C be 
two distinct points and let (ZI' z2' z3) (resp. (u l ' u2' u3)) be coordinates of 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6'6 JANOS KOLLAR AND SHIGEFUMI MORI 

(Z, P) (resp. (Z, R)) such that (C, P) = z,-axis (resp. (C, R) = u,-axis) 
and z2 and z3 (resp. u2 and u3) are generators of the first and the second 
summands of N* C/Z above, respectively. Let 

(X, R) = (x" x 2' x 3' x 4; x,x2 + x~ + x;) :::) C = xl-axis. 
Let (Y, P) :::) (C, P) be a IIA point as in (7.5) with 

2 
a ==Y'Y2 mod (Y2' Y3' Y4) . 

For suitable 8, and 82 such that 0 < 8, < 82 « 1, (y~, Y~Y4' Y'Y3) form 
coordinates for U = (Y, p)n{8, < IY~I < 82} by the implicit function theorem. 
We treat two cases. 

(7.9.4.1) Case i = o. In this case, z, = y~, Z2 = Y'Y3+y~4y;, and z3 = Y~Y4 
patch (Y, P) and Z - (Z , P) n {lz,1 ::; 8,} along U. Then this Y:::) C is an 
isolated extremal nbd of type IIA satisfying (7.3.1.1) and (7.3.1.2) by (7.2). 

(7.9.4.2) Case i = 1. In this case, z, = y~, z2 = Y'Y3' and z3 = Y~Y4 patch 
(Y ,P) and V, which is the complement of two closed neighbourhoods of P 
and R in Z , and u, = x, ' u2 = x3 ' and u3 = x 4 patch (X, R) and V. They 
patch together to an isolated extremal nbd of type IIA satisfying (7.3.1.1) and 
(7.3.1.2) by (7.2). 

(7.10) In this paragraph, we will prove (7.4.1) in several steps. We use the 
notation of (7.5) at P. We note that X has at most one singular point outside 
of P, which is a type III point, say R, such that i R ( 1) = 1 as we mentioned 
in (7.8). Thus we have deggrb& = -1 - i, where i is the number of singular 
points of X outside of P. 

We first prove (7.4.1.1) in the case where i(P) = 3 and deggrb&' = -1. By '...., , , (7.5),wehave grc {7 :::&EB&(-l) by H (grc&) =0 and see that Y2 and Y4 
form an i-free i-basis of grb&' at P. In view of (2.8), it is enough to prove 
the following. 

(7.10.1) Lemma. Let X:::) C be an extremal nbd with a type IIA point P of 
i (P) = 3 and with an i-isomorphism 

gr~& ::: (3P")EB( -1 + 2P") 

such that Y2 and Y4 are i-free i-bases of (3P") and (-1 +2P") under the 
notation of (7.5). Then X is not isolated. 

(7.10.1.1) The proof will be done in several steps. Let J be the ideal such that 
I:::) J:::) 1(2) and J/I(2) = (3P") in the i-isomorphism of (7.10.1). Then J" = 
( 2) S· 2 d . h 3 2 2 (4) Y2' Y3' Y4· Ince Y4 oes not appear In a, we ave a == Y'Y3 + Y'Y4 . Y Y, 
mod I" J" for some yeT) E C{T}. Since we are going to show that X is 
not isolated, we may replace X by its nearby deformation, which satisfies the 
i-isomorphism in (7.10.1). 

(7.10.1.2) Let a be the /Z-wt a(y" Y2' Y3' Y4) = (1, 1,3,2). Then a(a) == 
wta == 2 mod 4 and a(a) = 6 since none of Y'Y2 and Y4 appear in a. 
Therefore a u=6(Y" 0, Y3' Y4) = 0 at best defines a simple elliptic singularity. 
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Lemma. We may assume that the axial multiplicity of (X, P) is 3, y(O) =1= 0, 
and 0a=6(y" 0, Y3' Y4) = 0 defines a simple elliptic singularity of degree 1. 
Furthermore, on the smooth elliptic curve 0a=6 (Y, ' 0, Y 3 ' y 4) = 0 in W(1 , 3, 2) , 
Y'Y3 = 0 defines a divisor 2(1 : 0: 0) + (0: 1 : a,) + (1: 0: a2) of degree 4 for 
some a, ' a2 E c* . 
Proof. By the description of IIA points, we see that yiY3 and yi appear in 
0a=6' Let (Xt' P) ::) (C, P) = Y,-axis /Z4 be the deformation of (X, P) ::) 
(C, P) inside (C4 , 0) defined by 

Then P is a llA point of X t ::) C with i(P) = 3 and axial multiplicity 3. It is 
easy to see that (Ot)a=6(Y" 0, Y3' Y4) = 0 defines a simple elliptic singularity 
of degree I for general t. The twisted extension X tO ::) Ct of (Xt' P) ::) (C , P) 
by (yiY2' Y~Y4) satisfies the i-isomorphism in (7.10.1) since X t and X can 
be identified modulo 1(2) • The last assertion is a simple computation, because 
h 6 d 4 •.. t e terms Y, an Y'Y4 are mlssmg m 0t. 0 

(7.10.1.3) By y(O) =1= 0 (7.10.1.2) and Y'Y3 + Y; . y(y:) == 0 in gr2(&, J), 
we see that gr2" (& , J) ~ gr' (& , J)®20(PU) ~ (-1 + pU) with i-free i-basis 
Y3 at P. Thus we have an i-exact sequence 

Lemma. We may further assume an i-isomorphism 

gr2(& , J) ~ (pU)Ei1( -1 + 3pu). 

Proof. The twisted extension of the trivial deformation (X, P) x C: ::) (C , P) x 
C: by (yiY2+tY'Y3' Y~Y4) satisfies the i-isomorphism in (7.10.1) and the above 
i-exact sequence is not i-split for X t with general t. Hence we have the i-
isomorphism by (2.8). 0 

(7.10.1.4) Lemma. There is an element s E H°(I) such that Y'Y3 appears in 
s at P and Y; does not appear in s at P. 

Proof. Let A = {Y, = 0}/Z4 E 1- Kxl. Then from the i-exact sequence 

we have a surjection H°(I0&(A» - 10&A(A). Then Y2/Y' lifts to a section 
s E HO(10&x(A». Since HO(gr'(&(-Kx )' J» = 0, we have 

s E HO(J0&x(A». 
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Furthermore its image s' in gr2(&,(A) , J) ~ (2pU)El'J(0) is nowhere vanishing 
outside of P since s restricts to Y2/Y l at P. Let B = {s = O} E IAI. 

We claim that B has exactly one singular point, say R, outside of P, and 
that R is an AI-point. Let s" be the image of s in gr~(&,(A» = (1)El'J 
(-1 + 3P"). Then s" generates (1) at P, whence it has exactly one zero 
R of order 1 outside of P. Let zl' z2' z3 be the coordinates of (X, R) such 
that (C, Q) = zl-axis, z2 (resp. z3) is the basis of (3P") (resp. (-1 + 2P"» 
at R in the i-isomorphism of (7.10.1). Then s" = (unit) ,zl z2 at Rand 
s' = (unit) ,zl z2 + r· zi for some r E &'X ,R since J = (z2' zi) at R. Since s' 
does not vanish at R, we see that r is a unit at R. This means that R is an 
AI-point of B as claimed above. 

We claim that (B, P) is a simple elliptic singularity of degree 4. We note 
that the equation of BU in X" is Yls = Y2 + ... E J" or Y2 - c5(Yl ' Y2' Y3) E J" 
such that a(c5) :2: 5 because a(c5) == 1 mod 4 and a(c5) =I- 1, where a is 
as given in (7.10.1.2). Thus B" is defined in YlY3Y4-space by a(Yl' Y3' Y4) = 
a(Yl' c5, Y3' Y4) = 0, and we see that a(c5) = 6 and a u=6 = a u=6(Yl ' 0, Y3' Y4) 
since Y lY2 does not appear in a. Hence (B", p") is a simple elliptic singularity 
of degree 1 by (7.10.1.2) and the claim follows. 

Thus we have 3 curves on the minimal resolution p : B' ~ B; the proper 
transform C' of C , a smooth elliptic curve P' over P, and a smooth rational 
curve R' over R. They form a linear chain and A(B:::) C) is as follows: 

P' - C' -R'. 
412 

Let us consider the divisor (YlY3) on (B, P). Since YlY3 + Y; . y(y~) == 0 
in gr2(&" J), C' has multiplicity 2 in (Y lY3)' By (7.10.1.2), we see that 
P*((YlY3» = R' + T/ + T2' + 2C' for some divisors T/ and T2' such that 
T/, T2', and C' are disjoint from each other and (T/.R') = (T2'·R')-I. Thus 
the divisor F' = R' + Tl' + T2' +2C' +R' descends to a Cartier divisor F on B 
such that (F ·C) = O. Since we have PicB ~ Pic C by Hl(&'B) = HI (&'x) = 0, 
we have F "" O. Thus a global defining equation s of F in B lifts to an 
element s E H°(l). Since s = (unit) 'Y1Y3 near P, we have (7.10.1.4). 0 

(7.10.1.5) Lemma. There are elements Sl' S2 E ~(I) such that Sl == Y; and 
S2 == Y2Y3 mod (Y 1) near p". 

Proof. With A in (7.10.1.4), we only have to lift elements Y;, Y2Y3 E &'A to 
those in HO(&,x) by HO(&,x) - &'A' 0 

(7.10.1.6) Let Hx be a general member of I&'xl through C defined by a 
section s E HO(J). Since Y j Y3 appears in s at P, s generates the first fac-

2 j tor &' of gr (&', J) ~ &' Ef) &'( -1) whence the first factor &' of gr c&' by 
(7.10.1.3). Thus Hx is smooth outside of P. We can now apply (7.11) to 
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compute I1(Hx :::> C), which is as follows. 
o 
2 

0- 0 - 0-0 
2 2 4 2 

• - 0 - 0-0 
I 2 2 2 

619 

This contracts to Ds ' which means that (Y, Q) is Gorenstein. Thus X is not 
isolated. This completes the proof of (7.10.1). 
(7.10.2) Lemma. Let X be an extremal nbd with a type IIA point P with 
i p( 1) = 2 and a type III point R. Then X is not isolated. 
Proof. It is enough to prove that a nearby extremal nbd of X is not isolated. 
Deforming (X, P) by 0: + tyfY3 = 0, we may assume £(P) = 3. Since 
deg gr~&' = -2, we have gr~&' ~ &'(-1) E92 by HI (gr~&') = o. We may 
therefore assume an i-isomorphism 

(7.10.2.1) gr~&' ~ (-1 + 3P~)EB(-1 + 2P~), 
such that Y2 and Y4 are i-free i-bases of (-1 + 3P~) and (-1 + 2P~). We 
will take coordinates for (X, R) 

(X, R) = (ZI' z2' z3' z4; P) :::> (C, R) = zl-axis , 

where P = ZIz3 mod (z2' z3' z4)2 and z2 and z4 are bases of (-1 + 3P~) 
and (-1 +2P~) in (7.10.2.1) at R. 

Let (XI' R) :::> (C, R) be the deformation of (X, R) :::> (C, R) in z-spaGe 
given by fJ + tZ2 = o. Let XI :::> CI be its twisted extension by (z2' z4). In 

I 
grc &'0&'c R=&'C RZ 3 EB &'C RZ4' 

t t' t' t' 

we see &'c z2 = &'c ZI . z3· Thus comparing gr~&' 
t t 

I and g r C &', we get an 
t 

£ -isomorphism 
gr~ &' ~ (3P~)EB( -1 + 2P~). 

t 

By (7.10.1), XI isnotisolated. 0 

We will prove (7.4.2) in the case £(P) = 4. In this case, 0: = Y:Y4 mod 
(Y2' Y3' Y4)2 (7.5) and Y2 and Y3 form an i-free i-basis of gr~&' at P. 
Thus it is enough to prove the following. 
(7.10.3) Lemma. Let X be an extremal nbd with a type IIA point P of £ (P) = 
4 and with an i-isomorphism 
(7.10.3.1) gr~&' ~ (3P~)EB(-1 + pH). 

Then X is not isolated. 
Proof. By (7.10.3.1), X is smooth outside of P. We may assume that Y2 and 
Y3 are i-free i-bases of (3pH) and (-1 + pH). Let (XI' P) :::> (C, P) be a 
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deformation given by 0 + tY;Y3 = o. Then P is a type IIA point of X t with 
i(P) = 3. Let Xt :) Ct be the twisted extension of (Xt' P) :) (C, P) by 
(Y2' Y3)· Comparing gr~&' and gr~ &' , we see gr~ &' ~ (3 p U)ffi( -1 + 2PU) . 

I I 

Thus X is not isolated by (7.10.1). 0 

The following is the last step for the proof of (7.4.1). 
(7.10.4) Lemma. Let X be an extremal nbd with a type IIA point P of i(P) 2: 
5. Then X is not isolated. 
Proof. If i(P) 2: 5, then the deformation (Xt' P) :) (C, P) given by 0 + 
tY~Y2 = 0 has a type IIA point P with i(P) = 5. Hence we may assume 
i(P) = 5. Then we may assume 0 == Y~Y2 mod (Y2' Y3' y4)2 after a change of 
coordinates. Thus Y3 and Y4 form an i-free i-basis of gr~&' at P. There 
are two possibilities for gr~&' . If it is in the special case (2pU)ffi( -1 + p#) with 
i-free i-basis u for (2PU) (resp. v for (-1 + pU)) , then the twisted extension 
of the trivial deformation (X, P) xc: :) (C, P) x C: by (y~u + tYtV, Ytv) 
will be in the general case (PU)ffi( -1 + 2PU) for small enough t =1= o. Therefore 
we may assume the i-isomorphism gr~&' ~ (PU)ffi(-1 + 2PU) such that Y3 
and Y4 are i-free i-bases of (pU) and (-1 + 2pU). Let (Xt' P):) (C, P) be 
the deformation of (X, P) :) (C, P) in C4 given by 0 + tY;Y3 = o. Then 
(Xt' P) :) (C, P) has a type IIA point P with i(P) = 3 and its twisted 
extension X t :) Ct by (YtY3'Y~Y4) satisfies gr~&' ~ (3p#)ffi(-1 +2PU) for 

I 

small enough t =1= O. Then X is not isolated by (7.10.1). 0 

This completes the proof of (7.4.1). 
(7.11) Computation. Let (C, P) be a normal surface singularity 

(D, P) = (y l' Y 2 ' Y 3 ' Y 4 ; 0, P) j Z4 (1 , 1, 3, 2; 2, 0) :) C = Y t-axisjZ4· 
2 Let a be the Z-wt a(yt , Y2' Y3' Y4) = (1, 1, 3, 2). Assume that 0a=2 = Y2 ' 

and let 
2 I 3 I 4 I 

0a=6 = Y3 + a YtY3 + b YtY4 + C YtY3Y4 + ... , 
2 2 3 Pa=4 = Y4 + aYtY3 + bY2Y3 + CYtY4 + dY tY2 + ... , 

where a, b, c, d, a' , b' ,c' E C. Then in each of the following cases, 
A(D :) C) consists of smooth rational curves and C' intersecting transversely 
with configuration as listed. 

(7.11.1) a =1= 0, and the equations i+a'y+b'x+c'xy = 0 and x 2+ay+cx = 
o have 4 distinct roots x = 0 and (say) 0t' O2 ,03 after the elimination of y. 

o 
2 

0- 0 - 0-0 
2 2 4 2 

j I 
• - 0 0 

2 2 
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In the diagram, • - 0 intersects the central]pl (0) at 0, 0 - 0 at 00, and three 
2 4 2 2 

o at ai' a 2 , and a 3 , with respect to a certain coordinate system of the central 
2 
]pI . 

(7.11.2) aa'd:f:. 0, b' = c = 0, and the equation x 2 + ac' x - aa' = 0 has 
two distinct roots (say) a l and a 2 • 

o 
2 

0- 0 - 0-0 
2 2 4 2 

• - 0 - 0-0 
222 

In the diagram, • - 0 - 0 - 0 intersects the central]pl (0) at 0, 0 - 0 at 00, 
222 422 

and the two 0 at 
2 

the central ]pI . 

a l and a 2 , with respect to a certain coordinate system of 

(7.12) In this paragraph, we prove the rest of (7.4). To prove (7.4.4), we 
consider formal 3-folds X along C satisfying the conditions in (7.4.1) for a 
while. We will still use the notation (7.5) at P. 

(7.12.1) Lemma. Let X::) C be aformal3-fold along C ~]pl which need not 
be an extremal nbd. Assume also that X::) C satisfies the conditions in (7.4.1). 
Let J be the ideal such that I ::) J ::) 1(2) and J / 1(2) = (( 5 - f (P) )p") under 
the notation of (7.4. 1. 1). Then we have f-isomorphisms 

gr l (&, J) ~ (-1 + 3P"), 
gr2(&, J) ~ (P")6'7(2P"), 

and we can choose coordinates at P such that (Y2' Y4 , Y3) (resp. (Y2' Y3' Y4)) 
is a (1, 2, 2)-monomializing f-basis of I ::) J of the second kind at P. In 
particular, J" = (Y3' Y4) . 

342 Proof. If f(P) = 3 (resp. 4), we see a == Y I Y3 (resp. Y I Y4) mod (Y2' Y3' Y4) 
and we may assume that Y4 (resp. Y3) and Y2 are f-free f-bases of the 
first and the second f-summands of gr~& given in (7.4.1.1). In particular, 
J" = (y~, Y3' Y4) in either case. Since none of Y; or Y IY2 appears in a, Y~ 
appears in a by the description of I I A points. Thus 

a == Y;Y3 - (unit)· y;(resp. Y;Y4 - (unit)· Y;) mod I" . J". 
Hence we have the assertion on the monomializing f-basis. From the above, 
we have 

(unit)· Y; = Y;Y3(resp. Y;Y4) in gr2(&, J). 
Whence we have an f-isomorphism 

gr2,1(&, J) ~ gr l (&, J)®2f!9(f(P)P") ~ ((f(P) - 2)P"). 
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Thus we have gr2(&, J) ~ (P#)EB(2p#). 0 

(7.12.2) Lemma. Under the notation and assumptions of (7.12.1), we have 
Spec(&/J) = D· D" for general members D E IKxl and D" E 12Kxl. In 
particular, (7.4.2) holds. 

We omit the proof, because it follows from (7.12.1) by the argument in (7.6). 

(7.12.3) Lemma. (7.4.4) holds. 
Proof. Since (7.12.2) applies to the completion X of X along C, we have 
2C = D· D" such that (D· C), (D" . C) < 0 in X. This implies that C is 
formally contractible in X and hence contractible. Thus X ::) C is an isolated 
extremal nbd by (2.6). 0 

(7.12.4) Lemma. (7.4.3) holds. 
Proof. Since the argument is the same as (7.6), we will only sketch the proof. 
Let Hx be a general member of I&xl through C defined by s E H°(l). By 

2 2 2 3 2 (7.12.1), we see that Y\Y3 and Y\Y4 (resp. Y\Y3' Y\Y3Y4 and Y4) form a free 
basis at P of globally generated gr2(&, J) (resp. gr\&, J)) . As in (7.6), we 
get a surjection HO(F i (&, J)) - HO(gr i (&, J)) for each i. Hence Y~, Y\Y3' 
and Y:Y4 appear in s at P with independent coefficients. This first means that 
the image s of s in gr~& is nowhere vanishing outside of P, whence Hx is 
smooth outside of P. It also means that we can apply (7.11.1) to (Hx' P). 
The rest is the same as (7.6). 0 

(7.12.5) Example. Let Z ::) C be a germ of a smooth 3-fold along C ~ ]p\ 

such that N~/z ~&cEB&c(-l). Let P E C andlet (z\, Z2' Z3) be coordinates 
of (Z, P) such that (C, P) = z\-axis and z2 (resp. z3) is a generator of the 
first (resp. second) summand of N~/z. Let (X, P) ::) (C, P) be a IIA point 
as in (7.5) with a == yiY3 (resp. Y~Y4) mod (Y2 ' Y3' Y4)2. For suitable 8\ 

4 3 2 4 3 )) and 82 such that 0 < 8\ < 82 « 1, (Y\, Y\Y2' Y\Y4) (resp. (Y\, Y\Y2 , Y\Y3 
form coordinates for U = (X, P) n {8\ < IY~I < 82} by the implicit function 

4 2 3 4 
theorem. Thus z\ = Y\ ' z2 = Y\Y4 and z3 = Y\Y2 (resp. z\ = Y\ ' z2 = Y\Y3' 
and z3 = yiY2) patch (X, P) and Z - (Z, P) n {lz\1 :::; 8\} along U. This 
X::) C is an isolated extremal nbd with a type IIA P of PCP) = 3 (resp. 4) 
satisfying (7.4.1.1) by (7.2). 

8. GENERAL MEMBERS OF I&xlc ; IC CASE 

We consider the following set up in this chapter unless otherwise mentioned 
explicitly. 

(8.1) Let f: X ::) C ---+ Y 3 Q be an extremal nbd with only one singular point 
P such that X ::) C has an IC point at P. Let H x be a general member of 
I&xl through C and let Hy = f(Hx)· Let ~x = ~(Hx::) C) and ~y = ~(Hy). 
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(8.2) Let 
2 m-2 

(X, P) = (YI ' Y2' Y4)/Zm(2, m - 2, 1) :> C = (locus of (t ,t ,O))/Zm 

with odd index m :2: 5. We have an i-splitting 

gr~& = (4pU)EB(-1 + (m - l)PU) 

by (2.10.2), and hence the unique (4PU) in gr~&. Since Y4 and y~-2 - y~ 

form an i-free i-basis of gr~& at P, (4PU) has an i-free i-basis 
(m-5)j2 m-2 2 

AIYI y4 +,uI(YI -Y2) 

for some Al and ,ul E &c, p. We remark that it is easy to see that whether 
Al (P) #- 0 does not depend on the choice of coordinates. 

Our main result in this chapter is the following. 

(8.3) Theorem. Under the notation and assumptions of (8.2), we have the fol-
lowing: 

(8.3.1) Hx is normal, d x and d y consist of smooth rational curves inter-
secting transversely. 

(8.3.2) d x and d y are as follows. 
(8.3.2.1) Case AI(P) #- o. 

• 0 0 
I (m+3)j2 2 

(m-7)j2 -----0- 0 - 0 - 0 - .•. - 0 - 0 - 0 
2232 232 

(8.3.2.2) Case Al (P) = O. 

o 
(m+3)j2 

o 
2 

d x 

(m-7)j2 -----
o 
2 

• - 0- 0 - 0 - 0 - ... - 0 - 0 - 0 
12232 232 

(m-7)j2 
~ where 0 - 0 - ... - 0 -0 reduces to 0 if m = 5 . 

3 2 2 3 4 

o 
2 

0- 0-0 
422 

o 
2 

0- 0-0 
3 2 2 

(8.3.3) Corollary. There exist no divisorial extremal nbds of type IC 

(8.4) Remark. By (2.10), we can choose coordinates YI ' Y2' Y4 so that there 
is a normal member E E 1- Kxl with the singularities as described in (2.2.2) 
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and that E = {Y4 = O}/Zm in a neighborhood of P. In particular; we have an 
i-splitting 

(8.4.1 ) 
We will prove (8.3) in several steps. 
(8.5) Let I = Ie. Let J be the C-Iaminal ideal such that I:::) J :::) F~& and 

J/F~& = (4P~) in (8.4.1). Since J is locally a nested c.i. on C - {P} and 
(Y4 , u) isa (1,2)-monomializing i-basis of I:::) J at P with u = AIy;m-5)/2y4+ 
III (y~-2 - Y;) as in (8.2), we have an i-exact sequence 

di? 0 ~ (8.5.1) 0 --+ C.7e (-2E) --+ greJ --+ (4P) --+ 0 

and an i-isomorphism &d -2E) ~ (-1 + (m - 2)P~). Thus we have gr~J ~ 

& Ef7 &(-1) as &e-modules. The unique & in gr~J is generated near P by 
2 2 3 (8.5.2) YI u + aY2Y4 mod F (&, J) 

for some a E &e p. We note the following. 

(8.5.3) Lemma. 
3(& )~ (m-2 2 2 (m-2 2) (m-5)/2 2 3 F , J c (y I - Y 2) , Y I - Y 2 Y 4 ' Al Y I Y 4 ' Y 4)· 

Proof. We have F 3(&, J)~ pi c (u2 , UY4 , Y~). By 
m-2 2 (m-5)/2 

UE(Y I -y2 ,A IY I Y4)' 
we have (8.5.3). 0 

(8.6) Lemma. The i-exact sequence (8.5.1) is i-split iff a(P) = O. 
Proof. If a(P) = 0, then a = Y IY2 . a' for some a' E &e p. Then aY2 = 
a' . YIY; = a' . y~-I and the element (8.5.2) is divisible by Y: in &xl pi , 

whence (8.5.1) is i-split. If (8.5.1) is i-split, then the unique & in g~~J 
must be the i-splitting submodule (4P~) and (8.5.2) is divisible by Y:. Now 

2 we have a(P) = 0 by aY2 E YI&el pl. 0 

(8.7) Proposition. If m 2: 7, then a(P) =1= o. 
Proof. Assume that a(P) = 0, that is, (8.5.1) is i-split. Then gr~J contains 
a unique (4P~). Let K be the C-Iaminal ideal such that J :::) K :::) F~J and 
K/F~J = (4P~). By [Mori88, (8.14)], K is locally a nested c.i. on C - {P} 
and (1,3)-monomializable at P, and we have i-isomorphisms 

(8.7.1) gr i(&, K) ~ (-1 + (m - i)P~) (i = 1,2) 
and an i-exact sequence 

(8.7.2) ~ 3 ~ 0--+ (-1 + (m - 3)P ) --+ gr (& , K) --+ (4P ) --+ O. 
By (8.7.1) ®wx ' we see 

gri(wx,K)~(-I+(m-i-l)P~) and HI(g/(wx,K))=O for i = 1,2 
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by m - 2, m - 3 E 2Z+ + (m - 2)Z+. Hence by HI(WX ) = 0 and the standard 
exact sequences 

i+1 i i 0--+ F (wx ' K) --+ F (wx ' K) --+ gr (wx ' K) --+ 0, 

we have H I(F 3(&,K» = O. Hence H I(gr3(&,K» = 0 since C is a 1-
dimensional fiber of proper f. Now by (8.7.2) ®wx ' we have 

0--+ (-2 + (2m - 4)PU) --+ gr3(wx , K) --+ (-1 + (m + 3)PU) --+ O. 

We note (-1+(m+3)PU) ~ &( -1) as &c- modules because 3 ¢ 2Z+ +(m-2)Z+ 
by m ~ 7. We similarly note that (-2 + (2m - 4)PU) ~ &(-2) by m - 4 ¢ 
2Z+ + (m - 2)Z+. Hence H\gr3(wx , K» :j:. 0, which is a contradiction. 0 

(8.8) Proposition. (8.8.1) &E( -C) is an i-invertible &E-module with an i-free 
Db· m-2 2 P d n· h· -r.- aSIS YI - Y2 at an an -r.-lsomorp Ism. 

&C®&E( -C) ~ (4pU). 

(8.8.2) HO(&E( -vC» - HO(&C®&E( -vC» for all v ~ O. 
(8.8.3) There are sections SI and S2 E HO(I) such that 

. ) 2 m-2 2 
SI == (una· YI (Y I - Y2) mod Y4 near P, 
_. m-2 2 (m-l)j2 S2 = (una) . Y2(Y I - Y2) mod Y4 near P. 

(8.8.4) HO(I) - HO(gr~J) = HO(I/F 3(&, J» ~ c. 
Proof. (8.8.1) follows from the construction of E. Hence HI (&C®&E( -vC» = 
o for all v ~ 0 and HI (&E( -vC» = 0 since C is a fiber of proper f. Thus 
we have (8.8.2). (8.8.3) follows from (8.8.2), and (8.8.4) follows from (8.8.3) 

° ° by H (grcJ) ~ c. 0 

(8.9) By (8.7), there are four cases to treat. 
(8.9.1) Case m ~ 7, a(P) :j:. O. 
(8.9.2) Case m = 5, Al (P) :j:. O. 
(8.9.3) Case m = 5, Al (P) = 0, a(P):j:. O. 
(8.9.4) Case m = 5, Al (P) = 0, a(P) = O. 
We first prove (8.3) in the easy cases. 

