CLASSIFICATION OF THREE-DIMENSIONAL FLIPS

JÁNOS KOLLÁR AND SHIGEFUMI MORI
Dedicated to Professor Heisuke Hironaka on the occasion of his sixtieth birthday

Contents

1. Introduction
2. General members of $|-K|$
3. Some remarks about general DuVal elements
4. Index two nbds
5. Nbds with three singular points
6. General members of $\left|\mathscr{O}_{X}\right|_{C}$; isolated $c D / 3$ case
7. General members of $\left|\mathscr{G}_{X}\right|_{C}$; isolated $I I A$ case
8. General members of $\left|\mathscr{G}_{X}\right|_{C}$; IC case
9. General members of $\left|\mathscr{O}_{X}\right|_{C}$; isolated $k A D$ case
10. Sample computations
11. How to flip?
12. Applications
13. Further results on extremal nbds and flips

Appendix: Non-semistable isolated extremal nbds (Summary)

References

The following table shows the interdependece of the chapters and of [Mori88]. One important point is that Chapters 11 and 12 depend only on the statement of Theorem 1.8, not on its proof.

Received by the editors January 15, 1992.
1991 Mathematics Subject Classification. Primary 14E30, 14E35, 14E05, 32J17, 32J20, 14D22.
Partial financial support for Kollár was provided by the NSF under grant numbers DMS-8707320 and DMS-8946082 and by an A. P. Sloan Research Fellowship. Partial financial support for Mori was provided by the US-Japan Cooperative Science Program of the Japan Society for the Promotion of Science.

1. Introduction

In the past decade considerable attention was given to generalizing to dimension three the classical theory of minimal models of surfaces. This program was completed in [Mori88] and the following theorem was proved (for a general introduction, see [Kollár90]).
(1.1) Theorem. Let X be a smooth projective three dimensional algebraic variety. There are two kinds of operations, called divisorial contractions and flips, such that repeated application of these operations transforms X into a variety X^{\prime} which has the following properties:
(1.1.1) X^{\prime} and X are birationally equivalent;
(1.1.2) In general X^{\prime} is not smooth but has only very mild singularities (socalled terminal singularities);
(1.1.3) X^{\prime} satisfies exactly one of the following alternatives:
(1.1.3.1) $K_{X^{\prime}}$ is nef (i.e., it has nonnegative intersection with any curve C in X^{\prime}), or
(1.1.3.2) There is a morphism $g: X^{\prime} \rightarrow Z$ onto a lower dimensional variety such that $K_{X^{\prime}}$ has negative intersection with every curve contained in a fiber of g.

This X^{\prime} is not unique, but only one of the alternatives can occur. Moreover, if (1.1.3.1) occurs then it is well understood how the different choices of X^{\prime} are related to each other.

The importance of this theorem is that despite the fact that we introduce some singularities, the variety X^{\prime} should be considered as much simpler than X. In fact X^{\prime} is the simplest variety within the birational equivalence class of X. Thus if we want to study properties of X which are invariant under birational transformations then we should consider these properties on X^{\prime}. This approach leads to the proof of several deep structure theorems (see, e.g., [Kollár91, Chapter 3] for a recent survey).

The aim of this article is to study the above process in families. To be more precise, assume that $\left\{X_{i}: t \in \Delta\right\}$ is a one-parameter flat family of smooth
projective threefolds. Is it possible to perform the above series of operations such that at each step we have a flat family?

For a family of surfaces we have only one kind of operation, the contraction of a (-1)-curve. Deformation theory tells us that if C_{0} is a (-1)-curve in X_{0} then there is a flat family of (-1)-curves $\left\{C_{i}: t \in \Delta\right\}$ and the contraction gives a new flat family of smooth surfaces. Thus everything that we do in the central fiber can be done in a neighborhood as well.

In dimension three the situation is more complicated. The very first step was considered already in [Mori82]. It turns out that in the category of algebraic spaces a divisorial contraction of X_{0} can be extended to a divisorial contraction of the family $\left\{X_{t}\right\}$. It is not clear that the same can be done in the category of schemes, let alone in the category of projective varieties. Since projectivity has a central role in the three-dimensional theory, this is a troubling prospect.

One of the main results of the article is that by choosing the sequence of contractions and flips with a little care, the above process can be performed in such a way that at each step we have a flat projective family of varieties. The most interesting part is, of course, the following.
(1.2) Theorem. Let X / T be a flat family of smooth projective three-dimensional algebraic varieties over a scheme T. There are two kinds of operations, called (relative) divisorial contractions and (relative) flips, such that repeated application of these operations transforms X / T into X^{\prime} / T which has the following properties:
(1.2.1) There is a rational map $X / T \cdots>X^{\prime} / T$ which induces a birational equivalence on every fiber;
(1.2.2) In general X^{\prime} / T is not smooth but every fiber has only very mild singularities (so-called terminal singularities);
(1.2.3) X^{\prime} / T satisfies exactly one of the following alternatives:
(1.2.3.1) $K_{X^{\prime} / T}$ is relatively nef (i.e., it has nonnegative intersection with any curve C that is contained in one of the fibers of $\left.X^{\prime} / T\right)$, or
(1.2.3.2) There is an equidimensional scheme Z / T of relative dimension at most 2 and a surjective morphism $g: X^{\prime} / T \rightarrow Z / T$ such that $K_{X^{\prime} / T}$ has negative intersection with every curve contained in a fiber of g.

This X^{\prime} is not unique, but only one of the alternatives can occur. Moreover, if (1.2.3.1) occurs then it is well understood how the different choices of X^{\prime} are related to each other.

These results can be used to investigate families of projective threefolds. In particular, one obtains the following results:
(1.3) Theorem (Deformation invariance of plurigenera). Let $\left\{X_{t}: t \in T\right\}$ be a flat family of smooth projective threefolds. Assume that T is connected.

Then $h^{0}\left(X_{t}, \mathscr{O}_{X_{t}}\left(n K_{X_{t}}\right)\right)$ is independent of $t \in T$ for every $n \geq 0$.
(1.4) Theorem (Moduli space for threefolds of general type). Let \mathscr{M} be the functor "families of threefolds of general type modulo birational equivalence" (see (12.7.5) for a precise definition).

Then there is a separated algebraic space \mathbf{M} which coarsely represents \mathscr{M}. Every connected component of \mathbf{M} is of finite type.

We are also able to handle complex analytic deformations of projective varieties:
(1.5) Theorem. Let $g: X \rightarrow S$ be a proper smooth morphism of complex spaces. Assume that the fiber X_{s} is a projective threefold for some $s \in S$. Let

$$
X_{s}=X_{s}^{0} \cdots>\quad \cdots \quad \cdots>X_{s}^{n}=X_{s}^{\prime}
$$

be any sequence of divisorial contractions and flips. Then there is an open neighborhood $s \in U \subset S$ such that the above sequence can be extended to a sequence of fiberwise bimeromorphic maps

$$
X / U=X^{0} / U \cdots>\quad \cdots \quad \cdots>X^{n} / U=X^{\prime} / U
$$

The fibers of X^{\prime} / U have only terminal singularities. If $K_{X_{s}^{\prime}}$ is nef then $K_{X^{\prime} / U}$ is relatively nef. If there is a Fano contraction $g_{s}: X_{s}^{\prime} \rightarrow Z_{s}$ then there is an equidimensional complex space Z / U of relative dimension at most 2 extending Z_{s} and a surjective morphism $g: X^{\prime} / U \rightarrow Z / U$ such that $K_{X^{\prime} / U}$ has negative intersection with every curve contained in a fiber of g.

This result has several consequences for possibly nonprojective deformations of projective threefolds:
(1.6) Corollary. Let $g: X \rightarrow S$ be a proper smooth map of complex spaces. Assume that the fiber X_{s} is a projective threefold for some $s \in S$. Then there is an open neighborhood $s \in U \subset S$ such that:
(1.6.1) $h^{0}\left(X_{u}, \mathscr{O}_{X_{u}}\left(n K_{X_{u}}\right)\right)$ is independent of $u \in U$ for every $n \geq 0$.
(1.6.2) If X_{s} is of general type then X_{u} is projective for every $u \in U$. (Note that in general g is not projective over U.)

Most of the effort to prove (1.2) will be spent on understanding flips on a single threefold. This amounts to analyzing the following situation in great detail.

Let $f: X \rightarrow Y$ be a proper bimeromorphic morphism of complex spaces which satisfies the following conditions:
(i) X has only terminal singularities;
(ii) Y is normal with a distinguished point $Q \in Y$;
(iii) $f^{-1}(Q)$ consists of a single irreducible curve $C \subset X$;
(iv) The canonical class of X has negative intersection number with C.

In the above situation we say that $f: X \supset C \rightarrow Y \ni Q$ is an extremal $n b d$. We usually think of Y as being a germ around Q.

Extremal nbds come in two types. Both are of considerable interest in the study of birational transformations of threefolds. The two types are distinguished by the exceptional set of the map f. This can be either one- or twodimensional.

If the exceptional set is one dimensional then it coincides with C. We will say that the extremal nbd is isolated. In this case K_{Y} is not \mathbb{Q}-Cartier.

If the exceptional set is a divisor then K_{Y} is \mathbb{Q}-Cartier; in fact, Y is terminal at Q. We will say that the extremal nbd is divisorial.

While these two cases are very different, the local computations along the curve C are very similar. Frequently it is very hard to tell which case occurs, even when an extremal nbd is given by explicit equations. In some sense the divisorial case can be considered as the degenerate version of the isolated contraction case, though at the moment we cannot attach any clear meaning to this statement.

Building on results of [Mori88] we prove two results about extremal nbds.
(1.7) Theorem (Reid's conjecture about general elephants). Let $f: X \supset C \rightarrow$ $Y \ni Q$ be an extremal nbd. Then the general member of $\left|-K_{X}\right|$ and the general member of $\left|-K_{Y}\right|$ have only DuVal singularities.
(1.8) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd. Let $t \in \mathscr{F}_{Q} \subset \mathscr{G}_{Y}$ be a general element of the ideal of Q and let $H^{\prime}=(t=0)$. Then H^{\prime} is either a cyclic quotient singularity or one of the following singularities described by the dual graph of their minimal resolution.

Triple points:

or

$$
\begin{aligned}
& \begin{array}{l}
2 \\
0
\end{array} \\
& 0-{ }_{3}-{ }_{2}-{ }_{2} \quad \text { (dihedral quotient) }
\end{aligned}
$$

Quadruple points:

or

$$
\begin{array}{r}
\left.\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0
\end{array}-\begin{array}{l}
\circ \\
2
\end{array}-{ }_{3}^{\circ} \quad \text { (tetrahedral quotient }\right)
\end{array}
$$

or

Quintuple point:

$$
\begin{aligned}
& { }^{2} \\
& { }_{3}^{\circ}-{ }_{2}^{\circ}-{ }_{4}^{\circ} \text { (icosahedral quotient) }
\end{aligned}
$$

The basic idea of the proof of these results is the following method. Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd. Assume that we already have a member $D \in\left|-i K_{X}\right|$. Consider the following exact sequence:

$$
0 \rightarrow \mathscr{O}_{X}\left(K_{X}\right) \rightarrow \mathscr{O}_{X}\left(-(i-1) K_{X}\right) \rightarrow \mathscr{O}_{D}\left(-(i-1) K_{X} \mid D\right) \rightarrow 0 .
$$

Since $H^{1}\left(X, \mathscr{O}_{X}\left(K_{X}\right)\right)=0$, we know that every section of

$$
H^{0}\left(D, \mathscr{O}_{D}\left(-(i-1) K_{X} \mid D\right)\right)
$$

lifts to a section of $H^{0}\left(X, \mathscr{O}_{X}\left(-(i-1) K_{X}\right)\right)$. If we understand D sufficiently well then this way we get some information about the general section of $\mathscr{O}_{X}\left(-(i-1) K_{X}\right)$.

In principle one could start with a very large i, but in practice this is very difficult. Fortunately in [Mori88] it was shown that one can always find a D for $i=1$ or 2 .

Chapter 2 contains the proof of (1.7). In most cases this was already done in [Mori88, Chapter 9]. The proof of the remaining cases is similar. It uses the above observation and computations similar to those in [Mori88].

The easy part of (1.8) is done in Chapter 3. This is the case when the general member of $\left|-K_{Y}\right|$ has a type A singularity. In fact in this case one can forget about X and prove directly that the general hyperplane section of Y has a cyclic quotient singularity. This approach also points to a weakness of the method that we use. The general member H of $\left|\mathscr{O}_{X}\right|$ containing the curve C will sometimes have fairly complicated singularities while its image $H^{\prime} \subset Y$ is simpler. This is so since the curve $C \subset H$ corresponds to a (-1)-curve in the resolution of H. Therefore it seems very natural to forget about X and work directly on Y. Unfortunately we do not know how to do this.

In Chapter 4 those extremal nbds that do not have points of index greater than 2 are considered. To complete some results of Chapter 2, divisorial nbds are also considered. The methods used are independent of [Mori88]. As an application we show that certain nbds with index four points cannot be isolated. Chapter 5 is devoted to the study extremal nbds with three singular points. Such nbds can never be isolated, thus we do not need to study them in greater detail.

Chapters $6-10$ contain the rest of the proof of (1.8). The basic idea-as presented above-is very simple, but in practice it requires long computations and a thorough knowledge of the infinitesimal structure of the extremal nbd. In several cases our results are more complete than is strictly necessary for the proof of (1.8).

The proof that flips are continuous in families is given in Chapter 11. The main problem is for one-parameter families. Assume that $f: X_{t} \supset C_{t} \rightarrow$ $Y_{t} \ni Q_{t}$ is a one-parameter family of extremal nbds. It is easy to see that
the Y_{t} glue together into a four-dimensional space \mathscr{F}. If H_{0}^{\prime} is a general hyperplane section of Y_{0} through Q_{0} then we can view \mathscr{Y} as the total space of a two-dimensional family of deformations of H_{0}^{\prime}. Therefore we can hope to understand the canonical modification of \mathscr{Y} if we understand sufficiently the deformation theory of H_{0}^{\prime}.

In most cases H_{0}^{\prime} is a quotient singularity, and exactly this aspect of their deformation theory was analyzed in [KSB88, $\S 3]$. In the remaining case H_{0} is a rational quadruple point. Their deformation theory was recently analyzed in detail by [de Jong-van Straten88]. Using their analysis [Stevens91b] obtained the necessary results for quadruple points.

We would also like to point out that this method gives a new proof of the existence of flips using only the existence of flips in the semistable reduction case. At the moment, however, this proof is considerably longer than the original one.

Chapter 12 contains the proof of (1.2) Theorem and the proof of the applications (1.3-1.5). It also contains several auxiliary results that may be useful in different situations too.

Finally, in Chapter 13 flips are studied in more detail. We prove that all the cases not excluded so far do indeed occur and we determine the flip in the exceptional cases. We hope to discuss the flip for the two main series in a subsequent paper.

These computations show that the behavior of extremal nbds in families can be quite complicated. For example if $f: X_{t} \supset C_{t} \rightarrow Y_{t} \ni Q_{t}$ is a one-parameter family of extremal nbds and C_{0} is an irreducible curve then it can easily happen that C_{t} is reducible for every $t \neq 0$. Since our procedure of flipping is to flip one curve at a time, this shows that the procedure of flipping is not continuous in families. Of course, we know that the end result is continuous.

We also give an example of an extremal nbd $X \supset C$ with its flip $X^{+} \supset C^{+}$ such that the curve C has many irreducible components but the curve C^{+}is irreducible (13.7.1).

Finally in an appendix we make a list of nonsemistable isolated extremal nbds and collect all the results about them that are scattered all over the article.

We believe that similar computations will yield a complete description of divisorial extremal nbds or extremal nbds with reducible central curve as well. However, the article is long enough already as it is, and therefore we restrict ourselves to treating the divisorial extremal nbd case only if not much extra work is required.

Some of the results of this article were announced in [Mori89,90] and [Kollár90].

Terminology. (T.1) By a three-dimensional extremal curve neighborhood we mean the germ of a three-dimensional complex space X along a compact curve C that satisfies the following properties:
(T.1.1) There is a germ of a complex space $Y \ni Q$ and a proper bimeromorphic morphism $f: X \supset C \rightarrow Y \ni Q$ such that $C=f^{-1}(Q)$.
(T.1.2) $-K_{X}$ is \mathbb{Q}-Cartier and f-ample.
(T.2) A three-dimensional extremal curve neighborhood $X \ni C$ is called
terminal (resp. canonical) if X has terminal (resp. canonical) singularities.
(T.3) The curve C will be called the central curve of $X \supset C$.
(T.4) A three-dimensional extremal curve neighborhood $X \supset C$ is called isolated if $f: X \backslash C \rightarrow Y \backslash Q$ is an isomorphism. Otherwise it is called divisorial. If $X \supset C$ is divisorial then the exceptional set of f contains a divisor.
(T.5) In this paper the expression extremal nbd means a three-dimensional extremal curve neighborhood with terminal singularities and irreducible central curve.
(T.6) Let $g: U \rightarrow V$ be a proper bimeromorphic morphism of normal and irreducible complex spaces. Let $E \subset U$ be the exceptional set. Assume that $\operatorname{dim} E \leq \operatorname{dim} U-2$ and that $-K_{U}$ is \mathbb{Q}-Cartier and g-ample.

By the flip of g (or, if no confusion is likely, by the flip of U) we mean a proper bimeromorphic morphism of normal and irreducible complex spaces $g^{+}: U^{+} \rightarrow V$ with exceptional set E^{+}such that
(T.6.1) $\operatorname{dim} E^{+} \leq \operatorname{dim} U^{+}-2$ and
(T.6.2) $K_{U^{+}}$is \mathbb{Q}-Cartier and g^{+}-ample.

In general the flip may not exist but it is unique if it does.
A superscript ${ }^{+}$will always refer to a flip.
(T.7) Let $k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring and let G be an abelian group. A function $\alpha:\left\{x_{1}, \ldots, x_{n}\right\} \mapsto G$ is called a G-weight. This will be abbreviated as G-wt or even wt if no confusion is likely. α can be multiplicatively extended to a map

$$
\alpha:\left\{\text { all monomials in } x_{1}, \ldots, x_{n}\right\} \rightarrow G
$$

If $f=\sum a_{I} x^{I}$ is a polynomial or powerseries in the variables x_{1}, \ldots, x_{n} then for $g \in G$ we define

$$
f_{\alpha=g}=\sum_{\alpha\left(x^{I}\right)=g} a_{I} x^{I}
$$

which will be called the wt g part of f.
If G is ordered then we define

$$
\alpha(f)=\min _{a_{I} \neq 0} \alpha\left(x^{I}\right)
$$

We will use these notions in two cases. First, when $G \cong \mathbb{Z}_{n}$. This coincides with the terminology of [Mori88, 2.5]. Second, when $G=\mathbb{R}$ (or a subgroup of \mathbb{R}). The "order" defined in [Mori88, 2.5] is thus an \mathbb{R}-wt (or a \mathbb{Z}-wt) in the current terminology. We decided to change since here we need the wt function to blow up, and the generally accepted terminology is "weighted blow-up."

Classification of extremal nbds. (C.1) We will use the following notation for terminal singularities.

An index one terminal singularity is the same as an isolated $c D V$ point. We will say that an index one terminal singularity has type $c A$, $c D$, or $c E$ if the general hyperplane section is a DuVal singularity of type A, D, or E. A smooth point is considered to have type $c A$. We extend this terminology for higher index
points as follows:
name description index

$c A / n$	$\left(x y+f\left(z^{n}, t\right)=0\right) / \mathbb{Z}_{n}(1,-1, a, 0)$	$n \geq 1$
$c A x / 2$	$\left(x^{2}+y^{2}+g(z, t)=0\right) / \mathbb{Z}_{2}(0,1,1,1)$	2
	\quad where mult ${ }_{0} g \geq 4$.	
$c A x / 4$	$\left(x^{2}+y^{2}+h(z, t)=0\right) / \mathbb{Z}_{4}(1,3,1,2)$	4
$c D / n$	quotient of an index one $c D$ point	$n=1,2,3$
$c E / n$	quotient of an index one $c E$ point	$n=1,2$

Thus, for instance, an index one $c A$ type point is also called $c A / 1$. We will frequently leave out the / n part of the notation if no confusion is likely or the index is not specified. This will be used most frequently with $c A$, which refers to any terminal singularity of type $c A / \mathrm{n}$. Note that $c A$ does not include $c A x / \mathrm{n}$.