(8.10) Proofof(8.3). Cases (8.9.1) and (8.9.3). By (8.5.2) and (8.8), a general 
section S E HO(I) satisfies 

S == (unit) . {y:u + aY2Y;} mod F 3(&, J) at P, 
where a(P) :j:. 0 by assumption. Let us take S2 given in (8.8.3). We claim that 
S2 belongs to HO(F 3(&, J». Indeed it is obvious that S2 ¢ Cs + F 3(&, J) 
near P. Hence by H°(I / F 3(&, J» = Cs, we have S2 E HO(F 3(&, J» as 
claimed. By (8.5.3), we see that the coefficient of Y2Y; (resp. Y;) in the Taylor 
expansion of S2 at pU is 0 (resp. nonzero) because m ~ 7 or Al (P) = O. We 
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now analyze the set H = {s = O}. By Bertini's theorem, H is smooth outside 
C. Since &s is the unique & in grb&~&EB&(-l), H is smooth on C-{P}. 
To study (H, P), we will apply (10.7). Indeed if AI(P) = 0, then /11(P) i- 0 
by the construction (8.2). Thus (10.7.1) holds by (8.5.3). The existence of S2 

ensures (10.7.2). Since m ~ 7 or Al (P) = 0, we can now apply (10.7). It only 
remains to check (.2) = -1 in (8.3.2). Since 

1 
(C· K H ) H = (C· K x + Hh = -- < 0, m 

the proper transform • of C in the minimal resolution H' of H satisfies 
(.2)=_1. 0 

(8.11) Proofof(8.3). Case (8.9.2). The argument is the same as (8.10) except 
that we need to check (10.7.3) when we apply (10.7). 

We note /11(P) i- 0 by (8.4.1). For D = {Y I = O}/Zm E 1- 2Kxl ,we have a 
surjection JtJ(&(-Kx )) - &D(-Kx) by HI(WX ) = O. Let ¢ E HO(&(-Kx )) 
be a section sent to 

{u - Al (P)Y4}/dY I "dY2" dY4 E &D( -Kx)· 
Thus the image of ¢ under the homomorphism 

10&x(-Kx) - gr~&x(-Kx) = (l)ffi(O) - (0) 

is nonzero by Al (P) i- O. Hence E' = {¢ = O} E 1-K x 1 is smooth outside {P} 
and we may choose ¢ so that E' is furthermore normal by Bertini's theorem. 
We have an i-splitting 

gr~& = (4P")ffi&d - E'). 

By the construction of E', we see that (E' , P) = {v = O} /Zm where v = 
3 2 I I Ai? I • YI - Y2 + Al • Y4 for some Al E (7c,P such that Al (P) = O. As m (8.8), we 

see that &E' (-C) is an i-invertible &E,-module with an i-free i-basis u at P 
and an i-isomorphism 

We similarly see 

HO(&E'( -vC)) - HO(&C0&E'( -vC)) for all v ~ O. 
2 2 3 2 4 5 b f Ai? - Ai? ( C) P We note that Ylu, Y2U ,Ylu, Y2U ,U are aseso (7CQ9(7E' -vat 

for v = 1, ... , 5, respectively. Thus for arbitrary ai' ... , a5 E C, there exist 
s E HO(I) such that 

2 5 6 
S == alYI U + ... + a5u mod (v, U ). 

Hence by (v, u6 ) c (yi ' y~, y!), there exist s' E H°(l) such that 
I 2 2 35 326 

S == alYIY4 + a2Y2Y4 + a3YIY4 + a5Y4 mod (Y I 'Y2' Y4)· 
By this, it is easy to check (10.7.3). The rest is the same as (8.10). 0 

Now (8.3) follows if we prove the following. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 627 

(S.12) Proposition. The case (S.9.4) does not occur. 
Proof. We assume that we are in case (S.9.4). Since Al (P) = 0, we have 
III (P) i- 0 by (S.2). By a(P) = 0, we have aY2 = A2y~-1 for some A2 E &c p 

as in (S.6). Thus a general section S E HO(I) satisfies, near P, the followin~: 

(S.12.1) S == (unit)· y~(u + A2y~-3y~) mod F3(&, J). 

Let H = {s = O} eX. As in (S.10), H is normal and has the exceptional 
curve C. We will construct a flat deformation n : jf' -t T = (C, 0) of H with 
~ = C x T c jf' such that ~ = H J ~ = C as follows, where Jt; = n-I(t) 
and ~ = C x t (t E C) . 

Construction. Let St be a local section at P: 
3 St = S + t(YIY4 + Y2Y4U) (t: parameter). 

We note St == S mod F3(&, J). Let (Xt' Pt) J (Ct ' Pt) be the trivial defor-
mation of (X, P) J (C, P) with parameter t. Let Jf J ~ be the twisted 
extension of (Xt' Pt) J (Ct ' Pt) by (St' Y;Y 4) with parameter t (cf. [MoriSS, 
( 1 b. S)]). By the construction, there is a section 5 E HO (&2') such that 

512: = { S 
t St 

We now set jf' = {S = O} c Jf . 

outside of a nbd of PI ' 
in a nbd of Pr 

Since C is analytically contractible in H, so is ~ in Jt; for sufficiently 
small t. We will derive a contradiction by showing that ~ is not analytically 
contractible in our Jt;. Since H is a normal surface, so is Jt;. We know that 
the images of sand St (by St == S mod F3(&, J)) in gr~& are nowhere 
vanishing on C - {P}. Thus Pt is the only singular point of Jt; on ~. By 
(S.12.1) and the definition of SI' we can apply (10.S) and d(Jt; J ~) is as 
follows. ' 

o 
3 

o 0 
2 2 

• - 0 - 0- 0 - 0 - 0 -0 
2 2 2 3 3 2 

Since the deformation (Jt;, Pt) is induced by the deformation of the canonical 
cover of (H, P), 5KJr is a Cartier divisor and we see (KJr.~) = -1/5 < 0 
as in (S.10). Thus follows (.2) = -1. Then it is easy to see that d(Jt; J~) 
contracts to 0, which is not contractible. This is a contradiction and thus (S.9.4) 

° is disproved. 0 

(S.13) Remark. Except for the usual vanishing of the cohomologies of the 
extremal nbd X J C, we have used in this chapter that C is contractible 
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in H (8.12) to treat the case (8.9.4). Thus the birationality of the morphism 
f : X -+ Y is used here. 

9. GENERAL MEMBERS OF I&xlc; ISOLATED kAD CASE 

(9.1) Let f: X :J C -+ Y 3 Q be an extremal nbd of type (kAD) with singular 
points P and R of indices m (~3) and 2. Let Hx be a general member of 
I&xl through C and let Hy = f(Hx). Let L\x = L\(Hx:J C) and L\y = L\(Hy). 

Our main result of this section is the following. 

(9.2) Theorem. If X :J C is an isolated extremal nbd, then we have thefollow-
ing: 

(9.2.1) Hx is normal, L\x and L\y consist of smooth rational curves inter-
secting transversely. 

(9.2.2) L\x and L\y are as follows 

o 
(m+3)j2 

(m-7)j2 
~ 

o 
2 

o - • - 0 - 0- 0 - 0 - ... - 0 - 0 - 0 
4 I 2232 232 

o 
2 

0- 0-0 
422 

L\y 
(m-7)j2 ,----.. 

where 0 - 0 - .•. - 0 -0 reduces to 0 if m = 5. To be precise, 0 at the left 
3 2 2 3 4 

end of L\x lies over R and the rest of 0 's in L\x over P. 

We note first the following. 

(9.3) Proposition. If X :J C of type (kAD) is isolated, then it is as described 
in (2.13.10). 
Proof. In view of (2.13.13.3), it is enough to show that X :J C as described 
in (2.13.3.2) is not isolated. Indeed if such an X :J C is isolated, then so 
are arbitrary nearby nbds X tO :J Ct. By (2.13.3), there are nearby nbds of type 
(k3A), which are divisorial by (5.1). This is a contradiction and we are done. 0 

We restate (2.13.10) with a slight modification. 

(9.4) Proposition (Set up). (9.4.1) We have 

(X, P) = (Yl ' Y2' Y3)/Zm(1, (m + 1)/2, -1) :J (C, P) = Yl-axis/Zm , 
(X, R) = (Zl' z2' z3' Z4; y)/Z2(1, 1,1,0; O):J (C, R) = zl-axis/Z2, 

where m is an odd integer ~ 5 and y == zl z3 - z; mod (z4) + z3I. 
(9.4.2) We have an i-splitting 

gr~& = LEi7(-1 + p" + R"), 

where L = ((m - 1)/2P" + R") or ((m - 1)/2P") according as (X, R) is a 
quotient singularity or not. 
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Furthermore the ideal I = Ie contains a C-laminal ideal J of width 2 
h h (2) "" 2" h suc t at JII ~ &, (J ,P) = (Y2' Y3)' (J ,R) = (z3' z4)' and an i-

isomorphism and an i-splitting 

I I J ~ (-1 + p" + R") with i-bases (Y3' z2) at P, R, 

gr~J = (2P")Ef1( -1 + m; 1 p" + R") , 

where (2P") (resp. (-1 + (m - 1)/2P" + Q")) has i-bases 

(m-5)j2 2 
(Y, Y2 + Y3' Z4) (resp. (Y2' Z3)) ifm 2:: 7, 

(Y2' z4) (resp. (.uY~Y2 + y;, z3)) ifm = 5 

at P and R, and .u E &e,p. 

Proof. Let k be the axial multiplicity of R. We treat the case k > 1 first. 
In view of (2.13.10), we may take y == Z,z3 - z; mod (z3' z4)I and need to 
check the last part on i-bases. Since (2P") ~ L = ((m - 1)/2P") in (2.13.10) 
induces an isomorphism of invertible sheaves, (2P") has i-bases (y~m-5)j2Y2 + 

2 aY3' z4 + pz,z3) at P and R for some a E &e p and p E &e R. We note 
that a is a unit if m 2:: 7 since y~m-5)j2Y2 +ay; i~ not divisible b~ y, . At P, 
we can make a coordinate change Y3 t---> (unit) ·Y3 if m 2:: 7 (Y2 t---> Y2 + ( ... )y; 
if m = 5) so that (2P") has the claimed i-basis at P. At R, a coordinate 
change z4 t---> Z4 + ( ... )z,z3 will make Z4 an i-basis of (2P") at R keeping 
y == z,z3-z; mod (z3' z4)I. If m 2:: 7, then the standard choice g/"(&, J) 
of (-I+(m-l)/2P"+R") in the i-splitting of gr~J has the claimed i-bases 
by [Mori88, (8.11.l.ii)]. If m = 5 , then among 00' (-1 + (m - 1) 12P" + R")'s 
in the i-splitting of gr~J we will choose one with an i-basis .uY~Y2 + y; at 
P for some .u E&e,p. A coordinate change z3 t---> z3+(···)z,z4 at R will 
attain the assertion on i -bases keeping the other conditions. 

We now assume k = 1. If we use the expression 

the previous argument provides us with an i-basis z; - az, z3 of (2P") at P 
with unit a E &e,R' because (2P") ~ L = ((m - 1)/2P" + R") induces an 
isomorphism of invertible sheaves. By a coordinate change z, t---> (unit) ·z, at 
R, we may assume a = 1 and will set z4 = z; - Z, z3. The rest is easy. 0 

(9.5) Proposition. There is a member E E 1- Kxl such that: 
(9.5.1) E is a normal surface smooth outside of {P , R} ; 
(9.5.2) &e(-E) (= &e0&(-E)) is equal to (-1 + (m - 1)/2P" + R") 

in (9.4.2); 
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(9.5.3) &'E( -2C) = J I&'( -E) and it is an £-invertible &'E-module with £-
isomorphisms 

MY - MY (. { (iP~) i even, uC0uE -lC)= 
(-1 + i P~ + R~) i odd; 

(9.5.4) HO(&'E( -vC)) - HO(&'Cii9&'E( -vC)) for all v ;:::: 0, 
(9.5.5) We may change coordinates in (9.4) and we can assume (E, P) = 

{Y2 = O}/Zm if m ;:::: 7 and (E, R) = {z3 = O}/Z2 in addition to (9.4). 

Proof· Let D = {Y 1 = O}/Zm E 1-2Kxl. We have a surjection HO(&'(-Kx )) -+ 

&'D(-Kx) by Hl(wx ) = O. Since g/(&'(-Kx), J) ':::' &'d-l) for i = 0 and 
1 by (9.4), we have HO(F 2(&'(-Kx )' J)) = HO(&'(-Kx ))' Thus the above 
surjection factors through 

gr2(&'(-Kx), J) = gr~Jii9&,(-Kx) 

= (-1 + m; 5 p~ + R~)ffi(O). 

Let ¢ E HO(F 2(&'(-Kx ) ' J)) be an element sent to Y2/dYI 1\ dY2 1\ dY3 mod 
Y 1 E &'D(-Kx) ((.uY~Y2 + yi)/dY I 1\ dY21\ dY3 mod Y 1 if m = 5) and E = 
{¢ = O}. Since F3(&,( -K x), J) is generated by global sections outside C, we 
may assume that E is smooth outside C. By construction, (9.5.2) is obvious 
and hence (9.5.1) follows. It is easy to see (2C, P) = {y;m-s)/2Y2 + yi = O} /Zm 
({Y2 = O}/Zs if m = 5) in (E, P) and (2C, R) = {z4 = O}/Z2 in (E, R). 
Thus (9.5.3) follows. (9.5.4) follows from (9.5.3), and (9.5.5) is obvious. 0 

We will construct C-Iaminal ideals J = J2 ~ J3 ~ J4 ~ Js successively. 

(9.6) Proposition. Let J2 = J and J3 be such that J2 ~ J3 ~ F~J2 and 
J3/ F~J2 = (2P~) given in (9.4). Then 

(9.6.1) I ~ J3 has £-bases 

(1 3 2) . I" ( (m-S)/2 2) P if 7 , , -monomra lZlng Y3' Yl Y2 + Y3 ' Y2 at 1 m;:::: , 
(1, 3)-monomializing (Y3' Y2) at P ifm = 5, 
(1,3, 2)-monomializing (z2' Z4' z3) at R; 

(9.6.2) We have £-isomorphisms 

i { (-I + P~ + R~) if i = 1 , 
g r (&' , J3 ) ':::' " 

(_I+m;;lp"+R') ifi=2, 

gr3,0(&" J3) ':::' (2P~), 

3,1 m + 1 ~ 2,1 - 1 gr (&', J3) ':::' (-I + -2-P ) ':::' gr (&', J2)0gr (&', J2); 

(9.6.3) The induced £-exact sequence 

0-+ gr3, 1 (&', J3) -+ gr3(&" J3) -+ gr3,0(&" J3) -+ 0 

is £-split. 
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Indeed (9.6.3.1) follows from the definition of monomializing i-bases, 
(9.6.3.2) from [MoriSS, (S.11.1)], and (9.6.3.3) from (9.6.3.2) via 

H'(gr3,,(&, J3)®gr3,o(&, J3)®(-')) = O. 

The following (9.7) and (9.S) can be seen similarly. 

(9.7) Proposition. Let J4 be such that J3 :J J4 :J P~J3 and J4/P~J3 is the 
unique subsheaf (2P~) of gr\&, J3) given by (9.6.2). Then we have i-isomor-
phism 

gr4 ,o(&, J4 ) ~ (2P~), 

4,' ~ 2 ®2 gr (& , J4) ~ (-1 + (m - l)P ) ~ gr (&, J3) 

and the induced i-exact sequence 

o ~ gr4,,(&, J4) ~ gr4(&, J4) ~ gr4,o(&, J4) ~ 0 

is i-exact. 

(9.S) Proposition. Let Js be such that J4 :J Js :J P~J4 and Js/ P~J4 is the 
unique subsheaf (2P~) of gr4(&, J4) given by (9.7). Then 

(9.S.1) The monomializing i-bases of I :J J3 at P given in (9.6) lift to the 
(1 , 5, 2)- and (1 , 5)-monomializing i-bases of I :J Js at P 

(m-S)/2 2 (m-3)/2 m-3 2 if 
(Y3' y, Y2 + Y3 + 0!3Y' Y3 + 0!4Y' Y2' Y2) I m ~ 7, 

(Y3' Y2) if m = 5 
for some 0!3' 0!4 E &c,p by [MoriSS, (S.15.1) and (S.16)] (modulo a coordinate 
change 

Y2 ....... Y2' (unit) + y,y;( ... ) + y~y;( ... ) 
if m = 5, which keeps the earlier conditions satisfied); 

(9.S.2) We have i-isomorphisms 

gri(&, Js) ~ { (!(-1 + m2, P~ +R~) if i = 2,4, 
(-1 + P~ + R~ + i"2' (-1 + m2, P~ + R~) if i = 1, 3, 

grS,o(&, Js) ~ (2P~), 

s , Ali' ~ gr ' «(7, Js) ~ (-1 + R ) 
by [MoriSS, (S.11.1)]. 

Under these notation and assumptions, we have the following. 

(9.9) Lemma. At P~, we have 

p6(& J)~ C (Y'Y2Y3' Y'Y2 ' Y3' Y2 'Y2Y3) if m ~ 7, { 
2 3 3 2 . 

, S 2 6 . 
= (Y2Y3' Y2' Y3) if m = 5. 

P .• Le (m-S)/2 2 (m-3)/2 m-3 2 . 7 rooJ. t u = Y, Y2 + Y3 + 0!3Y' Y2Y3 + 0!4Y' Y2' assummg m ~ . 
Then u E (Y'Y2' y;). By p6(&, Js)~ = (u2 , uY3' UY2' Y;) [MoriSS, (S.ll)], 
we see the assertion. The case m = 5 follows from [MoriSS, (S.10)]. 0 
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(9.10) Proposition. (9.10.1) There are sections s, and S2 E HO(I) satisfying the 
following relations near P: 

_ { (unit)· y;y; mod Y2 
s, = 2 

(unit) . y,Y2 mod ¢ 

{
(unit) . y; mod Y2 

S2 == (unit) . y~Y3 mod ¢ 

if m 2: 7, 

if m = 5, 
if m 2: 7, 

if m = 5, 

where ¢ is the equation for E at pU given in (9.5) and ¢ == .uY~Y2 + y; 
2 3 

mod (Y2' Y2Y3' Y3)' 
(9.10.2) The coefficient of y;y; (resp. Y;Y2) in the Taylor expansion of s, 

at P is non-zero if m 2: 7 (resp. m = 5), 
(9.10.3) The coefficient of y;y; (resp. Y;Y2) is zero and the one of y; (resp. 

Y~Y3) is non-zero in the Taylor expansion of S2 at P if m 2: 7 (resp. m = 5) , 
(9.10.4) HO(I) -- HO(gr\&, J5 )) = HO(& / F6(&, J5 )) ~ C. 

Proof. We note that y; (resp. Y2) is the £-free £-basis of &c0&£( -2C) at 
P if m 2: 7 (resp. m = 5) by (9.4.2) and (9.5.3). We have a surjection 
HO(&x) -- HO(&£) by H'(wx ) = O. Hence the assertion on s, follows from 
(9.5.4). The assertion on S2 is proved similarly. If m 2: 7, then (9.10.2) and 
(9.10.3) are obvious. If m = 5, then it is easy to see that the coefficients of 
Y;Y2 and Y;Y3 are zero in the Taylor expansion at P of an arbitrary Zm-
invariant element of ¢&x~ p~. Whence (9.10.2) and (9.10.3) follow. By (9.8.2), 
we see HO(gr'(&, J5 )) =' 0 for i E [1,4] and HO(gr 5(&, J5 )) ~ C. Then 
H°(I) --+ HO(& / F6(&, J5 )) is non-zero by (9.10.2), and we are done. 0 

(9.11) Proposition. Let s E HO (I) be a general section. Then 
(9.11.1) H = {s = O} is a normal surface smooth outside {P, R}, and 

(H, R) is a rational singularity 

(H, R) ~ (z" z2' z3; z, z3 + z~)/Z2(1, 1, 1; 0) => (C, R) = z,-axis/Z2 ; 
(9.11.2) i1((H, R) => (C, R)) is • - o. 

4 

Proof. Since gr5(&, J5 ) --+ gr2(&, J2) induces an £-isomorphismoftheirsub-
schemes (2P~), the image s of s in gr~& is nonvanishing outside {P, R} 
and s == (unit) 'Z4 mod F3(&, J2) at R. At R~ , we see F3(&, J2)~ = (z3' Z4)' 
(z2' z3' Z4) by (9.4.2). Thus we have (9.11.1), and (9.11.2) follows from 
(9.11.1). 0 

(9.12) By (9.8.2), the standard £-exact sequence for gr5(&, J5 ) takes the 
form 
(9.12.1) ~ 5 ~ 0--+ (-1 + R) --+ gr (&, J5) --+ (2P) --+ O. 
(9.13) Proposition. If m 2: 7, then (9.12.1) is not £-split. 

(9.13.1) Remark. The isolatedness of the nbd X=> C is not used in the proof 
of(9.13). 
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Proof. Assuming that (9.12.1) is i-split, we will derive H' (w x / F8 (w x' J5)) -=f 

0, which is a contradiction. By (9.S.2) and gr~w ~ (-1 + (m - 1 )/2pU + RU) , 
we see Hi(grj(wx ' J5)) = 0 for all i = 0, 1 and 1 :::; j :::; 4. Similarly we 
see H i(gr5(wx ' J5)) = 0 for i = 0, 1. For gr6(&, J5 ), we have an i-exact 
sequence 

o -t (-1 + m; 3 pU + RU) -t gr6 (& , J5) -t (-1 + 3pU + RU) -t 0 

by [MoriSS, (S.11.1)]. Hence by m 2:: 7, we see H i(gr6(wx , J5 )) = 0 for 
i = 0, 1. Thus 

'8 , 7 H (wx / F (wx' J5)) ~ H (gr (wx' J5)). 

We see an i-isomorphism 

gr5(&, J5 )fi!;gr2(&, J5 ) ~ gr7 (&, J5 ) 

and (9.12.1)fi!;gr2(&, J5) is the standard i-exact sequence for gr7(&, J5) 
[MoriSS, (S.11.1)]. Since (9.12.1) is i-split, we have an i-isomorphism 

g/ (wx' J5 ) ~ (-2 + (m - l)PU + RU)ffi(PU). 

This implies H'(gr7 (wx' J5)) -=f 0 and we have the contradiction as claimed. 0 

(9.14) Proposition. If m = 5, then (9.12.1) is not i-split. 
(9.14.1) Remark. The proof actually shows that X :J C is not isolated if 
m = 5 and (9.12.1) is i-split. The argument is very similar to the proof of 
(S.12). 

Proof. We assume (9.12.1) is i-split and X:J C is isolated. Then gr\&, J5 ) 

contains (2PU) and it has an i-basis Y2' (unit) +a5yiy; at P for some a 5 E 

&c,p' Then a general section s E HO(I) satisfies, near P, the following: 
. 2 5 5 6 

S == (umt)· (Y'Y2 + a 5Y'Y3) mod F (&, J5) 

for some a5 E &x ,P' Let H = {s = O} eX. By (9.11), H is normal and 
has the exceptional curve C. We will construct a flat deformation X t :J Ct of 
X:J C. 

Construction. Let St be a local section at P: 
632 St = S + t(Y'Y3 + Y2Y3 + Y2Y3) (t : parameter). 

We note St == S mod F6(&, J5). Let (Xt' Pt) :J (Ct , Pt) be the trivial defor-
mation of (X, P) :J (C , P) with parameter tEe. Let flP :J Clf be the twisted 
extension of (Xt' Pt) :J (Ct , Pt) by (St' Y'Y3) with parameter t (cf. [MoriSS, 
(1b.S)]). By the construction, there is a section S E HO(&:;r) such that 

S = {S outside of a nbd of Pt ' 

IT, St in a nbd of Pt' 
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We set Jf' = {s = O} c Je. We denote by Xt , Ht , Ct the fibers of Je, Jf', 
~ over t. 

Since H is a normal surface, so is Ht . We know that the images of sand St 
(by St == S mod F6(&, Js)) in grs(&, Js) and gr~& are nowhere vanishing 
on C - {P, R}. At R t (= R), the singularity of H t is as described in (9.11). 
By the definition of St' we can apply (10.9) to study (Ht' Pt) :J (Ct , Pt), where 
our YI ' Y2' Y3 correspond to XI' x3' x2 in (10.9). Then I!!..(Ht :J Ct ) is as 
follows. 

o 0 
2 4 

o - • - 0 - 0- 0 - 0 -0 
4 2 2 3 3 2 

Since 5K}f' is a Cartier divisor, we see (K}f'. Ct ) = -1/10 < 0 by (KH • 

C) = -1 I 10. Thus (.2) = -1 and H t :J Ct contracts to an A I -point. Since 
X :J C is isolated, so is its nearby nbd X tO :J Ct. Hence the contraction 1"; of 
Xt :J Ct is not Gorenstein. Since Ht is normal, the contraction of Ct in Ht is 
a hypersurface section of 1";. This is a contradiction. 0 

We now finish the proof of (9.2). 

(9.15) Since (9.12.1) is not i-split, grs(&, Js) has a unique subsheaf of &c 
which is generated at P by 

YI Y2 + YIY3 + (}:3YI Y3 + (}:4YI Y2 + umt Y2Y3 1 m ~ , { 
(m-l)j2 2 2 (m+l)j2 m-I 2 ( .) 2 ·f 7 

S -
P - 2 (. ) s·f 5 YIY2 + umt Y3 1 m = 

modulo F6(&, Js). Hence by (9.10.4), a general section S E HO(/) satisfies 
s == (unit) ·sp mod F6(&, Js) near P and let s2 E HO(F6(&, Js)) be a section 
such that the coefficient of Y~ (resp. Y~Y3) is nonzero in its Taylor expansion 
when m ~ 7 (resp. m = 5). 

Let H = {s = O}. Then we know the singularity of H outside {P} by 
(9.11). We apply the case" ao =f. 0" of (10.7) to study (H, P) :J (C , P), where 
our YI ' Y2' Y3 correspond to XI' x3' x2 in (10.7). Using S2 and (9.9), we can 
check (10.7.2). If m = 5, we see c = 0 and e =f. 0 in (10.7), hence (10.7.3). 
Thus we have I!!..x as in (9.2.2), where (.2) = -1 follows by (KH • C) < O. 
Thus (9.2) is proved. 

10. SAMPLE COMPUTATIONS 

In this chapter, we recall the notion of weighted projective space and exhibit 
several computations related to group quotients. There is nothing new in this 
chapter. The materials are contained only for convenience of reference. 

(10.1) Proposition-Definition. Let ai' ... , an > 0 be integers with the prop-
erty that g.c.d. (a l , ... , an) = 1. Then we define the weighted projective space 

P(a l , ••• , an) = (Cn - {O} )/C* , 
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where ~ E C' acts on (XI' ... ,xn) by 

~(XI' ... ,xn) = (t1x l , ... ,~anxn)· 

Then 
(10.1.1) We have 

lP'(a l , ••. , an) ~ ProjC[x l ' ... , xn], 
where Xi has weight ai (i = 1, ... , n); 

(l0.1.2) Let Vi=D+(x)={XElP'lxii=O}; then 
ith ith 

Vi = SpecC[y l , ... , 1 , ... ,yn]/Za;(-a l , •.. , 0 , ... , -an), 

h - Ija d j_a j (. -'- .). were Xi = Xi I an Yj = Xj Xi ] r 1 , 

(l0.1.3) The sheaf &'I!'(r) (by (10.1.1)) is locally free if ai I r (Vi); 
(10.1.4) If DE 1&,I!'(s)I for some s > 0, then we have 

n-2 times n-2 
~ s·r (D· &'(r) ... &'(r) ) = , 

a l ·· ·an 

for all r. 
The proof is left to the reader. 

(10.2) Let 
x = (XI' ... , xn)jZm(a l ' ••• , an)' 

635 

where XI' ... ,xn are variables and m, ai' ... , an > 0 are integers with the 
property that g.c.d. (a l , ••. , an) = 1. Let 

1 
e = -(ai' ... , an), m 
ith n 

ei = (0, ... , 0, 1 ,0, ... , 0) E Ql (i E [1, n]). 

By the theory of torus embeddings, X corresponds to the lattice Ze 1+' .. + Zen + 
Ze and the cone C(X) = Ql+e l + .. ·+Ql+en in Qln , where Ql+ = {z E QlI z ~ O}. 
(10.3) Proposition-Definition. Let a be the Z-wt given by a(xi) = ai (cf 
(T.7)). Then the a-blow-up 7[<1: B<1(X) --> X of X is the proper birational 
morphism from a normal variety B <1 (X) corresponding to the cone decomposition 
of C(X) consisting of Ci = L.Ui Ql+ej + Ql+e for i = 1, ... , n (and their 
intersections). Then 

(l0.3.l) The open set Vi of B<1(X) corresponding to Ci is given by 
ith 

U = (Y I ' ... ,Y )jZa (-ai' ... , m, ... , -an)' 
I n i 

h - Ija -m d j---i2; (. -'- .). were Xi = Xi I, Yi = Xi ,an Yj = Xj Xi ] r 1 , 

(10.3.2) The exceptional set ~ = 7[~I(O)red is a Ql-Cartier Weil divisor and 
~ n Vi = {Yi = O} jZa; ~ ~ lP'(a l ' ... ,an) &'6, (r~) ~ &'I!'( -mr) 

for r divisible by I1ai . 
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If H is a subvariety of X, then the proper transform of H by 7Cu is the 
a-blow-up of H. 
Comments on proof. Since «;t = I:f;ij Qej + Qe for any i, the relation 

-ajej = me - L ajej 
f;ij 

implies (10.3.1) modulo a simple computation. The assertion (10.3.2) follows 
from (10.3.1) and (10.1). 0 

(10.4) Let 
X = (x, y)/Zm(1, q), 

for variables x, y and relatively prime integers m and q such that 1 ~ 
2 q < m. Let (uo'vo) = (O,m) and (UI,V I) = (l,q) E Z. The elements 

(u j + l , v j + l ) E Z2 and the integers a j ;::: 2 (i;::: 1) are inductively defined by 

(U i+l , Vi+l ) = aj(u j , v) - (u j _ 1 ' Vi_I) (0 ~ Vi+1 < Vj) 

while i ~ r , where r > 0 is the integer such that v, > 0 and V,+ I = 0 . 

(10.5) Proposition [Hirzebruch53]. (10.5.1) (U,+I' V,+I) = (m, 0). 
(10.5.2) Let 7C : Y -+ X be the minimal resolution. Then 7C has exactly r ex-

ceptional curves CI , ... , C,. After appropriate renumbering, Co' CI , ... , C" 
and C,+I form a linear chain, where Co and C,+I are the proper transforms of 
x-axis /Zm and y-axis /Zm. Furthermore (Ci = -aj for i E [1, r] 

m 1 - =a l -q (10.5.3) 
1 a2 - ---

where a j ;::: 2 for all i. 
(10.5.4) For arbitrary c, d E Z such that c + qd == 0 mod (m), the Cartier 

divisor {xCl = O} is pulled back to 
,+1 

* cd,"""", d {7C (x Y ) = O} = L)cU j + v)Cj • 

j=o 
We list a few computations which are used in Chapters 8 and 9. 

(10.6) Let (H, P) be a normal surface singularity 

(H, P) = (XI' x 2' x 3 ; h)/Zm(2, m - 2, 1; 0), 
2 m-2 (Yo' P) = (the locus of (t , t , 0»/Zm(2, m - 2, 1), 

(YI , P) = x l -axis/Zm (2, m - 2, 1), 
where m is an odd integer;::: 5. Let a be the Z-wt given by a(x l , x 2' x 3 ) = 

2 (2, m - 2,1). We note a(h) ;::: m. We remark that XIX2 ' X2X3 ' and (m + 
1)/2 terms x;m-l)/2- jx;j+l (i = 0, ... , (m -1)/2) are all the monomials with 
a-wt= m. 
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(10.7) Computation. In the Taylor expansion of h, assume that x lX 2 (resp. 
x2x;) appears with coefficient 0 (resp. 1) and let ao' b, c, d, and e E CC be 
h ,n;~. •• (m-lJ/2 m 2 2 (m+IJ/2 d m A h t e coeJpdents oJ Xl X 3' Xl ' Xl X 2 ' X 2 X 3' an X2 . ssume t at 

(10.7.1) ao =/= 0 or bc =/= 0, and 
2 (10.7.2) d -4e=/=0. 

If m = 5 and ao =/= 0, then assume furthermore 
(10.7.3) aOZ lZ 3 + Z; + CZl Z2 + dZ2Z 3 + eZi is a nondegenerate quadratic 

form in (Zl' Z2' Z3) . 
Then (H, P) is a rational singularity and the configuration of the exceptional 

curves in the minimal resolution H' of (H, P) is the following: 
(10.7.3.1) Caseao =/= O. 

o 
(m+3J/2 

o 
2 

I (m-7J/2 I ----.. 0- l:;.- 0 - 0 - •.. - 0 - 0 -0 
2232 232 

(10.7.3.2) Case ao = O. 

where 

l:;. 
2 

(m-7J/2 ----.. 

o 
2 

o - 0- 0 - 0 - 0 - ••. - 0 - 0 -0 
(m+3J/2 2 2 3 2 2 3 2 

(m-7J/2 
~ 

(10.7.3.3) The configuration 0 - 0 _ ..• - 0 -0 reduces to 0 if m = 5; 
3 2 2 3 4 

(10.7.3.4) If Yo c H, then b + c = 0 and the proper transform Yo' in H' 
intersects only with l:;. and (Yo' . l:;.) = 1 ; 

(10.7.3.5) If Yl c H, then b = 0 and the proper transform Yl ' in H' 
intersects only with 0 and (Y/ . D) = 1. 

(10.7.4) Remark. (10.7.4.1) Under the notation of (10.7), we have 
(m-lJ/2 

h _ 2 '" (m-lJ/2-i 1+2i a=m - X 2X 3 + ~ aixl X3 
i=O 

for some ai E CC. The a-blow-up 7Ca : Ba(H) --- H of H is the proper 
transform of H under 

7Ca : Ba(X) --- X, where X = (Xl' X 2' X 3)/Zm(2, m - 2, 1). 

The exceptional set E of B a (H) --- H is a curve C Ll = JlD( 2, m - 2, 1) defined 
by the weighted homogeneous equation ha=m = O. 

(10.7.4.2) Assume that we are in case (10.7.3.1). Then E is a reduced curve 
with exactly two components; one (denoted by E') defined by x3 = 0 cor-
responding to l:;. and the other (denoted by E") corresponding to 0 with 
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(m + 3)/2 in the configuration (10.7.3.1); E' n E" = {(O : 1 : on, and 
SingBu(H) = {(I : 0 : 0), (0 : 1 : On c A, and (1 : 0 : 0) is an ordinary 
double point of Bu(H) corresponding to D. These can be checked by a direct 
computation using (10.1-10.3), and a further computation at (0: 1 : 0) proves 
(10.7.3.1). 

(10.7.4.3) Later in Chapter 13, we will consider a family H t defined by 
h + t(x,x2 - x;') = 0 (denoted by ht = 0) with h in (10.7.3.1) and variable 
coefficient t. For generic t, it is easy to see that (Ht' P) is a rational singularity 
and the configuration of the exceptional curves in the minimal resolution H/ 
of (Ht' P) is 

(10.7.4.4) 
(m-5)j2 

..-"'-. o - 6. - 0 - ... - 0 -0 
2 (m+5)j2 2 2 3 

Although H/ does not fit in a flat family, one can construct a flat family of 
simultaneous blow-ups of H t and see how some curves specialize as t ---- 0 as 
follows. We note a(h) = a(ht ) = m and 

(ht)u=m = hu=m + t(x,x2 - x:). 

Thus the a-blow-up Bu(Ht) ---- Ht exists in a flat family; and for a generic t 
the exceptional set Et c A of Bu(Ht) is an irreducible curve corresponding to 
6. in (10.7.4.4) and it passes through (1 : 0: 0) and (0: 1 : 0), SingBu(Ht) = 
{( 1 : 0 : 0), (0 : 1 : On , and (1 : 0 : 0) is an ordinary double point correspond-
ing to D. These can also be checked similarly to (10.7.4.2). 

In summary, we see that the blow-up Y; = B(,: 0: O)Bu(Ht) of Bu(Ht) at 
(I : 0 : 0) deforms in a flat family; HO' ---- Yo is a morphism contracting exactly 
the exceptional curves marked • in 

6. • 
I (m-7)j2 I 

..-'-.. 0- 6.- • - • - ... - • - • -. 

and H/ ---- Y; with generic t contracts .'s in 

(m-5)j2 
..-"'-. o - 6. - • - ... - • -. 

o (resp. 6.) in Y; specializes to the reduced curve which consists of 0 (resp. 
two 6.) in yo. 

(10.8) Computation. Under the notation of (10.6), assume that m = 5 and 
. 22 35223 that the coeffiCIents of x, x2 ' X2X3 ' x, x3 (resp. x, x3 ' x,, x, x 2 ' x 2 x3) 

are all 0 (resp. all nonzero) in the Taylor expansion of h. Then (H, P) is 
a rational singularity and the configuration of the exceptional curves in the 
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minimal resolution H' of (H, P) is 

o 
3 

o 0 
2 2 

6. - 0- 0 - 0 - 0 -0 
2 2 2 3 3 2 

639 

where if Yo C (H, P) then the proper transform Yo' of Yo in H' intersects 
only with 6. and (Yo' . 6.) = 1. 

(10.9) Computation. Under the notation of (10.6), assume that m = 5 and 
. f 522335 22 3 that the coefficIents 0 X I X2 ' XI ' XI X 2 ' XI X2 ' X 2 (resp. X 2X 3 ' XI X 3 ' X 2 X 3 ' 

XIX;) are all 0 (resp. all nonzero) in the Taylor expansion of h. Then (H, P) 
is a rational singularity and the configuration of the exceptional curves in the 
minimal resolution H' of (H, P) is 

o 0 
2 4 

0- 0- 0 - 0-0 
2 2 3 3 2 

where if YI c (H, P) then the proper transform YI ' of YI in H' intersects 
only with 0 and (YI ' . 0) = 1. 

11. How TO FLIP 

The aim of this chapter is to give a somewhat new proof of the existence of 
flips. This proof will then work to show that flips are continuous in families. 
The result depends on viewing an extremal nbd as a one parameter family 
of surfaces and then understanding the deformation theory of certain surface 
singularities. For quotient singularities the theory was developed in [KSB88]. 
We recall the relevant facts. 

(11.1) Definition. (11.1.1) A quotient singularity is called aT-singularity if it 
is a DuVal singularity or is analytically equivalent to 

dn (xy - Z = O)/Zn(l, -1, a) where (a, n) = 1 . 

In [KSB88, 3.11] it is explained how to recognize these singularities from the 
dual graph of their minimal resolution. 

(11.1.2) Given aT-singularity P E U the deformations of the form 

(xy - zdn + tf(x, y, z, t) = O)/Zn(1 , -1, a, 0) 

fill out a whole component of the deformation space. We call this the qG-
component (for Q-Gorenstein) and denote it by DefqG(p E U). Any qG-
deformation of a T-singularity is again aT-singularity. 
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(11.1.3) If U is a complex space with only T-singularities then by DefqGU 
we mean the closed subset of the deformation space Def U of U consisting 
of deformations that induce a qG-deformation everywhere locally. This makes 
sense since DeflG U is the preimage of the product of the qG-components 
under the natural morphism 

Def U ---t II Def(Pj E U). 
j 

A deformation of U is called a qG-deformation if it can be obtained from 
DefqG U via base change. 

(11.1.4) Let V be a quotient singularity. A P-modification I: U ---t V is 
a proper bimeromorphic morphism I such that U is normal with only T-
singularities and K u/v is I-ample. 

A large part of the theory in [KSB88, Chapter 3] can be generalized to more 
general rational singularities (see [Kolhir91, Chapter 6]), though at the moment 
the scope of this generalization or even the correct definitions are unclear. Since 
we need to have this for a single class of singularities only, we make the necessary 
definitions only in this case. It should be clear that these definitions are adopted 
for temporary convenience only and they should be changed if used for any other 
purpose. 

(11.2) Definition. (11.2.1) A nonquotient rational singularity is called a T-
singularity if the dual graph of its minimal resolution has the form 

2 
o 

o 0 - 0 
232 

o 
2 

These singularities are log-canonical and they are quotients of certain elliptic 
double points 

2 
(x + g(y, z) = 0)/Z2(1 , 1, 1) 

where g is a homogeneous polynomial of degree four without multiple factors .. 
(11.2.2) Given aT-singularity P E U as above the deformations of the form 

2 (x + g(y, z) + tl(x, y, Z, t) = 0)/Z2(1 , 1, 1,0) 

fill out a whole component of the deformation space. We call this the qG-
component (for Q-Gorenstein) and denote it by DefqG(p E U). It has dimen-
sion 5. From the explicit description it is easy to see that any qG-deformation 
of a T-singularity is again aT-singularity. 

(11.2.3) If U is a complex space with only T -singularities then by DefqG U 
we mean the closed subset of the deformation space Def U of U consisting 
of deformations that induce a qG-deformation everywhere locally. This makes 
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sense since DefqGU is the preimage of the product of the qG-components 
under the natural morphism 

Def U -> II Def(Pi E U). 

A deformation of U is called a qG-deformation if it can be obtained from 
DefqG U via base change. 

(11.2.4) Let V be any rational singularity. A P-modification f: U -> V 
is a proper bimeromorphic morphism f such that U is normal with only T-
singularities and K u/v is f-ample. 

(11.3) Comparing certain deformation spaces. We will study the relationship 
between deformation spaces of certain analytic spaces. It is very convenient 
if these deformation spaces exist not only as formal schemes but as germs of 
analytic spaces. The existence is known in the following three cases: 

(11.3.1) U is a compact complex space [Grauert74]; 
(11.3.2) 0 E V is the germ of an isolated singularity [Grauert72]; 
(11.3.3) U is a proper modification of an isolated singularity [Bingener87]. 

More precisely, there is a proper morphism f: U -> V where 0 E V is a germ 
of an isolated singularity and f- I is an isomorphism outside O. 

By Def U resp. Def(O E V) we denote either the germ or a suitable analytic 
representative of the versal deformation space of the corresponding objects. 
This will not lead to any confusion. Let v : r -> Def V and u: ~ -> Def U 
be the versal families. 

(11.4) Proposition. Use the same notation as above. (11.4.1) Let f : U -> 

V be a proper morphism of complex spaces. Assume that f..&u = &v and 
RI f..&u = O. Assume furthermore that either U and V are proper or that 
f: U -> V is as in (11.3.3). Then there are natural morphisms F and!F that 
make the following diagram commutative: 

(11.4.1.1) 

~ ~ r 

DefU F 
------+ DefV 

Here v and u are the projections F[U] = [V] and !FlU = f. 
(11.4.2) Let 0 E V be the germ of an isolated singularity and let f: U -> V 

be a proper morphism such that f- I is an isomorphism outside O. Assume that 
f- I (0) is a curve and that U has only finitely many singularities Pi E U. Then 
the natural morphism 

DefU -> II Def(Pi E U) 

is smooth, in particular, surjective. 
Proof. In the formal category the diagram (11.4.1.1) exists in both cases by 
[WahI76]. 

To see that the diagram (11.4.1.1) exists in the category of analytic spaces 
consider first the case when U and V are proper. Let W c U x V be the graph 
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of f. We want to find the graph of F that is a closed subset '7/'" c Cf/ x cp such 
that the first projection is an isomorphism and '7/'" n ( U x V) = W . A component 
D of the relative Douady space of Cf/ x cP /Def U x Def V parametrizes graphs 
of morphisms and D is an analytic space. The projection morphism [W] E 
D -+ 0 E Def U has a formal section given by the formal contraction morphism. 
Thus by [Artin68, 1.5] it has an analytic section. This gives (11.4.1.1) in the 
category of analytic spaces 

If f: U -+ V is a proper modification of an isolated singularity as in (11.3.3) 
then the contraction morphism f extends to a contraction morphism !T : 
Cf/ /Def U -+ Z /Def U by results of [Markoe-Rossi 71, Siu 71] . (Note that in 
general Z is not a deformation of V .) If luis the ideal sheaf of U c Cf/ then 
we get the exact sequence 

sr:.&'tI -+ sr:.&u -+ R1sr:.IU· 

Since Rl f*&u = 0, the theorem of formal functions gives that R1sr:.IU = o. 
Thus the central fiber of Z /Def U is isomorphic to V and Z /Def U is flat. 
Thus Z is the total space of a deformation of V. Thus we have a (nonunique) 
morphism F : Def U -+ Def V such that DefV x F Cf/ ~ Z. This is what we 
want. 

To see (11.4.2) it is sufficient to note that the obstruction to globalize a 
deformation in I1 Def(Pi E U) lies in R2f. Tu. This is zero since f has 
only one-dimensional fibers. Therefore Def U -+ I1 Def(Pj E U) is smooth of 
relative dimension dim(R1f.Tu). D 

(11.5) Let f: U -+ V be a P-modification of a rational singularity V. Let 
Cf/qG -+ DefqG(U) be the versal qG-deformation of U. By (1104) we obtain a 
diagram 

1 1 
DefqG(U) 

By definition !Tu : Cf/qG -+ cpu is proper and K'tIqG /,yU is Ql-Cartier and 
relatively ample. !Tu is an isomorphism over the smooth locus of cpu /Zu 
since a smooth surface has no modification with relatively ample canonical class. 

(11.6) Proposition. Let P E V be either a quotient singularity or a singularity 
with the following dual resolution graph: 

2 
0 

(11.6.1) 0 0 0 - 0 
2 2 3 2 

0 
2 
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Let 0 E Z be the normalization of a component of Def(P E V) and let Vz : 
rZ --+ Z be the versa I family of deformations over Z. Then there is a unique 
P-modification f: V --+ V such that 

(vz : rZ --+ Z) ~ (r u --+ ZU). 

In particular, we get a proper morphism .'Tu : r;qG --+ rZ such that: 
(11.6.2.1) KlIqG /,yZ is Q-Cartier and relatively ample; 
(11.6.2.2) .'Tu has at most one dimensional fibers; 
(11.6.2.3) .'Tu is an isomorphism above the smooth locus of V z . 

Proof. If P E V is a quotient singularity then this was proved in [KSB88, 
Chapter 3]. Any singularity as in (11.6.1) is a rational quadruple point. This 
case was treated in [Stevens91b]. According to his results, there are two P-
modifications of this singularity. VI is the minimal DuVal resolution and 
V2 is the resolution obtained by contracting all the curves except the one 
marked •. 

2 
0 

• 0 0 - 0 
2 2 3 2 

0 0 
2 

This result easily implies the existence of flips in families: 
(11.7) Theorem. Let fa : Xo ::J Co --+ Yo 3 Qo be an extremal nbd. Let JC" --+ S 
be a flat deformation of Xo over the germ of a normal space 0 E S. Then 

( 11.7.1) fa extends to a contraction morphism F : JC" --+ 1/ ; 
( 11. 7.2) The flip F+ : JC"+ --+ 1/ exists and commutes with any base change 

S' --+ S; 
(11.7.3) If H' is a general hypersurface section of Yo through Qo then JC"+ 

is obtained as the total space of a qG-deformation of a suitable P-modification 
H+ --+ H' over the base space S x Ll . 
Proof. The contraction morphism F exists by (11.4.1). This gives us 1/ , which 
is a flat deformation of Yo over S. By (1. 8) the general surface section H' of 
Yo through Qo is either a quotient singularity or a singularity as in (11.2.6). 
Therefore we can view 1/ as a flat deformation of H' over S x Ll. This gives 
a morphism m : S x Ll --+ Z c Def H' where Z is a component of Def H' . 
Using the notation of (11.6) we get that 

1/~rz xz(SxLl). 
Now we construct the flip as 

(F+ : JC"+ --+ 1/) ~ (.'Tu x m : r;qG x z (S x Ll) --+ S x Ll). 

The fibers of F+ are at most one-dimensional and, in fact, zero-dimensional 
over the smooth locus of 1/ /(S x Ll) . Thus the exceptional set has codimension 
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at least two. Furthermore, K 2'+ /'Y is Q-Cartier and relatively ample since these 
properties are preserved under base change. Therefore 2"+ is the flip of 2" . 
The flip clearly commutes with base change and (11.7.3) directly follows from 
the construction. 0 

(11.8) Guessing the P-modification. Let X :::> C be an extremal nbd. By 
(11.7.3) it is clear that the P-modification H+ is one of the most important 
invariants of X+. Knowing it tells us for instance the number of exceptional 
curves after flip and the indices of the singularities of X+ . 

In [KSB88, 3.14] there is an algorithm to compute all P-modifications of a 
quotient singularity. Unfortunately this algorithm is rather tedious. Recently 
better algorithms were found by [Christophersen91, Stevens91a]. Frequently 
there are several P-modifications as natural candidates. Therefore it is impor-
tant to have some additional information. We will prove for instance (13.5) 
that if X -+ Y is an extremal nbd then the exceptional curve of X+ -+ Y is 
irreducible. This means that we only have to consider those P-modifications 
that have only one exceptional curve C. The computationally messy condition 
that Ku/v be nef reduces in this case to computing the coefficient of C in 
the relative canonical class. K u IV is nef iff this coefficient is negative. The 
computations are especially easy for noncyclic quotient singularities. 

Consider a noncyclic quotient singularity V with the following dual graph 
of the minimal resolution: 

(11.8.1) o - ... - 0 

b~ b: 

b~ b; 
o - ... - 0 

<> 
e 

Let V -+ V be a P-modification with only one exceptional curve C c V 
and let V' -+ V -+ V be the minimal resolution of V. Let C' c V' be the 
proper transform of C. 

If V' is also the minimal resolution of V then C' is one of the curves in 
( 11. 8.1). After removing this curve we have only T -singularities, in particular, 
the remaining graph contains no vertex with degree three. In particular, C' is 
one of the curves adjacent to <> or <> itself. In all four cases it is easy to see if 
the complement has T -singularities. 

If V' is not the minimal resolution of V then C' is a (-1 )-curve on V'. 
Thus V' is obtained from the configuration of (11.8.1) by repeatedly blowing 
up intersection points of certain curves. At the end, after removing C' the 
remaining graph contains no vertex with degree three. Thus at each step we 
have to blow up an intersection point of <> and another curve. This reduces the 
number of possibilities to a handful of cases. 
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(11.8.2) Example. We will need to study the icosahedral quotient singularity 
2 
o 

o - 0 - 0 
324 

Let V be a P-modification with only one exceptional curve. It is easy to check 
that V' cannot be dominated by the minimal resolution. Short computation 
gives that the only P-modification with one exceptional curve is obtained as 
follows: 

2 
o 

2 
o 

0- 0-0 0-0- 0-0 
324 4134 

Here 0 becomes the curve C'. Thus the flip has one index two point and one 
index three point. 
(11.9) Flips and local Picard groups. Sometimes additional restrictions can be 
obtained by computing the rank of the local Picard group of Y in two ways. 
The computations rest on the following simple result: 
(11.9.1) Claim. Let 0 E V be an isolated analytic threefold singularity and let 
f: V ---. V be a bimeromorphic morphism. Assume that f is an isomorphism 
outside 0, V has only finitely many singular points Pj E V, and f- 1 (0) is 
one-dimensional. 

If the rank of the local Picard group of 0 E V is finite then 

rank(Pic(O E V)) = L rank(Pic(Pj E V)) 

+ #(irreducible components of f- 1(0)). 0 

In order to apply this we need some information about the local Picard groups 
of terminal singularities. One easy result is the following: 
(11.9.2) Lemma. Assume that 

Y = (xy + f(zm, t) = O)/Zm(a, -a, b, 0) (ab, m) = 1. 

defines an isolated singularity. If zm appears with nonzero coefficient in f(zm , t) 
then Y is IQ-factorial. 
Proof. This follows directly from [Kolhir91, 2.2.7]. 0 

The following examples will be needed later. 
(11.9.3) Examples. (11.9.3.1) Let f: X:J C ---. Y:1 Q be an extremal nbd. 
Let H' c Y be a hypersurface section through Q and let H = f* H' . Assume 
that the configuration of compact curves on the minimal resolution of H IS 

• - 0 - 0 
1 5 2 

where • is the proper transform of C . This contracts to the quadruple point 
o 0 
4 2 
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Claim. The flip of the above extremal nbd has an index two point. 
Proof. We view the nbd as a one-parameter family Ht : t E ~ where Ho = H. 
We can apply any base change t = t,m . This way we get a nbd Xm ---> Ym with a 
single singular point on Xm having equation Y1Y3 - Y~ + y 4h(y1 , Y2' Y3' Y4 ) = 
OjZ3(1, 1,2,0). By (11.9.2) this is always Q-factorial. Therefore the rank of 
the local Picard group of Y m is one. 

The flip is given as a family H t+ : t E ~ where H; is a P-modification of 
H' . It is easy to see that there are only two P-modifications. Assume that H; 
is the minimal DuVal resolution of H' . Then, after a base change, this family 
can be blown up to a deformation of the minimal resolution. Thus the rank 
of the local Picard group of Ym is two for suitable m since we can have two 
exceptional curves. This is a contradiction. Thus the flip has to be given by the 
only other P-modification. This contracts the (-4)-curve, hence gives rise to 
an index two point. 0 

(11.9.3.2) Let f : X J C ---> Y 3 Q be an extremal nbd with a possibly 
reducible central curve. Let H' c Y be a hypersurface section through Q 
and let H = j* H'. Assume that the configuration of compact curves on the 
minimal resolution of H is one of the following: 

o 
2 • 1 

o 
6 

o 
2 

o or 
2 

1 • 

.- 0-0-0 
1 6 2 2 

where. are the proper transforms of the f-exceptional curves. Both contract 
to 

o - 0 - 0 
422 

Claim. The flip of the above extremal nbd has an index two point. 
Proof. Again we have only two P-modifications. We exclude the minimal Du-
Val resolution as before because after a base change this would give three ex-
ceptional curves. 0 

(11.9.3.3) Let f: X J C ---> Y 3 Q be an extremal nbd with a reducible cen-
tral curve. Let H' c Y be a hypersurface section through Q and let H = f* H' . 
Assume that the configuration of compact curves on the minimal resolution of 
H is 

I • 

0- 0 

2 ¥ 

I • 

0- ... -0-0 
2 2 3 ----(m-5J/2-times 

where • denotes the proper transforms of the f-exceptional curves. Repeatedly 
contracting (-1 )-curves we obtain 

o 
2 

o 
4 

o 
2 
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Claim. The flip of the above extremal nbd has an index two point. 

Proof. Again we have only two P-modifications. The singular point on H has 
equation 

(xy - zm = 0)/Zm(2, m - 2,1). 
Thus (11.9.2) again applies and we exclude the minimal DuVal resolution as 
before because after a base change this would give three exceptional curves. 0 

Finally for later reference we consider flops in families. 

(11.10) Theorem. Let fo : Xo ---+ Yo be a proper morphism between normal 
threefolds. Assume that Xo has only terminal singularities. Assume that fo 
contracts a curve Co C Xo to a point Qo E Yo and that K x has zero intersection 

o 
with any component of Co. Let Xs ---+ S be a flat deformation of Xo over the 
germ of a complex space 0 E S. Then 

(11.10.1) fo extends to a contraction morphism Fs : Xs ---+ Ys ; 
( 11.1 0.2) The flop F; : X; ---+ Ys exists and commutes with any base change 

S' ---+ s. 
Proof. By [Kollar91, 2.2] the flop of Xo is independent of the choice of an 
fo-ample divisor. 