The following table shows the relationship between the notation of [Mori88] and the current notation.

$$
\begin{aligned}
& \text { germ of an extremal nbd } \\
& \text { threefold singularity } \\
& I A, I A^{\vee} \rightarrow c A / n, c A x / 2, c D / n, c E / n(n \geq 2) \\
& I C \rightarrow c A / n(n \geq 2, \text { cyclic quotient }) \\
& I I A, I I B, I I^{\vee} \leftrightarrow c A x / 4 \\
& I I I \leftrightarrow \text { index one point }
\end{aligned}
$$

In the above notation the letter A, D, or E also indicates the cover of the general member of $|-K|$. We reproduce the list of [Reid87, p. 393] (with a typographical error corrected).

$$
\begin{array}{lc}
\text { name } & \text { cover of general elephant } \\
c A / n & A_{k-1} \xrightarrow{n: 1} A_{k n-1} \\
c A x / 2 & A_{2 k-1} \xrightarrow{2: 1} D_{k+2} \\
c A x / 4 & A_{2 k-2} \xrightarrow{4: 1} D_{2 k+1} \\
c D / 2 & D_{k+1} \xrightarrow{2: 1} D_{2 k} \\
c D / 3 & D_{4} \xrightarrow{3: 1} E_{6} \\
c E / 2 & E_{6} \xrightarrow{2: 1} E_{7}
\end{array}
$$

(C.2) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd (isolated or divisorial). Let $E_{X} \subset X$ be a general member of $\left|-K_{X}\right|$ and let $E_{Y}=f\left(E_{X}\right) \subset Y$. Note that E_{Y} need not be a general member of $\left|-K_{Y}\right|$ if the nbd is divisorial.
(C.3) An extremal nbd $f: X \supset C \rightarrow Y \ni Q$ is said to be semistable if E_{Y} is a DuVal singularity of type A. (This definition is slightly more general than the one in [Kawamata88].)
(C.4) A semistable extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $k 1 A$ if E_{X} has only one singular point. It is said to be of type $k 2 A$ if E_{X} has two singular points. (There are no other cases.)
(C.5) An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $k A D$ if E_{X} has a point of type $A_{n}(n \geq 4)$ and a point of type $D_{2 m}(m \geq 1) .\left(D_{2}\right.$ is by definition two points of type A_{1}.) An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $k 3 A$ if E_{X} has three points of type A_{1}, A_{2}, and $A_{n}(n \geq 1)$.
(C.6) An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $c D$ if it has exactly one singular point of index at least 2 and this is a $c D$ type point. Thus the index is 2 or 3 . An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $c E$ if it has exactly one singular point of index at least 2 and this is a $c E$ type point. Thus the index is 2 . An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $c A x / 2$ if it has exactly one singular point of index at least 2 and this is a $c A x / 2$ type point. Thus the index is 2 .
(C.7) An extremal nbd $X \supset C \rightarrow Y \ni Q$ is said to be of type $I I A$ (resp. $I I B, I C, I I^{\vee}$) if it has exactly one singular point P of index at least 2 and locally at P the extremal nbd $X \supset C \ni P$ is of type $I I A$ (resp. $I I B, I C, I I^{\vee}$) (cf. [Mori88, Appendix A]). (A type $I A$ point does not describe an extremal nbd sufficiently. In the new terminology extremal nbds with $I A$ points are: $k 1 A, k 2 A, k A D, k 3 A, c D, c E, c A x / 2$.)

2. General members of $|-K|$

(2.1) Definition. Let E be a surface with a curve C (which may be empty) and let $\pi: M \rightarrow E$ be a resolution such that the exceptional curves for π and the irreducible components of $\pi^{-1}(C)$ form a divisor, say F, with normal crossing. We denote by $\Delta(M \rightarrow E \supset C)$ the dual graph of the divisor F. If $C=\varnothing$, (resp. π is the minimal resolution, $C=\varnothing$, and π is the minimal resolution) then we may simply write $\Delta(M \rightarrow E)$ (resp. $\Delta(E \supset C), \Delta(E))$. An irreducible curve in F, say D, is denoted by its name D or by - (resp. ○) if D is contained (resp. not contained) in the proper transform of C by π, and if D is proper then we attach the number $-\left(D^{2}\right)$ to the vertex. We may omit the numbers if it does not cause confusion as in (2.2).
(2.2) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd. Then the general member E_{X} of $\left|-K_{X}\right|$ and $E_{Y}=f\left(E_{X}\right) \in\left|-K_{Y}\right|$ have only DuVal singularities. To be precise, the minimal resolution of E_{Y} dominates E_{X} and we have the list depending on the singularities of $X \supset C$. (In the text, k is the axial multiplicity of a certain point of X and different from the k in the labels like $k 1 A$).
(2.2.1) Cases $I A, I A^{\sim}, I I A(+I I I)$: In this case, $E_{X} \not \supset C$;
(2.2.1.1) $c A(+I I I): \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is $A_{m k-1}$

(2.2.1.2) $c D / 3(+I I I): \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is E_{6},
(2.2.1.3) IIA $(+I I I): \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is D_{k+2},
where m and k are the index and the axial multiplicity of the non-Gorenstein point.
 divisorial;
(2.2.1'.1) cAx/2: $\Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is D_{4},
(2.2.1'.2) $c D / 2: \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is $D_{2 k}$,
(2.2.1'.3) $c E / 2: \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is E_{7},
(2.2.1'.4) $I I^{\because}: \Delta\left(E_{X}\right)=\Delta\left(E_{Y}\right)$ is D_{k+2},
where k is the axial multiplicity of the non-Gorenstein point.
(2.2.2) Case $I C:\left(E_{Y}, Q\right)$ is D_{m} and $\Delta\left(E_{X} \supset C\right)$ is

where m, the index of the IC point of C, is odd and ≥ 5.
(2.2.2') Case IIB: In this case, $X \supset C$ is divisorial. $\left(E_{Y}, Q\right)$ is E_{6} and $\Delta\left(E_{X} \supset C\right)$ is

(2.2.3) Case exceptional $I A+I A$: The two IA points are an ordinary point of odd index $m \geq 5$ and a cA point of index 2 and axial multiplicity k, and we have $\left(K_{X} \cdot C\right)=-1 / 2 m .\left(E_{Y}, Q\right)$ is $D_{2 k+m}, \operatorname{Sing} E_{X}$ is $A_{m-1}+D_{2 k}$ $\left(A_{m-1}+A_{1}+A_{1}\right.$ if $\left.k=1\right)$ and $\Delta\left(E_{X} \supset C\right)$ is
(kAD)

(2.2.3 ${ }^{\prime}$) Case $I A+I A+I I I:$ In this case, $X \supset C$ is divisorial. The two IA points are both ordinary and of indices 2 and m (odd, ≥ 3). Furthermore $\left(E_{Y}, Q\right)$ is D_{m+2}. The graph $\Delta\left(E_{X} \supset C\right)$ is

(2.2.4) Case semistable $I A+I A:\left(E_{Y}, Q\right)$ is $A_{k m+l n-1}$ and $\Delta\left(E_{X} \supset C\right)$ is

$$
\begin{equation*}
\underbrace{0-\cdots-o}_{k m-1}-\bullet-\underbrace{0-\cdots-o}_{l n-1} \text {, } \tag{k2A}
\end{equation*}
$$

where m and k are the index and the axial multiplicity of a singular point of X on C and l and n are those of the other singular point.
(2.2.5) Gorenstein case $E_{X} \simeq E_{Y}$ are smooth, $E_{X} \not \supset C$, and $\left(E_{X} \cdot C\right)=1$.
(2.3) Definition. The non-Gorenstein extremal nbds $X \supset C$ are divided into cases as follows. In the cases (2.2.1.1) (resp. (2.2.3), (2.2.3'), (2.2.4)), we say that $X \supset C$ is $k 1 A$ (resp. $k A D, k 3 A, k 2 A$) by listing the singularities of E_{X} (or equivalently, those of E_{X}^{\natural}). In the rest of (2.2.1) and (2.2.2), we classify $X \supset C$ by its unique non-Gorenstein point.
(2.4) Remark. (2.4.1) For isolated extremal nbds X, E_{Y} is a general member of $\left|-K_{Y}\right|$ by $\left|-K_{X}\right| \simeq\left|-K_{Y}\right|$.
(2.4.2) The assertion that $\left|-K_{X}\right|$ has a DuVal member for extremal nbds $X \supset C \simeq \mathbb{P}^{1}$ is completed in this chapter (special case of Reid's general elephant conjecture).
(2.4.3) From the 5 cases of the table in [Mori88, (B)], our division comes out as follows:
(2.4.3.1) Case $I A, I I A, I A^{\check{ }}$, or $I^{\check{ }}$ (and one $I I I$ point): (2.2.1), (2.2.1 $)$;
(2.4.3.2) Case $I C$ or IIB: (2.2.2), (2.2.2');
(2.4.3.3) Case two $I A$ points of indices $m, 2$ (and one $I I I$ point): (2.2.3), (2.2.3'), (2.2.4);
(2.4.3.4) Case two $I A$ points of indices ≥ 3 : (2.2.4);
(2.4.3.5) Case Gorenstein $X:(2.2 .5)$.
(2.4.4) In the cases (2.4.3.4) and (2.4.3.5), our (2.2) is proved in [Mori88, (9.9.3) and (B.2)] (cf. also [Mori88, §10]). In the case (2.4.3.1), our (2.2) is partly proved by [Mori88, (7.3)] (cf. also [Mori88, §10]) and [Reid87, (6.4.B)]; we still need to prove
(2.4.4.1) the nonexistence of type $I I I$ points in case (2.2.1'),
(2.4.4.2) the divisoriality of $X \supset C$ in case (2.2.1 ${ }^{\prime}$), and
(2.4.4.3) $\Delta\left(E_{X}\right)$ is D_{4} in case (2.2.1'.1).

The assertions (2.4.4.1) and (2.4.4.2) follow from (4.5) and (4.7) and (2.4.4.3) is done in (4.8.5.7). The divisoriality of (2.2.2 ${ }^{\prime}$) is done in (4.5). As for case (2.2.3 ${ }^{\prime}$), the divisoriality is proved in Chapter 5. Thus it remains to treat the cases (2.4.3.2) and (2.4.3.3) in this chapter.

In our cases, we have a "good" member in $\left|-2 K_{X}\right|$ by [Mori88, (7.3)(ii)]. Therefore the following is important in our proof.
(2.5) Lemma. Let $X \supset C$ be an extremal nbd with $D \in\left|-2 K_{X}\right|$ such that $D \cap C=\{P\}$ for some $P \in C$. Then the natural map

$$
H^{0}\left(X, \mathscr{O}_{X}\left(-K_{X}\right)\right) \rightarrow \mathscr{O}_{D}\left(-K_{X}\right)
$$

is surjective, where $\mathscr{O}_{D}\left(-K_{X}\right)$ is the stalk at P.
Proof. From the short exact sequence

$$
0 \rightarrow \mathscr{O}_{X}\left(K_{X}\right) \rightarrow \mathscr{O}_{X}\left(-K_{X}\right) \rightarrow \mathscr{O}_{D}\left(-K_{X}\right) \rightarrow 0,
$$

we have

$$
H^{0}\left(\mathscr{O}_{X}\left(-K_{X}\right)\right) \rightarrow H^{0}\left(\mathscr{O}_{D}\left(-K_{X}\right)\right) \rightarrow H^{1}\left(\mathscr{O}_{X}\left(K_{X}\right)\right)
$$

where the last term is zero by the Grauert-Riemenschneider vanishing theorem.

For the proof of (2.2), we will use the notation of [Mori88, (8.8) and (8.9)]. We start with a general
(2.6) Lemma. (2.6.1) Let $a \geq 1$ and let L_{1}, \ldots, L_{a} and M_{1}, \ldots, M_{a} be ℓ-invertible \mathscr{O}_{C}-modules such that $\bigoplus_{i} L_{i}$ is ℓ-isomorphic to $\bigoplus_{i} M_{i}$. Then, after renumbering M_{i} 's, we have ℓ-isomorphisms $L_{i} \simeq M_{i}$ for all i.
(2.6.2) Let L and M be locally ℓ-free \mathscr{O}_{C}-modules and

$$
\begin{equation*}
0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0 \tag{2.6.2.1}
\end{equation*}
$$

an ℓ-exact sequence of \mathscr{O}_{C}-modules. If $H^{1}\left(C, L \tilde{\otimes} M^{\tilde{\otimes}(-1)}\right)=0$ for the sheaf $L \tilde{\otimes} M^{\tilde{\otimes}(-1)}$ (forgetting the ℓ-structure), then the ℓ-sequence is ℓ-split.
Proof. (2.6.1) is standard. (2.6.2) is reduced to lifting the ℓ-homomorphism id_{M} to an ℓ-homomorphism $M \rightarrow E$ by considering (2.6.2.1) $\tilde{\otimes} M^{\tilde{\otimes}(-1)}$. This follows from the vanishing of H^{1}.
(2.7) Lemma. Let $X \supset C \simeq \mathbb{P}^{1}$ be an extremal nbd that is locally primitive. Then

$$
C l^{s c}(X) \xrightarrow{\dot{\otimes} \mathscr{\theta}_{C}} \operatorname{Pic}^{\ell}(C) \xrightarrow{q l_{C}} Q L(C)
$$

are isomorphisms (cf. [Mori88, (8.9.1)(ii)]), where $\mathrm{Pic}^{\ell}(C)$ denotes the set of ℓ-isomorphism classes of ℓ-invertible \mathscr{O}_{C}-modules.
Proof. The homomorphisms induce isomorphisms $\operatorname{Pic} X \simeq \operatorname{Pic} C \simeq \mathbb{Z}$ [Mori88, (1.3)] and their quotient isomorphisms $C l^{s c}(X) / \operatorname{Pic} X \simeq \operatorname{Pic}^{\ell}(C) / \operatorname{Pic}(C)$ $\simeq Q L(C) / \mathbb{Z}$ by the local primitivity [Mori88, (1.8)].
(2.7.1) Remark. (2.7.1.1) We note that (2.7) applies to our cases (2.2.2) and (2.2.3), and we may identify these for simplicity of notation.
(2.7.1.2) If P is a primitive point of index m, then one can associate to $n P^{\sharp}$ $(n \in \mathbb{Z})$ a divisor $[n / m] P$ on C with ℓ-structure $\mathscr{O}_{C}([n / m] P)^{\sharp} \subset \mathscr{O}_{C^{\prime}}\left(n P^{\sharp}\right)$. This is compatible with the above identification.
(2.8) Lemma. Assume that the canonical lifting C^{\sharp} of C to the canonical covers of X at arbitrary non-Gorenstein points are smooth. Then every locally ℓ-free \mathscr{O}_{C}-module E is of the form $\widetilde{\oplus} L_{i}$ for some ℓ-invertible $\mathscr{\sigma}_{C}$-modules L_{i}.
Proof. We only treat \mathscr{O}_{C}-modules E of rank 2 since other cases are similar. Let X be Gorenstein outside of two points P and R, which are of indices m and n, respectively, where $m>1$ and $n \geq 1$. Let L be a direct summand of E such that $\mathrm{rk} L=1$ and $\operatorname{deg} L \geq \operatorname{deg}(E / L)$. Then L and E / L are ℓ invertible sheaves by the induced ℓ-structures. Let $q l_{C} L=\operatorname{deg} L+a_{1} P^{\sharp}+b_{1} R^{\sharp}$ and $q l_{C}(E / L)=\operatorname{deg}(E / L)+a_{2} P^{\sharp}+b_{2} R^{\sharp}$, where $0 \leq a_{1}, a_{2}<m$ and $0 \leq$ $b_{1}, b_{2}<n$. If $\operatorname{deg} L>\operatorname{deg}(E / L)$, then we have $\operatorname{deg} L \tilde{\otimes}(E / L)^{\dot{\otimes}(-1)}$ by

$$
\begin{aligned}
q l_{C}\left(L \tilde{\otimes}(E / L)^{\tilde{\otimes}(-1)}\right)= & q l_{C}(L)-q l_{C}(E / L) \\
= & (\operatorname{deg} L-\operatorname{deg}(E / L)-2)+\left(m+a_{1}-a_{2}\right) P^{\sharp} \\
& +\left(n+b_{1}-b_{2}\right) R^{\sharp} .
\end{aligned}
$$

Thus $E \simeq L \tilde{\oplus}(E / L)$ if $\operatorname{deg} L>\operatorname{deg}(E / L)$ (2.6). If $\operatorname{deg} L=\operatorname{deg}(E / L)$, then we can choose L so that $a_{1} \geq a_{2}$. Then $E \simeq L \tilde{\oplus}(E / L)$ from

$$
q l_{C}\left(L \tilde{\otimes}(E / L)^{\tilde{\otimes}(-1)}\right)=-1+\left(a_{1}-a_{2}\right) P^{\sharp}+\left(n+b_{1}-b_{2}\right) R^{\sharp} .
$$

Alternative proof. let $u=$ l.c.m. $\{m, n\}$. We can take an u-sheeted cover $\mathbb{P}^{1} \rightarrow$ C which ramifies at P, R. Then the ℓ-decomposition corresponds to a $\mathbb{Z}_{u}{ }^{-}$ invariant decomposition of a locally free \mathbb{Z}_{u}-module on \mathbb{P}^{1}.
(2.9) When we want to prove the nonexistence of an isolated extremal nbd $X \supset C$ with certain condition (say A), it often helps to assume some genericity assumption. It is done in the following way. Let $X_{t} \supset C_{t}$ be a flat deformation of $X \supset C$ such that $X=X_{0} \supset C=C_{0}$ and $X_{t}^{\circ} \supset C_{t}$ satisfies A if $|t| \ll 1$, where X_{t}° is the germ of X_{t} along C_{t}. If we show that $X_{t} \supset C_{t}$ is not an isolated extremal nbd for $t \neq 0$, then neither is $X \supset C$ [Mori88, (1b) and (10)]. There are two types of constructions for $X_{t} \supset C_{t}$.
(2.9.1) Given a point $P \in C$, we deform the equation of $\left(X^{\sharp}, P^{\sharp}\right)$ and extend it to the deformation of $X \supset C$.

L-deformations and L'-deformations are such examples. We will give an explicit construction for an example of the other type.
(2.9.2) Lemma. Let $X \supset C$ be an extremal nbd with a point P of index m and J a C-laminal ideal of width w. Assume that the canonical cover at P is given as

$$
X^{\sharp}=\left(x_{1}, x_{2}, x_{3}, x_{4} ; \phi\right) \supset C^{\sharp}=x_{1} \text {-axis }
$$

and $J^{\sharp}=\left(x_{2}, x_{3}, x_{4}^{w}\right)$, where x_{1}, \ldots, x_{4} and ϕ are \mathbb{Z}_{m}-semi-invariants and $\phi \equiv x_{1}^{r} x_{3} \quad \bmod J^{\sharp} I_{C^{\sharp}}$ for some $r>0$. If $w t \phi \equiv w t x_{4}^{w} \quad$ (resp. $w t x_{2}, w t x_{1}^{i} x_{4}^{w}$ for some $i>0) \bmod (m)$, then there is a flat deformation $X_{t} \supset C_{t} \ni P_{t}(t \in \Delta$, a small disk) of $X \supset C \ni P$ such that:
(2.9.2.1) $\bigcup_{t}\left(X_{t}^{\circ}-U_{t}\right)=(X-U) \times \Delta \supset \bigcup_{t}\left(C_{t}-C_{t} \cap U_{t}\right)=(C-C \cap U) \times \Delta$ and P_{t} is the only singular point of U_{t} on C_{t}, for a sufficiently small nbd $\bigcup_{t} U_{t}$ of $\bigcup_{t} P_{t}$ in $\bigcup_{t} X_{t}$.
(2.9.2.2) The trivial extension of J to $X_{t}^{\circ}-U_{t}$ extends to C_{t}-laminal ideal J_{t} such that $\bigcup_{t} \operatorname{Spec} \mathscr{O}_{X_{t}} / J_{t}=\left(\operatorname{Spec} \mathscr{O}_{X} / J\right) \times \Delta$, which is compatible with the identification of (2.9.2.1).
(2.9.2.3) The canonical cover X_{t}^{\sharp} at P_{t}, C_{t}^{\sharp}, and J_{t}^{\sharp} are given in exactly the same way as X^{\sharp}, C^{\sharp}, and J^{\sharp} above except that the equation for X_{t}^{\sharp} is $\phi_{t}=\phi+t x_{4}^{w} \quad$ (resp. $\left.\phi+t x_{2}, \phi+t x_{1}^{i} x_{4}^{w}\right)$. Hence, $\left(x_{4}, x_{2}, x_{3}\right)$ is a $(1, w, w)$ monomializing ℓ-basis of the second kind of $I_{C_{t}} \supset J_{t}$ at P_{t} (resp. P_{t} is ordinary and $\left(x_{4}, x_{3}\right)$ is a $(1, w)$-monomializing ℓ-basis of $I_{C_{t}} \supset J_{t}$ at $P_{t}, x_{1}^{i} x_{4}^{w}$ appears in ϕ_{t} with a nonzero coefficient) for $t \neq 0$.