Let U be a miniversal deformation space of Xo and let Xu ---+ U be the 
corresponding deformation. By (11.4.2) U is smooth. By (11.4.1) there is a 
contraction morphism Fu : Xu ---+ Yu which induces fo on Xo. Therefore 
Yu ---+ U is a flat deformation of Yo. By the classification of terminal singular-
ities we can represent Yu in the form of a hypersurface quotient 

2 (x + f(y, z, t, u1 ' ••• , Uk) = O)/Zn 
or 

(xy + f(z, t, u1 ' •.• , Uk) = O)/Zn' 
where the coordinates are eigenfunctions of the group action and the u j are 
coordinates on U. The construction of the flop given in [Kollar91, 2.2] is 
unchanged if we replace the single coordinate t used there with a collection of 
coordinates (t, u1 ' ••• , Uk). In particular, the flop F; : X; ---+ Yu exists. 

There is a morphism g : S ---+ U such that Xs/S ~ g* Xu/S. Let Ys = 
g * Yu ' X; = g * X; and let F; : X; ---+ Ys be the natural morphism. On every 
fiber, X; is the flop of Xs. Since the flop is unique, X; is the flop of Xs. 0 

(11.11) Corollary. Use the same notation as in (11.10). Let Sgen be a generic 
point of S and let Xgen be the fiber of Xs over Sgen. Let {Cb} be the irreducible 
components of Co· Then for every i, there is a curve C~en C Xgen such that C~en 
specializes to a multiple of Cb . 
Proof. By replacing Xs with an analytic neighborhood of C~ we may assume 
that Co = Cb· Thus we only need to prove that Xgen ---+ Ygen is not finite. 
Assume the contrary. Let T = Specq[t]]. After a sufficiently general base 
change, T ---+ S we get fT : X T ---+ Y T' which is an isomorphism outside Qo· 
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Let DT C X be a general hyperplane section through a general point of C~. 
Therefore IT(DT) is Cartier outside Qo but not Q-Cartier at Qo' YT is 
a quotient of a four-dimensional hypersurface singularity, hence parafactorial 
[Grothendieck68, XI.3.13]. This is a contradiction. 0 

12. ApPLICATIONS 

( 12.1 ) Factoriality and deformations. In this section we consider the behavior 
of factoriality and Q-factoriality under flat deformations. 

(12.1.1) Lemma. Let y E Y be the germ 01 an analytic space. Let I: X ---t Y 
be a proper morphism such that J:&x = &y . Assume that X is smooth and that 
I-I(y) = UDj is a divisor with normal crossings only. Then 

(12.1.1.1) R1J:&x = 0 implies that Hl(UDj' Z) = O. 
(12.1.1.2) R1J:&x = R 2J:&x = 0 implies that Pic(X) ---t H2(UDj' Z) is an 

isomorphism and H2(UD j , Q) is generated by algebraic cycles. 
Proof. Consider the exponential sequence on X and apply J:. We obtain the 
exact sequence 

o ~ J:Zx ~ J:&x ~ J:&; ~ 

~ R1J:Zx ~ R1J:&x ~ R1J:&; ~ 

~ R2/*Zx ~ R 2J:&x ~ R 2J:&; 

Since Y is a germ, exp is surjective, thus Rl J:&x 0 implies that 
Hl(UDj' Z) = R1J:Zx = O. 

If Rl J:&x = R2 J:&x = 0, then 

Pic(X) = Rl J:&; -+ R2 J:Zx = H2(UDj' Z) 

is an isomorphism. Algebraic cycles generate a subvectorspace V c H2 (U D j' Q) , 
which is dual to Pic(UDJ/Pic'(UDJ. Thus V = H2(UD j , Q). 0 

(12.1.2) Definition. (12.1.2.1) Let I: X ---t Y be a continuous map of topo-
logical spaces. Let H;C X / Y , C) c H j (X ,C) be the subspace generated by the 
images of Hj(Xy' C) ---t Hj(X, C) where Xy runs through all the fibers of I. 

(12.1.2.2) Let I: X ---t Y be a morphism of algebraic spaces. Let Nj(X/Y, C) 
c Nj(X , C) be the subspace generated by the images of Nj(Xy' C) ---t Nj(X, C) 
where Xy runs through all the fibers of I. 
(12.1.3) Theorem. Let I : X ---t Y be a proper morphism between algebraic 
varieties or complex spaces having rational singularities only. Assume that either 
I is bimeromorphic or I is projective and Rl J:&x = O. Then 

(12.1.3.1 ) 
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is exact. If, in addition, R2 1: & x = 0 then H2 (X / Y , C) is generated by algebraic 
cycles. 
Proof. By taking a resolution of X we see that it is sufficient to prove the 
surjectivityof 1: if X is smooth and f is locally projective. Using this obser-
vation, exactness in the middle is also reduced to the case when X is smooth. 
Moreover, it is sufficient to prove the results after some further birational mod-
ifications on X. 

Next we claim that RI 1: C x = o. This statement is local on Y. Given y E Y 
we may assume that f-I(y) = UDj is a divisor with normal crossings only. If 
U is a small contractible neighborhood of y then f- I (U) retracts to f- I (y) 
thus HI(U, C) = 0 by (12.1.1). Therefore RI1:C = o. 

Using this the Leray spectral sequence for f gives the exact sequence 

(12.1.3.2) 2 2 ° 2 0-+ H (Y, C) -+ H (X, C) -+ H (Y, R 1:C). 

By duality this shows that 1: is surjective. Comparing these two sequences 
we see that (12.1.3.1) is exact at H 2(X, C) if the following statement holds: 

Given any S E H2(X, C) such that its image in HO(y, R21:c) 
(*) is nonzero, there is a 2-cycle C in a fiber such that the inter-

section product c· S is nonzero. 

To see that (*) holds note that S corresponds to a nonzero section of R21: C . 
Let y be a general point of its support. We may assume that X is smooth and 
that f-I(y) = UDj is a divisor with normal crossings only. S restricts to a 
nonzero element of H2(UDj' C). Therefore there is a 2-cycle C c UDj such 
that C· S is nonzero. This proves the exactness of (12.1.3.1). The additional 
claim about algebraic cycles follows directly from (12.1.1.2). 0 

(12.1.4) Proposition. Let f: X -+ Y be a projective surjective morphism be-
tween algebraic varieties or complex spaces. Assume that X has rational singu-
larities only. Assume that 1:&x = &y and RI f.&x = O. Let L be a line bundle 
on X such that if C c X is an irreducible curve which is mapped to a point by 
f then L· C = O. 

Then any compact subset of Y has an open neighborhood U such that 

Lklf-I(U) ~ J 1:(Lk)lf- I(U) 

holds for some k > 0 . 
Proof. The claim is local on Y so we need to prove it only for a small con-
tractible neighborhood U of some u E Y such that HI (U , &u) = O. We 
are also allowed to perform some birational modifications on X, so we may 
assume that X is smooth and that f- I (u) C X is a divisor with normal cross-
ings. Let V = f-I(U). Since HI(V, &v) = HI(U, &u) = 0, we see that 
PicV injects into H 2(V,IE). V retracts to f-I(u), thus PicV injects into 
H 2(f-1 (u), IE). By the assumption, Llf- I (u) is numerically trivial hence tor-
sion. Thus L E Pic V is torsion. 0 
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(12.1.5) Corollary. (12.1.5.1) Let f : X - Y be a projective morphism be-
tween proper algebraic spaces having rational singularities only. Assume that f 
has connected fibers and RI f.&x = o. Then 

0- NI(X/Y) - NI(X) - NI(y) - 0 
is exact. 

(12.1.5.2) Let Y be a proper algebraic space with rational singularities only. 
Then numerical and homological equivalences coincide for I-cycles. 
Proof. In the first part the only question is exactness in the middle. Assume 
that Z E NI (X) - NI (X/Y). Then there is an L E PicX such that L· Z =1= 0 
but L.NI(X/Y) =0. By(12.1.4)thereisa k>O such that f.(L k ) is aline 
bundle on Y. It also satisfies f(z)· f. (L k) =1= 0, which proves exactness. 

As for the second part, choose a resolution of singularities f: X - Y. We 
need to show that if Z is a I-cycle on Y that is numerically equivalent to 
zero then it is also homologically equivalent to zero. Let Z' be a I-cycle on 
X such that f(Z') = Z. By (12.1.5.1) there is a cycle Z" in X such that 
every irreducible component of Z" is contained in a fiber of f and Z' is 
numerically equivalent to Z" . On X numerical and homological equivalences 
coincide, hence Z" and Z' are homologically equivalent. Thus 0 = f(Z") 
and Z are homologically equivalent. 0 

Note that we used only RI f.&x = 0, which is weaker than rationality of the 
singularities. 

(12.1.6) Proposition. Let Y be an algebraic variety with rational singularities. 
Let f: X - Y be a resolution of singularities and let X c X be a smooth 
compactijication. Let Ei C X be the f-exceptional divisors. Then Y is ij-
factorial iff 

im[H2(X, ij) ~ HO(y, R2 f.ijx)] = im [2: ij[Ei] ~ HO(y, R2 f.ijx)] . 

2- 2 ° 2 -Proof· PI is the composite H (X, ij) - H (X, ij) - H (Y, R f.ijx)· [Ei] 
is a class in H2(X, ij) , thus P2 factors through PI . 

First we prove sufficiency. Let DeY be a Weil divisor and D c X be 
the closure of its proper transform. By assumption there are ai E ij such that 
PI ([D] - Eai[Ei]) = O. By (12.1.4) m(D I X - EaiE) is the pull back of a 
Cartier divisor D' ....., mD . 

, 2-To see necessity let H c H (X, ij) be the smallest sub Hodge structure 
(defined over ij) such that H' ® C contains HO,2(X, q + H 2,0(X, q. Let 
H" C H2(X, ij) be the orthogonal complement of H' (consistingoftype (1,1) 
elements only). By (12.1.1) H' c kerPI. 

Let z E H2(X, ij). By the above, there is a ij-divisor D" on X such that 
[D"] E H" and PI (z) = PI ([D"]). By assumption f.(D" I X) is ij-Cartier, thus 
f*(f.(D"IX))=D"IX-EaiEi for some aiEij. Therefore 

PI (z) = PI ([D"]) = PI (f*(f.(D" I X))) + 2: aiP2([Ei]) = 2: aiP2([E;1). 0 
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(12.1.7) Proposition. Let g : Y --+ S be a connected flat family of algebraic 
varieties or complex spaces. In the analytic case choose aWe Y such that 
g : W --+ S is proper; in the algebraic case set W = Y. Assume that all the 
fibers have rational singularities only. Assume that the set of fibers that are IQ-
factorial in a neighborhood of W is dense in the Zariski or Euclidean topology. 
Then there is a dense Zariski (or Euclidean) open set U C S such that every 
fiber above U is IQ-factorial in a neighborhood of W . 
Proof. We take a resolution of singularities f: X --+ Y. By (12.1.6) the IQ-
factoriality of a space with rational singularities depends only on the topology 
of a given resolution. This is unchanged over an open subset U of S. Thus 
we have IQ-factorial fibers over U since by assumption the IQ-factorial fibers 
form a dense subset of S. 0 

(12.1.8) Lemma. Let X be a scheme, X:::) Z a closed subscheme, Xo = (t = 
0) a Cartier divisor, F a sheaf on U = X - Z, and i : U --+ X the injection. 
Assume that 

(12.1.8.1) codim (Z nxo, Xo) ~ 3; 
(12.1.8.2) F is S3; and 
(12.1.8.3) i.(FIUnXo) is S3 asasheafon Xo' 
Then (i.F)IXo = i.(FIU n Xo)' 

Proof. Let Fo = FlU n Xo' We have an exact sequence 
t o --+ F --+ F --+ Fo --+ O. 

Applying i. we get the sequence 

O . Ft. F . F RI . F t R 1 • F RI . F 
--+ I. --+ I. --+ I. 0 --+ I. --+ I. --+ I. o' 

Here RI i.Fo = H~nxo (i.Fo) = 0 by [Grothendieck68, III 3.3] and RI iJ' 
is coherent by [Grothendieck68, VII 3.1]. Therefore by the Nakayama lemma 
R\F=O. 0 

(12.1.9) Corollary. Let X be an algebraic variety and let Xo be a Cartier 
divisor. Assume that Xo is S3 (e.g., Cohen-Maculay and of dimension of least 
3), codim(SingXo, Xo) ~ 3, and Xo is factorial (resp. IQ-factorial). Then X 
is factorial (resp. IQ-factorial) in a neighborhood of Xo' 
Proof. The problem is local on X, so we may assume that X is an affine 
neighborhood of a point x E Xo . 

If G is a Weil divisor in a neighborhood of x choose m > 0 so that m(GIXo) 
is Cartier. We can apply the above lemma with 

Z = {the locus where mG is not Cartier} and F = &'(mG) 
to get that F 0 &'X is locally free. Thus F is locally free near x and mG 

o 
is Cartier in a neighborhood x E UG eX. Unfortunately UG may depend 
on G. By (12.1.6.1) Weil(X)/Pic(X) is finitely generated, thus we may take 
U = n UG where Gi runs through a generating set of Weil(X)/Pic(X). 0 

I 

(12.1.10) Theorem. Let g : Y --+ S be a connected proper and flat family of 
algebraic varieties. Assume that all the fibers have rational singularities only and 
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that in each fiber the singular set has codimension at least 3. Then the set 
-I SQfact = {s E S : g (s) is Q -factorial} 

is open. 

This is a special case of the following more general result: 

( 12.1.11 ) Theorem. Let g : Y -+ S be a flat family of algebraic varieties. 
Assume that all the fibers have rational singularities only and that in each fiber 
the singular set has codimension at least 3. Then the set 

YQfact = {y E Ylg -1(g(W)) is Q-factorial in a neighborhood of w} 

is open. 
Proof. We may assume that S is irreducible and reduced. Let n : S' -+ S be 
a resolution of singularities and let y' = S' x s Y . Then 

Y~fact = S' Xs (YQfact)' 

thus it is sufficient to prove openness of Y~ fact. Thus we may assume to start 
with, that S is smooth. 

Let W be the complement of YQfact . Assume that y E Y - W is in the 
closure of W. By induction on dim S we may assume that g (W n V) is dense 
in S for every open y EVe Y. 

We claim that Y is Q-factorial in a neighborhood of y. We prove this 
by induction on dimS. If dimS = 1 then this is (12.1.9). In general let 
T c S be a smooth hypersurface containing g(y). By induction g-I(T) is 
Q-factorial. Applying again (12.1.9) to the pair g-I(T) C Y we conclude that 
Y is Q-factorial in a neighborhood y E Vo C Y . 

There is a countable union of proper closed subvarieties U Sj c S such that 
if s fj. U Sj and Ds C ~ is any Wei! divisor then there is a Weil divisor DeY 
such that DI~ = Ds. By the previous remarks D is Q-Cartier on Vo' thus 
Ds is also Q-Cartier on Ys n Vo. By (12.1.7) there is an open subset So C S 
such that for every s E So the fiber Ys n Vo is Q-factorial. This contradicts 
our assumption that g( W n Vo) is dense in S. 0 

(12.1.12) Remark. (12.1.10) is probably also true in the analytic case, how-
ever, (12.1.11) is false. The reason is that local divisors globalise in the algebraic 
case but not in the analytic case. 

(12.1.13) Examples. (12.1.13.1) Consider X st = (x2 + l + Z2 + tu2 + s = 0) 
as a family of threefolds depending on t and s. X st is Q-factorial iff s i= 0 
or s = t = O. 

(12.1.13.2) Consider x 2 + l + z2 + u3 + tu2 = 0 as a family of three folds 
depending on t. For t = 0 it is Q-factorial, and so the same must hold for 
t i= O. It has a singularity that is not analytically Q-factorial, but the non- Q-
Cartier divisor does not exist globally. 

(12.2) Projectivity and deformations. (12.2.1) Conditions. For the rest of this 
section we consider fiberspaces X / S satisfying the following properties: 
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(12.2.1.1) X and S are irreducible analytic spaces of finite type. 
(12.2.1.2) XIS is a proper and flat relative algebraic space; i.e., it is bimero-

morphic to a projective fiberspace. 
(12.2.1.3) Let p: Ll ---+ S be any morphism and let Xt./Ll be the pull-back 

family. We assume that if D c Xt. is a Weil divisor proper over Ll such that 
D is Cartier outside finitely many fibers then D is Q-Cartier. 

(12.2.1.4) Remark. This last assumption is satisfied in the following cases: 
(12.2.1.4.1) If XIS is smooth (clear). 
(12.2.1.4.2) If every fiber has only rational Q-factorial singularities and is 

smooth in codimension two. (This follows from (12.1.9).) 
(12.2.1.4.3) If every fiber is smooth in codimension two and has only singu-

larities that are locally the quotient of a hypersurface singularity by a group that 
acts freely in codimension two. In particular, if every fiber Xs is a threefold 
with only terminal singularities. (Under these assumptions XT has parafacto-
rial singularities [Grothendieck68, XL3.13], [Kolllir83, 3.2.2] or [Ran89, 2.3].) 0 

(12.2.2) Definition. Given XIS as above let ffl(X/S) be the functor 

ffl (X/S)(S') = Q ® (Pic(X x s S' /S')/Pic' (X Xs s' IS')). 

(12.2.3) Proposition. The functor ffl(X/S) is representable by a separated 
and unramified algebraic space NSQ(X/S)/S. It has countably many connected 
components and they are proper over S. 
Proof. This is a straightforward consequence of the result about the similar 
properties of the relative Picard functor [Grothendieck62, 232]. We had to 
tensor with Q since in general the specialization of a Cartier divisor is only 
Q-Cartier. 0 

(12.2.4) Definition. Given XIS as above let :Yffl(X/S) be the following 
sheaf on S in the Euclidean topology. Given U ---+ S let 

:Yff1(X/S)(U) = {sections of ffl(X/S) over U with open support}. 

(12.2.5) Proposition. The above :Yffl(X/S) is a local system with finite mon-
odromy on S. There are countably many proper closed subvarieties Zi c S such 
that if s E S - UZi then :Yff1(X/S)ls ~ N1(Xs )' 

Proof. Consider the relative Hilbert space [Artin69] that parametrizes codimen-
sion one cycles. This has countably many components and every component 
satisfies the valuative criterion of properness over S. Let Zi be the images of 
those components that do not dominate S. The injection Zi C S also satisfies 
the valuative criterion of properness over S, thus the Zi are closed in S. If 
s E S - U Zi then for every divisor Ds on Xs there is a dominant component 
H of the relative Hilbert space such that Ds is one of the divisors parametrized 
by H. 

Let U c S be open and consider a dominant connected component g : 
H ---+ U of the relative Hilbert space that patrametrizes codimension one cy-
cles. Assume first that U is a small analytic neighborhood of a point 0 E S . 
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Then g -I (0) is connected; in particular, all divisors in Xo parametrised by 
Ho are numerically equivalent. Since ./Y 1 (XIS) is unramified, all divisors in 
Xs parametrized by Hs are also numerically equivalent for s E U. Thus 
if s E S - U Zi' then for every divisor Ds on Xs there is a section of 
:§./YI(XIS)(U) which induces [Ds1. 

Consider a projective resolution p : Y IS -t XIS. There is a Zariski open 
dense subset U c S such that the fiberspace Y x sUI U is smooth and pro-
jective. On relative divisors we have the pull back map from X x sUI U to 
Y x sUI U . Therefore, we have an injection 

:§./YI(XIS)IU -t :§'/yI(y Xs UIU). 
Therefore, it is sufficient to prove that the latter has finite monodromy. 

If g : H -t U is a dominant connected component of the relative Hilbert 
scheme of Y x sUI U that patrametrizes codimension one cycles then HI U is 
proper since Y Xs UIU is projective. Therefore g-I(U) has only finitely many 
components for every u E U . Thus the monodromy has only finite orbits and, 
therefore, it is finite. 0 

(12.2.6) Proposition. Let XIS be as in (12.2.1). Let CIS c XIS be a flat 
family of I-cycles. If Co c Xo is numerically equivalent to zero for some 0 E S 
then Cs c Xs is numerically equivalent to zero for every s E S . 
Proof. It is clearly sufficient to prove this after a surjective base change S' -t S. 
Thus we may assume that :§./YI(XIS) is a trivial local system. If L is a global 
section of :§./YI(XIS) then Lo· Co = 0 by assumption, hence Ls· Cs = 0 
for every s. By (12.2.5) this means that if S E S - U Zi then Cs c Xs is 
numerically equivalent to zero. 

To see that Cs c Xs is numerically equivalent to zero for every s pick any 
s E S and a disc SEd such that d is not contained in any of the Zi. We 
take base change with d to obtain a family C Ide X I A such that CI c XI 
is numerically equivalent to zero for all but countably many tEd. After 
possibly further base change there is a semistable modification f: Y I d -t XI d . 
For each tEd - {s} we can consider the family of I-cycles with rational 
coefficients C; c ~ such that f..(C;) = CI and [C;1 = 0 E H2(~' Q). By 
(12.1.5) this family is nonempty for all but countably many tEd - {s}. Since 
tbe Hilbert scheme of Y I d has only countably many components, there must 
exist a flat family of I-cycles C'/d c Yld such that f*(C'/d) = Cld and 
[C;1 = 0 E H2(~' Q) for all but countably many tEd - {s}. 

Since Y retracts to Yo' we also have that [C;1 = 0 E H2(Ys ' Q), thus 
[Cs1 = f..[C;1 = 0 E H2(Xs ' Q). This implies that Cs c Xs is numerically 
zero. 0 

(12.2.7) Definition. (12.2.7.1) Given XIS as above let :§./Y 1 (XIS) be the 
following sheaf of vectorspaces on S in the Euclidean topology. Given U -t S 
let 
~ { Flat families of I-cycles C I U c X x sUI U with real} 
WI (XI S)( U) = coefficients; modulo fiberwise numerical equivalence. 
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(12.2.7.2) Given XIS as above let ~~(XIS) be the following sheaf of cones 
on S in the Euclidean topology. Given U ~ S let 

~~(XIS)(U) 

_ {Flat families of I-cycles CIU c X Xs UIU with nonnegative} 
real coefficients; modulo fiberwise numerical equivalence. 

(12.2.8) Proposition. The above ~./Y, (XIS) is a local system on S. There are 
countably many proper closed subvarieties Zj C S such that if s E S - U Zj then 
~./Y,(XIS)ls ~ N,(Xs) and ~~(XIS)ls ~ NE(Xs). Moreover, ~./Y,(XIS) 

has finite monodromy. 
Proof. The same arguments as in the proof of (12.2.5) show all but the last 
claim. The latter is true since by its definition ~./Y, (XIS) injects into the dual 
of ~'/y'(XIS). 0 

(12.2.9) Corollary. The local systems ~./Y, (XIS) and ~./Y' (XIS) are dual to 
each other. In particular, if XIS is projective then 

N, (XIS) = HO(S, ~./Y, (XIS)). 
Proof. Intersection product in any fiber provides the duality map. This pairing 
is perfect since in a sufficiently general fiber we recover the pairing between the 
Neron-Severi group and I-cycles modulo numerical equivalence. Since N, (XIS) 
is defined to be the dual of the relative Neron-Severi group, the last assertion is 
clear. 0 

(12.2.10) Theorem. Let XIS be as in (12.2.1). Assume that for some 0 E S 
the fiber Xo is projective. Then there is a Zariski open neighborhood 0 E U C S 
such that Xs is projective for every S E U . 

Remark. It is not true, however, that XIS is projective in a neighborhood 
of o. 
Proof. Again we may assume that ~./Y, (XIS) is the trivial local system. Re-
striction gives injective maps 

° H (S, ~./Y, (XIS)) '-+ N, (Xo), 
HO(S, ~~(XIS)) '-+ NE(Xo). 

Since Xo is projective, Kleiman's criterion tells us that N E(Xo) c N, (Xo) 
is a convex cone and not even its closure contains straight lines. Therefore 
the same holds for the cone HO(S, ~~(XIS)) C HO(S, ~./Y, (XIS)). Since 
HO (S , ~./Y' (XIS)) is dual to HO (S , ~./Y, (XIS)), there is a relative divisor 
H such that H defines a strictly positive linear functional on the closure of 
the cone HO(S, ~~(XIS)). By (12.2.7) if S E S - U Zj then Hs is strictly 
positive on NE(Xs) - {O}. In particular, Hs is ample, again by Kleiman's 
criterion. 

Ampleness is an open condition , thus there is a Zariski open V c S such 
that Hs is ample on Xs if s E V . If 0 E V then we are done. Otherwise we 
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repeat the argument with the irreducible components of S - V and so on. This 
completes the proof. 0 

(12.3) Deformation of extremal rays. 
(12.3.1) Theorem. Let g : Y -+ S be a proper flat morphism of complex spaces. 
Assume that for some 0 E S the fiber Yo is a projective variety with only Q-
factorial rational singularities, dim Yo 2: 3. Let fa : Yo -+ Zo be the contraction 
of an extremal ray Co c Yo' By (11.4) there is a proper flat morphism Z -+ S 
and a factorisation 

g: Y L Z ->S. 
Then there is an open neighborhood 0 E U C S such that if fa contracts a 
subset of codimension at least two (resp. contracts a divisor; resp. is a fiber space 
of generic relative dimension k) then Is contracts a subset of codimension at 
least two (which may be empty) (resp. contracts a divisor; resp. is afiberspace of 
generic relative dimension k) if s E U. 

Proof. The first part follows from the upper semicontinuity of fiber dimension. 
Next assume that fo contracts a divisor or is a fiber space of generic relative 
dimension k. The proof in these cases is essentially the same as in [Mori82, 
§ 11]. For illustration we present the case when the contraction fa : Yo -+ Zo 
given by Co contracts a divisor Do to a point. 

Let H be ample on Zo and let H' = f* H. Let mDo be Cartier. Consider 
the exact sequence 

0-+ &( -kH) -+ &( -kH + mDo) -+ &mDo (mDo) -+ O. 

For large k the divisor kH - mDo is ample, thus Hi(&mDo(mDO)) = 0 for 
i = 0, 1. Thus by [Grothendieck62, 221] the relative Hilbert scheme of Y / S 
is smooth of relative dimension 0 at [mDo]' Thus in every nearby ~ at least 
a divisor is contracted. By semi continuity of fiber dimension Is has to be 
birational. 0 

(12.3.2) Theorem. Notation and assumptions are as in (12.3.1). Assume in 
addition that Yo is a threefold with terminal singularities only. If fa contracts 
only finitely many curves {C~}, then for every i, there is a dominating family 
of curves rt?i / U such that (rt?i / U)o is a multiple of C~ . 

Proof. By considering a suitable analytic neighborhood of C~, it is sufficient 
to treat the case when exactly one curve is contracted. Let E c Y be the f-
exceptional locus. We want to show that E dominates S. If this is not the 
case then we can find a Ll c S such that the induced contraction morphism 
fl! : Y x s Ll -+ Z x s Ll is an isomorphism outside finitely many points of 
Z x s Ll. Now consider the flip ;; : y+ x s Ll -+ Z x s Ll. This is again an 
isomorphism outside finitely many points of Z x s Ll. Thus both fl! and ;; 
have one-dimensional exceptional loci. This contradicts [KMM87, 5.1.17]. 0 

(12.3.3) Corollary. Notation and assumptions are as in (12.3.2). Then there is 
a dominating family of curves rt? / U such that (rt? / U)o is in the extremal ray 
contracted by fa. 
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Proof. If fa contracts only finitely many curves then this is (12.3.2). Otherwise, 
it follows from (12.3.1). Indeed, -Ky is f-ample, therefore, f is projective 
and there are plenty of curves in the fibers. 0 

(12.3.4) Corollary. Notation is as in (12.3.1). Assume that every fiber of YIS 
is projective. Then Is : Ys ....... Zs is the contraction of an extremal ray for every 
s in a suitable neighborhood of O. 
Proof. We may assume that S is irreducible. By shrinking S we may assume 
that all the fibers have Q-factorial singularities (12.1.10). 

Next we claim that every Zs is projective. This will follow from (12.2.10) 
once we check the conditions (12.2.1). To check (12.2.1.3) we make a base 
change by p: T ....... S and let Dgen C Zgen be a Cartier divisor. Thus 19:n(Dgen) 
C Ygen is again Cartier, hence its closure D C YT is Q-Cartier. If Co C Yo 
is contracted by fa then by (12.3.3) we conclude that Co· D = O. Thus by 
(12.1.4) the divisor 

fT(D) = (the closure of Dgen in ZT) 

is again Q-Cartier. This was to be proved. 
Since Z is projective and - Ky is 1: -ample, 1: is a contraction of an ex-

S s S s 
tremal face. We will prove that this face is one dimensional. Assume that for 
some t E U it is not. Then 1; contracts at least two different extremal rays E/ 
and E;. By (12.3.3) we obtain two flat families of curves ,%" IV and ,%'2 IV 
over some Zariski open neighborhood of t. These families are contracted by 
f. Since the relative Hilbert scheme satisfies the valuative criterion of proper-
ness, these extend to flat families of curves over S . Thus we obtain (,%")0 and 
(,%'2)0. These are both contracted by fa, hence they are in the same extremal 
ray. Thus by (12.2.6) the same holds for every s E U. This is a contradic-
tion. 0 

(12.3.5) Remarks. (12.3.5.1) Even if YIS is projective we cannot prove that 
Z I S is again projective. This is not known even when Y ISis smooth. 

(12.3.5.2) It is essential to assume that Yo is Q-factorial. Let Y be the total 
2 2 space of the rank two vector bundle &'(-1) EIJ &'( -1) over ]p . Thus]P can 

be contracted to a point to get f : Y ....... Z. If t = 0 is a general section of 
Z through the singular point then Yo = (f* t = 0) defines a 3-fold containing 
]p2 . It has only one singular point, it is a node (xy - uv = 0) and ]p2 C Yo is 
not Q-Cartier there. The line Co C ]p2 C Yo generates an extremal ray, but no 
multiple of it lifts to the general fiber. 

(12.3.6) Corollary. Notation is as in (12.3.1). Assume that YIS is projective 
and that :§./Y, (XIS) has trivial monodromy. Let f: Y ....... Z be the contraction 
of a relative extremal ray. Then Is : Ys ....... Zs is the contraction of an extremal 
ray for every s E S . 
Proof. By (12.2.8) Is is the contraction of an extremal ray for a dense set 
of s E S. As in (12.3.4) we get that it is the contraction of an extremal ray 
everywhere. 0 
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( 12.4) Minimal models in families. The aim of this section is to prove the 
following. 

(12.4.1) Theorem. Let S be a connected normal quasi-projective variety or a 
complex space and let XIS be a flat, projective family of threefolds such that 
every fiber has only Q-factorial terminal singularities. Assume that not every 
fiber is uniruled. Then there is a flat projective family y I S and a rational map 
f : XIS· .. > Y IS such that on each fiber f induces a birational map, each fiber 
of YIS has only terminal singularities, and K y/s is nef; i.e., minimal models 
exist in families. 

In general we have a slightly weaker result: 

(12.4.2) Theorem. Let S be a connected normal quasi-projective variety or a 
complex space and let XIS be a flat, projective family of threefolds such that 
every fiber has only Q-factorial terminal singularities. Then there is a finite, 
etale and Galois base change p : S' -+ S, a flat projective family y' IS' , and 
a rational map r : p * XIS' . .. > y' IS' such that on each fiber r induces a 
birational map, each fiber of y' IS' has only Q-factorial terminal singularities 
and Kyl/sl is either relatively nef or y' IS' admits a relative Fano-contraction. 

Proof. After a finite, etale and Galois base change p : S' -+ S we may assume 
that ~./YI(P*XIS') has trivial monodromy (12.2.8). Now take any p*XIS'-
extremal ray and contract. By (12.3.6) this induces the contraction of an ex-
tremal ray in every fiber. If necessary we flip (11.7) and we can continue the 
usual steps of the minimal model program. Finally we get a y' IS' such that 
Ky'/s' is either relatively nef or there is a relative Fano-contraction. 

Assume that not all fibers are uniruled. Let G be the Galois group of S' IS. 
Then G also acts on p * X , and this way we get a birational action of G on y'. 
By [Fujiki81, Levine81] none of the fibers of XIS is uniruled hence Ky'/s' is 
nef. As in [Kolhir89, 4.3] there is a subscheme E c y' such that every fiber 
of E I s' is at most one dimensional and G acts regularly on y' - E. As in 
[Kollar89, 3.6] we want to find a different compactification of y' - E where 
the action of G is regular. To do this let H be a relatively ample divisor, and 
let D = LgEG g(H). By [KMM87, 3.2] if D is not relatively nef, then there 
is a (Kyl + eD)-extremal ray R for small e and R· Kyl = o. By construction 
only curves in E I S can be in R. Let the contraction corresponding to R 
be g : y' IS' -+ z' IS'. The exceptional set of g is a subset of E, thus in 
every fiber of y' IS' the morphism g induces a small contraction. By (11.10) 
the DIS' -flop of g exists. Any sequence of DIS' -flops terminates since they 
terminate in every fiber. 

After finitely many flops D+ , the proper transform of D, becomes nef. Now 
we can apply relative base point freeness [KMM87, 3.1] to get a model YIS' 
such that D, the proper transform of D, is relatively ample and G-invariant. 
Thus G acts regularly on Y. Now we can take the quotient Y = Y I G to get 
the required family of minimal models. 0 
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(12.4.3) Remark. Note that we may not have Q-factorial singularities on the 
fibers of Y I S because of monodromy. An easy example is: take a threefold 
with a nonfactorial node and arrange for the monodromy to interchange the 
two generators of the local Pic. Blowing up the nodal set gives a smooth family 
XIS. 
( 12.4.4) Theorem. Let 0 E S be the germ of a normal complex space and let 
XIS be a flat, proper family of complex threefolds. Assume that the central fiber 
Xo is projective with only Q-factorial terminal singularities. Then there is a flat 
proper family Y I S and a bimeromorphic map f : XIS··· > Y IS such that 
on each fiber f induces a bimeromorphic map, each fiber of Y IS has only Q-
factorial terminal singularities, and Ky/s is either relatively nef or Y I S admits 
a relative Fano contraction. 
Proof. Take the contraction of an extremal ray fa : Xo ---+ Zo. This extends to a 
contraction f: XIS ---+ Z IS. If necessary we can flip (11.7) and continue until 
we get a family YIS where either Ky, is nef or Yo admits a Fano contraction. 

o 
In either case the same is true for Y IS. 0 

(12.5) Deformation invariance of plurigenera. The aim of this section is to de-
rive the following consequence of the continuity of flips: 
(12.5.1) Theorem. Let XIS be a flat family of projective threefolds with Q-
factorial terminal singularities, and assume that S is connected. Then all the 
plurigenera are constant in the family. 
Proof. The results of [Nakayama87] show that (12.4.4) implies (12.5.1). We 
will give a different proof in (12.5.5) following [Levine83] that works in a more 
general setting. 
(12.5.2) Corollary. Let XIS be a flat family of projective threefolds with Q-
factorial terminal singularities, and assume that S is connected. Then the Ko-
daira dimension of the fibers is constant in the family. 0 

(12.5.3) Case K = -00. If Pm(Xo) = 0 for every m for some fiber Xo then 
Xo is uniruled by [Miyaoka88]. Therefore all the fibers are uniruled [Fujiki81, 
Levine81], thus all the plurigenera are constant. 

The other cases follow from the next slightly stronger result: 
(12.5.4) Theorem. Let XIS be a proper flat family of complex analytic three-
folds with Q-factorial terminal singularities. Let 0 E S and assume that Xo is 
projective and Pm(Xo) 2': 1 for some m. Then there is an open neighborhood 
o E U C S such that all the plurigenera are constant in the family over U. 

The proof will rest on the following result, which is a variant of some results 
of [Levine83]. 
( 12.5.5) Theorem. Let XI L\ be a proper flat family of complex analytic spaces 
of dimension d. Assume that Xo is projective, smooth in codimension two, 
and has only log-terminal singularities. Assume that w; is locally free and is 

o 
generated by global sections for some m > O. Then for every k, Pk(Xt ) is 
locally constant near O. 
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Proof. Let Lln = SpecC[[t]]/tn and let a subscript n denote the fiber over 
Ll . Let s E Jfl (wxm) be a general section such that its divisor is smooth in n n 

codimension two. Let s be its restriction to HO(w; ). We want to identify the 
o 

obstruction of lifting s to HO (w; ). 
n+1 

Let Yn be the m-fold cyclic cover of Xn defined by s and let 7C: Yn ~ Xn 
be the projection. 

(12.5.6) Lemma. Let X be a scheme and i: U ~ X be an open subset. Let 
F and G be sheaves on X. Assume that 

(12.5.6.1) G is torsion free in codimension 1; 
(12.5.6.2) F is S3; 
(12.5.6.3) codimx(X - U) 2: 3. 
Then the natural restriction map 

1 1 Extx(G, F) ~ Extu(GIU, FlU) 

is an isomorphism. 
Proof. Let T c G be the torsion subsheaf. Then Ext l (G, F) = Ext l (G / T , F) 
thus we may assume that G is torsion free. First we construct the inverse of 
the restriction map. Let 

o ~ FlU ~ Eu ~ GIU ~ 0 

be an extension. Now apply i* to get 

o ~ i*(FIU) ~ iJEu) ~ i*(GIU) ~ Rl i*(FIU). 

By [Grothendieck68, III 3.3] R\(FIU) = 0, hence the above sequence be-
comes 

o ~ F ~ i*(Eu) ~ i*(GIU) ~ o. 
Using the natural injection G ~ i*(GIU) we obtain an extension 

where E is the preimage of G c i*(GIU) under the map i*(Eu ) ~ i*(GIU). 
One still has to check that this, in fact, is the inverse. To this end take an 

exact sequence 
O~F~E~G~O 

and consider the diagram 

o ----+ F ----+ E ----+ G ----+ 0 

1 1 1 
o ----+ F ----+ i*(EIU) ----+ i*(GIU) ----+ 0 

This clearly shows that im[E ~ i*(EIU)] = E. 0 
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(12.5.7) Lemma. There is a natural map 

1 1 ° * ** 1 1 Ext (nx ,&x ) x H (Yn , (n wx ) ) --+ Ext (Q y , w y ). 
n n n n n 

Proof. Let D denote the ramification divisor of n : Yn --+ Xn and let S denote 
the set of singular points of Xo or of Yo (this will not lead to any confusion). 
Thus we have the following maps: 

1 * 1 
--+ Ext (n Qx -s' &y), 

n n 

where the first and the last maps are isomorphisms by (12.5.6) and the one in 
the middle is simply tensoring with &y -s. 

Also, (n*wx )** = Wy (-(n - I)D) ~ This is clear over smooth points, and 
the double dual on the l~ft automatically extends the isomorphism across the 
singularities. Thus we have a Yoneda product 

1 1 ° * ** Ext (Qx ,&x ) x H (Yn , (n wx ) ) n n n 
1 * 1 ° --+ Ext (n Qxn, &Y) x H (Yn , wYn (-(n - I)D)) 
1 * 1 

--+ Ext (n Q x ' Wy (-(n - I)D)) 
n n 

1 * 1 = Ext (n Q x «n - I)D), w y ). 
n n 

The natural injection 
1 * 1 Q y --+ n Q x «n - I)D), 

n n 

gives 
1 * 1 1 1 Ext (n Qx «n - I)D), w y ) --+ Ext (Qy , Wy ). 

n n n n 

This gives the required map. 0 

(12.5.8) Construction of the obstruction. The Kodaira-Spencer map of Xn/Tn 
gives an element of Ext l (n~n/Tn ,&x) ~ Ext l (Q~n ' &x), call it p. 
H O(Yn , ( ... *wx )**) hI· . f h Aii> d f I. as a natura sectIOn commg rom t e (7 x summan 0 

n n 

n*(n*wx)**=wx +&x + .... n n n 
Call this section w. The above lemma gives an element 

1 1 (p. w) E Ext (Q y , w y ). 
n n 

The dual of the map d: Hd-l(&y) --+ Hd-l(Q~) gives 
n n 

1 1 1 1 d : Ext (Q y , Wy ) --+ Ext (&y , Wy ) = H (w y ). 
n n n n n 

MUltiplying by wm- l yields wm- I d (p . w) E HI (w; ). Take the trace in 
order to obtain Tr(wm-Id(p. w)) E HI(W; ). n 

n 
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(12.5.9) Claim. Tr(wm-Id(p. w)) E HI(W;) is the obstruction to lifting s 
to an element of ~ (w; ). • 

.+1 

Proof. HI (w; ) ---- HI (w; -s) is injective and over the smooth points of Xo 
the above elen:ent is the obstruction by computations of [Levine83]. 0 

(12.5.10) Lemma [Kawamata85]. Yo has only canonical singularities. 
Proof. By definition, Yo is a Cartier divisor in 

Specx (& + WI-I] + W[-2] + ... ). 
o 

This latter has canonical singularities since it is locally a quotient of C x 
(the Gorenstein cover of Xo) . Since w; is generated by global section, the 

corresponding linear system on Specx (&"+ WI-I] + W[-2] + ... ) is base point 
o 

free, thus the general member Yo also has canonical singularities. 0 

(12.5.11) End of proof. Since Yo has canonical singularities the same proof 
as in [Levine83, Proposition 2] yields that the map 

I I I I d : Ext (fly, Wy ) ---- Ext (&y , Wy ) = H (Wy ) 
n n n n n 

is zero. Thus the obstruction to lifting vanishes. This proves that general sec-
tions of HO(w;) lift to sections of HO(W;/T). Since general sections generate 
the space of all sections this proves that the plurigenera P mk are constant in 
the family. The rest of the proof of (12.5.5) now follows as in [Levine85]. 0 

(12.5.12) Proof of (12.5.4). By shrinking S, we can apply (12.4.4) to get a 
fiberspace Y / S which is fiberwise bimeromorphic to X / S such that Yo is 
projective with only Q-factorial terminal singularities. By [Kawamata91] some 
multiple of Kyo is base point free. For fixed k consider Pk(Ys) as a function 
on S. This is upper semicontinuous in the Zariski topology, thus we can apply 
(12.5.5) to conclude that Pk(Ys ) is constant in a neighborhood Sk of o. Our 
aim is to find a neighborhood U where all the plurigenera are constant. 

To do this fix a k such that w~] is locally free and is generated by global 
o 

sections. There is a neighborhood V of 0 such that the same holds for w~] 
s 

for s E V. Now we can consider the k-canonical morphism 

/ / [mk] "" * <Pk : Y V ---- Z V c lP'v such that w Y/ v = <Pk&p/V(m) , 

where lP'v is a projective space bundle over V and m is any positive integer. 
The varieties Zs all have the same degree, thus they form a bounded family. 
In particular, there are only finitely many Hilbert functions 

o 0 [mk] Hs(m) = H (Zs' &z (m)) = H (Ys ' Wy ). 
s s 

Similarly, considering the family of sheaves 

Fi = (-I. ) wU] for j < k , s 'l'k * Y, 
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we see that there are only finitely many Hilbert functions 

Hj(m)=Ho(Z F j 0& (m))=Ho(y w(j+mk1) s s' s Zs s' y. . 

663 

Thus there is an N > 0 such that if Pm(~) = Pm(~') for every m < N 
then Pm(Ys ) = Pm(Ys') for every m. Therefore there is an open neighborhood 
o E U C S such that all the plurigenera are constant over U. 0 

(12.5.13) Corollary. Let f : X --+ S be a flat family of projective threefolds 
with Q-factorial terminal singularities and assume that S is connected. The 
canonical models of the fibers also form a flat family. 
Proof. The relative canonical model is 

projs(E f..(w~~s))· 

If the fibers are uniruled the canonical model is the empty set. Otherwise the 
sheaves f..(w~}s) are locally free, hence the Proj is flat and commutes with base 
change. Thus the relative canonical model is the family of canonical models of 
the fibers. 0 

(12.5.14) Theorem. Let XIS be a proper flat family of complex analytic three-
folds with Q-factorial terminal singularities. Let 0 E S and assume that Xo 
is a projective threefold of general type. Then there is an open neighborhood 
o E U C S such that all the fibers over U are also projective threefolds of 
general type. 
Proof. Consider the relative canonical model. Its canonical class is relatively 
ample, hence it is projective. Thus XIS is a relative algebraic space. Hence by 
(12.2.10) nearby fibers are also projective. 0 

(12.6) Local birational deformation spaces. (12.6.1) If S is a nonruled surface 
and Sf is its minimal model then any deformation of S is obtained from a 
suitable deformation of Sf by repeatedly blowing up some sections. Thus up 
to birational equivalence the deformations of Sf give all the deformations of 
S. Thus Def Sf can be viewed as the deformation space of the birational 
equivalence class of S . 

If X is a 3-fold and C c X is a smooth curve then C need not be liftable 
to certain deformations of X, thus X can have deformations that do not give 
deformations of BcX . Thus the deformation spaces of different smooth models 
differ more than in the surface case. To make things worse, minimal models 
are not unique. Nonetheless one can define a good local birational deformation 
space thanks to the following results: 

(12.6.2) Theorem. Let Xo and X~ be projective 3-folds with Q-factorial termi-
nal singularities. Assume that K x and K x' are both nef Let g : Xo' .. > X~ 

o 0 

be a birational map. Then g induces an isomorphism g* : Def Xo ~ Def X~ . 

Proof. By [Kolllir89, 4.9], X~ is obtained from Xo by a sequence of flops. Let 
h : Xo ... > X; be the first flop; then it is sufficient to construct an isomorphism 
h* : Def Xo ~ Def X;. If XI T is a deformation of Xo, then (11.10) gives 
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the corresponding flat deformation X+ IT of X;. This gives a morphism 
Def Xo -+ Def X; , which is clearly an isomorphism. 0 

(12.6.3) Remarks. (12.6.3.1) The same result holds for compact complex 3-
folds with analytically IQ-factorial singularities. 

(12.6.3.2) IQ-factoriality is a necessary assumption. 
(12.6.4) Proposition-Definition. Let Je be a birational equivalence class of 
nonuniruled 3-folds. By [Mori88] there is a member X E ft!' with IQ-factorial 
terminal singularities and K x nef Its deformation space will be called the local 
deformation space of Je and is denoted by DefJe. By (12.6.2) this definition 
is independent of the minimal model chosen. 

By (12.4.4) and (12.6.2), if X' has IQ-factorial terminal singularities and 
g : X'··· > X is a birational map, then it induces a morphism Def X' -+ 

DefX ~ DefJe. 

(12.6.5) Proposition. Let T bethespectrumofaDVR.Let Xo beaprojective 
3-fold with IQ-factorial terminal singularities such that Kx is nef Let Xl IT 

o 
and X2 IT be two flat deformations of Xo (i.e., x~ ~ Xo). Assume that the 
generic fibers X:en and X:en are birationally equivalent. Then there is a bira-
tional map go : Xo··· > Xo such that the induced morphism go* : Def Xo -+ 

Def Xo takes the family X I I T to X2 IT. 
Proof. Let ggen be the given birational equivalence and let rlT c Xl x T X2 
be the closure of its graph. We will prove in (12.7.6.6) that if Z -+ Xi is 
any resolution of singularities, then all the exceptional divisors are uniruled. 
Thus by [Matsusaka-Mumford64], ro is the graph of a birational equivalence 
go : Xo··· > Xo· We can factor go into a sequence of flops, and this can 
be extended to Xl IT. This way we obtain Xl+ IT. The graph of the new 
birational equivalence r+ c XI+ x T X2 is such that r~ is the graph of an 
isomorphism. Thus r+ is the graph of an isomorphism as well. This shows 
that go* maps the family Xl IT to X2 IT. 0 

(12.7) Global birational moduli spaces. (12.7.1) The global birational moduli 
problem is much more delicate than the local one. Usually one has to introduce 
some extra structure (distinguished homology basis or polarization). Here we 
discuss the case when the threefolds come nearly endowed with a polarization, 
i.e., threefolds of general type. 

Already for surfaces the minimal model is not the right object to use to 
construct global moduli spaces. Although it is unique, it leads to a very non-
separated moduli space. Therefore we consider instead the canonical model. If 
S is minimal, then by [Brieskorn71] the morphism Def S -+ Def Scan is finite 
and surjective. Hence the deformation theory of S and Scan is very similar. 

In the threefold case this is not so, as shown by the following. 

(12.7.2) Example. Let X C CIP'4 be a hypersurface with a single ordinary 
triple point at 0 EX. Then BoX -+ X is a resolution of singularities with a 
smooth cubic surface E as exceptional divisor. Thus X is canonical. We want 
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I to understand Def BoX --+ Def X. NEIBox ~ &'E( -1), thus H (NEIBox) = O. 
Therefore if YIT is a deformation with Yo ~ BoX then E c BoX lifts to a 
flat family of exceptional surfaces over T. This implies that 

im(Def BoX --+ Def X) 
consists exactly of those hypersurfaces that contain a triple point. 

( 12.7.3) Proposition. Let X be a proper threefold with canonical singularities, 
and let f : Y --+ X be a projective Q-factorial, terminal, and crepant partial 
resolution. Then the natural morphism F : Def Y --+ Def X is finite. 
Proof. The morphism exists by (11.4). If F is not finite, then there is a 
deformation i/ IT (T = SpecC[[t]]) such that it maps to the trivial de-
formation F : i/ --+ X x T. This means that there is a birational map 
i/ --+ X x T··· > Y x T. We can apply (12.6.5) to i/ ... > Y x T to get 
that i/ is also a trivial deformation of Y. 0 

(12.7.4) Proposition-Definition. Notation is the same as above. 
(12.7.4.1) The subspace im[DefY --+ Def X] is closed and is independent of 

the choice of Y. It will be called the SFCT subspace of Def X (jor simultaneous 
Q-factorial crepant terminalization). 

(12.7.4.2) Openness of versality for SFCT subs paces: Let i/ --+ DefY --+ 

Def X be the versal SFCT family at Y --+ X. This family is also a versal SFCT 
family at every nearby pair l't --+ XI . 

(12.7.4.3) A flat family of three folds XIS satisfies SFCT iffor every s E S 
the image of the natural morphism (s, S) --+ Def Xs lies in the SFCT subspace 
of DefXs · 
Proof. The independence follows from (12.6.4). By (12.1.10) and (12.5.14) 
l't is again projective with Q-factorial terminal singularities. The morphism 
l't --+ XI is crepant. Now openness ofversality for DefY implies (12.7.4.2). 0 

(12.7.5) Formulation of the birational moduli problem. Fix a function P(k) 
(the Hilbert function). 

(12.7.5.1) Let Lp be the functor 
Proper flat families XIS such that X is an algebraic space, for 
every s E S the fiber Xs is a projective 3-fold with Q-factorial 
terminal singularities and h 0 (Xs ' w~ 1) = P (k ) for every k :2: 2 . 

Lp(S) = Two families are equivalent if there is an isomorphism between 
open dense subsets f: Xl IS··· > X2 IS which is birational on 
every fiber. 

,(12.7.5.2) Let L;an be the functor 

{
Projective flat families XIS such that for every s E S the fiber} 

L;n(S) = Xs is a canonical3-fold such that X(Xs ' w~}) = P(k) for every 
k and such that XIS satisfies SFCT. 

(12.7.5.3) Note that by (12.5.13) there is a natural transformation 
// uean .n p --+ ./It P • 
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As is the case already for surfaces, these two functors agree on closed points, 
but they differ infinitesimally. The functor Lp is very nonseparated. While 
Lp is more interesting from the point of view of smooth threefolds, technically 
L;an is easier to deal with. 

(12.7.5.4) Let X be a canonical threefold. Then by vanishing X(X, w~]) = 
hO(X, w~]) for k ~ 2. In general X(X, w~]) is not a birational invariant even 
for smooth threefolds. This is the reason why we use hO in (12.7.5.1) and X 
in (12.7.5.2). 
(12.7.6) Theorem (Birational moduli for three folds of general type). 

(12.7.6.1) For every P(k) the functor L;an is coarsely represented by a sep-
arated algebraic space of finite type Mp. 

(12.7.6.2) Let Y/S be a smooth family of projective 3-folds of general type 
and assume that S is connected. For some s E S, let P(k) = hO(y , wky ) for 

s s 

k ~ 2. Then there is a morphism f: S ---. Mp such that for every s E S the 
image f(s) is the moduli point of the canonical model of Ys . 

The proof will be done in several steps. 
(12.7.6.3) Let Z//1 be a proper flat family of algebraic varieties with canon-

ical singularities. Then X(Zt' w~]) is locally constant for every n. 
t 

This was proved in [Kolhir83, 3.1.4]. The point is that usually double dual 
will not commute with specialization. The argument is the following. Pick Z E 
Zo and let (y, Yo) ---. (z, Zo) be the local index one cover. By [Kolhir83, 3.2.2] 
or [Ran89, 2.3], this extends to a cover f: (y, Y) ---. (z, Z). By construction 
fJ~y ~ L~-I w~] and w~] is locally free. Thus w~+k] ~ w~]18i w~]. Hence 
w~]I8i&z ~ w~] locally everywhere, hence also globally. This implies the claim. 

o 0 

(12.7.6.4) Canonical 3-folds with fixed P(k) = X(X, w~]) form a bounded 
family. 

This was proved in [Kolhir83, 3.1.4]. Using more recent information a proof 
can be obtained as follows. By [Reid87, 10.3], 

[n] n(n - 1)(2n - 1) 3 
X(X, Wx ) = 12 Kx + (1 - 2X(&x))n + cn + ¢(n), 

where c = (1/12) L(rj - rj- I ) and summation ranges over certain integers rj 
such that index X = lcm(rj) and ¢(n) = 0 if n is sufficiently divisible. Notice 
that given a function P(k), there is at most one way of writing it in the above 
form. Thus P(k) determines the above c, hence we can bound the index of X 
in terms of P(k). If the index is m, then (X, w~]) is a 3-fold with an ample 
Cartier divisor of fixed Hilbert polynomial. These form a bounded family by 
[Kolhir85, 2.1.3]. 

(12.7.6.5) Let X//1 be a flat family of 3-folds. Assume that Xo has canonical 
singularities and that X/ /1 satisfies SFCT. Then all nearby fibers have only 
canonical singularities. 

Let fa : Yo ---. Xo be a Q-factorial crepant terminalization. By definition of 
SFCT, possibly after a finite and surjective base change, there is a deformation 
Y / /1 of Yo and a proper birational map f: Y / /1 ---. X/ /1. By [KSB88, Chapter 
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6] Yt has terminal singularities. Since ~ --+ Xt is crepant, Xt has canonical 
singularities. 

(12.7.6.6) Let Xlfl be a flat family of 3-folds satisfying SFCT. Let Z/fl--+ 
XI fl be a proper birational morphism and let E c Z be an exceptional divisor. 
Then E is uniruled. 

Let g: U I fl --+ XI fl be a proper generically finite and surjective morphism 
such that any g-exceptional divisor is uniruled. Then it is sufficient to prove the 
above claim for U I fl instead of X I fl. Then first we can take I: Y I fl --+ XI fl 
as above. The I-exceptional divisors are uniruled by [ReidSO]. The question 
is also local on Y I fl . By [ReidS 3] locally everywhere we have a morphism 
h : U --+ Y such that U is smooth and there are no h-exceptional divisors. For 
a smooth variety the claim is clear, hence we are done. 

(12.7.6.7) Completion 01 the proof. The first part is clear since by the above 
considerations all the conditions of [KolhirS5, 4.1.1] are satisfied by L;an. 