This is similar to [Mori88, (9.7)(a)] and can be proved in the same way except that X_{t} is known to have only terminal singularities (cf. [Mori88, (10.7)]).
(2.10) The case of $I C$. Let P be the $I C$ point of index m and $\left(y_{1}, y_{2}, y_{4}\right) / \mathbb{Z}_{m}(2, m-2,1)$ be the coordinates for the canonical cover $P^{\sharp} \in$
$C^{\sharp} \subset X^{\sharp}$ given in [Mori88, (A.3)] so that C^{\sharp} is parametrized by ($t^{2}, t^{m-2}, 0$). In this case, P is the only singular point of X on C [Mori88, (B.1)]. Since $y_{1}^{m-2}-y_{2}^{2}$ and y_{4} generate the defining ideal of C^{\sharp}, they form an ℓ-free ℓ basis of $g r_{C}^{1} \mathscr{O}_{X}$. It is easy to see that $\Omega=d y_{1} \wedge d y_{2} \wedge d y_{4}$ is an ℓ-free ℓ-basis of $g r_{C}^{0} \omega_{X}$. Then $q l_{C}\left(\omega_{X}\right)=-P^{\sharp}$ and $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{m} \in\left|-2 K_{X}\right|$ by $(D \cdot C)=2 / m$. By

$$
q l_{C}\left(g r_{C}^{0}\left(\omega^{*}\right)\right)=q l_{C}\left(\omega^{*}\right)=-q l_{C}(\omega)=P^{\sharp}
$$

one has

$$
\operatorname{deg}\left(g r_{C}^{0}\left(\omega^{*}\right)\right)=T L\left(P^{\sharp}\right)=-U(-1)=-1
$$

because

$$
U(x)=\operatorname{Min}\left\{z \in \mathbb{Z} \mid m z-x \in 2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}\right\}
$$

[Mori88, (8.9.1)(iii)]. Thus $g r_{C}^{0}\left(\omega^{*}\right)=\omega^{*} / F_{C}^{1}\left(\omega^{*}\right) \simeq \mathscr{O}_{C}(-1)$ and $H^{0}\left(\mathscr{O}_{X}\left(-K_{X}\right)\right)=H^{0}\left(F_{C}^{1}\left(\omega^{*}\right)\right)$. Hence a general section $s \in H^{0}\left(\mathscr{O}_{X}\left(-K_{X}\right)\right)$ is written as $\left(\lambda \cdot y_{4}+\mu \cdot\left(y_{1}^{m-2}-y_{2}^{2}\right)\right) / \Omega$ near P, where $\lambda \in \mathscr{O}_{X}$ and $\mu \in \mathscr{O}_{X^{\sharp}}$ with $w t \mu \equiv 5 \bmod (m)$. By (2.5), we see that $\lambda(0) \neq 0$. Hence s induces a section \bar{s} of $g r_{C}^{1}\left(\omega^{*}\right)=F_{C}^{1}\left(\omega^{*}\right) / F_{C}^{2}\left(\omega^{*}\right)$ and \bar{s} is a part of an ℓ-free ℓ-basis of $g r_{C}^{1}\left(\omega^{*}\right)$ at P. This induces an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow(a) \rightarrow g r_{C}^{1}\left(\omega^{*}\right) \rightarrow\left(b+5 P^{\sharp}\right) \rightarrow 0 \tag{2.10.1}
\end{equation*}
$$

where $a, b \in \mathbb{Z}, a \geq 0$, and $\left(c+d P^{\sharp}\right)$ in general denotes the element of $C l(X)$ corresponding to $c+d P^{\sharp} \in Q L(C)$ by (2.7). This is because y_{4} / Ω and $\left(y_{1}^{m-2}-y_{2}^{2}\right) / \Omega$ have $w t \equiv 0, m-5 \bmod (m)$, respectively. We claim an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(4 P^{\sharp}\right) \tilde{\oplus}\left(-1+(m-1) P^{\sharp}\right) . \tag{2.10.2}
\end{equation*}
$$

First we recall that m is odd and $m \geq 5$ since P is an $I C$ point. By (2.10.1) $\tilde{\otimes} g r_{C}^{1} \omega$, we have an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow\left((a-1)+(m-1) P^{\sharp}\right) \rightarrow g r_{C}^{1} \Theta \rightarrow\left(b+4 P^{\sharp}\right) \rightarrow 0 . \tag{2.10.3}
\end{equation*}
$$

By $i_{P}(1)=2$ [Mori88, (6.5)], we have $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-1$. By

$$
\operatorname{deg}\left((a-1)+(m-1) P^{\sharp}\right)=a-1 \quad \text { and } \quad \operatorname{deg}\left(b+4 P^{\sharp}\right)=b
$$

[Mori88, (8.9.1)(iii)], we have $a+b=0$. Hence from
$q l_{C}\left((a-1)+(m-1) P^{\sharp}-\left(b+4 P^{\sharp}\right)\right)=q l_{C}\left(2 a-1+(m-5) P^{\sharp}\right)=2 a-1 \geq-1$,
we see that (2.10.3) is ℓ-split by (2.6). Since $H^{1}\left(C, g r_{C}^{1} \mathscr{O}\right)=0$ by [CKM 88 , 14.5.8], we have $b \geq-1$ and hence $(a, b)=(0,0)$ or $(1,-1)$. Whence (2.10.2) follows if $(a, b)=(0,0)$ or $m=5$. Assuming $(a, b)=(1,-1)$ and $m \geq 7$, we will derive a contradiction. By (2.10.1) $\tilde{\otimes} \omega_{X}^{\dot{\otimes} 2}$, we have an ℓ-exact sequence

$$
0 \rightarrow\left(-1+(m-2) P^{\sharp}\right) \rightarrow g r_{C}^{1} \omega \rightarrow\left(-1+3 P^{\sharp}\right) \rightarrow 0 .
$$

By $H^{1}\left(X, \omega_{X}\right)=0$ and $g r_{C}^{0} \omega \simeq \mathscr{O}_{C}(-1)$, we have $H^{1}\left(C, g r_{C}^{1} \omega\right)=0$ whence $-1 \leq \operatorname{deg}\left(-1+3 P^{\sharp}\right)=T L\left(-1+3 P^{\sharp}\right)=-2$. This is a contradiction and (2.10.2) is proved. Hence

$$
\begin{equation*}
g r_{C}^{1}\left(\omega^{*}\right) \simeq\left(5 P^{\sharp}\right) \tilde{\oplus}(0) . \tag{2.10.4}
\end{equation*}
$$

We claim that \bar{s} is a nowhere vanishing section of the locally free sheaf $g r_{C}^{1}\left(\omega^{*}\right) \simeq \omega^{*} \tilde{\otimes} g r_{C}^{1} \mathscr{O}$. In case $m \geq 7$, we have $g r_{C}^{1}\left(\omega^{*}\right) \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}$ or $\mathscr{O}_{C} \oplus \mathscr{O}_{C}(-1)$ by (2.10.4) and $\bar{s}(P) \neq 0 \in g r_{C}^{1}\left(\omega^{*}\right) \otimes \mathbb{C}(P)$ whence \bar{s} is nowhere vanishing. In case $m=5$, we have $g r_{C}^{1}\left(\omega^{*}\right) \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$ and $\bar{s}(P)=$ $\left(\lambda(0) \cdot y_{4}+\mu(0) \cdot\left(y_{1}^{m-2}-y_{2}^{2}\right)\right) / \Omega \in g r_{C}^{1}\left(\omega^{*}\right) \otimes \mathbb{C}(P)$ is a generic element because $\lambda(0)$ and $\mu(0)$ are independent constants by (2.5). Thus \bar{s} is nowhere vanishing and the claim is proved. We study $E_{X}=\{s=0\} \in\left|-K_{X}\right|$. Since \bar{s} is a nowhere vanishing section of $g r_{C}^{1}\left(\omega^{*}\right) \simeq \omega^{*} \tilde{\otimes} g r_{C}^{1} \mathscr{O}, E_{X}$ is smooth on $C-$ $\{P\}$. The canonical cover E_{X}^{\sharp} at P is defined by $y_{4}+y_{2}(\cdots)+y_{1}(\cdots)=0$. Thus $\left(E_{X}, P\right)=\left(y_{1}, y_{2}\right) / \mathbb{Z}_{m}(2, m-2)$ has only DuVal singularities, whence so is E_{Y} by $\left(K_{X} \cdot C\right)=0$. For the precise result, we express $\left(E_{X}, P\right)=$ $\left(x_{1}, x_{2}, x_{3} ; x_{1} x_{2}=x_{3}^{m}\right)$, where $x_{1}=y_{1}^{m}, x_{2}=y_{2}^{m}$, and $x_{3}=y_{1} y_{2}$. The curve C is the image of C^{\sharp}, the locus of $\left(t^{2}, t^{m-2}\right)$, where C is the locus of $\left(s^{2}, s^{m-2}, s\right)$ in the embedding of $\left(E_{X}, P\right)$, where $s=t^{m}$. Then it is easy to check.
(2.10.5) Computation. Let (E, P) be an A_{m-1}-singularity

$$
(E, P)=\left(x_{1}, x_{2}, x_{3} ; x_{1} x_{2}=x_{3}^{m}\right)
$$

and C be the locus of $\left(s^{2}, s^{m-2}, s\right)$. Then $\Delta(E \supset C)$ is

$$
\underbrace{0-\cdots-0}_{m-3}-0-0
$$

Thus we are done in the case $I C$.
(2.11) The case of $I I B$. Let (X, P) be

$$
\left(y_{1}, y_{2}, y_{3}, y_{4} ; \phi\right) / \mathbb{Z}_{4}(3,2,1,1 ; 0)
$$

with C the (quotient of the) locus of $\left(t^{3}, t^{2}, 0,0\right)$ [Mori88, (A.3)], where

$$
\phi=\left(y_{1}^{2}-y_{2}^{3}\right)+\psi
$$

and $\psi \in\left(y_{3}, y_{4}\right)$ satisfies $w t \psi \equiv 2 \bmod (4)$ and $\psi\left(0,0, y_{3}, y_{4}\right) \notin\left(y_{3}, y_{4}\right)^{3}$. The last condition comes from the classification of terminal singularities [Reid87, (6.1)(2)]. In this case, P is the only singular point of X on C [Mori88, (B.1)]. Since y_{3} and y_{4} generate the defining ideal of C^{\sharp}, they form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}_{X}$. By residue,

$$
\Omega=\operatorname{Res} \frac{d y_{1} \wedge d y_{2} \wedge d y_{3} \wedge d y_{4}}{\phi}=\frac{d y_{2} \wedge d y_{3} \wedge d y_{4}}{\partial \phi / \partial y_{1}}
$$

is an ℓ-free ℓ-basis of $g r_{C}^{0} \omega_{X}$ with $w t \Omega \equiv 1 \bmod (4)$. We see $i_{P}(1)=2$ as follows. Using the parametrization $\left(t^{3}, t^{2}, 0,0\right)$ of C^{\sharp} and ℓ-free ℓ-basis $\left(y_{3}, y_{4}\right)$ of $g r_{C}^{1} \mathscr{O}_{X}$, we see the following on $C^{\sharp} \subset X^{\sharp}$:

$$
\begin{gathered}
\left.g r_{C}^{0} \omega\right|_{\tilde{C}}=\left.\mathscr{O}_{\tilde{C}} t^{3} \Omega\right|_{\tilde{C}}=\mathscr{O}_{\tilde{C}} t d t \wedge d y_{3} \wedge d y_{4} \\
\left.\Lambda^{2}\left(g r_{C}^{1} \mathscr{O}\right) \otimes \Omega_{C}^{1}\right|_{\tilde{C}}=\mathscr{\mathscr { O }}_{\tilde{C}}\left(t^{3} y_{3}\right) \wedge\left(t^{3} y_{4}\right) \otimes d\left(t^{4}\right)=\mathscr{O}_{\tilde{C}} t^{9} y_{3} \wedge y_{4} \otimes d t
\end{gathered}
$$

Thus (cf. [Mori88, (2.2)])

$$
\bigwedge^{2}\left(g r_{C}^{1} \mathscr{O}\right) \otimes \Omega_{C}^{1}=t^{8} g r_{C}^{0} \omega
$$

Hence $i_{P}(1)=2$ as claimed because t^{4} is the coordinate of C at P. Hence $\operatorname{deg} g r_{C}^{0} \omega=-1$ and $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-1 \quad$ [Mori88, (2.3.2)]. Thus we see $g r_{C}^{0} \omega \simeq$ $\left(-1+3 P^{\sharp}\right)$ and $g r_{C}^{1} \mathscr{O} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right)$ with ℓ-structures using their ℓ free ℓ-bases at P above. Let $D=\left\{y_{2}=0\right\} / \mathbb{Z}_{4}$. Then $D \in\left|-2 K_{X}\right|$ by $(D \cdot C)=1 / 2$. By

$$
q l_{C}\left(g r_{C}^{0}\left(\omega^{*}\right)\right)=q l_{C}\left(\omega^{*}\right)=-q l_{C}(\omega)=P^{\sharp}
$$

one has

$$
\operatorname{deg}\left(g r_{C}^{0}\left(\omega^{*}\right)\right)=T L\left(P^{\sharp}\right)=-U(-1)=-1
$$

because

$$
U(x)=\operatorname{Min}\left\{z \in \mathbb{Z} \mid 4 z-x \in 2 \mathbb{Z}_{+}+3 \mathbb{Z}_{+}\right\}
$$

[Mori88, (8.9.1)(iii)]. Thus $g r_{C}^{0}\left(\omega^{*}\right) \simeq \mathscr{O}_{C}(-1)$ and a generic section $s \in$ $H^{0}\left(\mathscr{O}_{X}\left(-K_{X}\right)\right)$ vanishes along C, i.e., $s \in H^{0}\left(F_{C}^{0}\left(\omega^{*}\right)\right)$. Hence $s=\left(\lambda \cdot y_{3}+\mu\right.$. $\left.y_{4}\right) / \Omega$ for some λ and $\mu \in \mathscr{O}_{X}$. We see that $\lambda(0)$ and $\mu(0) \in \mathbb{C}$ are generic by (2.5). We study $E_{X}=\{s=0\} \in\left|-K_{X}\right|$. We see that s induces a section \bar{s} of

$$
g r_{C}^{1}\left(\omega^{*}\right) \simeq\left(g r_{C}^{0} \omega\right)^{\tilde{\otimes}(-1)} \tilde{\otimes} g r_{C}^{1} \mathscr{O} \simeq(0) \tilde{\oplus}(1)
$$

such that $\bar{s}(P)$ is generic in $g r_{C}^{1}\left(\omega^{*}\right) \otimes \mathbb{C}(P)$. Thus \bar{s} is nowhere vanishing, whence $E_{X} \supset C$ and E_{X} is smooth on $C-\{P\}$. Eliminating y_{4}, we see that $\left(E_{X}, P\right) \simeq\left(y_{1}, y_{2}, y_{3} ; \bar{\phi}\right) / \mathbb{Z}_{4}(3,2,1)$ with C the locus of $\left(t^{3}, t^{2}, 0\right)$, where

$$
\bar{\phi}=\left(y_{1}^{2}-y_{2}^{3}\right)+y_{3}\left(c y_{3}+\cdots\right) \in \mathbb{C}\left\{y_{1}, y_{2}, y_{3}\right\}
$$

for some $c \in \mathbb{C}^{*}$ by independence of $\lambda(0)$ and $\mu(0)$. We claim that we may take

$$
\begin{equation*}
\bar{\phi}=y_{1}^{2}-y_{2}^{3}+y_{3}^{2} \tag{2.11.1}
\end{equation*}
$$

modulo multiplication by units and \mathbb{Z}_{m}-automorphisms fixing C. First by the Weierstrass preparation theorem, we may assume $\bar{\phi}=y_{1}^{2}+f\left(y_{2}, y_{3}\right) y_{1}+$ $g\left(y_{2}, y_{3}\right)$ with $w t f \equiv 3$ and $w t g \equiv 2 \bmod (4)$. Since $\bar{\phi}\left(t^{3}, t^{2}, 0\right)=0$, we see $f \equiv 0$ and $g \equiv y_{2}^{3} \bmod \left(y_{3}\right)$. Hence we may assume $f=0$, after replacing y_{1} by $y_{1}+f / 2$. Since $w t\left(g-y_{2}^{3}\right) / y_{3} \equiv 1$ and $w t y_{2} \equiv 2 \bmod (4)$, we see that $g \equiv y_{2}^{3} \bmod \left(y_{3}^{2}\right)$. Thus we have (2.11.1) by $c \in \mathbb{C}^{*}$. Then it is easy to check (cf. [Reid87, (4.10)]).
(2.11.2) Computation. Let

$$
(E, P)=\left(y_{1}, y_{2}, y_{3} ; y_{3}^{2}-y_{2}^{3}+y_{3}^{2}\right) / \mathbb{Z}_{4}(3,2,1 ; 2)
$$

and $C \subset E$ be the locus of $\left(t^{3}, t^{2}, 0\right)$. Then (E, P) is D_{5} and $\Delta(E \supset C)$ is

Thus $\left|-K_{X}\right|$ has a Du Val member in case IIB.
(2.12) The case of two $I A$ points P, R with indices $m, 2$ and a $I I I$ point S. We know that $s i z_{P}=1, m$ is odd, and $w_{P}(0)=(m-1) / 2 m$ [Mori88, (6.2)(ii)] and that $i_{P}(1)=i_{R}(1)=i_{S}(1)=1$ and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(-1) \oplus \mathscr{O}(-1)$ [Mori88, (2.3)]. We start with the set-up.
(2.12.1) Lemma. We can express

$$
\begin{aligned}
(X, P) & =\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1,0 ; 0) \supset(C, P) \\
& =y_{1}-\text { axis } / \mathbb{Z}_{m}, \\
(X, R) & =\left(z_{1}, z_{2}, z_{3}, z_{4} ; \beta\right) / \mathbb{Z}_{2}(1,1,1,0 ; 0) \supset(C, R)=z_{1} \text {-axis } / \mathbb{Z}_{2}, \\
(X, S) & =\left(w_{1}, w_{2}, w_{3}, w_{4} ; \gamma\right) \supset(C, S)=w_{1} \text {-axis, }
\end{aligned}
$$

using equations α, β, and γ such that $\alpha \equiv y_{1} y_{3} \bmod \left(y_{2}, y_{3}\right)^{2}+\left(y_{4}\right), \beta \equiv z_{1} z_{3}$ $\bmod \left(z_{2}, z_{3}\right)^{2}+\left(z_{4}\right)$, and $\gamma \equiv w_{1} w_{3} \bmod \left(w_{2}, w_{3}, w_{4}\right)^{2}$.
Proof. We express $(X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{m}\left(a_{1}, a_{2},-a_{1}, 0 ; 0\right)$ and C as the locus of $\left(t^{a_{1}}, t^{a_{2}}, 0,0\right)$, where a_{1} and a_{2} are positive integers such that $\left(a_{1} a_{2}, m\right)=1$. By $w_{P}(0)=(m-1) / 2 m$, we have $a_{2}=(m+1) / 2$ [Mori88, (4.9)(i)]. By $\operatorname{siz} z_{P}=1=U\left(a_{1} a_{2}\right)$, we have $a_{1} a_{2} \leq m$ and $a_{1}=1$. We need only to replace y_{2} by $y_{2}-y_{1}^{(m+1) / 2}$ to get the assertion for (X, P). We can attain $\alpha \equiv y_{1} y_{3}$ because P is a $c A$ point [Mori88, (B.1)(g)]. The rest is similar except for $\beta \equiv z_{1} z_{3}$ and $\gamma \equiv w_{1} w_{3}$, which follow from $i_{R}(1)=1$ and $i_{S}(1)=1$ and [Mori88, (2.16)].

We will improve the set-up in two steps.
(2.12.2) Lemma. The point P is ordinary, that is,

$$
(X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1) \supset(C, P)=y_{1} \text {-axis } / \mathbb{Z}_{m}
$$

Proof. Assuming that P is not ordinary, we will derive a contradiction. By the assumption, we may assume $\alpha \equiv y_{1} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. Applying Ldeformation at R, we may assume that R is ordinary (2.9.1) and hence $\beta=$ z_{4}. We see that $\left\{y_{2}, y_{4}\right\}$ and $\left\{z_{2}, z_{3}\right\}$ are the ℓ-free ℓ-bases of $g r_{C}^{1} \mathscr{O}$ at P and Q. By (2.12.1), we see $g r_{C}^{0} \omega \simeq\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)$ and $g r_{C}^{0}\left(\omega^{*}\right) \simeq$ $\left(-1+\frac{m+1}{2} P^{\sharp}+R^{\sharp}\right)$. Thus $H^{0}\left(\omega^{*}\right)=H^{0}\left(F_{C}^{1}\left(\omega^{*}\right)\right)$. Let $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{m}$. Then $D \in\left|-2 K_{X}\right|$ by $(D \cdot C)=1 / m$. By (2.5), there exists $s \in H^{0}\left(F_{C}^{1}\left(\omega^{*}\right)\right)$ inducing $\left(y_{2}+y_{1} \mathscr{O}_{X}\right) / \Omega \in \mathscr{O}_{D}\left(-K_{X}\right)$. Thus s induces a global section \bar{s} of
$g r_{C}^{1}\left(\omega^{*}\right) \simeq g r_{C}^{1} \Theta \tilde{\otimes} g r_{C}^{0}\left(\omega^{*}\right)$, which is a part of ℓ-free ℓ-basis at P. Hence we have an exact sequence

$$
0 \rightarrow g r_{C}^{0} \omega \rightarrow g r_{C}^{1} \mathscr{O} \rightarrow\left(g r_{C}^{1} \mathscr{O} / g r_{C}^{0} \omega\right) \rightarrow 0
$$

It is split because $g r_{C}^{0} \omega \simeq \mathscr{O}(-1)$ and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(-1) \oplus \mathscr{O}(-1)$. Then it is ℓ split at R because ℓ-bases of $g r_{C}^{0} \omega$ and $g r_{C}^{1} \mathscr{O}$ have $w t \equiv 1 \bmod (2)$. Hence $g r_{C}^{1} \mathscr{O} / g r_{C}^{0} \omega$ is an ℓ-invertible sheaf such that $q l_{C}\left(g r_{C}^{1} \mathscr{O} / g r_{C}^{0} \omega\right)=q l_{C}\left(g r_{C}^{1} \mathscr{O}\right)-$ $q l_{C}\left(g r_{C}^{0} \omega\right)=-1+R^{\sharp}$. Applying (2.6) to

$$
q l_{C}\left(g r_{C}^{0} \omega\right)-q l_{C}\left(g r_{C}^{1} \mathscr{O} / g r_{C}^{0} \omega\right)=\frac{m-1}{2} P^{\sharp}
$$

we have an ℓ-splitting

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(-1+R^{\sharp}\right) . \tag{2.12.2.1}
\end{equation*}
$$

We may further assume that y_{2}, z_{2}, and w_{2} (resp. y_{4}, z_{3}, and w_{4}) are the ℓ-free ℓ-bases of $\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\natural}\right)$ (resp. $\left(-1+R^{\sharp}\right)$) at P, R, and S, by making coordinate changes to the ones in (2.12.1). Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)$. Then $\left\{y_{2}, y_{3}, y_{4}^{2}\right\}$ form an ℓ-basis of J at P. By replacing y_{3} by an element of the form $y_{3}+y_{4}^{2}(\cdots)$ if necessary, we may assume $\alpha \equiv y_{1} y_{3}+c y_{4}^{2} \bmod J^{\sharp} I_{C^{\sharp}}$ for some $c \in \mathbb{C}$. If $c \neq 0$ then $I \supset J$ is $(1,2,2)$-monomializable at P, and if $c=0$ we may still assume that $I \supset J$ is $(1,2,2)$-monomializable at P by (2.9.2). In the same way, we may assume that $I \supset J$ is $(1,2,2)$-monomializable at S. At the ordinary point $R, I \supset J$ is $(1,2)$-monomializable. Thus we have ℓ-isomorphisms

$$
\begin{aligned}
g r^{1}(\mathscr{O}, J) & \simeq\left(-1+R^{\sharp}\right), \\
g r^{2,0}(\mathscr{O}, J) & \simeq\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right), \\
g r^{2,1}(\mathscr{O}, J) & \simeq g r^{1}(\mathscr{O}, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(1+P^{\sharp}\right) \simeq\left(P^{\sharp}\right), \\
g r^{3,0}(\mathscr{O}, J) & \simeq g r^{2,0}(\mathscr{O}, J) \tilde{\otimes} g r^{1}(\mathscr{O}, J) \simeq\left(-1+\frac{m-1}{2} P^{\sharp}\right), \\
g r^{3,1}(\mathscr{O}, J) & \simeq g r^{2,1}(\mathscr{O}, J) \tilde{\otimes} g r^{1}(\mathscr{O}, J) \simeq\left(-1+P^{\sharp}+R^{\sharp}\right)
\end{aligned}
$$

by [Mori88, (8.12)]. Hence we have an ℓ-isomorphism and ℓ-exact sequences

$$
\begin{gathered}
g r^{1}(\omega, J) \simeq\left(-1+\frac{m-1}{2} P^{\sharp}\right), \\
0 \rightarrow\left(-1+\frac{m+1}{2} P^{\sharp}+R^{\sharp}\right) \rightarrow g r^{2}(\omega, J) \rightarrow\left(-1+(m-1) P^{\sharp}\right) \rightarrow 0, \\
0 \rightarrow\left(-1+\frac{m+1}{2} P^{\sharp}\right) \rightarrow g r^{3}(\omega, J) \rightarrow\left(-2+(m-1) P^{\sharp}+R^{\sharp}\right) \rightarrow 0 .
\end{gathered}
$$

Thus $H^{1}\left(\omega / F^{4}(\omega, J)\right) \neq 0$, which is a contradiction. Thus (2.12.2) is proved.
(2.12.3) Lemma. The point R is ordinary, that is,

$$
(X, R)=\left(z_{1}, z_{2}, z_{3}\right) / \mathbb{Z}_{2}(1,1,1) \supset(C, P)=z_{1} \text {-axis } / \mathbb{Z}_{2}
$$

Proof. We will assume that R is not ordinary whence

$$
\beta \equiv z_{1} z_{3} \quad \bmod \left(z_{2}, z_{3}, z_{4}\right)^{2}
$$

As in the proof of (2.12.2), we have a split exact sequence $0 \rightarrow g r_{C}^{0} \omega \rightarrow g r_{C}^{1} \mathscr{O} \rightarrow$ $\left(g r_{C}^{1} \mathscr{O} / g r_{C}^{0} \omega\right) \rightarrow 0$ which is ℓ-split at P. Since ℓ-free ℓ-bases of $g r_{C}^{0} \omega$ and $g r_{C}^{1} \mathscr{O}$ at R have wt 1 and $\{0,1\} \bmod (2)$, it is also ℓ-split at R. Thus we have ℓ-exact sequences

$$
\begin{aligned}
& 0 \rightarrow\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \rightarrow g r_{C}^{1} \mathscr{O} \rightarrow\left(-1+P^{\sharp}\right) \rightarrow 0, \\
& 0 \rightarrow\left(-1+(m-1) P^{\sharp}\right) \rightarrow g r_{C}^{1} \omega \rightarrow\left(-2+\frac{m+1}{2} P^{\sharp}+R^{\sharp}\right) \rightarrow 0 .
\end{aligned}
$$

Hence $H^{1}\left(\omega / F_{C}^{2} \omega\right) \neq 0$ and (2.12.3) is proved.
(2.12.4) As in the argument for (2.12.2), we have an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right) .
$$

Let J be the C-laminal ideal such that $J / F_{C}^{2} \mathscr{O}=\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)$. After an (equivariant) change of coordinates if necessary, we may assume that $\left(y_{2}, z_{2}, w_{2}\right)$ (resp. $\left(y_{3}, z_{3}, w_{4}\right)$) are ℓ-free ℓ-bases of $\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)$ (resp. $\left(-1+P^{\sharp}+R^{\sharp}\right)$), whence $J=\left(w_{2}, w_{3}, w_{4}^{2}\right)$ at S. Replacing w_{3} by an element $\equiv w_{3} \bmod \left(w_{2}, w_{4}\right)^{2}$ if necessary, we may further assume

$$
\gamma \equiv w_{1} w_{3}+c_{1} w_{4}^{2}+c_{2} w_{4} w_{2}+c_{3} w_{2}^{2} \bmod \left(w_{3}, w_{2}^{2}, w_{2} w_{4}, w_{4}^{2}\right) \cdot I_{C}
$$

for some $c_{1}, c_{2}, c_{3} \in \mathbb{C}$. We note that $\gamma \equiv w_{1} w_{3}+c_{1} w_{4}^{2} \bmod J \cdot I_{C}$.
(2.12.5) Lemma. The general member E_{X} of $\left|-K_{X}\right|$ has singularities A_{m-1}, A_{1}, and A_{n} at P, R, and S, respectively, and is smooth elsewhere, and $\Delta\left(E_{X} \supset C\right)$ is

where n is some integer ≥ 1. We have $n=1$ if $c_{1} \neq 0$ when $m \geq 5$ or if $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$ when $m=3$.
Proof. We have an ℓ-isomorphism $g r_{C}^{1}\left(\omega^{*}\right) \simeq(0) \tilde{\oplus}\left(-1+\frac{m+3}{2} P^{\sharp}\right)$. Let $D=$ $\left\{y_{1}=0\right\} / \mathbb{Z}_{m} \in\left|-2 K_{X}\right|$ as before. We treat the case $m \geq 5$. Then $g r_{C}^{1} \omega^{*} \simeq$ $\mathscr{O}_{C} \oplus \mathscr{O}_{C}(-1)$ and $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)=H^{0}\left(g r_{C}^{2}\left(\omega^{*}, J\right)\right)$. The general section $s \in$ $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$ induces $\left(y_{2}+\cdots\right) / \Omega$ up to some units whence induces a nonzero
global section \bar{s} of $g r_{C}^{1} \omega^{*}$. Hence \bar{s} is nowhere vanishing and the defining equations of $E_{X}=\{s=0\}$ are y_{2}, z_{2}, and $w_{2} \bmod F_{C}^{2} \mathscr{O}$ up to units at P, R, and S. Then E_{X} is smooth outside of P, R, and S, $\left(E_{X}, P\right) \simeq\left(y_{1}, y_{3}\right) / \mathbb{Z}_{m}(1,-1),\left(E_{X}, R\right) \simeq\left(z_{1}, z_{3}\right) / \mathbb{Z}_{2}(1,1)$, and $\left(E_{X}, S\right) \simeq$ $\left(w_{1}, w_{3}, w_{4} ; \bar{\gamma}\right)$, where

$$
\bar{\gamma}\left(w_{1}, w_{3}, w_{4}\right) \equiv w_{1} w_{3}+c_{1} w_{4}^{2} \bmod \left(w_{3}, w_{4}^{2}\right)\left(w_{3}, w_{4}\right)
$$

We are done in case $m \geq 5$. In case $m=3$, we can see that $g r_{C}^{1} \omega^{*} \simeq(0) \tilde{\oplus}(0)$ and $H^{0}\left(\Theta\left(-K_{X}\right)\right) \rightarrow H^{0}\left(g r_{C}^{1} \omega^{*}\right)$, and we get a similar assertion on E_{X} except that $\gamma \equiv w_{1} w_{3}+\left(c_{3} t^{2}+c_{2} t+c_{1}\right) w_{4}^{2}$ for some generic $t \in \mathbb{C}$. Thus we are done in case $m=3$.
(2.12.6) Lemma. If $m \geq 5$, then $c_{1} \neq 0$ and $n=1$ in (2.12.5).

Proof. Assume that $m \geq 5$ and $c_{1}=0$. By $w_{1} w_{3} \in J \cdot I_{C}$, we have $w_{3} \in$ $F^{3}(\mathscr{O}, J)$ and $g^{2}(\mathscr{O}, J)=\mathscr{O}_{C} w_{2} \oplus \mathscr{O}_{C} w_{4}^{2}$ at S. Thus we have ℓ-isomorphisms

$$
\begin{aligned}
g r^{1}(\mathscr{O}, J) & =\left(-1+P^{\sharp}+R^{\sharp}\right), \\
g r^{2,0}(\mathscr{O}, J) & =\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right), \\
g r^{2,1}(\mathscr{O}, J) & =g r^{1}(\mathscr{O}, J)^{\tilde{\otimes}^{2}} \simeq\left(-1+2 P^{\sharp}\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
g r^{1}(\omega, J) & \simeq\left(-1+\frac{m+1}{2} P^{\sharp}\right), \\
0 \rightarrow\left(-2+\frac{m+3}{2} P^{\sharp}+R^{\sharp}\right) & \rightarrow g r^{2}(\omega, J) \rightarrow\left(-1+(m-1) P^{\sharp}\right) \rightarrow 0,
\end{aligned}
$$

and $H^{0}\left(\omega / F^{3}(\omega, J)\right) \neq 0$, which is a contradiction.
(2.12.7) Lemma. If $m=3$, then $\left(c_{1}, c_{2}, c_{3}\right) \neq 0$ and $n=1$ in (2.12.5).

Proof. Assume that $\left(c_{1}, c_{2}, c_{3}\right)=0$. Then $w_{3} \in F_{C}^{3} \mathscr{O}$. Changing w_{1} and w_{3}, we may further assume $\gamma=w_{1} w_{3}+\delta\left(w_{2}, w_{4}\right)$ where δ is a power series in w_{2} and w_{4} of order $d \geq 3$. Then we have $\chi\left(\mathscr{O} / F_{C}^{n} \mathscr{O}\right)=O\left(n^{2}\right)$ by (2.18.8) below because $2 \cdot \operatorname{ldeg}_{C}\left(\left(-1+P^{\sharp}+R^{\sharp}\right)\right)+1 / d \leq 0$. This contradicts (2.12.9) below.

(2.12.8) Lemma.

$$
\chi\left(\mathscr{O} / F_{C}^{n} \mathscr{O}\right) \leq \frac{1}{6} n^{3}\left(\operatorname{ldeg}_{C} g r_{C}^{1} \mathscr{O}+\frac{1}{d}\right)+O\left(n^{2}\right) .
$$

Proof. An argument similar to the proof of [Mori88, (8.12)] shows

$$
\chi\left(\mathscr{O} / F_{C}^{n} \mathscr{O}\right) \leq \frac{1}{6} n^{3} \operatorname{ldeg}_{C} g r_{C}^{1} \mathscr{O}+\operatorname{len} \frac{\mathscr{O}_{X, S} /\left(F_{C}^{n} \mathscr{O}\right)_{S}}{\mathbb{C}\left\{w_{1}, w_{2}, w_{4}\right\} /\left(w_{2}, w_{4}\right)^{n}}+O\left(n^{2}\right)
$$

where we used the ordinarity of P and R. By the equation $w_{1} w_{3}=g\left(w_{2}, w_{4}\right)$ above, it is easy to see that

$$
\left(F_{C}^{n} \mathscr{O}\right)_{S}=\sum_{i=1}^{[n / d]}\left(w_{2}, w_{4}\right)^{n-d i} w_{3}^{i}+\left(w_{3}^{[n / d]+1}\right)
$$

and hence

$$
\operatorname{len} \frac{\mathscr{O}_{X, S} /\left(F_{C}^{n} \mathscr{O}\right)_{S}}{\mathbb{C}\left\{w_{1}, w_{2}, w_{4}\right\} /\left(w_{2}, w_{4}\right)^{n}} \leq \frac{n^{3}}{6 d}+O\left(n^{2}\right)
$$

The following is a rather general lemma.
(2.12.9) Lemma. Let $f: X \rightarrow(Y, Q)$ be a proper bimeromorphic morphism of an irreducible reduced 3-fold to a 3-fold singularity (Y, Q) such that $C=$ $f^{-1}(Q)$ is 1-dimensional. Then for an arbitrary number $c>0$, there exists a number $M(c)$ such that

$$
\chi(\mathscr{O} / K) \geq M(c)+c \cdot \operatorname{rk}(\mathscr{O} / K)
$$

for an arbitrary ideal $K \subset \mathscr{O}_{X}$ defining C (as a set), where $\operatorname{rk}(\mathscr{O} / K)$ is the sum of $\operatorname{len}_{\xi}(\mathscr{O} / K)_{\xi}$ for the generic points of C.
Proof. Since $\operatorname{dim} C=1$, let L be an f-ample line bundle on X. Since $f^{*} f_{*}\left(L^{-1}\right)=L^{-1}$ on $X-C$, we see that

$$
J=L \otimes\left(\text { Image of } f^{*} f_{*}\left(L^{-1}\right) \rightarrow L^{-1}\right)
$$

is an ideal defining C such that $L^{\oplus n} \rightarrow J$ for some $n>0$. Let

$$
\mathscr{O}_{X}=J_{0} \supset J_{1} \supset \cdots \supset J_{a}=J
$$

be ideals such that $\operatorname{Annih}\left(J_{i} / J_{i+1}\right)$ is a prime ideal P_{i} and J_{i} / J_{i+1} is a torsionfree \mathscr{O} / P_{i}-module $(i=0, \ldots, a-1)$. Let $\lambda=a \mu+\nu \quad(\mu \in \mathbb{Z}, \nu \in[0, a-1])$. Then

$$
S^{\mu}\left(L^{\oplus n}\right) \otimes J_{\nu} \rightarrow J^{\{\lambda\}}
$$

where $J^{\{\lambda\}}=J^{\mu} \cdot J_{\nu}$. Hence

$$
S^{\mu}\left(\mathscr{O}^{\oplus n}\right) \otimes L^{\otimes \mu} \otimes J_{\nu} / J_{\nu+1} \rightarrow J^{\{\lambda\}} / J^{\{\lambda+1\}}
$$

Hence if $K+J^{\{\lambda\}} / K+J^{\{\lambda+1\}}$ is of rank n_{λ} along $\operatorname{Supp}\left(\mathscr{C} / P_{\nu}\right)$ of dimension 1 , then there is an injection

$$
\left(L^{\otimes \mu} \otimes J_{\nu} / J_{\nu+1}\right)^{\oplus n_{\lambda}} \rightarrow K+J^{\{\lambda\}} / K+J^{\{\lambda+1\}}
$$

whose cokernel is of finite length. There exists $\lambda(c)$, which is independent of K, such that if $\lambda=a \mu+\nu \geq \lambda(c)$ and $\operatorname{Supp}\left(\mathscr{O} / P_{\nu}\right)$ is a curve then $\chi\left(L^{\otimes \mu} \otimes J_{\nu} / J_{\nu+1}\right) \geq c$. Hence if $\lambda=a \mu+\nu \geq \lambda(c)$, then

$$
\begin{equation*}
\chi\left(K+J^{\{\lambda\}} / K+J^{\{\lambda+1\}}\right) \geq n_{\lambda} \cdot c \tag{2.12.9.1}
\end{equation*}
$$

where n_{λ} is as above if $\operatorname{dim} \operatorname{Supp}\left(\mathscr{O} / P_{\nu}\right)=1$ and $n_{\lambda}=0$ otherwise. Since $K \supset J^{\{\lambda\}}$ for $\lambda \gg 0$, (2.12.9.1) implies

$$
\chi\left(K+J^{\{\sigma\}} / K\right) \geq c \cdot \operatorname{rk}\left(K+J^{\{\sigma\}} / K\right)
$$

for some $\sigma<\lambda(c)$. It remains to give a lower bound of $\chi\left(\mathscr{O} / K+J^{\{\sigma\}}\right)$. For each $\sigma<\lambda(c)$, we choose one sequence of ideals

$$
\mathscr{O}_{X}=I_{0} \supset I_{1} \supset \cdots \supset I_{b}=J^{\{\sigma\}}
$$

such that $\operatorname{Annih}\left(I_{i} / I_{i+1}\right)=Q_{i}$ is a prime ideal and I_{i} / I_{i+1} is a torsion-free \mathscr{O} / Q_{i}-module of rank $1(i=0, \ldots, b-1)$. If $\chi\left(I_{i}+K / I_{i+1}+K\right)<0$, then $\operatorname{dim} \operatorname{Supp} \mathscr{O} / Q_{i}=1$ and

$$
I_{i} / I_{i+1} \xrightarrow{\sim} I_{i}+K / I_{i+1}+K
$$

Thus $\chi\left(I_{i}+K / I_{i+1}+K\right) \geq \min \left\{0, \chi\left(I_{i} / I_{i+1}\right)\right\}$ and $\chi\left(\mathscr{O} / K+J^{\{\sigma\}}\right) \geq M(c)+$ $c \cdot \mathrm{rk}\left(\mathscr{O} / K+J^{\{\sigma\}}\right)$, where

$$
M(c)=\operatorname{Min}_{\sigma}\left(\sum_{i=0}^{b-1} \min \left\{0, \chi\left(I_{i} / I_{i+1}\right)\right\}-c \cdot \operatorname{rk}\left(\mathscr{O} / J^{\{\sigma\}}\right)\right)
$$

where $\operatorname{Min}_{\sigma}$ is the minimum taken over all $\sigma<\lambda(c)$. Hence we have (2.19.2).