The second part is a reformulation of (12.5.13). 0 

13. FURTHER RESULTS ON EXTREMAL NBDS AND FLIPS 

The aim of this chapter is to get further information about extremal nbds. 
The idea is to view X as a one-parameter family of surfaces and to exploit the 
deformation theory of surfaces to understand X . The general framework is the 
following: 

(13.1) A method for constructing extremal nbds. Let X :J C be an extremal 
nbd. Let t E &'X be a function vanishing on C and let H = (t = 0). Thus 
X can be viewed as the family of level sets of the function t. We can try 
to recover X as a deformation of the surface germ H. This can be done as 
follows: 

Let us start with a rational surface singularity H' . Consider a proper bimero-
morphic morphism I: H --+ H' . Assume that H is normal and every singular-
ity of H can be the hyperplane section of a terminal threefold singularity. This 
means that every Pi E H has a one-parameter deformation Hi, t : t E fl such 
that the total space is a three-dimensional terminal singularity. By (11.4.2) we 
can choose a deformation Ht : t E fl of H = Ho which induces the above de-
formations at the singular points. Let X be the total space of this deformation 
of H. This X is an analytic threefold which has only terminal singularities by 
construction. By (11.4.1) fa extends to a contraction morphism 1; : H t --+ H; . 
Here H; : t E fl is a flat deformation of H~; let Y be the total space. The 
natural morphism I: X --+ Y is proper and bimeromorphic. By the adjunction 
formula KxlH = KH . Therefore if -KH is I-ample then I: X --+ Y is an 
extremal nbd where C is possibly reducible. It is not clear whether the nbd 
constructed is isolated or not. Some criteria will be given later. 

(13.2) A method for deforming extremal nbds. Let X :J C be an extremal nbd. 
Let t E &'X be a function vanishing on C and let H = (t = 0). Thus X can 
be viewed as the total space of a one-parameter deformation H t of the surface 
germ H. If Hs,t : (s, t) E fl(s) x fl(t) is a two-parameter deformation of H 
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such that HO,t = Ht then we can view Xs = Ut Hs,t : SELl as a deformation 
of the extremal nbd Xo = X . 

Assume that we have X and at the singular points we specify a deformation 
of X::> H 3 Pj • This way we get a morphism 

v : .11(s) x .11(t) ~ II Def(Pj E H). 

The deformation in the t-direction is the one realized by X, thus we have 
a specified lifting of vl.11(t) to a morphism .11(t) ~ Def H. By (11.4.2) the 
restriction morphism Def H ~ I1 Def(Pj E H) is smooth, thus locally a direct 
product. Therefore there is a lifting 

V : .11(s) x .11(t) ~ Def H 

which induces the above two-parameter deformations at the singularities. We 
can fix s and let t vary, this way we get a one-parameter family Xs : sELl. 
By construction Xo ~ X . 

The disadvantage of this method is that it is frequently very hard to under-
stand the exceptional curves Cs C Xs . 

(13.3) Theorem. Let X ::> C be an extremal nbd, C possibly reducible. Let 
t E &'X be a function vanishing on C and let H = (t = 0). Assume that for 
every P E H one of the following conditions is satisfied: 

(13.3.1.1) In suitable local coordinates X is given by an equation of the form 

(g(Yl' Y2' Y3' Y4) = 0)/Zm(a1 ' a2, a3 , 0) 
and H is locally defined by y 4 = t = 0 . 

(13.3.1.2) In suitable local coordinates X is given by an equation of the form 

(g(Yl' Y2' Y3' Y4) = 0)/Z4(1, 1, 3,2). 
where gdeg=2(Yl' Y2' Y3' 0) has rank three and H is locally defined by 
f(YI ' Y2' Y3' Y4) = t = 0 where icIeg=2(0, 0, 0, Y4) is nonzero. 

(13.3.1.3) In suitable local coordinates X is given by an equation of the form 

(g(Yl' Y2' Y3, Y4) = 0)/Z4(1, 1,3,2). 
where gdeg=2 (y 1 ' Y2' Y3' 0) = gdeg=2 (0, Y2' Y3' 0) has rank two and H is lo-
cally defined by f(y 1 , Y2, Y3' Y4) = t = 0 where fdeg=2(0, 0, 0, Y4) is nonzero. 

Then there is a flat deformation 

(Xs ::> Hs ::> Cs ) : SELl; (Xo ::> Ho ::> Co) ~ (X ::> H ::> C) 

such that the following conditions are satisfied: 
(13.3.2.1) (Hs ::> Cs) is the trivial deformation of (Ho ::> Co); in fact, we 

have a natural identification Ho ~ Hs . 
(13.3.2.2) If P E H is as in (13.3.1.1) then Xs has a cyclic quotient singularity 

at P E Hs for s =I- 0 . 
(13.3.2.3) If P E H is as in (13.3.1.2) then for s =I- 0 in suitable coordinates 

Xs at P E Hs is given by 
2 2 2 3 (Y 1 + Y2 + Y3 + Y4 = 0)/Z4(1, 1, 3,2). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 669 

(13.3.2.4) If P E H is as in (13.3.1.3) then for s =I 0 in suitable coordinates 
Xs at P E Hs is given by 

6 2 2 3 (YI +Y2+ Y3+ Y4=0)/Z4(1, 1,3,2). 
(13.3.3) In all cases Xs has only analytically Q-factorial singularities along 

Hs for s =I O. 
(13.3.4) Warning: In general Xs will have other singular points and other 

exceptional curves too. 

Proof. X can be thought of as the total space of a one-parameter deformation 
Ht : t E ~ of Ho = H. 

If P E H is as in (13.3.1.1) then introduce a new parameter s and consider 
the deformation of the singularity 

(g(YI ' Y2' Y3' Y4) + SY4 = O)/Zm(al ' a2 , a3, 0). 
If P E H is as in (13.3.1.2-13.3.1.3) then introduce a new parameter sand 

consider the deformation of the singularity 
2 

(g(YI' Y2' Y3' Y4) + S(Y4 + J.lYI )f(yl , Y2' Y3' Y4) = 0)/Z4(1, 1, 3,2), 
where J.l is a sufficiently general constant. 

These deformations can be globalized as in (13.2). 
If P E H is as in (13.3.1.1) then for s =I 0 the local equation for the index 

one cover of Xs contains sY 4 with nonzero coefficient, thus Xs has a quotient 
singularity at P. 

If P E H is as in (13.3.1.2-13.3.1.3) then the local equation gs is such 
that (gs)deg=2(Y I ' Y2, Y3, 0) has rank at least two (these come from g). In 
case (13.3.1.2) (gs)deg=2(Y I ' Y2' Y3 ' 0) has rank three and we get the equation 
( 13.3.2.3). 

If (gJdeg=2 has rank two then introduce a Z-wt by a(YI' Y2' Y3, Y4) = 
(1 , 3, 3, 2). Then 

2 2 3 22 4 6 3 
(gs)C1~6 = Y2 + Y3 + (als + aO)Y4 + (b2sJ.l + bls + bO)YIY4 + CY IY4 + dY I + eYIY3' 

where al b2 =I 0, c, d, and e depend on s, J.l linearly. For general s, J.l in 
suitable new coordinates this can be brought to the form 

() _2_2_3_6 
gs C1~6=Y2+Y3+Y4+YI· 

Adding higher a-wt terms does not change the isomorphism class of this sin-
gularity. 

A cyclic quotient singularity is Q-factorial. For the singularity in (13.3.2.3) 
Q-factoriality follows from [Kolhir91, 2.2.7] since yi + Y! is irreducible. Also 
by [Kolhir91, 2.2.7] the local Picard group of 

2 2 3 6 (Y2 - Y3 + Y4 - YI = 0) 
is generated by the divisors 

j 2 3 D j = (Y2 - Y3 = Y4 - e Y I = 0) where e = 1 and j = 0, 1,2. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



670 JANOS KOLLAR AND SHIGEFUMI MORI 

The Z4-action (1,1,3,2) sends D j to 

D D' ( . .3 .2 j.2 2 0) ( j 2 0) 
j 1-+ j = IY2 - I Y3 = I Y4 - e I Y\ = = Y2 + Y3 = Y4 - e Y\ = . 

Since 
, j 2 

Dj U Dj = (Y4 - e Y\ = 0) 
is principal, the action of Z4 on the Picard group is by -id. Thus the Picard 
group of the quotient 

( 2 2 3 6 )/ '" (6 2 2 3 )/ Y2 - Y3 + Y4 - Y\ = 0 Z4 = Y\ + Y2 + Y3 + Y4 = 0 Z4 
is torsion. 0 

The following example shows some of the intricate features of these defor-
mations 
(13.3.5) Example. We consider a deformation X t of II A type extremal nbds 
given by equations as in (7.9.4.1). The deformation parameter will be t. The 
family will be patched together from two charts. One chart is 

2 \+2k 
(Y\Y2 + Y3 + Y4 - tY4 = 0)/Z4(1, 1,3,2,0) 

and the other one is 1(:4 with coordinates u\' u2 ' u3 ' t. The patching relations 
are 

-\ 4 -4 2 -\ 2 
u\ = Y\ u\ u2 = Y\Y3 + Y\ Y4 u\ U3 = Y\Y4' 

The curve Ct is the y\-axis. By (7.9.4) for every t this is a nbd of type 
(7.3.1). H t is difficult to write down explicitly, but by (7.3) it is unchanged 
under the deformation. 

We are looking for other exceptional curves D t that specialise to Co as 
t ~ O. First, from the above equations we obtain 

5 2 2 
u2 = Y\Y3 + Y4 u\u2 - u3 = Y\Y3' 

Both sides of these equalities are regular, thus they define regular functions on 
X t for every t. Therefore they are constant on D t • (Y\ = 0) intersects Co 
transversally, thus it also intersects Dt nontrivially for It I small. Thus Y\Y3 
vanishes at some point of Dt . It is also constant, thus Y31Dt = O. From the first 
function we see that Y 4 is also constant on Dt • Substituting into the equation 

2 1+2k 0 I d h \+2k I 0 Y\Y2 + Y3 + Y4 - tY4 = , we conc u e t at Y4 - tY4 D t = . 
This has two kinds of solutions. The trivial one is Y 4 = 0 , which gives Ct' 

Also, for every v 2k = t we obtain another compact curve Dt,v given as 

Y2 = Y3 = 0, Y4 = v in the first chart, 
2 2 2 . h dh u2 = v, V u\ = u3 m t e secon cart. 

By the group action on the first chart, D t v = D t -v' Thus we obtain k 
other exceptional curves for t=/:O. ' , 
(13.4) Corollary. Let X :::> C ~ Y be an isolated extremal nbd. Assume that 
C is irreducible. Let X+ :::> C+ ~ Y be the flip. Then C+ is also irreducible. 
Proof. As a simple application of (11. 9.1) we see that if X is analytically Q-
factorial and C is irreducible then C+ is also irreducible. 
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To get the result in general we apply the deformation constructed in (13.3). 
Let H E I&x I be a general member containing C . As we have seen in Chapters 
3 and 6-9, C c HeX is everywhere of the form (13.3.1.1-13.3.1.3). 

We can view the four-dimensional total space of the deformation as a two-
parameter family of surfaces: Hs,t: (s, t) E d(S) x d(t). The contraction 
morphism gives a family ~ : s E d(S) and this again can be viewed as a two-
parameter family: H:,t: (s, t) E d(S) x d(t). Note that by (13.3.1) H:,o ~ 
H~,o. By (11.7.3) the flip X; : s E d(S) exists and is obtained as a two-
parameter family Hs~t : (s, t) E d(S) x d(t) where Hs~t is a P-modification of 

I 
Hs,t· 

We claim that Hs~o ~ H;,o. To see this consider the family Hs~o : s E d(s). 
This is a modification of the trivial family H:,o : S E d(S). A singularity has 
only finitely many P-modifications, thus we may assume that Hs+ 0 is indepen-
dent of S E d(S) - {O}. Denote this common P-modification by Ii: . Thus the 
threefolds UHs~o : S E d(S) and H: x d(S) are isomorphic over d(s) - {O}. 
They both have a proper morphism onto H~,o x d(S) and the relative canon-
ical class is relatively ample in both cases. Therefore [Matsusaka-Mumford64] 
implies that they are isomorphic. This proves the claim. 

For general S the space Xs has only Q-factorial singularities along Cs . 
Therefore for general S the curve Cs+ is irreducible. This implies that Hs~ 0 -> 

H:,o has only one exceptional curve for S =i o. Since H:o -> H~,o is isomor-
phic to Hs~ 0 -> H:, 0' C; is also irreducible. D 

(13.5) Theorem. Let f: X :::> C -> Y 3 Q be an isolated extremal nbd with C 
possibly reducible. Let r : X+ :::> C+ -> Y 3 Q be the flip. Then 

#(irreducible components of c+ ) :::; #(irreducible components of C). 
Proof. We start flipping one curve at a time. We get a series of morphisms 
/ : X j :::> d -> Y 3 Q. By (13.4) each exceptional curve d has the same 
number of components. Finally we stop when the canonical class becomes nef. 
Then we take the relative canonical model, thus we may contract some of the 
curves. D 

Before giving an example that shows that there can be fewer curves after flip, 
we need methods to recognize isolated nbds. There are several ways of doing 
this, for our purposes criteria concerning H' c X will be the most useful. Note 
that if H' has normal singularities, the rational numbers C j • KH , and C j • C j 

are defined ( . is the intersection product). 

(13.6) Proposition. Let f : X -> Y be an extremal nbd constructed as in 
(13.2). Let Cj be the exceptional curves of fo. The exceptional set of f is one 
dimensional if any of the following conditions are satisfied: 

(13.6.1) EajCj . KH , = -1 has no solutions a j E Z+. 
(13.6.2) EajCj · KH , = -k and (EajCj)· (EajCj) = -k have no simulta-

neous solutions a j , k E Z+. 
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(13.6.3) fa has only one exceptional curve, X is a primitive extremal nbd, 
and H is not a Du Val singularity. 

(13.6.4) fa has only one exceptional curve, the torsion subgroup of C (C X has 
order m, and H is log-terminal but not of the form 

md (xy - z = O)/Zm(1, -1, a) where (a, m) = 1. 
Proof. The proof of the above conditions is relatively straightforward if X has 
only Q-factorial singularities. (13.3) and the following lemma will reduce the 
general case to the Q-factorial one. 

(13.6.5) Lemma. Let is : Xs ::) Hs ::) Cs -+ Ys : s E .1 be a one-parameter 
deformation of the extremal nbd fa : Xo ::) Ho ::) Co -+ Yo' Then Xo ::) Ho ::) Co 
is divisorial iff Xs ::) Hs ::) Cs is divisorial for all small s. 
Proof. Note first that in general Xs is not a germ, thus it is not an extremal 
nbd. In fact it can contain several disjoint contracted curves. We claim the 
strongest version of the above lemma: if Xo is divisorial then the germ along 
Cs is divisorial. 

Let 2" (resp. $f) be the total spaces of the deformations of Xo (resp. Yo) 
and let F : 2" -+ $f be the contraction morphism. Let fi; be the exceptional set 
of F . If Xs ::) Hs ::) Cs is divisorial for all small s i- 0 then fi; has dimension 
three. Thus fi; n Xo has dimension at least two, hence Xo is divisorial. 

Conversely assume that Xo is divisorial. Let B c Xo be a general contracted 
curve. Then B does not pass through any singularities and it is a smooth ratio-
nal curve with normal bundle &' + &'( -1). Therefore the normal bundle of B 
in 2" is &' + &' + &'( -1). Thus B has a two-parameter family of embedded 
deformations in 2" . Thus fi; has a three-dimensional component ~ contain-
ing at least one component of Co' Jf' = U Hs is a Cartier divisor on 2". 
Therefore Jf' n ~ is at least two dimensional. Therefore Hs n ~ is a compact 
curve contracted by is, thus Xs ::) Hs ::) Cs is divisorial for all small s. D 

In the analytically Q-factorial case we argue as follows. If f contracts a 
divisor then in the general fiber we have 1; : H; -+ HI' which contracts some 
curves DJ" t' By construction H; is smooth and -KH' is !;-ample. Therefore 

, t 

every 1;-exceptional curve is a (-1 )-curve. 
To see (13.6.1) pick any of these (-1 )-curves and specialize it to the special 

fiber. The limit cycle is an integral linear combination I: a;C; of the exceptional 
curves. The intersection number with K x remains constant in the procedure. 
Thus I:a;C;. K H , = -1. 

If X has Q-factorial singularities and there is an exceptional divisor E then 
it must be Q-Cartier. We compute the intersection number E· E . H' in two 
ways. First, E· H is an integral linear combination I: a;C; of exceptional 
curves. Thus 

On the other hand, E· E . H' = E . E . H;. Since E· H; is a collection of k 
( -1 )-curves, the above intersection number is - k. Computing K x . E . H' as 
before gives the other equality. 
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In case (13.6.3) if f contracts a divisor then it has to be a divisorial con-
traction of a single extremal ray, thus Y has terminal singularities. Assume 
that Y is not Gorenstein. Let Y' ~ Y be the Gorenstein cover. Take 
X' = normalization of (X Xy Y') . The morphism X' ~ X is etale outside 
C. By purity it has to be etale outside the singular points of X. Thus X is 
not primitive. Therefore H is rational and Gorenstein thus DuVal. 

The previous argument also shows that the torsion in C t C X and the index 
of KH are equal. The only log-terminal singularites with index m that can be 
surface sections of terminal singularities are exactly those listed in (13.6.4) (see 
[KSB88,3.10]). 0 

(13.6.6) Remark. Note that (13.6.3) can be formulated as a necessary and 
sufficient condition: Assume that fa has only one exceptional curve and X is 
a primitive extremal nbd. Then f is a divisorial contraction if and only if H 
is a DuVal singularity. 0 

(13.7) Example. We give an example ofthe following situation: f: X ~ Y is 
an isolated extremal nbd such that the exceptional curve C = U Ci has several 
components. After flip we get r : X+ ~ Y and the exceptional set of r is 
an irreducible curve. Thus the number of curves can decrease under flips. 

(13.7.1) Construction. We start with the triple point resolution 
3 2 2 
0- 0-"'-0 
~ 

(m-2) -times 

We blow up (m - 1) disjoint points in the (-3)-curve. We get (m - 1) curves 
with selfintersection (-1), and the rest is the following. 

(13.7.1.1) m+2 o 
2 2 o - ... - 0 
~ 

(m-2) -times 

We call these curves Bm _" ... , B, from left to right. (13.7.1.1) is the dual 
graph of the resolution of the quotient singularity of the form 

2 m C /Zmz(l, m - 1) ~ (xy - z = O)/Zm(1, -1, 1). 
In particular, it can be the hyperplane section of a terminal quotient singUlarity. 
Thus we can contract this configuration and deform the resulting surface to 
obtain an extremal nbd X with reducible central curve. In the central fiber 
there are (m - 1) exceptional curves and a single quotient singularity. 
(13.7.2) Claim. (13.7.2.1) The above extremal nbd X is isolated. 

(13.7.2.2) After flip we have only one exceptional curve. 
Proof. We will use (13.6.2) to show that the nbd is isolated. Let HeX be 
the chosen member of &x' Let C" ... , Cm_, be the exceptional curves in 
HeX. We want to compute Ci ' KH and Ci ' Cj • Let g : H ~ H be the 
minimal resolution of the singular point of H. Let C i be the proper transform 
of Ci • This is a (-1 )-curve on H. By projection formula 

Ci . K H = C i . g * K H = (-1) - C i . K HI H" 
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KH/H is easy to compute 

m-l m-2 1 
K- ----B ---B -···--B H/H - m m-I m m-2 m I· 

Therefore we get that 
C..KH =-~ 

I m 
Similarly, Cj ' Cj = Cj ' g*Cj . g*Cj can be written as 

* - m-l m-2 1 g Cj = C i + --2-Bm_1 + --2-Bm-2 + ... + -2 B I · 
m m m 

Therefore we get that 
m-l 

C j ' C j = -1 + --;;;r-' 
We need to solve the equations 

L:ajCj .KH = -k, 

(L:ajCj). (L:ajCi) = -k. 

By the above formulas 

if i ¥ j. 

-k = (L:ajCj). (L:ajcj) = L:a:C: + L:ajajCjCj 
jf.j 

= (L: an (-1 + m -; 1 ) + m -; 1 L: ajaj 
m m if.j 

= - L:a:+ m-; 1 (L:ajf. 
m 

Therefore, 

(13.7.3) 2 m-l( )2 L:aj = k+ --2- L:ai . 
m 

From L aiCi . KH = -k we obtain that L ai = km. Using the inequality 

m-I 2 1 (m-I )2 L: ai 2: m _ 1 L: ai ' 
i=1 i=1 

(13.7.3) becomes 
_1_k2 2 < k2 2 m - 1 + k 

1 m - m 2 ' m- m 
which can be rearranged as 

1 m-l 1 1 -- < --+-- <-. m - 1 - m2 km2 - m 
This is impossible, therefore no divisor is contracted in X. 

A rational triple point has an irreducible deformation space, the Artin compo-
nent. By (11. 7.3) the flip is constructed by taking the minimal DuVal resolution 
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ofthe singularity and taking a deformation of it. The minimal DuVal resolution 
contains exactly one curve-the (-3)-curve-thus e+ is irreducible. 0 

(13.8) In previous chapters we computed what we expect the general section 
H of &x to be like. In order to construct examples of extremal nbds we will 
proceed in reverse. First we construct H as expected and then we deform 
it. Here we face the following problem. We identified H only by computing 
A(H :::) e). Usually, however, the dual graph of a singularity does not determine 
the singularity up to isomorphism. There are two ways of overcoming this 
problem, both are of interest. The first approach is to claim that in general we 
can construct surface germs along curves with arbitrary prescribed singularities. 
The second approach is the observation that in our cases A(H :::) e) nearly 
determines H up to isomorphism. 

(13.8.1) Construction of surface germs with prescribed local structure. Let 
Pj E D j C ~ : i = 1, ... ,k be germs of isolated surface singularities with 
an irreducible curve germ and let N be an integer. Then there is a germ of a 
surface along a proper curve e C H such that 

(13.8.1.1) e is irreducible and rational; 
(13.8.1.2) H has exactly k singular points Q j along e and 

(Qj E e c H) ~ (Pj E D j c~) for every i ; 

(13.8.1.3) The selfintersection number of e c H satisfies 

N ::; e 2 < N + 1. 

Proof. Start with a surface germ e' = pi C H' = pi X A and pick k + 1 points 
Q~, ... ,Q~ in e' . Let Aj (resp. B) be a small open (resp. closed) disc of 
radius 8 (resp. 8/2) around Q;. We may assume that 8 is so small that the 
closures of the discs Aj are disjoint. 

We can choose a suitable representative of Pj E D j C ~ in such a way that 
D j '---+ ~ is proper. Furthermore one can choose an identification gj : D j ---+ 

Ae c C such that gj-I (Ae -7S.e/ 2 ) has an open neighborhood Gj such that there 
is a biholomorphism 

(D j n Gj C Gj ) ~ (Ae -l5.e/2 C A x (Ae -l5.e/2 )) 

which induces gj on D j n Gj • 

Remove Bj x A from H' and identify Gj C ~ with A x (Aj - B) cH'. If 
we do this for i = 1 , ... , k then the resulting surface germ e" C H" satisfies 
conditions (13.8.1.1-13.8.1.2). 

Qo will be used to adjust the selfintersection number. Let z be a local 
parameter at Qo and let t be a local parameter on A. Remove Bo x A from 
H" and then identify 

via (t, z) 1--+ (zk t , z). 

We obtain a surface germ e cHand the selfintersection of e differs from 
the selfintersection of e" by k. Thus if we choose k suitably we can satisfy 
condition (13.8.1.3) too. 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



676 JANOS KOLLAR AND SHIGEFUMI MORI 

(13.8.2) Theorem. Let 0 E S be a normal surface singularity such that the dual 
graph of its minimal resolution is one of the graphs (without the curve .) given 
in (6.7.1), (6.7.2), (6.7.3), (7.7.1), (7.11.1), (10.7.3.1), or (10.7.3.2). 

Then 0 E S is isomorphic to a singularity given by the equations at the corre-
sponding place. 

In particular, any such 0 E S occurs as a hyperplane section of a terminal 
singularity in the expected way. 
Proof. This is an immediate consequence of the results of [Laufer73]. He clas-
sified those singularities that are determined up to isomorphism by the reduced 
exceptional divisor of their minimal resolution. In our cases the reduced excep-
tional divisor has no moduli, except in the cases (6.7.2), (6.7.3), and (7.11.1) 
when a cross ratio is the only modulus. By the results (6.7.2), (6.7.3), and 
(7.11.1) we can get any nonzero value of this cross ratio. Therefore it is suf-
ficient to prove that all our singularities are determined up to isomorphism by 
the reduced exceptional divisor of their minimal resolution. This is immediate 
from Laufer's lists. We give the location of our singularities in his lists, without 
explaining his notation. 

singularity place in [Laufer73] 
(6.7.1) p. 136, IIL2 
(6.7.2) p. 162, III.i 
(6.7.3) p. 162, IILi 
(7.7.1) p. 136, III.2 
(7.11.1) p. 162, III.i 
(10.7.3.1) p. 137, IV LIJIRI 
(10.7.3.2) p. 137, IV LsJIRI D 

We are ready to prove several existence and structure theorems for extremal 
nbds. We will prove that all types of nbds not excluded so far do indeed exist. 
Also, I1(H:::> C) determines the type of the neighborhood with a few exceptions. 

(13.9) Theorem. Type IC extremal nbds exist for every odd m ~ 5. For every 
m both possibilities listed in (8.3) do occur. 

If H :::> C is the germ of a normal surface along a smooth rational curve C 
such that I1(H:::> C) is as in (8.3.1) (resp. (8.3.2)) then there is an extremal nbd 
X :::> H :::> C such that H E I&'x I . 

If C c X is a threefold germ along a complete curve C with terminal sin-
gularities and C c HeX is a member of I&'xl such that I1(H:::> C) is as in 
(8.3.1) (resp. (8.3.2)) then C c X is an extremal nbd of type IC with AI (P) '" 0 
(resp. AI (P) = 0) . 
Proof. By (13.8) for every odd m ~ 5 there is a pair H :::> C such that 
I1(H :::> C) is as in (8.3.1) (resp. (8.3.2)). Thus the existence follows from 
the second part of the theorem. 

By (13.8.2) and (10.7) we can deform H in such a way that we obtain an 
extremal nbd X with the required singularity. By construction any such X has 
a type I C singular point of index m. By (11.4) the contraction morphism of 
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C c H extends to a morphism f: X --+ Y which contracts C. Thus C c X 
is an extremal nbd. Having type I C is determined by the germ C cHat the 
singular point. Y has a hyperplane section ~y as in (8.3.1) (resp. (8.3.2)). 
Note that these are not DuVal singularities. X is also primitive. (13.6.3) 
implies that the extremal nbd is isolated. 

We still must show that the vanishing of Al (P) is determined by ~(H :::> C). 
Let us consider an extremal nbd of type IC. Assume that there are S3' S4 E 
r(&x) such that ~((s3 = 0) :::> C) is given by (8.3.2) and ~((S4 = 0) :::> C) is 
given by (8.3.1). 

Consider s3 + aS4 = O. This defines a normal surface Ha' By (10.7), 
~(Ha :::> C) is given by (8.3.1). for a i- O. Thus after contraction we ob-
tain a flat family of surface singularities f(Ha)' By construction f(Ho) has 
mutiplicity three and f(HJ has multiplicity 4 for a i- O. This is impossible. 
Thus ~(H:::> C) determines the vanishing of Al (P). 0 

(13.9.1) Remark. The following interesting phenomenon helped us to distin-
guish the two cases of type I C nbds. 

By looking at Al (P) we expect that the nbds of type (8.3.2) are the special 
ones. This is reflected by the fact that the singularity of H x at P is more 
special for (8.3.2) than for (8.3.1). However, if we look at the singularity of 
Hy then it has multiplicity 3 for (8.3.2) and multiplicity 4 for (8.3.1). Thus we 
could claim that the case (8.3.1) describes a more special nbd. 

One can easily construct a deformation of a nbd of type (8.3.2) where in the 
general fiber we have a nbd of type (8.3.1). By the above considerations, the 
general fiber has to contain another contracted curve. 

(13.10) Theorem. For every odd m ~ 5 and every k there is an extremal nbd 
of type kAD with two singular points of indices 2 and m such that the axial 
multiplicity at the index two point is k. The singularities are always Q-factorial. 