It seems worthwhile to remark.
(2.12.10) Corollary. The inequality in [Mori88, (8.12.ii)] is strict.

Now (2.2.3') is proved in the case $I A+I A+I I I$ except the divisoriality, which will be treated in Chapter 5.
(2.13) The case of two $I A$ points P, R with indices $m, 2$. We know that P is a $c A$ point, $\operatorname{siz}_{P}=1, m \geq 3$ [Mori88, (B.1)]. We start with the set-up.
(2.13.1) Lemma. We can write

$$
\begin{aligned}
& (X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{m}(1, a,-1,0 ; 0) \supset(C, P)=y_{1}-a x i s / \mathbb{Z}_{m} \\
& (X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \beta\right) / \mathbb{Z}_{2}(1,1,1,0 ; 0) \supset(C, R)=z_{1}-a x i s / \mathbb{Z}_{2}
\end{aligned}
$$

using equations α and β and an integer a such that $\alpha \equiv y_{1} y_{3} \bmod \left(y_{2}, y_{3}\right)^{2}+$ $\left(y_{4}\right), m / 2<a<m$, and $(a, m)=1$.
Proof. This is similar to (2.12.1). We only need to prove $a>m / 2$, which follows from $1>w_{P}(0)+w_{R}(0)=(m-a) / m+1 / 2$ [Mori88, (4.9)].

We recall $\ell(P)=\operatorname{len}_{P^{\sharp}}\left(I^{\sharp(2)} / I^{\sharp^{2}}\right.$) where I^{\sharp} is the defining ideal of C^{\sharp} in $\left(X^{\sharp}, P^{\sharp}\right)$ and $\ell(R)$ is defined similarly.
(2.13.2) Lemma. We have $\ell(P)=0$ or 1 and $i_{P}(1)=1$.

Proof. This follows from $\alpha \equiv y_{1} y_{3}$ and [Mori88, (2.16)].
(2.13.3) Lemma. We have either
(2.13.3.1) $\ell(R)=0$ or $1, i_{R}(1)=1$, and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1) ;$ or
(2.13.3.2) $\ell(R)=2, i_{R}(1)=2, m$ is odd, P is ordinary, $a=(m+1) / 2$, and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(-1) \oplus \mathscr{O}(-1)$.

Furthermore in case (2.13.3.2), $X \supset C$ has a small deformation $X_{t} \supset C_{t}$ so that X_{t} has three singular points on C_{t}.
Proof. The assertion on $i_{R}(1)$ follows from the one on $\ell(R)$ by [Mori88, (2.16)]. We assume $\ell(R) \geq 2$ and denote it by r. Thus we may choose $\beta \equiv z_{1}^{r} z_{i} \bmod \left(z_{2}, z_{3}, z_{4}\right)^{2}$, where $i=3($ resp. 4) if $r \equiv 1($ resp. 0$) \bmod$ (2). If we extend the deformation $\beta+t z_{1}^{r-2} z_{i}=0$ of (X, R) to a deformation $X_{t} \supset C_{t} \ni R_{t}$ of $X \supset C \ni R$, which is trivial outside of a small nbd of R, then X_{t} has two $I A$ points and one III point on C_{t} and $\beta+t z_{1}^{r-2} z_{i}=0$ is the equation for $\left(X_{t}, R_{t}\right)$ (cf. [Mori88, (4.12.2)]). Hence $r=2$ by (2.12.3). Since $X_{t} \supset C_{t}$ is a trivial deformation of $X \supset C$ in a nbd of P, we have the rest of the assertion by (2.12).

First we treat the special case (2.13.3.2).
(2.13.4) Lemma. The assertion (2.2.3) holds in the case (2.13.3.2).

Proof. The argument is quite similar to (2.12). As in (2.12.4), we have an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right),
$$

and let J be the C-laminal ideal such that $J / F_{C}^{2} \mathscr{G}=\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)$. We may assume that $\left(y_{2}, z_{2}\right)$ (resp. $\left.\left(y_{3}, z_{3}\right)\right)$ are ℓ-free ℓ-bases of $\left(-1+\frac{m-1}{2} P^{\sharp}+\right.$ $\left.R^{\sharp}\right)\left(\operatorname{resp} .\left(-1+P^{\sharp}+R^{\sharp}\right)\right), J^{\sharp}=\left(z_{2}, z_{4}, z_{3}^{2}\right)$, and

$$
\beta \equiv z_{1}^{2} z_{4}+c_{1} z_{3}^{2}+c_{2} z_{2} z_{3}+c_{3} z_{2}^{2} \bmod \left(z_{4}, z_{3}^{2}, z_{2} z_{3}, z_{2}^{2}\right) \cdot I_{C}
$$

at R for some $c_{1}, c_{2}, c_{3} \in \mathbb{C}$. We note that $\beta \equiv z_{1}^{2} z_{4}+c_{1} z_{3}^{2} \bmod J^{\sharp} I^{\sharp}$. The following (2.13.5) corresponds to (2.12.5). The fact that ($\left.c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$ follows from the classification of terminal 3-fold singularities [Reid87, (6.1)]. The assertion that $c_{1} \neq 0$ if $m \geq 5$ is proved in the same way as (2.12.6). Thus (2.13.4) is proved.
(2.13.5) Lemma. Assume that $c_{1} \neq 0$ when $m \geq 5$, or $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$ when $m=3$. Then for a general member E_{X} of $\left|-K_{X}\right|, \Delta\left(E_{X} \supset C\right)$ is

where $k(\geq 2)$ is the axial multiplicity of (X, R).
Proof. The only difference from (2.12.5) is the analysis of the singularity

$$
\left(E_{X}, R\right) \simeq\left(z_{1}, z_{3}, z_{4} ; \bar{\beta}\right) / \mathbb{Z}_{2}(1,1,0 ; 0)
$$

where $\bar{\beta}$ satisfies $\bar{\beta} \equiv z_{1}^{2} z_{4}+z_{3}^{2} \bmod \left(z_{4}, z_{3}^{2}\right)\left(z_{4}, z_{3}\right)$ and ord $\bar{\beta}\left(0,0, z_{4}\right)=$ $k<\infty$. It is easy to see that $\bar{\beta}=z_{1}^{2} z_{4}+z_{3}^{2}+z_{4}^{k}$ modulo formal \mathbb{Z}_{m} automorphisms in $\left(z_{1}, z_{3}, z_{4}\right)$. Thus it is reduced to the following explicit computation (cf. [Reid87, (4.10)]).
(2.13.6) Computation. Let

$$
(E, R)=\left(z_{1}, z_{3}, z_{4} ; z_{1}^{2} z_{4}+z_{3}^{2}+z_{4}^{k}\right) / \mathbb{Z}_{2}(1,1,0 ; 0)
$$

and $C=z_{1}$-axis $/ \mathbb{Z}_{2}$, where $k \geq 2$. Then (E, R) is $D_{2 k}$ and $\Delta(E \supset C)$ is

(2.13.7) In the rest of this chapter, we assume the case (2.13.3.1) unless otherwise mentioned.

We choose an ℓ-splitting $g r_{C}^{1} \mathscr{O} \simeq L \tilde{\oplus} M$ (2.8) such that $\operatorname{deg} L=0$ and $\operatorname{deg} M=-1$ (2.13.3.1). Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=L$. For an ℓ-invertible sheaf F with an ℓ-free ℓ-basis f at a point T of index n, we can give an equivalent definition of $\operatorname{qldeg}(F, T) \in[0, n)$ as $\operatorname{qldeg}(F, T) \equiv-w t f \bmod (n)$. (This is because $\left(C^{\sharp}, P^{\sharp}\right)$ and $\left(C^{\sharp}, R^{\sharp}\right)$ are smooth.)
(2.13.8) Theorem. $\operatorname{qldeg}(M, R)=1$.

Proof. We assume $\operatorname{qldeg}(M, R)=0$. Then $M \simeq\left(-1+i P^{\sharp}\right)$ for $i=0,1$, or $(m-a)$ since y_{2}, y_{3}, and y_{4} form an ℓ-basis of $g r_{C}^{1} \mathscr{O}$ at P. By $q l_{C}\left(g r_{C}^{0} \omega\right)=$ $-1+(m-a) P^{\sharp}+R^{\sharp}$, we have

$$
g r_{C}^{1} \omega \simeq g r_{C}^{1} \mathscr{O} \otimes g r_{C}^{0} \omega \simeq L \tilde{\otimes} g r_{C}^{0} \omega \tilde{\oplus}\left(-2+(m-a+i) P^{\sharp}+R^{\sharp}\right) .
$$

By $m-a+i \leq 2 m-2 a<m$, we have $H^{1}\left(g r_{C}^{1} \omega\right) \neq 0$. This is a contradiction to $H^{1}\left(\omega / F_{C}^{2} \omega\right)=0$ because of $H^{1}\left(g r_{C}^{0} \omega\right)=0$.
(2.13.8.1) Remark. For comparison with [Mori88, (9)], it might be worthwhile to mention

$$
\begin{array}{ll}
\operatorname{qldeg}(M, R)=1 & \text { iff } \ell(R)+q(R)=1 \\
\operatorname{qldeg}(M, P)=m-a & \text { iff } \ell(P)+q(P)=1 .
\end{array}
$$

(2.13.9) Lemma. The case (2.2.4) holds if $\operatorname{qldeg}(M, P)=m-a$.

Proof. We have an ℓ-isomorphism $M \simeq g r_{C}^{0} \omega$. We may assume that y_{2} is an ℓ-free ℓ-basis of M at P. Let $D=\left\{y_{1}^{2 a-m}=0\right\} / \mathbb{Z}_{m}$ (note that $2 a>m)$. It is easy to see $D \in\left|-2 K_{X}\right|$ by $(D \cdot C)=(2 a-m) / m$. By $H^{0}\left(\Theta\left(-K_{X}\right)\right)=H^{0}\left(F_{C}^{1}\left(\omega^{*}\right)\right)$, its general section s induces a section \bar{s} of $g r_{C}^{1} \omega^{*} \simeq L \tilde{\otimes}\left(g r_{C}^{0} \omega\right)^{\tilde{\otimes}(-1)} \oplus(0)$. The projection of \bar{s} to (0) is nonzero because y_{2} / Ω is an ℓ-free ℓ-basis of (0) at P and s induces an element of the form $y_{2} / \Omega+\cdots$ up to units, where Ω is an ℓ-free ℓ-basis of $g r_{C}^{0} \omega$ at P. Thus \bar{s} is nowhere vanishing, whence $E_{X}=\{s=0\}$ is smooth outside of P and R. The analysis of $\left(E_{X}, P\right)$ and $\left(E_{X}, R\right)$ is the same as [Mori88, (9.9.3)].
(2.13.10) Lemma. We assume $\operatorname{qldeg}(M, P) \neq m-a$ in the case (2.13.3.1). Let k be the axial multiplicity of R. Then P is ordinary, m is odd ≥ 5, and $a=(m+1) / 2$. After changing coordinates, we may assume

$$
\begin{aligned}
& (X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1) \supset(C, P)=y_{1} \text {-axis } / \mathbb{Z}_{m} \\
& (X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \beta\right) / \mathbb{Z}_{2}(1,1,1,0 ; 0) \supset(C, R)=z_{1} \text {-axis } / \mathbb{Z}_{2}
\end{aligned}
$$

y_{2} and y_{3} are ℓ-free ℓ-bases of L and M at P, respectively; z_{3} (resp. z_{4}) and z_{2} are ℓ-free ℓ-bases of L and M at R, respectively,

$$
\begin{aligned}
L & =\left(\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right)\left(\text { resp. } L \simeq\left(\frac{m-1}{2} P^{\sharp}\right)\right), \\
M & =\left(-1+P^{\sharp}+R^{\sharp}\right),
\end{aligned}
$$

$I \supset J$ has a (1, 2)-monomializing ℓ-basis $\left(y_{3}, y_{2}\right)$ at $P, I \supset J$ has a (1, 2)-monomializing ℓ-basis $\left(z_{2}, z_{3}\right)$ (resp. a ($1,2,2$)-monomializing ℓ-basis $\left(z_{2}, z_{4}, z_{3}\right)$ of the second kind) at $R, \beta=z_{4}$ (resp. $\beta \equiv z_{1} z_{3}+z_{2}^{2} \bmod$ $\left(z_{2}^{2}, z_{3}, z_{4}\right)\left(z_{2}, z_{3}, z_{4}\right)$ if $k=1$ (resp. $k \geq 2$); and an ℓ-splitting

$$
g r^{2}(\Theta, J) \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) .
$$

Proof. Proof will be given in a few steps.
(2.13.10.1) Assuming that $\mathrm{qldeg}(M, P) \neq m-a$ and that P is not ordinary, we will derive a contradiction. We may assume $\alpha \equiv y_{1} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ by (2.13.1). Thus y_{2} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}$ at P, and we may assume that they are ℓ-free ℓ-bases of L and M, respectively, because qldeg $(M, P) \neq m-a$. Hence $M \simeq\left(-1+R^{\sharp}\right)$. By the deformation $\alpha+t y_{4}^{2}$ (2.9.2), we may assume that $I \supset J$ has a ($1,2,2$)-monomializing ℓ-basis $\left(y_{4}, y_{2}, y_{3}\right)$ at P. We may further assume that R is an ordinary point by (2.9.2). Hence $L \simeq\left((m-a) P^{\sharp}+R^{\sharp}\right)$ and $g r^{2,1}(\mathscr{O}, J) \simeq M^{\dot{\otimes} 2} \tilde{\otimes}\left(P^{\sharp}\right) \simeq\left(-1+P^{\sharp}\right)$. Hence

$$
\begin{aligned}
g r^{1}(\omega, J) & \simeq M \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-1+(m-a) P^{\sharp}\right), \\
g r^{2,0}(\omega, J) & \simeq L \tilde{\otimes} g r_{C}^{0} \omega \simeq\left((2 m-2 a) P^{\sharp}\right), \\
g r^{2,1}(\omega, J) & \simeq g r^{2,1}(\mathscr{O}, J) \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-2+(m-a+1) P^{\sharp}+R^{\sharp}\right), \\
g r^{3,0}(\omega, J) & \simeq g r^{2,0}(\omega, J) \tilde{\otimes} M \simeq\left(-1+(2 m-2 a) P^{\sharp}+R^{\sharp}\right), \\
g r^{3,1}(\omega, J) & \simeq g r^{2,1}(\omega, J) \tilde{\otimes} M \simeq\left(-2+(m-a+1) P^{\sharp}\right) .
\end{aligned}
$$

Thus we have a contradiction $H^{1}\left(\omega / F^{4}(\omega, J)\right) \neq 0$ by $m-a+1 \leq 2 m-2 a<$ m. Thus P is ordinary.
(2.13.10.2) We will prove that m is odd ≥ 5 and $a=(m+1) / 2$. If $a=m-1$, then $\operatorname{qldeg}(M, P)=m-a$ by $\operatorname{qldeg}(M, P) \equiv-w t y_{2} \equiv-w t y_{3}$. This is impossible and thus $a \leq m-2$. Whence $m \geq 5$ by $m-2 \geq a>m / 2$. As in (2.13.10.1), we may assume that R is ordinary by (2.9.2). Hence $L \simeq$ $\left((m-a) P^{\sharp}+R^{\sharp}\right)$ and $M \simeq\left(-1+P^{\sharp}+R^{\sharp}\right)$ by $\mathrm{qldeg}(M, P) \equiv-w t y_{2}$ or $-w t y_{3}$
$\bmod (m)$. We have

$$
\begin{aligned}
g r^{1}(\omega, J) & \simeq M \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-1+(m-a+1) P^{\sharp}\right), \\
g r^{2,0}(\omega, J) & \simeq L \tilde{\otimes} g r_{C}^{0} \omega \simeq\left((2 m-2 a) P^{\sharp}\right), \\
g r^{2,1}(\omega, J) & \simeq M^{\dot{\otimes} 2} \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-2+(m-a+2) P^{\sharp}+R^{\sharp}\right), \\
g r^{3,0}(\omega, J) & \simeq L \tilde{\otimes} M \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-1+(2 m-2 a+1) P^{\sharp}+R^{\sharp}\right), \\
g r^{3,1}(\omega, J) & \simeq M^{\dot{\otimes} 3} \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-2+(m-a+3) P^{\sharp}\right) .
\end{aligned}
$$

By $m>2 m-2 a \geq m-a+2$, we see that $H^{1}\left(\omega / F^{4}(\omega, J)\right)=0$ only if $2 m-2 a+1=m$, that is, $a=(m+1) / 2$.
(2.13.10.3) Since $g r_{C}^{1} \mathscr{O}$ has an ℓ-free ℓ-basis $\left\{y_{2}, y_{3}\right\}$ at P and $\left\{z_{2}, z_{3}\right\}$ (resp. $\left\{z_{2}, z_{4}\right\}$) at R if $k=1$ (resp. $k \geq 2$), the assertions on L and M follow from $\operatorname{qldeg}(M, R)=1$ (2.13.8). For the ℓ-bases of J, we only have to show that $\left(z_{2}, z_{4}, z_{3}\right)$ is a ($1,2,2$)-monomializing ℓ-basis of $I \supset J$ of the second kind at R assuming $k \geq 2$ because $J^{\sharp}=\left(z_{2}^{2}, z_{3}\right)$ if $k=1$. Assume $k \geq 2$ (hence $\left.J^{\sharp}=\left(z_{2}^{2}, z_{3}, z_{4}\right)\right)$ and that $\beta \equiv z_{1} z_{3}+c z_{2}^{2} \bmod J^{\sharp} I^{\sharp}$ for some $c \in \mathbb{C}$. If $c=0$, then $z_{3} \in F^{3}(\mathscr{O}, J)$ and $g r^{2,1}(\mathscr{O}, J) \simeq M^{\otimes 2}$, whence

$$
\begin{aligned}
& g r^{2,0}(\omega, J) \simeq L \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-1+(m-1) P^{\sharp}+R^{\sharp}\right), \\
& g r^{2,1}(\omega, J) \simeq M^{\dot{\otimes} 2} \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-2+\frac{m+3}{2} P^{\sharp}+R^{\sharp}\right),
\end{aligned}
$$

which implies a contradiction: $H^{1}\left(\omega / F^{3}(\omega, J)\right) \neq 0$. Thus $c \neq 0$ and the assertion on ℓ-basis is proved. In particular, the assertion on β follows.
(2.13.10.4) By $g r^{2,1}(\mathscr{O}, J) \simeq M^{\dot{\otimes} 2}$ if $k=1$ (resp. $M^{\dot{\otimes} 2} \tilde{\otimes}\left(R^{\sharp}\right)$ if $k \geq 2$), we have $g r^{2}(\mathscr{O}, J) \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(-1)$ as \mathscr{G}_{C}-modules. It is easy to see that the ℓ-free ℓ-basis at R of $g r^{2}(\mathscr{O}, J) / \mathscr{O}_{C}$ has $w t \not \equiv 0 \bmod (2)$ by the argument for (2.13.8) and by $m \geq 5$. To determine the ℓ-splitting of $g r^{2}(\mathscr{O}, J)$ (cf. (2.9)), it is therefore enough to disprove the ℓ-isomorphism $g r^{2}(\odot, J) \simeq$ $\left(\frac{m-1}{2} P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}+R^{\sharp}\right)$ when $m \geq 7$ (we note that this ℓ-splitting is what we want if $m=5$). Indeed, from this ℓ-splitting, we have

$$
\begin{aligned}
& g r^{2}(\omega, J) \simeq\left(-1+(m-1) P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(-1+\frac{m+3}{2} P^{\sharp}\right), \\
& g r^{3}(\omega, J) \simeq(0) \tilde{\oplus}\left(-2+\frac{m+5}{2} P^{\sharp}+R^{\sharp}\right),
\end{aligned}
$$

which implies a contradiction $H^{1}\left(\omega / F^{4}(\omega, J)\right) \neq 0$. Thus we have

$$
g r^{2}(\circlearrowleft, J) \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) .
$$

(2.13.11) Lemma. We use the notation and assumptions of (2.13.10). We have that $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)=H^{0}\left(F^{2}\left(\omega^{*}, J\right)\right)$ and a general section s of $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$ induces a section \bar{s} of $\operatorname{gr}^{2}\left(\omega^{*}, J\right)$ such that
(2.13.11.1) \bar{s} generates $L \tilde{\otimes} g r_{C}^{0} \omega^{*} \subset g r_{C}^{1} \omega^{*}$ at P, and
(2.13.11.2) if $m \geq 7$ then \bar{s} is a global generator of (0) in the ℓ-splitting of (2.13.10)

$$
g r^{2}\left(\omega^{*}, J\right) \simeq(0) \tilde{\oplus}\left(-1+\frac{m+5}{2} P^{\sharp}+R^{\sharp}\right) .
$$

If $m=5$, we have the same assertion possibly after changing the ℓ-splitting of $g r^{2}\left(\omega^{*}, J\right)$.
Proof. We see $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)=H^{0}\left(F^{2}\left(\omega^{*}, J\right)\right)$ by

$$
\begin{equation*}
H^{0}\left(g r^{0}\left(\omega^{*}, J\right)\right)=H^{0}\left(g r^{1}\left(\omega^{*}, J\right)\right)=0 \tag{2.13.10}
\end{equation*}
$$

Let $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{m} \in\left|-2 K_{X}\right|$ and let Ω be an ℓ-free ℓ-basis of $g r^{0} \omega$ at P. By (2.5), $y_{2} / \Omega \in \mathscr{O}_{D}\left(-K_{X}\right)$ lifts to a section of $H^{0}\left(F^{2}\left(\omega^{*}, J\right)\right)$. Since y_{2} is a part of an ℓ-free ℓ-basis of $g r^{2}(\mathscr{O}, J)$, we see that \bar{s} is nonzero. If $m \geq 7$, then \bar{s} must generate (0) because $H^{0}\left(C,\left(-1+\frac{m+5}{2} P^{\sharp}+R^{\sharp}\right)\right)=0$. If $m=$ 5, then we see $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right) \rightarrow g r^{2}\left(\omega^{*}, J\right) \otimes \mathbb{C}(P)$ using $y_{3}^{2} / \Omega \in \mathscr{O}_{D}\left(-K_{X}\right)$. Then $\bar{s} \notin H^{0}\left(C,\left(R^{\sharp}\right)\right)$ in the ℓ-splitting of $g r^{2}\left(\omega^{*}, J\right)$ and we have the same conclusion.
(2.13.12) Lemma. We assume the notation and assumptions of (2.13.10). Then the case (2.2.3) holds.
Proof. Let $s \in H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$ be a general section. If $m=5$, we change the ℓ-splitting of $g r^{2}(\Theta, J)$ for which (2.13.11) holds. Depending on the value of k, we treat two cases.
(2.13.12.1) Case $k=1$. We claim that the image of \bar{s} in $g r_{C}^{1} \omega^{*}$ generates $L \tilde{\otimes} g r_{C}^{0} \omega^{*} \simeq(1)\left(\subset g r_{C}^{1} \omega^{*}\right)$ at P and R and vanishes at some point $S(\neq$ $P, R)$. Indeed the generation at P is proved in (2.13.11). If \bar{s} does not generate $L \tilde{\otimes} g r_{C}^{0} \omega^{*}=g r^{2,0}\left(\omega^{*}, J\right)$ at R, \bar{s} is not a part of an ℓ-free ℓ-basis of $g r^{2,0}\left(\omega^{*}, J\right)$ at R because

$$
\operatorname{qldeg}\left(g r^{2,1}\left(\omega^{*}, J\right), R\right)=\operatorname{qldeg}\left(M^{\tilde{\otimes} 2} \tilde{\otimes} g r_{C}^{0} \omega^{*}, R\right) \neq 0
$$

It contradicts (2.13.11) and our claim is proved. Then it is easy to see that $E_{X}=\{s=0\} \in\left|-K_{X}\right|$ is smooth outside of P, R, and $S,\left(E_{X}, P\right) \simeq$ $\left(y_{1}, y_{3}\right) / \mathbb{Z}_{m}(1,-1)$, and $\left(E_{X}, R\right) \simeq\left(z_{1}, z_{2}\right) / \mathbb{Z}_{2}(1,1)$. We choose coordinates at S so that $(X, S)=\left(w_{1}, w_{2}, w_{3}\right) \supset(C, S)=w_{1}$-axis and $J=\left(w_{2}, w_{3}^{2}\right)$ at S. Using a generator Ω of $\mathscr{O}\left(K_{X}\right)$ at S, we see $\Omega s \in\left(w_{1} w_{2}\right)+\left(w_{2}, w_{3}\right)^{2}$ because \bar{s} vanishes at S to order 1 . Since Ωs is a part of a free basis of $g r^{2}(\Theta, J)$ at S, we have $\Omega s \equiv f w_{1} w_{2}+g w_{3}^{2} \bmod \left(w_{2}, w_{3}^{2}\right)\left(w_{2}, w_{3}\right)$ for some units f and g. Thus $\left(E_{X}, R\right)$ is an A_{1} point and we are done in case $k=1$.
(2.13.12.2) Case $k \geq 2$. We see that the image of \bar{s} in $g r_{C}^{1} \omega^{*}$ generates $L \tilde{\otimes} g r_{C}^{0} \omega^{*} \simeq\left(R^{\sharp}\right)$ outside of R by (2.13.11). Then $E_{X}=\{s=0\} \in$ $\left|-K_{X}\right|$ is smooth outside of P and $R,\left(E_{X}, P\right) \simeq\left(y_{1}, y_{2}\right) / \mathbb{Z}_{m}(1,-1)$. Using an ℓ-free ℓ-basis Ω of $\mathscr{O}\left(K_{X}\right)$ at R, we see that the image of \bar{s} in $g r_{C}^{1} \omega^{*}$
is $z_{1} z_{4} / \Omega$ at R. Since s is a part of an ℓ-free ℓ-basis of $g r^{2}\left(\omega^{*}, J\right)$ at R, we have $\Omega s \equiv z_{1} z_{4}+f z_{3} \bmod J^{\sharp} I^{\sharp}$ at R for some unit f. Eliminating z_{3}, we see that $\left(E_{X}, R\right) \simeq\left(z_{1}, z_{2}, z_{3} ; \bar{\beta}\right) / \mathbb{Z}_{2}(1,1,0 ; 0)$, where $\bar{\beta}$ satisfies $\bar{\beta} \equiv z_{1}^{2} z_{4}+z_{2}^{2} \bmod \left(z_{2}^{2}, z_{4}\right)\left(z_{2}, z_{4}\right)$ and ord $\bar{\beta}\left(0,0, z_{4}\right)=k$. Then we can apply (2.13.6).

By (2.2) and (2.13), we see the following.
(2.13.13) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd with $C \simeq \mathbb{P}^{1}$. Then the following are equivalent:
(2.13.13.1) $X \supset C$ is of type $k A D$.
(2.13.13.2) X has exactly two non-Gorenstein points on C and is smooth elsewhere and $\left(f\left(E_{X}\right), Q\right)$ is not a cyclic quotient singularity for a general member E_{X} of $\left|-K_{X}\right|$.
(2.13.13.3) $X \supset C$ is as described in (2.13.3.2) or (2.13.10).

3. Some remarks about general DuVal elements

[Reid87] conjectured that if $X \supset C \rightarrow Y \ni P$ is an extremal nbd with the contraction map then the general member of the linear systems of Weil divisors $\left|-K_{X}\right|$ and $\left|-K_{Y}\right|$ have only DuVal singularities. He dubbed this member the "general elephant." In fact, he speculated that in even more general situations when contraction of an extremal face results in a singular point $Z \ni Q$, the general member of $\left|-K_{Z}\right|$ still has a DuVal singularity. He further hoped that this will be a key step toward establishing the existence of flips.

It seems that these conjectures and speculations are very close to being correct and they can serve as an important guideline toward understanding flipping singularities. In this chapter we present some of the evidence for the conjectures. The following theorem describes singularities with a DuVal general element.
(3.1) Theorem. Let $Y \ni P$ be a threefold singularity. Let $P \in D \in\left|-K_{Y}\right|$ and assume that D has only DuVal singularities. Then
(3.1.1) There is a ramified double cover $p: Z \rightarrow Y$ such that Z has canonical singularities.
(3.1.2) For any Weil divisor W the symbolic power algebra

$$
\sum_{k=0}^{\infty} \mathscr{O}_{Y}(k W)
$$

is a finitely generated \mathscr{O}_{Y}-algebra. In particular,

$$
f_{W}: Y_{(W)}=\operatorname{Proj}_{Y}\left(\sum_{k=0}^{\infty} \mathscr{O}_{Y}(k W)\right) \rightarrow Y
$$

is a proper map whose exceptional set consists of finitely many curves over P.
(3.1.3) $Y_{\left(K_{Y}\right)}$ has only pseudoterminal singularities, and $Y_{\left(-K_{Y}\right)}$ has only canonical singularities.
Proof. By [Shokurov91, 3.4] $K_{Y}+D$ is \log terminal. Let $B \in\left|-2 K_{Y}\right|$ be a general member. Let $p: Z \rightarrow Y$ be the double cover of Y ramified along B.

By the adjunction formula,

$$
K_{Z}=p^{*}\left(K_{Y}+\frac{1}{2} B\right)
$$

is Cartier and K_{Z} is log terminal (cf. the proof of [Shokurov91, 2.9]). Thus Z is canonical. This shows (3.1.1), which in turn implies (3.1.2) by [Kawamata88].

Let $Y^{\prime}=Y_{\left(K_{Y}\right)}$ and let $D^{\prime} \subset Y^{\prime}$ be the proper transform of D. Then

$$
K_{D^{\prime}}=K_{Y^{\prime}}+D^{\prime} \mid D^{\prime}=0
$$

By assumption, D has only DuVal singularities, hence for any partial resolution (even for possibly nonnormal ones) $K_{D^{\prime}}=0$ iff D^{\prime} is normal and is dominated by the minimal resolution. In particular, D^{\prime} has only DuVal singularities. $K_{Y^{\prime}}$ is $f_{\left(K_{Y}\right)}$-ample, thus D^{\prime} contains the exceptional locus of $f_{\left(K_{Y}\right)}$. [Stevens88, §5] implies that Y^{\prime} has only pseudoterminal singularities.

The same argument shows that $Y^{*}=Y_{\left(-K_{Y}\right)}$ has pseudoterminal singularities along the proper transform D^{*} of $D .\left(Y^{*}, D^{*}\right)$ is \log terminal and $D^{*} \in$ $\left|-K_{Y^{*}}\right|$. Thus D^{*} contains all points where $K_{Y^{*}}$ is not Cartier, hence Y^{*} is canonical outside D^{*}.
(3.2) Remarks. (3.2.1) We proved in fact more: any non-Gorenstein singularity of $Y_{\left(-K_{Y}\right)}$ is pseudoterminal.
(3.2.2) In view of this result the natural set-up for extremal nbds might be to consider extremal nbds with canonical singularities. If in all cases $\left|-K_{Y}\right|$ has a general DuVal element then we have established a beautiful equivalence between isolated extremal nbds with canonical singularities and possibly reducible central curves and non-Gorenstein threefold singularities with a general DuVal element.
(3.3) Theorem. Let $Y \ni P$ be a threefold singularity. Let $P \in D \in\left|-K_{Y}\right|$ and assume that D is a cyclic quotient (DuVal) singularity. Then
(3.3.1) The general hyperplane section $P \in H \subset Y$ has a cyclic quotient singularity at P;
(3.3.2) The pullback of H to $Y_{\left(K_{Y}\right)}$ has cyclic quotient singularities;
(3.3.3) The pullback of H to $Y_{\left(-K_{Y}\right)}$ has semi-log-canonical singularities [KSB88, Chapter 4];
(3.3.4) If $Y_{n} \rightarrow Y$ is the n-sheeted cyclic cover ramified along H then the general member of $\left|-K_{Y_{n}}\right|$ again has only cyclic quotient (DuVal) singularities.
(3.4) Corollary. Let $f: X \supset C \rightarrow Y \ni P$ be a semistable extremal nbd. Then the general hyperplane section $P \in H \subset Y$ has a cyclic quotient singularity.

We start the proof with some lemmas:
(3.5.1) Lemma. Let $x \in X$ be a three dimensional pseudoterminal singularity and let $x \in D \in\left|-K_{X}\right|$. Assume that D is a cyclic quotient (DuVal) singularity.
(3.5.1.1) Then in suitable local coordinates $x \in D \subset X$ can be written as

$$
\left[0 \in(z=0) \subset\left(x y+f\left(z^{m}, t\right)=0\right)\right] / \mathbb{Z}_{m}(1,-1, a, 0)
$$

(3.5.1.2) If $h \in \mathscr{O}_{X}$ is such that $h=t+z g$ for some powerseries g then in suitable local coordinates $(h=0) \subset X$ has the form $\left(\overline{x y}+\bar{f}\left(\bar{z}^{m}\right)=0\right)$.

Moreover we may assume that

$$
\begin{aligned}
& x \text {-axis }=\bar{x} \text {-axis } ; \\
& y \text {-axis }=\bar{y} \text {-axis. }
\end{aligned}
$$

(3.5.1.3) Let $X^{\prime} \rightarrow X$ be the n-sheeted cover given by $t^{\prime n}=t$. Let $D^{\prime} \subset X^{\prime}$ be the pullback of D. Then in suitable local coordinates $x^{\prime} \in D^{\prime} \subset X^{\prime}$ can be written as

$$
\left[0 \in\left(z^{\prime}=0\right) \subset\left(x^{\prime} y^{\prime}+f\left(z^{\prime m}, t^{\prime}\right)=0\right)\right] / \mathbb{Z}_{m}(1,-1, a, 0)
$$

Moreover we may assume that

$$
\begin{aligned}
x^{\prime} \text {-axis } & =\text { pullback of the } x \text {-axis } \\
y^{\prime} \text {-axis } & =\text { pullback of the } y \text {-axis }
\end{aligned}
$$

Proof. The first claim is clear from the list of pseudoterminal singularities [Hayakawa-Takeuchi87]. The other two are easy computations.
(3.5.2) Lemma. Let $0 \in S$ be a normal surface singularity. Let $g: S^{\prime} \rightarrow S$ be a proper birational morphism which has the following properties:
(3.5.2.1) $g^{-1}(0) \subset S^{\prime}$ is a chain of smooth rational curves intersecting transversally;
(3.5.2.2) If $s^{\prime} \in S^{\prime}$ is a singular point then in suitable local coordinates S^{\prime} can be written as

$$
\left(x y+f\left(z^{m}\right)=0\right) / \mathbb{Z}_{m}(1,-1, a) \quad((a, m)=1)
$$

where $g^{-1}(0)=(z=0)$.
Then $0 \in S$ is a cyclic quotient singularity.
Proof of (3.3). Let Y^{\prime} and D^{\prime} be as in the proof of (3.1). By the proof of (3.1), D^{\prime} is dominated by the minimal resolution of D. Therefore every singularity of D^{\prime} is a cyclic quotient.

Look at the following exact sequence:

$$
0 \rightarrow \omega_{Y^{\prime}} \rightarrow \mathscr{O}_{Y^{\prime}} \rightarrow \mathscr{O}_{D^{\prime}} \rightarrow 0 .
$$

Since $R^{1} g_{*} \omega_{Y^{\prime}}=0$, this gives a surjection

$$
H^{0}\left(\mathscr{O}_{Y^{\prime}}\right) \rightarrow H^{0}\left(\mathscr{O}_{D^{\prime}}\right) \rightarrow 0
$$

Let $D \cong\left(u v-w^{d}=0\right)$. Then the section $g^{*}(w)$ lifts to a section s of $\mathscr{O}_{Y^{\prime}}$. By lifting generically, we may assume that $H^{\prime}=(s=0)$ is normal. Let $H=g\left(H^{\prime}\right)$. (3.5.1.2) and (3.5.2) imply that H^{\prime} and H have only cyclic quotient singularities. This shows (3.3.1-3.3.2).

To show (3.3.4) we take the n-sheeted cover ramified along H^{\prime}. The pullback D_{n}^{\prime} of D^{\prime} to Y_{n} is a member of $\left|-K_{Y_{n}}\right|$. (3.5.1.3) describes the local structure of D_{n}^{\prime} and so by (3.5.2) $D_{n}=g_{n}\left(D_{n}^{\prime}\right)$ is a cyclic quotient singularity.

To see (3.3.3) we consider $\left(Y_{n}^{n}\right)_{\left(-K_{Y_{n}}\right)}$ and $\left(Y_{\left(-K_{Y}\right)}\right)_{n}$ (the n-sheeted cover of $Y_{\left(-K_{Y}\right)}$ ramified along the proper transform of $\left.H\right)$. These are both small modifications of Y_{n} such that the anticanonical class is relatively ample. Therefore
they are isomorphic. Since $\left(Y_{n}\right)_{\left(-K_{Y_{n}}\right)}$ has canonical singularities by (3.1) the same holds for $\left(Y_{\left(-K_{Y}\right)}\right)_{n}$. Now [KSB88,5.1] implies that the proper transform of H has only semi-log-canonical singularities.

The proof of (3.3) implies the following result:
(3.6) Corollary. Let $f: X \supset C \rightarrow Y \ni P$ be a semistable extremal nbd. Assume that the general $D \in\left|-K_{X}\right|$ contains C. Let $C \subset H \in\left|\mathscr{O}_{X}\right|$ be a sufficiently general member. Then at every point $P \in C$ one can choose local coordinates such that $P \in C \subset H \subset X$ is given as

$$
0 \in(x-a x i s) \subset(t=0) \subset\left(x y-z^{d n}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{n}(1,-1, a, 0)
$$

(3.7) Remarks. (3.7.1) It is possible that if $Y \ni P$ is a threefold singularity such that the general member of $\left|-K_{Y}\right|$ has a DuVal singularity then the general hyperplane section $P \in H \subset Y$ has a rational singularity at P. In fact, we should get a very limited class of rational surface singularities, though much larger than just quotients and quadruple points.
(3.7.2) It seems to be true-as illustrated by (3.1.3)-that the proper transform of H on $Y_{\left(K_{Y}\right)}$ is simpler than the proper transform on $Y_{\left(-K_{Y}\right)}$. Therefore it seems reasonable to try to prove the existence of a nice member H by finding its proper transform on $Y_{\left(K_{Y}\right)}$. In many cases this seems possible.
(3.8) Example. There is an interesting construction that can be used to create a slew of isolated extremal nbds (with canonical singularities in general) starting with one. It goes as follows:

Let $Y \ni P$ be a threefold singularity such that the general member of $\left|-K_{Y}\right|$ has a DuVal singularity. Then we construct Y^{\prime} and D^{\prime} as before. Let $C \subset D^{\prime}$ be the exceptional curve. Now take a smooth curve Δ in D^{\prime} which does not pass through any of the singular points. Blowing up Δ we get a new threefold \bar{Y} and $\bar{D} \cong D^{\prime}$ is the proper transform of D^{\prime}. Clearly locally along \bar{D}, \bar{D} is a member of $\left|-K_{\bar{Y}}\right|$. The proper transform \bar{C} of C is contractible and this way we get a new threefold singularity which has a member of $|-K|$ isomorphic to D. This way we also get new examples of isolated extremal nbds (with canonical singularities in general).

Unfortunately it is very hard to understand what the new example will be like. It seems that in most cases it will have fairly complicated nonterminal canonical singularities.

One interesting special case is when we start with a terminal singularity as Y and pick any small modification as Y^{\prime}. Thus we can get examples of extremal nbds without starting with one.

4. Index two nbds

The aim of this chapter is to give a fairly complete description of extremal nbds with index two points only. The methods are completely elementary. None of the machinery of [Mori88] is used. The classification will then be used to disprove the existence of certain types of nbds with index four points. In order to prove some results in Chapter 2 we also describe divisorial extremal nbds
with index two points only. During the proof very little is gained by assuming that the central curve is irreducible, in fact, we need to understand some cases where it is not. Therefore we will consider the following general situation:
(4.1) Cases to be considered. In this chapter, $f: X \supset C \rightarrow Y \ni Q$ denotes a three dimensional extremal curve neighborhood as in (T.1). We assume furthermore that X has only points of index one and two. We do not assume that C is irreducible.
(4.2) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be as in (4.1). Assume that $X \supset$ $C \rightarrow Y$ is isolated. Let $P \in C$ be a point of index 2. Then
(4.2.1) P is the only singular point and in appropriate coordinates $P^{\sharp} \in X^{\sharp}$ is given by the equation

$$
\left(x_{1} x_{2}+p\left(x_{3}^{2}, x_{4}\right)=0\right) / \mathbb{Z}_{2}(1,1,1,0)
$$

and C^{\sharp} is the x_{1}-axis.
(4.2.2) X^{+}has at most one singular point with equation

$$
x_{1} x_{2}+p\left(x_{3}, x_{4}\right)=0
$$

and C^{+}is the x_{1}-axis. (Same p as above but no group action and x_{3} instead of x_{3}^{2}).
(4.2.3) Y is a rational triple point given by the 2×2-minors of

$$
\left(\begin{array}{ccc}
z_{1} & z_{2} & z_{3} \\
z_{2} & z_{5} & p\left(z_{1}, z_{4}\right)
\end{array}\right) .
$$

(4.2.4) C is irreducible.