If H ::J C is the germ of a normal surface along a smooth rational curve C 
such that ~(H :::> C) is as in (9.2) then there is an extremal nbd X :::> H :::> C 
such that HE I&xl. 

If C c X is a threefold germ along a complete curve C with terminal sin-
gularities and C c HeX is a member of I&x! such that ~(H :::> C) is as in 
(9.2) then C c X is an extremal nbd o!type kAD. 
Proof. The index m singularity is a cyclic quotient. The other singularity is of 
the form (xy + z2 -l = 0)/Z2(1, I, 1,0) where k is the axial multiplicity. 
By [Kolhir91, 2.2.7], this is a Q-factorial singularity. 

All the cases can be constructed exactly as in (13.9). For the same reason they 
are always isolated. We still must show that they are not semistable. Assume 
that I&xl has a more general member, which shows that it is in fact a semistable 
extremal nbd. We will compute the singularity of this member H S • 

At the index two point the original member has the form 
2 (xlYI - Zl = 0)/Z2(1, 1, 1). 

This is the most general possible so this has to be the local form of H S • At 
the index m point the threefold singularity is (:3 /Zm (1 , -1, mt I ). Thus in 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



678 JANos KOLLAR AND SHIGEFUMI MORI 

suitable coordinates the local description of H S is 
dm m+ 1 

(X2Y2 - z2 = O)/Zm(l, -1, -2-) 

for some natural number d. The dual graph of the resolution of these singu-
larities is the following: 

for d = 1: 

for d> 1: 
2 
o tn:f o 

2 
o ¥ o 

2 2 3 
0-···-0-0 
~ 

¥ -times 

2 2 3 2 2 3 
o - ... - 0 o 0-···-0-0 
~ 

(d-2) -times 
~ 

¥ -times 

The minimal resolution of H S is obtained be attaching 
4 1 
o - .-

to the left end of the above dual graphs. Contracting the (-1 )-curves twice we 
obtain a cyclic quotient singularity of multiplicity mt5 • 

As in (13.9) this cannot be a small deformation ofa singularity of multiplicity 
four. This shows that such a nbd is never semistable. 0 

(13.11) Theorem. All cases listed in (6.2-6.3) for type cD/3 extremal nbds 
occur. 

If H ::J C is the germ of a normal surface along a smooth rational curve 
C such that /1(H ::J C) is as in (6.2.3.1), (6.2.3.2), or (6.3) then there is an 
extremal nbd X ::J H ::J C such that H E I&x I. 

If C c X is a threefold germ along a complete curve C with terminal sin-
gularities and C c HeX is a member of I&xl such that /1(H::J C) is as in 
(6.2.3.1) , (6.2.3.2), or (6.3) then C c X is an extremal nbd of type cD/3 or 
kiA. If X has type cD/3 then 

(13.11.1) i p( 1) = 1 and X has a simple cD point iff /1(H ::J C) is as in 
(6.2.3.1); 

(13.11.2) ip (l) = 1 and X has a double cD point iff /1(H ::J C) is as in 
(6.2.3.2); 

(13.11.3) ip (l) = 2 iff /1(H::J C) is as in (6.3). 
Proof. The proof of the existence is the same as in (13.9); it also follows from 
(6.11; 6.17; 6.21). There are only three cases if we look only at /1(H ::J C). 
However, we can also specify the value of l(P) as in (6.2.1) and (6.3.1.1) since 
this value depends only on the singularity at P. 

By (13.3) any of the above H does lie on an extremal nbd of type klA too. 
In all cases the singularity of Hy is rational but not DuVal. Thus the nbd is 
isolated by (13.6.3). 

The proof that /1(H ::J C) determines i p( 1) goes as in (13.9) once we observe 
that /1 y has multiplicity 4 in (6.2) and multiplicity 3 in (6.3). By (6.22) the 
local structure of H at the singular point determines whether the cD /3 point 
on X is simple or double. 0 
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(13.12) Theorem. All cases listed in (7.2-7.4) for type IIA extremal nbds occur. 
If H J C is the germ of a normal surface along a smooth rational curve C 

such that I1(H J C) is as in (7.2) , (7.3), or (7.4) then there is an extremal nbd 
X J H J C such that HE I&'xl. X is necessarily of type IIA. 

If C c X is a threefold germ along a complete curve C with terminal sin-
gularities and C c HeX is a member of I&'xl such that I1(H J C) is as in 
(7.2), (7.3), or (7.4) then C c X is an extremal nbd of type IIA. Furthermore, 
if I1(H J C) is as in (7.1) (resp. (7.2) resp. (7.3)) then X is as described in 
(7.1) (resp. (7.2) resp. (7.3)). 
Proof. The existence is the same as in (13.9); it also follows from (7.6.4; 7.9.4; 
7.12.5). There are only three cases if we look only at I1(H J C). However, we 
can also specify the value of l(P) as in (7.2.1), (7.3.1), and (7.4.1.1) since this 
value depends vnly on the singularity at P. 

Let P E H be the unique index four point of H and let P~ E H~ C (;4 be the 
index one cover. By (7.7) and (7.11) the Z4-action is given by weights (1,1,3,2) 
and H~ is the complete intersection of two hypersurfaces; one invariant and 
another anti-invariant under the Z4-action. Thus if H is a hypersurface section 
of a terminal singularity then this three-dimensional singularity is the quotient 
of an anti-invariant hypersurface by a Z4-action. Thus by definition, X is of 
type IIA. 

We can apply (13.6.3) to conclude that the nbd is isolated. 
The method of (13.9) can be used to distinguish (7.1) from the other two 

cases. We claim that the cases (7.2) and (7.3) are distinguished already locally 
at the index 4 point. Indeed, let g be the equation of the canonical cover of 
the terminal singularity at the index 4 point. From (7.7) and (7.11) we see that 
rankgdeg=2 is determined by H. rankgdeg=2 = 3 for (7.2) and rankgdeg=2 = 2 
for (7.3). 0 

Next we deal with semistable nbds. It is easier to describe those with two 
singular points. Let H be a general member of &'x. By (3.5.1) at the singular 
points we can choose coordinates such that the three-dimensional singularity is 

(xy - zdn + tf(x, y, z, t) = O)/Zn(1 , -1, a, 0) where (a, n) = 1, 

cU is the x-axis and t = 0 is the local equation of H. We can formulate a 
description of such nbds. 
(13.13) Theorem. Given two singularities as above with numerical invariants 
(n, a, d) and (n', a' , d') there is an extremal nbd of type k2A with the above 
local description at the singular points iff (a, n) = 1, (a', n') = 1, and the 
following condition is satisfied: 

a a' 1 1 
1 < - + 1< 1 + - + --. n n dn2 d'n,2 

Proof. The relative prime conditions come from the conditions on terminal 
singularities. 

Let the two singular points be P and P' . Then , , 
n-a n-a 

C .Kx = -1 +wp(O) +wp/(O) = -1 + -- + --,-. n n 
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This gives the left side of the inequality in the theorem. To get the right-hand 
side we compute the self-intersection of C inside H. This should be negative, 
proving the necessity of the above conditions. 

In general consider a quotient singularity 0 E S ~ 0 E C2 jZm(1 , q) and let 
C be the image of the x-axis in the quotient. If we resolve this singularity then 
the dual graph of the resolution is a chain of rational curves Bi : i = I , ... , s 
whose self-intersections -bi are computed from a modified continued fraction 
expansion of ~ . The proper transform of C intersects the curve B, . The pull-
back of C to the resolution is a cycle C + E CiBi where the ci are rational. 
They satisfy the relations 

ci_, - bici + Ci +1 = 0 for i = 1 , ... , s, where Co = 1 and CHI = O. 

This can be rewritten as 
Ci_ 1 _ b 1 
S - i - C)Ci+ I ' 

This is the same recursive formula that computes the bi . Therefore we obtain 
that ci = ;. If this local set-up sits on a global surface then we see that if we 
take the minimal resolution of 0 E S then the self-intersection of C decreases 
by;. 

Now we go back to H. The singularities of H are quotient singularities given 
as C2 jZdn2 (1 , dan - 1) resp. C2 jZd' n,2( 1 , d' a' n' - 1). The proper transform 
of C in the minimal resolution of H is a (-1 )-curve, thus we get that the 
self-intersection of C in H is 

1 dan - 1 d' a' n' - 1 - + + ----;:--
dn 2 d' n,2 

If this number is nonnegative then C cannot be contractible inside H. If it is 
zero then H contracts to a curve, thus H should be the exceptional set of the 
contraction morphism. This is, however, impossible since the exceptional divi-
sor has negative intersection with C whereas H has zero intersection. Thus the 
self-intersection of C is negative. Rearranging this we get the other inequality 
of the theorem. 

Conversely, we can always take two singularities HI and H2 as above and 
patch them together to get C c H such that 

, , 
n-a n-a 

C.KH = -1 + -- + --,-. n n 
If the conditions are satisfied then C has negative self-intersection in H , there-
fore, it can be contracted. (13.1) gives an extremal nbd with the required local 
structure. 0 

(13.14) Imprimitive case. An extremal nbd as above with numerical invariants 
(n, a, d) and (n', a' ,d') is imprimitive iff (n, n') = p > 1. In this case we 
can take a p-fo1d cover of the nbd. This is again an extremal nbd of the same 
type. Locally the new singularities are 

(xy - zdn + tf(x, y, z, t) = O)jZm(1 , -1, ap, 0), where n = pm 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 681 

resp. 

d'n' " , (xy-z +tf(x,y,z,t)=O)/Zm,(I,-I,ap,O), where n =pm. 

Considering our convention this gives that the covers have numerical invariants 

(m, ap, dp) resp. (m', a'p, d'p), 

where - denotes residue mod m (resp. m'). 

(13.15) Remarks. (13.15.1) The inequalities of the theorem are fairly restric-
tive. It is not clear to us for which values of nand n' one can find solutions. 
It is easy to see that no solutions exist if n + 2 < n' < 2n. On the other hand, 
if n' > > n2 then there are many different possibilities for a, a' , d, d' . 

(13.15.2) Assume that the nbd is divisorial. Then (13.6.1) gives that for some 
integer a l we have 

a l (1 -* -::) = -1. 

This gives that nn' -an' -a' n divides nn' . Assume first that (n, n') = 1 . Let q 
be a prime dividing nn' -an' -a' n. Then q also divides say n. Thus q divides 
an' , hence a. This contradicts (n, a) = 1 . Therefore nn' - an' - a' n = 1 . If 
(n, n') > 1 then we can take the primitive cover and conclude that in general 
for a divisorial nbd we have nn' - an' - a' n = (n, n') . 

Consider the condition (13.6.2). It reads as follows: 

and 

, 
a a a l (1 - - - I) = -k 
n n 

2 a a' 1 1 a (- + - - 1 - - - --) --k Inn' dn2 d'n,2-

has a solution in a and k. Using the formula obtained before and the notation 
of (13.14), this is equivalent to 

dd' 
dn 2 + d'n,2 - pdd'nn' 

This is rarely satisfied. 

is an integer. 

(13.16) klA type extremal obds. In this case we have considerable freedom in 
constructing the extremal nbd. Let us consider any singularity 

(xy - zdn + tf(x, y, z, t) = O)/Zn(1, -1, a, 0), where (a, n) = 1. 

We resolve the surface singularity HI defined by t = O. We get a dual graph 
of the form 

b l bs 
o - ... - 0 
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Pick any curve Hi and patch the unit ball in 1(:2 in such a way that the resulting 
surface H contains a unique compact curve C whose proper transform inter-
sects Hi transversally. If bi > 2 then C in H can be contracted to a singular 
point. The dual graph of its resolution is 

bl bj _ 1 bj-I bj+1 b, 
0-···-0-0 o - ... - 0 

Thus we obtain an extremal nbd C eX. Several of the conditions of (13.6) 
can be used to get many examples of isolated extremal nbds. These also give 
examples of extremal nbds where the multiplicity of d is arbitrarily large. 

One can get examples having a cA type point and a type I I I point. There 
are some conditions on the index of the cA point and on the axial multiplicity 
of the type I I I point. 

(3.3) left open the possibility that the general member of &x containing C 
is not normal but has normal crossing singularity generically along c. We do 
not have any explicit examples, but this is quite likely to happen. 

Next we will determine the flip in the exceptional cases. We start with the 
exceptional index three and four cases, these are easier. The main idea is to 
deform the nbd until we get a simpler one where the flip is easy to determine. 
This process will also give examples of "splitting-up" of the exceptional curve. 
Let X :J C --t Y 3 Q be an isolated extremal nbd. We will decide which 
P-modification of the general hyperplane section H' of Y corresponds to the 
flip. Thus, for instance, we determine the indices of the singularities after flip. 
(13.17) Theorem. Let X :::> C --t Y 3 Q be an isolated extremal nbd of type 
cD/3 or of type IIA. In each of the seven cases the following diagrams describe 
the P-modification that corresponds to the flip. The curve denoted by Ef) becomes 
C+ , the rest are contracted. 

cD/3, case (6.2.3.1): 
3 
o 

Ef)-o-o 
2 2 3 

cD/3, case (6.2.3.2): 
2 

Ef) 
2 

o 
2 

cD/3, case (6.3): 

Ef) 
3 

o 

o 
3 

o 
2 

o 
2 

o 
2 

2 
o 

o 
2 

(The flip has one index two point.) 

o 
2 

(The flip has one index two point.) 

(The flip has index one.) 
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IIA, case (7.2): 

IIA, case (7.3): 

o -
4 

IIA, case (7.4): 

2 
o 

o - 0 - 0 
324 

2 
0 

$ - 0 
2 2 

2 
0 

$-0-0-0 
2 2 3 2 

o 
2 

bl~p 

2 
o 

0-$- 0-0 
4 , 3 4 

( The flip has one index twO) 
and one index three points. 

(The flip has one index two point.) 

(The flip has one index two point.) 

683 

Proof. Let HeX be the given member of &'x. H has one index> 1 singular 
point. We will deform these points to simplify the singularities. 

(13.17.1.1) In case cD/3 the singularity of X::> H is given as 
2 (Y4 + f(y" Y2' Y3) = 0)/Z3(1, 1,2,0) 

where f is some polynomial. H is defined by Y 4 = 0 and d is the Y,-axis. 
We deform this via 

2 3 
(Y4 + f(y" Y2' Y3) + t(Y'Y3 - Y2) = 0)/Z3(1, 1,2,0). 

The defining equation of H t stays Y 4 = 0 and C: is the Y,-axis. 
(13.17.1.2) In case IIA the singularity of X::> H is given as 

(g(y" Y2' Y3' Y4) = 0)/Z4(1, 1,3,2), 
where gdeg=2(Y" Y2 , Y3 , 0) has rank at least two, H is locally defined by 
f(Y"Y2'Y3'Y4) = t = 0 where f deg=2(O,0,0'Y4) is nonzero, and d is 
Y, - Y2 = Y3 = Y4 = O. We deform this via 

2 
g(y" Y2' Y3' Y4) + t(Y4 - (Y, - Y2) ) = 0)/Z4(1, 1, 3,2), 

and the defining equation of H by f(y" Y2' Y3 ' Y4) + t(Y'Y3 - (Y, - Y2)4) = O. 
The equations for C: remain Y, - Y2 = Y3 = Y4 = O. 

As in (13.2) we can globalize these deformations. Thus we have global de-
formations X t ::> H t ::> Ct : t E.1 of the original extremal nbds. Locally these 
behave as described above. 
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(13.17.2) Lemma. Consider the above deformations. Then the family Ht : t E 
L\ can be resolved simultaneously, at least after a base change. 
Proof. We consider the family Ht : t E L\. The index 3 (resp. 4) point of 
Ho is described in (6.2-6.3,7.2-7.4). Explicit computation gives that these are 
always rational of multiplicity 5 (resp. 6). The general fibers have a quotient 
singularity at the origin. These have minimal resolutions 

o - 0 for index 3 and 0 - 0 - 0 for index 4. 
5 2 622 

The multiplicity of these is again 5 (resp. 6). Thus H t : t E L\ is an equimultiple 
family of rational singularities. By [Artin66] this is also a normally flat family, 
hence the family of blow-ups is also flat. Again explicit computation gives that 
after one blow-up we have only DuVal singularities left. They can be resolved 
simultaneously, at least after a base change. 0 

(13.17.3) Lemma. Consider the above deformation of an extremal nbd of type 
cD/3. Assume that we have cases (6.2.3.1-6.2.3.2). Then Ht : t E L\ - {O} 
has only one singular point along Ct. This is a quotient singularity of the form 
(YlY3 - y; = 0)/Z3(1, 1,2) 
Proof. At the origin we get the required singularity. We have to show that 
there are no others. Since Ho has only one singular point, every singularity on 
H t must arise from the deformation of this singular point. This deformation is 
given by f(YI ' Y2' Y3) +t(YlY3 - y;). We have to decide if for general t this can 
have another singular point along Ct , which is the y I -axis. The other singularity 
is a moving singularity, thus it can arise only if (f(YI ' Y2' Y3) = YIY3 - Y; = 0) 
is nonreduced along the Y I-axis. The tangent cone of this curve singularity is 
given by (6.7) as 

3 Y2Q(y l , Y2) + Y3 = YIY3 = 0, 
where Q is a quadratic form not divisible by Y2. In particular, the YI-axis is 
reduced. 0 

We remark that in case (6.3) we may get a moving singularity along the YI -

axis. 

(13.17.4) Lemma. Consider the above deformation of an extremal nbd of type 
cD. Assume that we have cases (6.2.3.1-6.2.3.2). Then Ct C Ht : t E L\ - {O} is 
the only exceptional curve. 
Proof. By (13.17.2) the family Ht : t E L\ admits a simultaneous minimal 
resolution. The proper transform of Co is a (-1 )-curve. This lifts to the general 
fiber as a (-1 )-curve. After we contract this (-1 )-curve, the central fiber will 
have no more (-1 )-curves, hence the same holds for the general fiber. 0 

(13.17.5) Proof in cD/3 case. In case (6.3), H' has a rational triple point. 
This has only one P-modification, the minimal DuVal resolution. This is the 
one described in (13.17). 

In cases (6.2.3.1-6.2.3.2) H' has a rational quadruple point. There are 
two P-modifications: the minimal DuVal resolution and the one described in 
(13.17). The latter has an index two point. Therefore we only have to show 
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that after flip we do have an index two point. To see this we apply deformation 
as above. By the previous lemmas Ct is the only exceptional curve in X t · Ht 
has only one quotient singularity along Ct and Ct' K H = - t. Therefore the 

t 

minimal resolution of Ht is given by the diagram 
• - 0 0 
1 5 2 

This contracts to the quadruple point 
0-0 
4 2 

By (11.9.3.1) the flip of the above extremal nbd has an index two point. 
This shows that xt has an index two singularity for t i- O. This singularity 

will specialize to give an index two singularity on X;. 0 

(13.17.6) Proo/in IIA case. In case (7.2) the singularity of H' is an icosa-
hedral quotient. By (11.8.2) there is only one possibility for the flip. 

In cases (7.3-7.4) H' has a rational quadruple point and two P -modifica-
tions. We must show that the minimal DuVal resolution is not the right one. To 
this end we try to analyze the surface H t • Let H t be the minimal resolution of 
H t • From the explicit description of Howe see that it contains only one (-1)-
curve. This lifts to a (-1 )-curve on H t : t i- O. This is the proper transform of 
the curve Ct' In particular, we see that Ct' K H = -! . The minimal resolution 

t 

of the index four point of H t is described in (13.17.2). The relative canonical 
class is easy to compute and we get that Ct intersects the exceptional curves as 
follows 

• - 0 - 0 - 0 
1 622 

If we contract the proper transform of Co' there is another (-1 )-curve. If we 
contract that too, there are no more (-1 )-curves. Thus H t : t i- 0 contains 
either another (-1)-curve, or there is a (-2)-curve intersecting Ct' In the 
second case we get the configuration 

0-. - 0 - 0 - 0 
2 1 622 

If there are two (-1 )-curves the second one must specialize to the configuration 
• - 0 
1 2 

inside H o' In particular, both exceptional curves in H t have intersection prod-
uct -! with K H . This gives the configuration 

t 

1 • 

• - 0-0-0 
1 6 2 2 

These are the two possible configurations of compact curves in I1(Ht ) : t i- O. 
Both contract to 

o 
4 

o 
2 

o 
2 
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By (11.9.3.2) the flip of the extremal nbd containing Ct will have an index 
two point. This index two point will specialize to an index two point on the flip 
of XO. 0 

(13.18) Theorem. Let X:J C -+ Y:3 Q be an isolated extremal nbd of type IC 
or of type kAD. The following diagrams describe the P -modifications that corre-
spond to the flip. The curve denoted by EB becomes C+, the rest are contracted. 

IC, Al (P) = 0 : 
2 
o 

o - 0 
2 2 

EB 
3 

(The flip has index one.) 

Ie, Al (P) "I- 0, and kAD: 
2 
o 

0- EB-o 
2 2 4 

(The flip has one index two point.) 

Proof. In the Al (P) = 0 case H' has a triple point. This has only one P-
modification. 

In the other cases H' has a quadruple point with two P-modifications. 
Therefore we only have to show that X+ contains an index two point. Then it 
must be the P-modification described above. 

Let H be a general member of &x. This has one point of index > 2. In 
both cases X has a cyclic quotient singularity of the form 

(x,y,z)/Zm(2,m-2,1). 
H is defined locally by some equation f(x, y, z) = o. We deform H locally 
by 

f(x, y, z) + t(xy - zm)/Zm(2, m - 2,1). 
In the kAD case there is another singular point, there we choose the trivial 
deformation. These local deformations can be globalized to get a deformation 
Ht eXt: t E ~. We would like to understand Ht . 

Let HI be the minimal resolution of HI. By (8.3.2.1) and (9.2) the index 
m point of Ho has the resolution 

(13.18.1.1) 

!!!f-o 
2 
o 

0-0- 0-0- -0-0-0 
2232···232 
~ 

(m-7)/2-times 

The fundamental cycle is reduced and the multiplicity of the singularity is mt 7 • 

In the general fiber we have a cyclic quotient singularity. It has the resolution 
(13.18.1.2) 0 0 0 - ... - 0 - 0 

2 !11f1 2 2 3 
~ 

(m-5)/2 -times 
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The fundamental cycle is again reduced and the multiplicity of the singularity is 
also mt. Therefore we again have a normally flat deformation and the blow-
up is flat. We want to modify the blow-up slightly. In the central fiber we have 
one singular point after blow-up. Its resolution is 

* 0 0- -0-0 2 3 2 • • . 2 3 --..--
(m-7)/2 -times 

This is a quadruple point Z with two P-modifications. Consider the partial 
resolution Z' -+ Z , which is obtained from the minimal resolution by con-
tracting everything except the curve marked *. Z' has only one singularity, 
which is again a quadruple point with two P-modifications. At least after a base 
change, every deformation of Z is obtained as the contraction of a deforma-
tion of Z' . Thus we can make this modification Z' -+ Z in the central fiber 
and obtain a flat family Ht • The following diagrams describe the central and 
generic fibers above the index m point of H t • Here 0 denotes a curve of the 
minimal resolution that is contracted, the rest are not contracted. Above the 
noncontracted curves is their intersection number with the fundamental cycle. 

The special fiber is 

(13.18.2.1) 1 

* 

The general fiber is 

( 13.18.2.2) 1 

* 

o 
<> 

(m+l)/2 
<> 

1 

* 
1 

0-0- ... -0-0--+* 
~ 

(m-7)/2-times 

(m+l)/2 2 
<> -0- ... -0-* --..--

(m-5)/2 -times 

From this and (10.7.4) it is clear how these curves specialize. The * on the 
left side of (13.18.2.2) specializes to the * on the left side of (13.18.2.1). The 
* on the right side of (13.18.2.2) specializes to the two curves marked * in 
(13.18.2.1). The <> of (13.18.2.2) specializes to the two curves marked <> m 
(13.18.2.1). 

Now the two cases become slightly different. 
(13.18.3) Ie case. There is a (-I)-curve in Ho and we get the following di-
agram describing all compact curves in H 0 : 

(13.18.3.1) 

1 • 

o - <> 
2 2 

l!!±1 
2 o 

2 
o 

0-0- -0-0-0 
3 2 . • . 2 3 2 
~ 

(m-7)/2-times 

Note that the image of the (-1 )-curve in Ho does not pass through any sin-
gular points, so it is still a (-1 )-curve. Considering what we said about the 
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specialization map, this (-1 )-curve lifts to the general fiber fIt and we get the 
following configuration of compact curves on H t (there may be other curves, 
and in fact we will see that there is one more): 

(13.18.3.2) o 
2 

1 • 
0-0- -0-0 

!!ill 2 . • . 2 3 2 _____ 

(m-5)/2-times 

We can contract these (-1 )-curves and get a flat family of surfaces fIt. Looking 
at (13.18.3.1) we see that in fIo the (-1 )-curve intersects the curve denoted 
<>. From (13.18.2.1) we see that this has 1/2 intersection with the canonical 
class. Thus after contraction the curve <> will have -1/2 intersection with 
the canonical class of fIo . If we contract it, then we get a singularity whose 
minimal resolution 
(13.18.3.3) 

is obtained from 

0- -0-0 2 . •• 2 3 
~ 

(m-5)/2 -times 

<> 0 0- -0-0 
1 3 2 . .. 2 3 
~ 

(m-7)/2 -times 
by contracting the curve <>. (13.18.3.3) is a triple point hence every deformation 
is obtained from a deformation of the minimal DuVal resolution. The minimal 
DuVal resolution has an A(m_5)/2-singularity in the central fiber. The same 
singularity occurs in the general fiber,!.ence we can resolve these simultaneously. 
We obtain a flat family of surfaces H t where the minimal resolutions are the 
following. 

For the special fiber: 

(13.18.4.1 ) 

For the general fiber: 
(13.18.4.2) o 

2 

!!!f o 
2 
o 

.- <>- ••• -0-0-0 
1 2 2 3 2 
~ 

(m-5)/2-times 

o 
m±J 

2 

<>- ••• -0-0 
223 
~ 

(m-5)/2 -times 
The specialisation map described after (13.18.2.1-13.18.2.2) seems to indi-

cate that the -2-curve on the left side of (13.18.4.2) specializes to the -I-curve 
on the left side of (13.18.4.1), which is impossible. However in the meantime 
we performed a flip which changes the specialization of curves, thus there is no 
contradiction. 
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(13.18.4.1-13.18.4.2) both have the configuration of curves 
0- ... -0 
2 2 -------(m-5)/2 -times 

obtained from the simultaneous resolution of the A(m_5)/2-singularities. There-
fore the (-1 )-curve in the central fiber (denoted .) lifts to the general fiber and 
intersects the (-2)-curve denoted o. 

Putting everything together we see that HI : t =I- 0 contains at least two 
exceptional curves and the configuration of compact curves on the minimal 
resolution HI : t =I- 0 is the following (a priori there may be other compact 
curves, but we will see that in fact these are all) 

I I • • 

(13.18.5) 0- -0-0 2 • •• 2 3 
~ 

0- 0 

2 ¥ 
(m-5)/2-times 

One can contract these (-1 )-curves and then the new (-1 )-curves until finally 
we obtain the configuration 
(13.18.6.1) o - 0 - 0 

242 
If we do the corresponding contractions in the central fiber then we obtain the 
configuration 

(13.18.6.2) 

2 
o 

o - 0 - 0 
224 

and these two are in a flat family. Since in the special fiber there are no more 
(-I)-curves, the same holds for the general fiber. Hence (13.18.5) describes the 
complete configuration of compact curves in HI : t =I- o. By (11.9.3.3) the flip 
of the general nbd xt : t =I- 0 has an index two point. 

Now we can prove (13.18) in the Ie case. We just saw that X t+: t =I- 0 has 
an index two point which specializes to an index two point of X;. 0 

(13.18.7) kAD case. There is a (-I)-curve in Ho and we get the following 
diagram describing all compact curves in H 0 : 

(13.18.7.1) o 
4 • I 

o 
2 

¥ o 
2 
o 

0-0-0- ... -0-0-0 
2 3 2 2 3 2 ------(m-7)/2-times 

Note that the image of the (-1 )-curve in flo does not pass through any sin-
gular points, so it is still a (-1 )-curve. Considering what we said about the 
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specialization map this (-1 )-curve lifts to the general fiber fIt and we get the 
following configuration of curves on H t : 

(13.18.7.2) o 
4 • I 

(there might be other curves too). 

o 
2 

0-0- -0-0 
!!!±i 2 • • • 2 3 

2 '-v-' 
(m-5)j2 -times 

We can contract the (-1 )-curve in the family fIt and then we get a new 
( -1 )-curve for every t that we can contract. The resulting family of surfaces 
is exactly the same as the one obtained in the I C case. Thus from now on 
further modifications give the same result. 

This way we get that the configuration of compact curves in H t : t =J 0 is the 
following: 

(13.18.8) o 
4 • I 

o 
2 

o 
~ 

This finishes the proof of (13.18). 0 

I • 

0- ... -0-0 
2 2 3 
'-.-" 

(m-5)j2-times 

(13.18.9) Remark. The similarity between the general IC case and the kAD 
case is striking. It is not clear to us whether there is some deeper underlying 
reason. 

The existence of flips implies that the exceptional curve C can be written as 
the set theoretic intersection of some divisors DI E ImlKxl and D2 E Im2Kxl. 
We will be able to find the smallest m l and m2 in all exceptional cases. 

(13.19) Theorem. With the above notation, the smallest values of (m l , m2) 
are the following: 

Type ofnbd 
case (6.2.3.1) 
case (6.2.3.2) 
case (6.3) 
case (7.2) 
case (7.3) 
case (7.4) 
case IC,A I (P) = 0 
case IC,A I (P) =J 0 
case kAD 

smallest (ml ' m 2) 
(1, 2) 
(1, 2) 
(1, 1) 
(2, 3) 
(1, 2) 
(1, 2) 
(1 , 1) 
(1, 2) 
(1, 2) 

Proof. In practice it is very difficult to find members of I mK x I on X . However 
it is very easy to find members of ImKx+l. The following result allows us to 
pass between X and X+ . 

(13.19.1) Lemma. For m l , m 2 > 0 let DI E ImlKxl and D2 E Im2Kxl be 
divisors. Let D7 E ImlKx+1 and D; E Im2Kx+1 be their proper transforms. 
Then DI n D2 = C (set theoretically) iff D7 and D; are disjoint. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF THREE-DIMENSIONAL FLIPS 69' 

Proof. If Dt and D; are disjoint then clearly D, n D2 = C. Conversely 
assume that D, n D2 = C. Then m2D" m,D2 E Im,m2Kxl. The pencil 
(m2D, ,m,D2) is free outside C and gives a map ¢: X --.. lP" • Then X+ is 
the normalisation of the image of (f, ¢). In particular m, m2K x+ is Cartier 
and m2Dt and miD; are disjoint. 0 

Let H+ C X+ be the member of l&'x+1 exhibited in (13.17-13.18) with 
equation t = O. Then 

[m] t [m] [m] o -t wx+ ----t wx+ -t wH+ -t 0 

is exact for every m since X+ has terminal singularities. Furthermore, if 
m 2:: 1 then '.+ [m]. + Rj*wx+=O smceKx+·C >0. 
Thus 

H O(X+ [m]) HO(H+ [m]) ,wx+ -t , wH + 

is surjective. Therefore it is sufficient to find members of ImK H+ I. Since H+ 
is explicitly known, this is rather straightforward. The following observations 
help with the computations: 

(13.19.2). On a quotient singularity of the form C2/Zn2d(l, and - 1) the 
divisor (xy = 0) descends to a section of I(n - I)KI. This is clear since 
xy(dx 1\ dy)®(n-') is Zn2[invariant. 

(13.19.3). On the singularity (x 2 +l + Z4 = 0)/Z2(1, 1, 1) the divisor 
(y = 0) descends to a section of IKI. This is clear since y(dx 1\ dy)/4z 3 is 
Z2 -invariant. 

(13.19.4). Let Dc H+ be a divisor. Assume that for every q E H+ locally at 
q, D is a member of ImKH+I. Assume furthermore that C+·D = mC+ .KH+. 
Then DE ImKH+I. 

Now consider the cases separately. 
(6.2.3.1) Here C+ .KH + = 1/2. (13.19.1) gives a local member of IKI at the 

index two point which is also a global member. Any disc transversal to C+ at 
a smooth point gives a member of 12KI. 

(6.2.3.2) and (7.4). Here C+ .KH + = 1/2. (13.19.2) gives a local member of 
IKI at the index two point which is also a global member. Any disc transversal 
to C+ at a smooth point gives a member of 12KI. 

(6.3) and (IC, A, (P) = 0). Here C+· KH+ = 1 . Any disc transversal to C+ 
at a smooth point gives a member of IKI. Take two such discs. 

(7.2) Here C+· K H + = 1/6. (13.19.1) gives a local member of 13KI at the 
index two point and a local member of 12KI at the index three point, both are 
also global members. 

(7.3) (IC,A,(P) =1= 0) and (kAD). Here C+.KH+ = 1/2. (13.19.1) gives 
a local member of IKI at the index two point which is also a global member. 
Any disc transversal to C+ at a smooth point gives a member of 12KI. 

We need to make precise what it means that these values are the smallest. 
This is clear in case (1,1). If X+ has a unique index two point then every 
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member of IK x+ I passes through that point, so two members of IK x+ I are 
never disjoint. 

The only remaining case is (7.2) where we found (2,3). Here every member 
of IKx+1 contains C+, thus we cannot have (1, m) for any m. Also (2,2) is 
impossible, thus (2,3) is the smallest solution. 0 

(13.19.5) Remark. The cases cD/3 and IIA of the above result were ob-
tained earlier in Chapters 6 and 7. Moreover, those results also determine the 
multiplicity of C in DI n D 2 • The multiplicity is important to know since it 
determines how the Chow ring changes under a flip. 

ApPENDIX. NONSEMISTABLE ISOLATED EXTREMAL NBDS (SUMMARY) 

In this appendix, X ::,) C ~ ]pI is a nonsemistable isolated extremal nbd 
unless otherwise mentioned explicitly, and let f : X ::,) C ---- Y 3 Q be the 
contraction and r : X+ ::,) C+ ---- Y 3 Q the flip of f. We refer the reader to 
[Mori88, 8.8] about i-structures. 

The classification of nonsemistable isolated extremal nbds is as follows de-
pending on the type of X ::,) C (2.3). (We recall that X ::,) C is semistable iff it 
is of type klA or k2A.) 

(A. 1). X::,) C with a cD/3 point P (Chapter 6). This means that the terminal 
singularity (X, P) and the curve (C, P) are as follows. 

(A. 1. 1 ) Local coordinates of (X, P). Let 
(X, P) = (Y I ' Y2' Y3' Y4 ; a)/Z3(1, 1,2,0; 0)::,) C = y l -axis/Z3 , 

2 3 
a = O· Y4 + O· Y I Y3 + O· Y2Y3 + Y4 + Y3 + g(y l , Y2) + ... E (Y2' Y3' y4), 

where g is a nonzero homogeneous cubic form in Y I ' Y2' This only means 
that the coefficient of Y4 (resp. Y IY3"") in the Taylor expansion of a in Y 
is 0 (resp. 0, ... ), hence Y4 may appear in a in a form other than Y; . 

We say that P is a simple (resp. double, triple) cD /3 point if g is square free 
(resp. has a square factor but is cubefree, is a cube) (6.1). We note 

i(P) = length Torsion«Y2' Y3' Y4)/(Y2' Y3' y4)2 + (a)), 
hence we may further assume 

_ l(P) 2 
a =Y I Yi mod (Y2 ' Y3' Y4) 

with i = 2 (resp. 3, 4) if i(P) == 2 (resp. 1, 0) mod 3 after a change of 
coordinates (6.5). 

(A.1.2) Infinitesimal structure. The nbd X is smooth outside of P, and 
X ::,) C 3 P satisfies exactly one of the following four conditions (see (6.2.1), 
(6.3.1)). 

(A. 1.2.1 ) i p( 1) = 1, i (P) = 2, P is a simple cD /3 point, and there is an 
i -splitting 

gr~&' = (0)4(P"). 
(A.1.2.2) ip (l) = 1, i(P) = 2, P is a double cD/3 point, and there is an 

i-splitting 
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(A.1.2.3) ip(l) = 2, f(P) = 3, P is a double cD/3 point, and there is an 
f -splitting 

gr~& = (PU)E1( -1 + 2pU). 

(A. 1.2.4) ip(1) = 2, f(P) = 4, P is a double cD/3 point, and there is an 
f-splitting 

gr~&' = (O)E1( -1 + 2pU). 

On the other hand, let X :::> C be a germ of a 3-fold along C ~]pl which 
need not be an extremal nbd. Assume also that (X, P) is a terminal singularity 
as described in (A.1.1). If X:::> C 3 P satisfies one of the conditions (A. 1.2. 1-
A.1.2.4), then X :::> C is an isolated extremal nbd of cD /3 type as described 
(see (6.2.4), (6.3.4)). 

(A.1.3) Hyptrplane sections. For a normal surface S with only rational sin-
gularities and a smooth curve D on it, let .:l(S :::> D) be the dual configuration 
of the proper transform of D (marked .) and the exceptional curves over S 
(marked 0) on the minimal resolution of S . To each vertex, we attach minus 
the self-intersection number. 

(A.L3.1) 1 - Kxl. Let E c X be a general member of 1 - Kxl. Then E 
intersects C at P properly and (E, P) ~ (f(E) , Q) is the DuVal singularity 
of type E6 (2.2.1.2). (See (3.1) for the converse.) 

(A.L3.2) I&'xlc' Let HeX be a general member of I&'xl containing C and 
H+ C X+ the proper transform of H. Then H, H+, and f(H) = r-(H+) 
are all normal and have only rational singularities. We define Llx = Ll(H :::> C), 
Lly = Ll(f(H) :::> 0) , and Llx + = Ll(H+ :::> C+). Then we have three cases (see 
(6.2.3) and (6.3.3) for Llx and Lly and see (13.17) for Llx+)' 

Case (A.L2.1). 

0 0 0 
3 3 3 

• - 0- 0-0 0- 0-0 e- 0-0 
I 3 2 3 2 2 3 2 2 3 

Llx Lly Llx+ 

and X+ has one singular point of index 2 on C+ . 

Case (A.l.2.2). 

0 0 0 
2 2 2 

e - 0 - 0- 0-0 0- 0- 0-0 • - 0- 0-0 
I 3 2 3 2 2 2 3 2 2 2 3 2 

0 0 0 
2 2 2 

Llx Lly Llx + 

and X+ has one singular point of index 2 on C+ . 
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Cases (A, 1.2.3) and (A. 1.2.4). 

o 
2 

• - 0- 0 - 0-0 
I 2 3 2 3 

and X+ is Gorenstein. 

o 
2 

0- 0-0 
2 2 3 

o 
2 

0- 0-• 
2 2 3 

On the other hand, let X ~ C be a germ of a 3-fold along C ~ pI need 
not be an extremal nbd. Assume also that X has only terminal singularities. 
If It':9x l has a member Ho containing C such that l:!.(Ho ~ C) is equal to one 
of l:!.x's in (A. 1.3), then X ~ C is an isolated extremal nbd and it is either of 
type klA or of type cD/3 with l:!.(Ho ~ C) = l:!.x (see (13.11)). 

(A,1.4) Equation of (H, P) and existence of X ~ C. (H, P) is locally 
defined by Y4 = Y(YI ' Y2' Y3) in (X, P) for some Y and the global equation 
of H induces a generator of the first factor t':9c of gr~t':9 in (A. 1.2. I-A. 1.2.4). 
Thus 

(H, P) = (Yl' Y2' Y3; P)/Z3(1, 1,2; 0) ~ C, 

where P(y I , Y2' Y3) = aCYl ' Y2' Y3' y) • 
Furthermore we have the following after a change of coordinates if necessary 

(see (6.10), (6.20)). 

Case (A.1.2.1). (H, P) satisfies the condition (6.7.1). 

Case (A.1.2.2). (H, P) satisfies the condition (6.7.2). 

Cases (A,1.2.3) and (A. 1.2.4). (H, P) satisfies the condition (6.7.3). 
As a result, l:!.x in (A,1.3) are computed from (6.7). 
For each of (A, 1.2. I-A. 1.2.4), we can therefore construct H ~ C so that 

l:!.(H ~ C) is the corresponding l:!.x in (A.1.3) and (X, P) ~ (H, P) as in 
(A,1.1). By (13.1) we get X ~ H ~ C, which is an isolated nbd in the given 
case. 

(A,1.5) C as a set-theoretic C. I We have two cases. 

Cases (A.1.2.1) and (A, 1.2.2). For general members DE IKxl and D" E 12Kxl, 
we have D· D" = 2C (see (6.2.2) and also (13.19». In particular, t':9D(6Kx ) ~ 
t':9D(6C) . 

Cases (A,1.2.3) and (A. 1.2.4). For general members D, D' E IKxl, we have 
D·D' = 4C (see (6.3.2) and also (13.19». In particular, t':9D(3Kx) ~ t':9D(12C). 

(A.1.6) Remark. In general if a curve C in a 3-fold X is contained in two 
Cartier divisors D and E such that (D· C), (E· C) < 0 and dim D n E = 
1, then C is contractible [Kolhir89, (4.10)], i.e., there is a bimeromorphic 
morphism f: X -+ Y which contracts C and is isomorphic elsewhere. 
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Therefore, assuming that X is terminal, (A.I.5) implies that X :) C is an 
isolated extremal nbd. Furthermore since the divisors in (A.I.5) cut out C 
set-theoretically, they even allow us to construct the flip X+ directly (13.19.1). 

This observation applies to other cases (A.*.5) as well. 
(A.2) X:) C with a IIA point P (Chapter 7). This means that the terminal 
singularity (X, P) and the curve (C, P) are as follows. 

(A.2.1) Local coordinates of (X, P). Let 

(X, P) = (YI' Y2' Y3' Y 4; a)/Z4( 1, 1, 3, 2; 2) :) C = YI-axis/Z4' 
2 

a = O· Y4 + Y3 + g(Y I ' Y2)Y2 + ... E (Y2' Y3 ' Y4) , 
where g is a nonzero linear form in YI ' Y2. We may further assume 

_ t(P) ( 2 
a = YI Yj mod Y2' Y3' Y4) 

with i = 2 (resp. 3, 4) if f(P) = 1 (resp. 3, 0) mod 4 after a change of 
coordinates (7.5). (See (A.I.l) for details.) 

(A.2.2) Infinitesimal structure. The nbd X :) C :3 P satisfies exactly one of 
the following five conditions (see (7.2.1), (7.3.1), (7.4.1». 

(A.2.2.1) ip (l) = f(P) = 1, X - {P} is smooth, and there is an f-splitting 

gr~& = (Ptt)ffi(2Ptt). 

(A.2.2.2) i p (l) = f(P) = 1, X - {P} is smooth, and there are f-splittings 

gr~& = (1 + ptt)ffi( -1 + 2Ptt) , 

gr2(&, J) = (Ptt)ffi(O) , 

where J is the C -laminal ideal [Mori88, 8.2] of width 2 such that J / F~& = 
(1 + p U). 

(A.2.2.3) ip (l) = f(P) = 1, X has a cDV point R on C, X - {P, R} is 
smooth, and there are f-splittings 

gr~& = (Ptt)ffi( -1 + 2PU) , 

gr2(& , J) = (P#)ffi(O) , 

where J is the C-laminal ideal of width 2 such that J / F~& = (pU). 

(A.2.2.4) ip (l) = 2, f(P) = 3, X -{P} is smooth, and there is an f-splitting 

gr~& = (2pU)ffi( -1 + 3pU). 

(A.2.2.5) ip (l) = 2, f(P) = 4, X -{P} is smooth, and there is an f-splitting 

gr~& = (PU)ffi( -1 + 3p#). 

On the other hand, let X :::> C be a germ of a 3-fold along C ~ pi which 
need not be an extremal nbd. Assume also that (X, P) is a terminal singularity 
as described in (A.2.1). If X:) C :3 P satisfies one of the conditions (A.2.2.1-
A.2.2.5), then X :) C is an isolated extremal nbd of I I A type as described 
(see (7.2.4), (7.3.4), (7.4.4». 
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(A.2.3) Hyperplane sections. 
(A.2.3.1) 1- Kxl. Let E c X be a general member of 1- Kxl. Then E 

intersects C at P properly and (E, P) ~ (f(E) , Q) is the DuVal singularity of 
type D k+2 ' where k is the axial multiplicity [Mori88, la.5] of (X, P) (2.2.1.3). 
(See (3.1 ) for the converse.) 

(A.2.3.2) I&'xlc' Let H, H+, Llx' Lly, Llx+' etc., be as in (A. 1.3). Then 
H, H+ , and f(H) = r(H+) are all normal and have only rational singulari-
ties, and we have three cases (see (7.2.3), (7.3.3), and (7.4.3) for Llx and Lly, 
and see (13.17) for Llx +)' 

Case (A.2.2.1). 

o 
4 

o 
4 

o 
4 

• - 0- 0 -0 0- 0 -0 0 - .- 0 -0 
14223224132 

Llx Lly Llx + 

and X+ has two singular points of indices 2 and 3 on C+. 

Cases (A.2.2.2) and (A.2.2.3). 

o 
4 

o 
4 

o 
4 

o - • - 0- 0 -0 0- 0 -0 0- • -0 
2 I 422222222 

Llx Lly Llx+ 

and X+ has one non-Gorenstein point of index 2 on C+ . 
Cases (A.2.2.4) and (A.2.2.5). 

0 0 0 
2 2 2 

0- 0- 0-0 0- 0- 0-0 • - 0- 0-0 
2 2 4 2 2 2 3 2 2 2 3 2 ' 

II 
.-0 0 0 0 
I 2 2 2 2 

Llx Lly Llx+ 

and X+ has one singular point of index 2 on C+. 
On the other hand, let X :::) C be a germ of a 3-fold along C ~]pl which need 

not be an extremal nbd. Assume also that X has only terminal singularities. 
If I&'xl has a member Ho containing C such that Ll(Ho:::) C) is equal to one 
of Llx 's in (A.2.3), then X :::) C is an isolated extremal nbd of type I I A and 
Ll(Ho:::) C) = Llx (see (13.12». 

(A.2.4) Equation of (H, P) and existence of X :::) C. 

(H, P) = (YI' Y2' Y3' Y4; 0, P)I7L.4(1, 1,3,2; 2, 0):::) C 
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for some p. By choosing the coordinates in (A.2.1) properly, we have one of 
the following: 

Cases (A.2.2.1) and (A.2.2.2) and (A.2.2.3). a and P satisfy condition (7.7.1) 
(see (7.6), (7,9.3.1)). 

Cases (A.2.2.4) and (A.2.2.5). a and P satisfy condition (7.11.1)(see(7.12.4)). 
As a result, ~x in (A.2.3) are computed from (7.7) and (7.11). 
Thus each case of (A.2.2.1-A.2.2.5) occurs as in (A.1.4). 

(A.2.5) C as a set-theoretic C. I. We have three cases. 

" III I Case (A.2.2.1). For general members D E 12Kxl and D E 3Kxl, we have 
D" . Dill = 2C (see (7.2.2) and also (13.19)). In particular, &'D,,(12Kx ) ~ 
&'D,,(8C) . 

Cases (A.2.2.2) and (A.2.2.3). For general members D E IKxl and D" E 

12Kxl, we have D· D" = 2k· C, where k is the axial multiplicity [Mori88, 
1a.5] of (X, P) (see (7.3.2) and also (13.19)). In particular, &'D,,(4Kx ) ~ 
&'D" (Sk . C) . 

Cases (A.2.2.4) and (A.2.2.5). For general members DE IKxl and D" E 12Kxl, 
we have D·D" = 2C (see (7.4.2) and also (13.19)). In particular, &'D,,(4Kx ) ~ 
&'D,,(8C) . 

(See also (A.1.6).) 

(A.3) X:J C with a IC point P (Chapter 8). This means that the singularity 
(X, P) and the curve (C, P) are as follows. 

(A.3.1) Local coordinates of (X, P). Let 
2 m-2 

(X, P) = (Y I ' Y2' Y3)/Zm(2, m - 2,1):J C = (locus of (t ,t ,O))/Zm 

with odd index m 2: 5 (8.2). 
(A.3.2) Infinitesimal structure. X - {P} is smooth and we have an i-splitting 

gr~&' = (4P")EB( -1 + (m - 1 )P#) 

by (2.10.2), in which the factor (4P") is unique. The i-invertible sheaf (4P") 
has an i-free i-basis [Mori88, 8.8.3] 

(m-5)j2 (m-2 2) 
AIYI Y4 + "'I YI - Y2 

for some AI and "'I E &'C p' Whether AI (P) = 0 or not does not depend on 
the choice of coordinates (see (8.2)). We have two cases. 

(A.3.2.1) AI (P) i= O. 
(A.3.2.2) AI (P) = O. 
We do not have an infinitesimal characterization of X :J C like (A. 1 ) and 

(A.2). 
(A.3.3) Hyperplane sections. 
(A.3.3.1) 1- Kxl. Let E c X be a general member of 1- Kxl. Then 

(f(E) ,Q) is the DuVal singularity of type Dm , E is a normal surface 
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dominated by the minimal resolution of f(E) , and !l.(E J C) is 

o 

0- ... - 0- 0-. 
'---...-" 

m-3 

where the number 2 is attached to each vertex (2.2.2). (See (3.1) for the con-
verse.) 

(A.3.3.2) I&xlc- Let H, H+ , !l.x' !l.y, !l.x+, etc., be as in (A. 1.3). Then 
H, H+ ,and f(H) = r(H+) are all normal and have only rational singularities 
and we have two cases (see (8.3.2) for !l.x and !l.y, and see (13.18) for !l.x+). 

Case (A.3.2.1). 

• 0 
I (m+3)/2 

(m-7)/2 
..-"-.. 

o 
2 

0- 0 - 0 - 0 - .•. - 0 - 0 - 0 
2232 232 

!l.x 

o 
2 

0- 0 - 0 
4 2 2 

!l.y 

o 
2 

0-. -0 
422 

!l.x+ 

and X+ has one non-Gorenstein point of index 2 on C+ , where 
-I 

denotes o. 
4 

Case (A.3.2.2). 

o 
(m+3)/2 

o 
2 

.-"-. 
0- 0 - .•• - 0 -0 
3 2 2 3 

(m-7)/2 
..-"-.. 

o 
2 

o 
2 

• - 0- 0 - 0 - 0 - .•• - 0 - 0 - 0 
12232 232 

0- 0 - 0 
3 2 2 

and X+ is Gorenstein. 

o 
2 

.- 0-0 
322 

On the other hand, let X J C be a germ of a 3-fold along C ~]pl which need 
not be an extremal nbd. Assume also that X has only terminal singularities. 
If I&xl has a member Ho containing C such that !l.(Ho J C) is equal to one 
of !l.x 's in (A.3.3), then X J C is an isolated extremal nbd of type IC and 
!l.(Ho J C) =!l.x (see (13.10)). 

(A.3.4) Equation of (H, P) and existence of X J C. 

(H, P) = (Y I ' Y2' Y3; h)/Zm(2, m - 2,1; 0) J C 
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for some h. Ifwe choose the coordinates in (A.3.1) properly, then h(xi ' x2 ' x 3 ) 
satisfies the conditions in (10.7). (See (8.10), (8.11).) We note that ao of (10.7) 
is our Al (P) . 

As a result, L1x in (A3.3) are computed from (10.7). 
Thus each case of (A.3.2.1-A.3.2.2) occurs as in (A.1.4). 
(A3.5) C as a set-theoretic C. 1. We have two cases. 

Case (A3.2.1). For general members D E IKxl and D" E 12Kxl, we have 
D n D" = C as sets. 
Case (A.3.2.2). For general members D, D' E IK xl, we have D n D' = C as 
sets. 

(See (13.19) and (A.1.6).) 
(A.4) X:J C of type kAD (Chapter 9). 

Let P and R be the singular points of X on C of indices m and 2, where 
m is an odd number 2: 3 (2.2.3). 

(A.4.1) Local coordinates of (X, P) and (X, R). Let 
(X, P) = (Y I ' Y2' Y3)/Zm(1 , (m + 1)/2, -1) :J C = yl-axis/Zm , 

(X, R) = (zl' z2' z3' z4; y)/Z2(1, 1, 1,0; 0) :J C = zl-axis/Z2' 

where y == ZI z3 - z; mod (Z4) (see (9.4». Such (X, R) is analytically IQ-
factorial (13.10). 

(A.4.2) Infinitesimal structure. X - {P, R} is smooth and we have two cases 
(see (9.4.2». 

(A.4.2.1) {y = O} is smooth at 0, and we have an 1- splitting 

gr~&' = (m ~ 1 P~ + R~)ffi( -1 + P~ + R~). 
(A.4.2.2) {y = O} is singular at 0, and we have an 1- splitting 

I m-l ~ ~ ~ grc&' = (-2-P )ffi(-I + P + R). 

In either case, there is a C-Iaminal ideal J of width 2 such that gr~ = 
J / F~&,ffi( -1 + P~ + R~). Such a J is unique and we have an I-splitting. 

gr2(&, , J) = (2P~)ffi( -1 + m ~ 1 P~ + R~). 
We do not have an infinitesimal characterization of X :J C like (AI) and 

(A.2). 
(A4.3) Hyperplane sections. 
(A.4.3.1) I - Kxl. Let E c X be a general member of I - Kxl. Then 

(f(E) , Q) is the DuVal singularity of type D2k+m (k is the axial multiplicity 
of (X, P) [Mori88, la.5]), E is a normal surface dominated by the minimal 
resolution of feE) and L1(E:J C) is 

o 

o - ... - 0 - • - 0 - .•. - 0-0 
'-v-" ' 
m-I~4 
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where the number 2 is attached to each vertex (2.2.3). (See (3.1) for the con-
verse.) 

(A.4.3.2) I&'xlc' Let H, H+ ,L\x' L\y, L\x+ , etc., be as in (A.1.3). Then 
H, H+ , and f(H) = r (H+) are all normal and have only rational singularities 
and we have the following case (see (9.2.2) for L\x and L\y, and see (13.18) 
for L\x+) : 

o 
(m+3)j2 

(m-7)j2 ..---.. 
o 
2 

o - • - 0 - 0- 0 - 0 - ..• - 0 - 0 - 0 
412232 232 

o 
2 

0- 0 - 0 
4 2 2 

o 
2 

0-. -0 
422 

and X+ has one non-Gorenstein point of index 2 on C+ , where 

denotes o. 
4 

-I -------. 
0- 0 - ... - 0 -0 
3 2 2 3 

On the other hand, let X ::) C be a germ of a 3-fold along C ~ pI which need 
not be an extremal nbd. Assume also that X has only terminal singularities. 
If I&'xl has a member Ho containing C such that L\(Ho ::) C) is equal to one 
of L\x in (A.4.3), then X ::) C is an isolated extremal nbd of type kAD (see 
(13.10)). 

(A.4.4) Equation of (H, P) and (H, R) and existence of X ::) C. 

and (H, R) is defined in (X, R) by z4 = a(zl ' z2' z3) for some P and a. 
As for (H, R), we have Y(ZI' z2' z3' a(zl' z2' z3)) = 0 is an ordinary double 
point (9.11.1). If we choose the coordinates of (H, P) in (A.4.1) properly, then 
h(xI' xl' x 3 ) = P(XI' x 3 ' x 2 ) satisfies the conditions in (10.7). (See (9.15).) 
We note that ao of (10.7) is nonzero in our case. 

As a result, L\x in (A.4.3) are computed from (10.7). 
Thus each case of (A.4.2.1-A.4.2.2) occurs as in (A. 1.4). 
(A.4.5) C as a set-theoretic C. I. We have the following. 
For general members DE IKxl and D" E 12Kxl, we have D n D" = C as 

sets. 
(See (13.19) and (A.1.6).) 
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