The proof uses a construction that will be used later in the divisorial case. Therefore we give it in the general setting.
(4.3) Construction. Let $f: X \supset C \rightarrow Y \ni Q$ be as in (4.1). Let C_{i} be the irreducible components of C. Since X has only points of index one and two, $m_{i}=-2 K_{X} \cdot C_{i}$ is a positive integer. Let $E_{i} \subset X$ be the union of m_{i} disjoint discs transversal to C_{i} and let $E=\sum E_{i}$. Then $E \in\left|-2 K_{X}\right|$, hence we can take the corresponding double cover $X^{\prime} \rightarrow X$ ramified along $E . X^{\prime}$ has only index one terminal singularities. Let $E^{\prime} \subset X^{\prime}$ be the preimage of E. The natural map $E^{\prime} \rightarrow E$ is an isomorphism. Let $D=f(E) \subset Y$ and let $Y^{\prime} \rightarrow Y$ be the corresponding double cover ramified along D. We have a contraction map $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$. By construction, $K_{X^{\prime}}$ is trivial along the fibers of f^{\prime}. Therefore Y^{\prime} has a cDV point. (If f is divisorial, then Y^{\prime} will have a double curve.) Thus we have the following diagram:

The double cover construction gives a \mathbb{Z}_{2}-action on $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and the quotient is $f: X \rightarrow Y$. The fixed point set of the action on Y^{\prime} is precisely
D^{\prime}. Since Y^{\prime} is a cDV point, it is a hypersurface in \mathbb{C}^{4}, thus it can be written down explicitly in principle. This will enable us to get equations for X and Y.

If the nbd is isolated then $E \rightarrow D$ is an isomorphism outside the origin, in fact, it will turn out to be an isomorphism. In particular, D is smooth. If f contracts an exceptional divisor $S \subset X$ then the general fiber F of S is a (-1)-curve, hence $E \cdot F=2$. Therefore D will have a double curve along the image of S and will be smooth elsewhere. If E is chosen generically then D will have an ordinary double curve along the image of S (i.e., two branches intersecting generically transversally).
(4.4) Proof of (4.2). This will be done in several steps.
(4.4.1) Claim. Let the assumptions be as in (4.2). In suitable local coordinates $\left(y_{i}\right)$ for $Y^{\prime} \subset \mathbb{C}^{4}, \mathbb{Z}_{2}$ acts with wts $(1,1,0,0)$ and $D^{\prime}=\left(y_{1}=y_{2}=0\right)$. Therefore C is irreducible.

Proof. We may assume that the coordinates are eigenvectors and y_{1}, \ldots, y_{j} are those with wts 1 . Thus $D^{\prime}=\left(y_{1}=\cdots=y_{j}=0\right) \cap Y^{\prime}$. Hence $j=1$ or 2 . If $j=1$ then D^{\prime} is Cartier. On the other hand, since f^{\prime} is an isomorphism outside the origin and E^{\prime} is f^{\prime}-ample, D^{\prime} cannot be Cartier. Hence $j=2$ and ($y_{1}=y_{2}=0$) must be contained in $Y^{\prime} . D^{\prime}$ is irreducible and this implies that C is irreducible.
(4.4.2) Claim. We can further change y_{i} such that $Y^{\prime}=\left(y_{1} y_{3}+y_{2} p\left(y_{2}^{2}, y_{4}\right)=\right.$ 0). Wts stay as above.
Proof. Since $\left(y_{1}=y_{2}=0\right) \subset Y^{\prime}$, its equation can be written in the form $y_{1} g+y_{2} h=0$. If $\mathrm{wt}(g)=\mathrm{wt}(h)=1$ then $y_{1} g+y_{2} h \in\left(y_{1}, y_{2}\right)^{2}$, which implies that Y^{\prime} is singular along ($y_{1}=y_{2}=0$). This is impossible. Thus $\mathrm{wt}(g)=\mathrm{wt}(h)=0$. Since Y^{\prime} is a double point, either g or h must contain a linear term. Say g contains y_{j}. By wt reasons $j=3$ or 4 . Now in the usual way we can normalize the equation in the required form. By wt reasons only even powers of y_{2} can occur in p.
(4.4.3) End of proof of (4.2). With this explicit equation we can easily compute everything. X is obtained by blowing up ($y_{2}=y_{3}=0$) and dividing by the group action. This gives us one singular point with the required equation. X^{+} is obtained by blowing-up ($y_{2}=y_{1}=0$) and dividing by the group action.

To get equations for Y, the invariants of the \mathbb{Z}_{2} action on $\mathbb{C}\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ are

$$
z_{1}=y_{2}^{2} \quad z_{2}=y_{1} y_{2} \quad z_{3}=y_{3} \quad z_{4}=y_{4} \quad z_{5}=y_{1}^{2} .
$$

We get exactly the equations given by the minors of the above matrix. A hyperplane section given by $z_{4}-c z_{1}=0$ (where c is a general constant) is easily seen to define a rational triple point. This completes the proof of (4.2).

For future reference we note the following consequence of this proof:
(4.4.4) Corollary. Assume (4.1) and the notation of (4.3). If D^{\prime} is non-Cartier then C is irreducible and Y is a triple point. In particular, the nbd is isolated.

Proof. By the proof of (4.4.1), if D^{\prime} is not Cartier then D^{\prime} is irreducible and smooth. C is also irreducible since D^{\prime} is. As we saw at the end of (4.3), the nbd is isolated since D^{\prime} is smooth.
(4.4.5) Corollary. Let $X \supset C$ be as in (4.2). Assume that $X \ni P$ is a cyclic quotient singularity. Then $X \supset C$ is unique up to analytic isomorphism.
Proof. In this case the coefficient of x_{4} in p is not zero, thus we can introduce a new coordinate $z_{4}^{\prime}=p\left(z_{1}, z_{4}\right)$ and the equations for Y become the 2×2 minors of

$$
\left(\begin{array}{lll}
z_{1} & z_{2} & z_{3} \\
z_{2} & z_{5} & z_{4}^{\prime}
\end{array}\right)
$$

(4.4.6) Corollary. An isolated extremal nbd $\bar{X} \supset \bar{C}$ cannot have a point of index 4 and a point of index 2.
Proof. By [Mori88, 1.10] this nbd is imprimitive, in fact, it has a double cover $X \supset C$ which is étale outside the singular points. Above the index four point X has an index 2 point. Let $Q \in \bar{X}$ be the index two point. By (4.2) its double cover is smooth. If we write $Q \in \bar{X} \cong \mathbb{C}^{3} / \mathbb{Z}_{2}(1,1,1)$ then any plane through the origin is invariant under the \mathbb{Z}_{2} action. We pick one such plane E, which has transversal intersection with the curve $C=\bar{C}{ }^{\sharp}$. If we pick this E as the ramification divisor in the construction (4.3) then the fourfold cover $X^{\prime} \rightarrow X \rightarrow \bar{X}$ will be Galois with Galois group \mathbb{Z}_{4}.

If $\bar{X} \supset \bar{C} \rightarrow \bar{Y}$ is the contraction map then from (4.2) we obtain that \bar{Y} is isomorphic to the quotient of $Y^{\prime}=\left(y_{1} y_{3}+y_{2} p\left(y_{2}^{2}, y_{4}\right)=0\right)$ by an action of \mathbb{Z}_{4}. Let μ be a fixed generator of \mathbb{Z}_{4}. Then μ^{2} acts with wts $(2,2,0,0)$ $\bmod 4$.

Since $Y \rightarrow \bar{Y}$ is étale outside the origin, the $\mathbb{Z}_{4} / \mathbb{Z}_{2}$ action on $D^{\prime}=\left(y_{1}=\right.$ $y_{2}=0$) has no fixed points outside the origin. This implies that μ acts via $\left(y_{3}, y_{4}\right) \mapsto\left(-y_{3},-y_{4}\right) . \mu$ acts on y_{1} via multiplication by $\pm \sqrt{-1}$. We can assume that it acts via $\sqrt{-1}$. Since the equation of Z^{\prime} has to be an eigenfunction, this implies that depending on the parity of the exponent of y_{4} in p the action has wts

$$
(1,1,2,2) \bmod 4 \text { or }(1,3,2,2) \bmod 4
$$

To obtain the extremal nbd \bar{X} we blow up the plane ($y_{2}=y_{3}=0$) and we divide out by the action of \mathbb{Z}_{4}. Explicit computation gives that the index four point of $\bar{X} \supset \bar{C}$ is given as

$$
\left(y_{1} y_{3}+p\left(y_{2}^{2}, y_{4}\right)=0\right) / \mathbb{Z}_{4}
$$

where the wts are

$$
(1,1,1,2) \bmod 4 \text { or }(1,3,3,2) \bmod 4
$$

A glance at the list of terminal singularities [Mori85] shows that these singularities are not terminal.

It is worthwhile to remark that the above construction gives examples of isolated extremal nbds with log-terminal singularities of indices 4 and 2.
(4.5) Theorem. An isolated extremal nbd cannot have any of the following types of singularities:
(4.5.1) A type $I I^{\vee}$ point,
(4.5.2) A type IIB point.

Proof. If the nbd $X \supset C$ has a point of type $I I^{\vee}$ then it is imprimitive [Mori88, 6.11]. Its double cover has a point of index two and the central curve is reducible. By (4.2) there is no such isolated nbd.

If the nbd $X \supset C$ has a point of type $I I B$ then it has an L-deformation [Mori88,4.7] to an isolated nbd that has a point of index 4 and a point of index 2. Thus (4.4.6) implies (4.5.2).

Now we turn to the divisorial nbds of index two. First we study the configuration of the curves of C.
(4.6) Proposition. Let $X \supset C$ be as in (4.1). If all points have index one then C is irreducible. If P is a point of index two then P is the only point of index two. C has at most three components, they all pass through P and they do not intersect elsewhere.
Proof. We use the notation of (4.3). Let $X^{\prime} \supset C^{\prime} \rightarrow C$ be the double cover of C. Let $H_{1} \subset Y^{\prime}$ be a general hyperplane section and let $H_{2}=f^{\prime *} H_{1}$. Since Y^{\prime} is a $c D V$ point and f^{\prime} is crepant, we see that H_{1} is a DuVal singularity and $H_{2} \rightarrow H_{1}$ is dominated by the minimal resolution. Since $C^{\prime} \subset H_{2}$, this implies that:
(4.6.1) Two components of C^{\prime} intersect in at most one point;
(4.6.2) At most three components of C^{\prime} intersect at any point;
(4.6.3) The components of C^{\prime} are smooth and rational.

Let C_{i} be the components of C, and let C_{i}^{\prime} be the preimage of $C_{i} . C_{i}^{\prime}$ is irreducible since the covering is locally irreducible at the points of $E . C_{i}^{\prime} \rightarrow C_{i}$ is ramified at the points of $C \cap E$ and at the index two points. On each C_{i} there are precisely two ramification points by (4.6.3). Thus each C_{i} contains at most one index two point.
(4.6.1) implies that two components of C cannot intersect at an index one point. Thus there is at most one index two point, all components of C pass through P and they do not intersect elsewhere. By (4.6.2) there are at most three components.
(4.7) Theorem. Let $X \supset C$ be as in (4.1). Then we have one of the following cases. In each case we specify the type of the index two point, the minimal resolution of the general member of $\left|\mathscr{O}_{X}\right|$, and the general member of $\left|\mathscr{O}_{Y}\right|$. We use the following notational conventions:

- denotes the proper transforms of the components of C. These have selfintersection (-1). Minus the selfintersection of a curve is written under it. We do not indicate the selfintersection if it is (-2) (for \circ) or (-1) (for \bullet).

indicates that there are $(m-2)$ curves with selfintersection (-2) in between.

For $m=1$ the above symbol denotes
$\stackrel{0}{4}$
List of possibilities:
(4.7.1) Isolated nbds. The singularity has type $c A$ and H_{X} is

(4.7.2) Index one points only. Then the nbd is divisorial and H_{X} is

$$
\bullet-\underbrace{o-\cdots-o}_{m} \rightarrow A_{0}
$$

In the remaining cases there is exactly one index two point P and the nbd is divisorial.
(4.7.3) P has type $c A$ iff H_{X} has log-terminal singularities. We have the following cases:
(4.7.3.1) C has one component:
(4.7.3.1.1)

$$
\circ-\bullet-\underbrace{0-\cdots-0_{3}}_{m} \quad \rightarrow \quad A_{1}
$$

(4.7.3.1.2)

$$
\circ-\circ-\bullet-\stackrel{\circ}{4}^{\circ} \quad \rightarrow \quad A_{0}
$$

(4.7.3.1.3)

$$
\begin{array}{cccc}
\stackrel{\circ}{3}- & \circ-\stackrel{\circ}{3} & \rightarrow & A_{2} \\
& & & \\
& \bullet & &
\end{array}
$$

(4.7.3.1.4)

$$
\begin{aligned}
\stackrel{\circ}{3}- & \circ-\circ-\stackrel{\circ}{3} \\
& \rightarrow \\
& \\
& \\
&
\end{aligned}
$$

(4.7.3.2) C has two components:
(4.7.3.2.1)

$$
\bullet-\underbrace{\circ^{\circ-\cdots-o_{3}}}_{m}-\bullet \quad \rightarrow \quad A_{m}
$$

(4.7.3.2.2)

$$
\circ-\bullet-\underbrace{0_{0}-\cdots-\frac{o}{3}}_{m} \quad \bullet \quad \rightarrow \quad A_{0}
$$

(4.7.3.2.3)

(4.7.3.2.4)

(4.7.3.3) C has three components:
(4.7.3.3.1)

(4.7.4) If X has a type cAx point then H_{X} has a log-canonical singularity:

(4.7.5) If X has a type $c D$ point then H_{X} has a log-canonical singularity:

$$
\circ-\underbrace{\stackrel{\circ}{\mid}-\ldots-\circ}_{m}-\stackrel{\circ}{\circ}-\circ-\bullet \quad \rightarrow \quad D_{3}^{\circ}-\stackrel{\circ}{\circ}
$$

where $m \geq 0$. For $m=0$ this is the configuration of (4.7.4).
(4.7.6) If X has a type $c E$ point then either H_{X} has a log-canonical singularity as in (4.7.5) with $m \leq 1$; or H_{X} is not log-canonical and is given by:

(4.8) Proof. We use the notation of (4.3). By (4.4.4) $D^{\prime} \subset Y^{\prime}$ is Cartier and the \mathbb{Z}_{2}-action is given by wts $(0,0,0,1)$. Thus for a suitable choice of coordinates
we can write the equation of Y^{\prime} as $\operatorname{sg}(x, y, z, s)+h(x, y, z)=0$ where $D^{\prime}=(s=h=0)$. By wt reasons only even powers of s occur. Thus we can write the equation in the form

$$
\begin{equation*}
s^{2} g\left(x, y, z, s^{2}\right)+h(x, y, z)=0 . \tag{4.8.1}
\end{equation*}
$$

The equation of Y is now given by

$$
\begin{equation*}
\operatorname{tg}(x, y, z, t)+h(x, y, z)=0 \quad\left(t=s^{2}\right) \tag{4.8.2}
\end{equation*}
$$

Since f^{\prime} is crepant, Y^{\prime} cannot be smooth, in particular, mult $h \geq 2$.
Knowing the general member of $\left|\mathscr{O}_{Y}\right|$ tells us very little about the general member of $\left|\mathscr{O}_{X}\right|$ in general. Therefore we will proceed in the following roundabout way. First we find the general \mathbb{Z}_{2}-invariant member of $\left|\mathscr{O}_{Y^{\prime}}\right|$. Via pullback we will be able to determine the general \mathbb{Z}_{2}-invariant member of $\left|\mathscr{O}_{X^{\prime}}\right|$. This is possible since f^{\prime} is crepant and therefore very well behaved. Taking the quotient will then give the general member of $\left|\mathscr{Q}_{X}\right|$. Let H_{*} denote the general member of $\left|\mathscr{O}_{*}\right|$ and let H_{*}^{\prime} denote the general \mathbb{Z}_{2}-invariant member of $\left|\mathscr{O}_{*}\right|$. We have the following diagram:

We will distinguish several cases.
(4.8.3) Case 1. $\operatorname{mult}_{0} g=0$.

The assumption means precisely that Y is smooth. We can change coordinates to bring the equation of Y to the form

$$
\begin{equation*}
s^{2}+h(x, y, z)=0 \tag{4.8.3.1}
\end{equation*}
$$

(4.8.3.2) Lemma. If $Y^{\prime}=\left(s^{2}+h(x, y, z)=0\right)$ defines a $c D V$ point then for a generic linear form l in three variables

$$
s^{2}+h(x, y, z)=l(x, y, z)=0
$$

is a DuVal singularity.
Proof. By [KSB88, 6.9] $B_{0} Y^{\prime}$ has only rational hypersurface singularities. The proper transform of the linear system $|x, y, z|$ has one possible base point on $B_{0} Y^{\prime}$ at the point corresponding to the s-axis on the exceptional divisor. This, however, is not on $B_{0} Y^{\prime}$. Thus the proper transform of $l(x, y, z)=0$ has only rational singularities. Since $s^{2}+h(x, y, z)=l(x, y, z)=0$ defines a double point, this implies that it is a DuVal singularity.
(4.8.3.3) Proposition. If H_{Y}^{\prime} has a DuVal singularity then H_{X} has only logterminal singularities.
Proof. Since f^{\prime} is crepant, this implies that H_{X}^{\prime} is dominated by the minimal resolution of H_{Y}^{\prime}, in particular, it has only DuVal singularities. Thus any quotient of it has log-terminal singularities.
(4.8.3.4) Cases where H_{Y}^{\prime} has a DuVal singularity. By (4.8.3.3) we need to enumerate those cases where H_{X} has log-terminal singularities only.

The only log-terminal points of index two are given by

To this we have to attach the proper transforms of the components of C and then we can have the minimal resolutions of some DuVal singularities. Since H_{Y} has a DuVal singularity, the only combinatorial condition for the configuration is that repeated contraction of (-1)-curves gives the minimal resolution of a DuVal singularity (or the empty diagram if H_{Y} is smooth). To enumerate all cases note first that certain configurations cannot occur as subconfigurations. Two of these are

Now it is easy to see that if a (-1) curve is adjacent to a (-2)-curve inside

then we get one of the cases (4.7.3.1.3, 1.4, or 2.4). Otherwise all (-1)-curves are adjacent to (-3) or (-4)-curves. It is very easy to list all possibilities.
(4.8.4) Case 2. mult ${ }_{0} g>0$.

The assumption means precisely that Y is singular. Also, this implies that $\operatorname{mult}_{0} s^{2} g \geq 3$. Y^{\prime} has a double point, hence mult $_{0} h=2$. Therefore, in suitable coordinates the equation of Y^{\prime} becomes

$$
s^{2} g\left(x, y, s^{2}\right)+z^{2}-h(x, y)=0
$$

We can write $h=f^{2} l$ where l has no multiple factors. The singular curve of D^{\prime} is given by $s=z=f=0$. The normalization of D^{\prime} is given by

$$
\bar{z}^{2}-l(x, y)=0 \quad \text { where } z=\bar{z} f(x, y)
$$

By construction this normalization is E^{\prime}, which is smooth. Therefore mult $l<$ 2. E^{\prime} has two components if $\operatorname{mult}_{0} l=0$ and one if mult $_{0} l=1$. Therefore we can write the equation of Y^{\prime} in one of the following forms:

$$
\begin{align*}
& \text { (4.8.4.1) } \quad s^{2} g\left(x, y, s^{2}\right)+z^{2}-f(x, y)^{2}=0 \quad \text { if } C \text { is reducible, } \tag{4.8.4.1}\\
& \text { (4.8.4.2) } s^{2} g\left(x, y, s^{2}\right)+z^{2}-f(x, y)^{2} l(x, y)=0 \quad \text { if } C \text { is irreducible. }
\end{align*}
$$

The double curve of Y^{\prime} is given by $s=z=f=0$. We will see later (4.9.4) that X^{\prime} is obtained from Y^{\prime} by blowing up $s=z=f=0$. Therefore, X^{\prime} and X are explicitly computable in terms of the above equations. We will need the explicit computations only in the case when the double curve is smooth, therefore, we postpone it.
(4.8.4.3) Case 2.1. C reducible and mult ${ }_{0} f=1$.

The equation then becomes $s^{2} g\left(y, s^{2}\right)+z^{2}-x^{2}=0 . \quad H_{Y}^{\prime}$ is given by $y=$ const $\cdot s^{2}$ and it has a DuVal singularity. This case is covered by (4.8.3.4). (4.8.4.4) Case 2.2. mult $_{0} g=1$.

We may assume that x appears in g with nonzero coefficient. Then H_{Y}^{\prime} is given by $y=$ const $\cdot s^{2}$ and it has a DuVal singularity of type D. This case is again covered by (4.8.3.4).

The remaining case is harder.

(4.8.5) Case 2.3. mult $_{0} g>1$.

The equation must contain a cubic term, which is therefore in $f^{2} l$. In the reducible case this is only possible for mult ${ }_{0} f=1$, which we treated already. Thus we may assume that C is irreducible and mult ${ }_{0} f=$ mult $_{0} l=1$.

Depending on whether the linear terms of f and l are independent or not, we can bring the equation Φ of Y^{\prime} to one of the following forms:

$$
\begin{equation*}
\Phi: s^{2} g\left(x, y, s^{2}\right)+z^{2}-y^{2} x=0 \quad \text { if independent } \tag{4.8.5.1}
\end{equation*}
$$

The double curve is given by the equation $s=z=y=0$. Blowing it up we obtain X^{\prime}. We will need the chart that covers the index two point of X. This can be obtained by substituting $y=y^{\prime} s$ and $z=z^{\prime} s$. The equation of the index two point becomes

$$
\begin{equation*}
\left(g\left(x, y^{\prime} s, s^{2}\right)+z^{\prime 2}-y^{\prime 2} x=0\right) / \mathbb{Z}_{2}(0,1,1,1) \quad \text { if independent } \tag{4.8.5.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(g\left(x, y^{\prime} s, s^{2}\right)+z^{\prime 2}-y^{\prime 2}\left(y^{\prime} s+x^{n}\right)=0\right) / \mathbb{Z}_{2}(0,1,1,1) \quad \text { if dependent. } \tag{4.8.5.4}
\end{equation*}
$$

(4.8.5.5) Notation. For a monomial M the symbol $M \in g$ will mean that M appears in g with nonzero coefficient.
(4.8.5.6) Proposition. Assume that we are in case (2.3). The following are equivalent:
(i) H_{Y}^{\prime} has a DuVal singularity.
(ii) The index two point on X has type cA.
(iii) $s^{2} \in g$.

Proof. If H_{Y}^{\prime} has a DuVal singularity then H_{X} has log-terminal singularities. By [KSB88,3.10] if a Cartier divisor on a terminal singularity is log terminal then the terminal singularity has type $c A$. Thus (i) implies (ii). (ii) \Rightarrow (iii) can be read off from (4.8.5.3-4.8.5.4). (Note that $x^{2} \in g$ does not imply that it is $c A$.)

Assume (iii). If we assign \mathbb{Q}-wts to the variables by

$$
\alpha(x, y, z, s)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{4}\right)
$$

then every monomial in the equations (4.8.5.1-4.8.5.2) will have α-wt at least one and

$$
\Phi_{\alpha=1}=a s^{4}+z^{2}-y^{2} x \quad \text { respectively, } a s^{4}+z^{2}-y^{3}
$$

and $a \neq 0$ by (iii). Thus H_{Y}^{\prime} is a deformation of the DuVal singularity E_{6}.
(4.8.5.7) Proposition. The index two point on X has type $c A x$ iff $s^{2} \notin g$ and $x^{2} \in g$. If this is the case then the general member of $\left|-K_{X}\right|$ is D_{4}.

Proof. The first statement can be read off from (4.8.5.3-4.8.5.4). Looking at (4.8.5.3-4.8.5.4) again we see that the hyperplane section $s=$ const $\cdot y^{\prime}$ has an A_{3} singularity. By [Reid87, p. 393] this implies the second claim.

For future reference we note the following.
(4.8.5.8) Lemma. (i) The surface singularities $\left(z^{2}-y^{3}-y^{2} s^{2}=0\right)$ and $\left(z^{2}-\right.$ $y^{3} s-y^{2} s^{2}=0$) are semi-log-canonical [KSB88, Chapter 4].
(ii) Any small normal deformation of a Gorenstein semi-log-canonical double point is either a DuVal singularity, or a cusp or a simple elliptic singularity. In the last two cases, if E denotes the reduced exceptional curve of the minimal resolution then $k=-E^{2}$ is 1 or 2 [KSB88, 5.6].
(iii) Any small deformation of a simple elliptic singularity with $k=1$ (these have equation $\left.z^{2}+y^{3}+s^{6}+a y^{2} s^{2}=0 ; \quad\left(4 a^{3}+27 \neq 0\right)\right)$ is either simple elliptic or a DuVal singularity.

Proof. The first statement is an easy computation. The proof of the second is outlined in [KSB88,5.6]. The third one is again an easy computation.
(4.8.6) Case 2.3.1. Independent linear forms, $s^{2} \notin g$.
Y^{\prime} can be viewed as the total space of a deformation of the pinch point $z^{2}-y^{2} x=0$. Substituting $x=y+s^{2}$ gives a nonnormal surface singularity $S=\left(z^{2}-y^{3}-y^{2} s^{2}=0\right)$ and H_{Y}^{\prime} is a small deformation of S. Therefore H_{Y}^{\prime} is either log-canonical or DuVal. The latter is impossible by (4.8.5.6). From the classification of [Kawamata80] we see that the only possibilities are simple elliptic with selfintersection (-3) or a cusp with exactly one curve with selfintersection (-3). H_{X}^{\prime} is obtained from H_{Y}^{\prime} by blowing up the origin. The deformation from S to H_{Y}^{\prime} is equimultiple, therefore, $H_{X}^{\prime}=B_{0} H_{Y}^{\prime}$ is a flat deformation of $B_{0} S . B_{0} S$ has only one singularity above the origin given by the equation $\left(z^{\prime 2}-y^{\prime 3} s-y^{\prime 2} s^{2}=0\right)$. Thus H_{X}^{\prime} has a single log-canonical singularity at the origin of the new chart. We complete the description of this case using the following
(4.8.6.1) Lemma. Let $X \supset C$ be an extremal nbhd. Assume that C is irreducible. Let $H \subset X$ be a normal member of $\left|\overparen{G}_{X}\right|$ containing C. Assume that H has a singular point, which is an index two \mathbb{Z}_{2}-quotient of a simple elliptic or cusp singularity with $k \leq 2$. Then the minimal resolution of H is given by one of the following diagrams:

For the simple elliptic case:

For the cusp case $(m>0)$:

Proof. The \mathbb{Z}_{2} quotients of cusps and of simple elliptic singularities are described in [Kawamata80].There is no required \mathbb{Z}_{2}-quotient if $k=1$. For $k=2$ we get the following possibilities:

where among the $*$ there is exactly one curve with selfintersection (-3), the rest have (-2). In the relative canonical divisor the curves $*$ appear with coefficient (-1), the curves \circ with coefficient $\left(-\frac{1}{2}\right)$. Thus the proper transform of C is adjacent to one of the curves \circ, call it B. There is a unique curve $*$ adjacent to B. If this curve has selfintersection (-2) then repeated contraction of (-1) curves leads to a contradiction. Thus this curve has selfintersection (-3) and repeated contraction of (-1)-curves gives the D_{m+3} configuration. Now it is clear that we cannot have any other singularities on H.
(4.8.7) Case 2.3.2. Dependent linear forms, $s^{2} \notin g$. Equation (4.8.5.4) defines a $c D V$ point, hence $\operatorname{mult}_{0} g\left(x, y^{\prime} s, s^{2}\right) \leq 3$. The possible terms that can occur of degree at most three are $x^{2}, x s^{2}, x y^{\prime} s$, and x^{3}. We have to consider separately the cases when we have one of the first three possibilities or x^{3}.
(4.8.7.1) Proposition. The index two point on X has type $c A x$ or $c D$ iff $x^{2} \in$ g or $x y \in g$ or $x s^{2} \in g$. In these cases H_{X} has a log-canonical singularity.
Proof. It is clear from (4.8.5.4) that X has type $c A x$ or $c D$ iff $x^{2} \in g$ or $x y \in g$ or $x s^{2} \in g$. To see that H_{X} has a log-canonical singularity we assign \mathbb{Q}-wts to the variables by

$$
\alpha(x, y, z, s)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right)
$$

Then the α-wt of every monomial in the equation (4.8.5.2) is at least one and

$$
\Phi_{\alpha=1}=z^{2}-y^{3}+a x^{2} s^{2}+b x s^{4}+c x y s^{2}+d s^{6}+e y^{2} s^{2}+f y s^{4}
$$

where at least one of a, b, c is not zero. For a sufficiently general u we take the hypersurface section $x=u s^{2}$. This gives us the equation

$$
z^{2}-y^{3}+y^{2} s^{2}[e]+y s^{4}[u c+f]+s^{6}\left[u^{2} a+u b+d\right] .
$$

We claim that this defines a simple elliptic singularity with $k=1$. To see this we blow up the origin and introduce new coordinates $z=z^{\prime \prime} s, y=y^{\prime \prime} s$ to obtain

$$
z^{\prime \prime 2}-y^{\prime \prime 3} s+y^{\prime \prime 2} s^{2}[e]+y^{\prime \prime} s^{3}[u c+f]+s^{4}\left[u^{2} a+u b+d\right]
$$

A routine discriminant computation gives that the homogeneous quartic in $\left(y^{\prime \prime}, s\right)$ has no multiple roots for general u if at least one of a, b, c is not zero. Therefore this equation defines a simple elliptic singularity with $k=2$. By (4.8.6.1) we get the case (4.7.4).

At this point we should note that one can get a simple elliptic singularity even when $a=b=c=0$. These will correspond to some extremal nbds with a $c E$ type point and to some with nonterminal singularities.
(4.8.7.2) Proposition. If $x^{3} \in g$ but $x^{2} \notin g, x y \notin g, x s^{2} \notin g$, then H_{Y}^{\prime} is a small deformation of $S=\left(z^{2}+y^{3}+s^{8}=0\right)$. The deformation is equivariant with respect to the group action $(x, y, s) \rightarrow(x, y,-s)$.
Proof. We assign \mathbb{Q}-wts by the formula

$$
\alpha(x, y, z, s)=\left(\frac{2}{9}, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right),
$$

then every monomial in g will have α-wt at least one and

$$
\Phi_{\alpha=1}=z^{2}-y^{3}+a x^{3} s^{2} \quad \text { where } a \neq 0
$$

The substitution $x=s^{2}$ gives the singularity S.
(4.8.7.3) Computation. Let us consider a small deformation of $S=\left(z^{2}+y^{3}+\right.$ $\left.s^{8}=0\right)$, equivariant with respect to the group action $(x, y, s) \rightarrow(x, y,-s)$. The following is the list of all possible nearby fibers:
(i) $z^{2}+y^{3}+s^{8}+$ ays $^{6}=0$ (Equisingular deformation; E_{14} in [AGV85, pp. 184-185]),
(ii) $z^{2}+y^{3}+s^{8}+y^{2} s^{2}=0$ (Cusp with $k=1 ; T_{2,3,8}$ in [AGV85, pp. 184-185]),
(iii) $z^{2}+y^{3}+s^{6}+a y^{2} s^{2}=0 \quad\left(4 a^{3}+27 \neq 0\right)$ (Simple elliptic with $k=1$; J_{10} in [AGV85, pp. 184-185]),
(iv) certain DuVal singularities.

Proof. One can use general results about deformations of unimodal singularities [AGV85] but the easiest method is to do it from scratch.
(4.8.7.4) Computation. Consider a singularity $z^{2}+y^{3}+s^{8}+a y s^{6}=0$ with \mathbb{Z}_{2}-action $(x, y, s) \rightarrow(x, y,-s)$. Blow up the origin and take the quotient to get a surface germ H. The minimal resolution of H is given by the following diagram where - indicates the proper transform of the exceptional curve of the
blow-up

This completes the proof of (4.7).
It should be noted that for divisorial contractions the description given by (4.7) is not entirely satisfactory. One could try to describe them using Y and the image of the exceptional surface. This approach also has theoretical advantages.
(4.9) Theorem. Let X, Y be normal algebraic varieties. Assume that K_{X} and K_{Y} are \mathbb{Q}-Cartier and that X and Y are smooth in codimension two. Let $f: X \rightarrow Y$ be a proper birational morphism. Assume that $-K_{X}$ is f-ample and that the dimension of every fiber is at most one. Then
(4.9.1) The exceptional set is a \mathbb{Q}-Cartier divisor; call it E (with reduced structure);
(4.9.2) $B=f(E)$ has pure codimension two;
(4.9.3) $f_{*}\left(\mathscr{O}_{X}(-m E)\right)=I_{B}^{(m)} \quad\left(I_{B}\right.$ is the ideal sheaf of $B, I_{B}^{(m)}$ denotes symbolic power);
(4.9.4) $X \cong \operatorname{Proj}_{Y} \sum_{m=0}^{\infty} I_{B}^{(m)}$.

Proof. There is a codimension three closed subset $S \subset Y$ such that $Y-S$ and $X-f^{-1}(S)$ are both smooth. Therefore

$$
X-f^{-1}(S) \cong B_{B-S}(Y-S)
$$

If E denotes the divisorial part of the exceptional set with reduced structure then we get that

$$
K_{X-f^{-1}(S)} \cong f^{*}\left(K_{Y-S}\right) \otimes \mathscr{O}\left(E-f^{-1}(S)\right) .
$$

Since $f^{-1}(S)$ has codimension at least two in X this implies that

$$
K_{X}^{[n]} \cong f^{*}\left(K_{Y}^{[n]}\right) \otimes \mathscr{O}(n E)
$$

where n is a common multiple of the indices of X and Y. In particular, E is \mathbb{Q}-Cartier and $-E$ is f-ample. Therefore E is the whole exceptional set. This shows (4.9.1). (4.9.2) is clear. To see (4.9.3) first note that

$$
f_{*}\left(\mathscr{O}_{X}(-m E)\right)\left|Y-S=\left(I_{B} \mid Y-S\right)^{m}=I_{B}^{(m)}\right| Y-S
$$

Let $i: Y-S \rightarrow Y$ be the injection. By the definition of symbolic powers,

$$
i_{*}\left(I_{B} \mid Y-S\right)^{m}=I_{B}^{(m)}
$$

Therefore (4.9.3) is established once we show that

$$
i_{*}\left(f_{*}\left(\mathscr{O}_{X}(-m E)\right) \mid Y-S\right)=f_{*}\left(\bigoplus_{X}(-m E)\right)
$$

This follows from the general principle:
(4.9.5) Proposition. Let $g: U \rightarrow V$ be a proper morphism. Let $S \subset V$ be a closed subset such that the codimension of $f^{-1}(S)$ in U is everywhere at
least two. Let \mathscr{F} be a sheaf on U that satisfies Serre's condition S_{2} (e.g., U is normal and \mathscr{F} is reflexive). Then $g_{*} \mathscr{F}=i_{*}\left(g_{*} \mathscr{F} \mid V-S\right)$, where $i: V-S \rightarrow V$ is the injection.

Finally (4.9.4) is essentially a reformulation of (4.9.3).
(4.9.6) Corollary. Let the assumptions be as in (4.9). Then $B \subset Y$ uniquely determines X. This applies, in particular, if X and Y are threefolds with terminal singularities and $f: X \rightarrow Y$ is the contraction of a divisorial extremal $n b d$.
(4.9.7) Corollary. Let X, Y be threefolds with terminal singularities. Let f : $X \rightarrow Y$ be a proper birational morphism such that $-K_{X}$ is f-ample and that the dimension of every fiber is at most one. Let T be the spectrum of a complete local ring and let \bar{X} / T be a flat deformation of X. Then
(4.9.7.1) The morphism f extends to a morphism $\bar{F}: \bar{X} \rightarrow \bar{Y}$ where \bar{Y} / T is flat; This defines \bar{E} and \bar{B};
(4.9.7.2) $\mathscr{O}_{\bar{X}}(-m \bar{E}) \otimes \mathscr{O}_{X} \cong \mathscr{O}_{X}(-m E) ;$
(4.9.7.3) $I_{\bar{B}}^{(m)} \otimes \mathscr{O}_{Y} \cong I_{B}^{(m)}$;
(4.9.7.4) $(\bar{B} \subset \bar{Y})$ is a flat deformation of $(B \subset Y)$.

Proof. Since $R^{1} f_{*} \mathscr{O}_{X}=0$, (4.9.7.1) follows from [Wahl76] (cf. (11.4)).
Next we claim that the sheaves $\mathscr{O}_{X}(-m E)$ are all S_{3}. This is a local question. Let $g: Z \rightarrow X$ be the index one cover (with group G) around a point of X. Then $E^{\prime}=f^{-1}(E)$ is a Cartier divisor and

$$
\mathscr{O}_{X}(-m E)=(G \text {-invariant part of }) g_{*}\left(\mathscr{O}_{Z}\left(-m E^{\prime}\right)\right)
$$

Therefore $\mathscr{O}_{X}(-m E)$ is a direct summand of the S_{3} sheaf $g_{*}\left(\mathscr{O}_{Z}\left(-m E^{\prime}\right)\right) \cong$ $g_{*}\left(\Theta_{Z}\right)$.

This implies (4.9.7.2) using (12.1.8). Since $\mathscr{O}_{X}(-m E)$ is f-ample, $R^{1} f_{*} \mathscr{O}_{X}(-m E)=0$ [KMM87, 1-2-3], hence again by [Wah761] we obtain (4.9.7.3). Finally (4.9.7.4) is just a reformulation of earlier statements.
(4.10) Alternate description of index two divisorial nbds. By the previous results we can also describe index two divisorial nbds by specifying the pair $B \subset Y$. Here Y is a $c D V$ point, thus easily understandable via equations. The curve B is unknown at the moment. Let us note first that we cannot expect that B is easy to describe.
(4.10.1) Proposition. Let $f: X \rightarrow Y$ be a divisorial contraction and let $B \subset Y$ be the image of the exceptional divisor. If B is a complete intersection (inside Y) then Y is smooth, B is planar, and X has only index one points.
Proof. If Y is defined by $p=q=0$ then by (4.9.4), X is obtained by blowing up the ideal (p, q). In particular, X has only complete intersection points, hence X has only index one points. Explicit computation of the blow-up shows that $B_{(p, q)} Y$ is singular along the preimage of the origin unless the required conditions are satisfied.
(4.10.2). Now let us consider index two nbds in more detail. In the cases when Y is not smooth, the description provided during the proof of (4.7)
determines the curve B explicitly. As in (4.8.4) we get the following equations for Y :

$$
Y=\left(t g(x, y, t)+z^{2}-f(x, y)^{2}=0\right) \quad B=(t=z=f=0)
$$

or

$$
Y=\left(t g(x, y, t)+z^{2}-f(x, y)^{2} l(x, y)=0\right) \quad B=(t=z=f=0)
$$

Thus we need to consider the case when Y is smooth. Then the equation of D is given by $f(x, y, z)=0$ and B is the double curve of D.
(4.10.3) Lemma. With the above notation, mult $_{0} f=3$.

Proof. Since $s^{2}-f=0$ defines a $c D V$ point, mult ${ }_{0} f \leq 3$. B is not empty so mult ${ }_{0} f>1$. If mult ${ }_{0} f=2$ then in suitable coordinates $f=z^{2}-h(x, y)$ and the double curve of $f=0$ is contained in $z=0$. Therefore B is planar, hence a complete intersection. This is impossible by (4.10.1).
(4.10.4) Computation. In the cases when Y is smooth, the following are the general hyperplane sections of Y^{\prime} :
(4.7.3.1.2): E_{6};
(4.7.3.1.4): E_{8};
(4.7.3.2.2): D_{*};
(4.7.3.2.4): E_{7};
(4.7.3.3.1): D_{*}.
(4.10.5) Normal form of f for D reducible. (4.7.3.3.1): D has three components, so f is the product of three factors, all smooth at the origin by (4.10.3). $s^{2}+f$ defines a compound D_{*} point, thus at least two of the linear terms of the three factors are independent. We can write f in the form

$$
f=x y h(x, y, z) \quad \text { where } \text { mult }_{0} h=1
$$

(4.7.3.2.2): D has two components, so f is the product of two factors. One of them is smooth at the origin by (4.10.3). We can choose that to be $x . s^{2}+f$ defines a compound D_{*} point, thus the quadratic term of the other factor is not a multiple of x^{2}. We can write f in the form

$$
f=x\left(y^{2}-p(x, z)\right) \quad \text { where } \operatorname{mult}_{0} p \geq 2 .
$$

The double curve contains $x=y^{2}-p=0$, which is planar. There must be another component, coming from the double curve of $y^{2}-p=0$. Let $p=g(x, z)^{2} h(x, y)$ where h has no multiple factors. Then $y=g=0$ is the double curve of $y^{2}-p=0$. The normalization of $y^{2}-p=0$ is $y^{\prime 2}-h=0$. This has to be smooth. Therefore we can write f as

$$
f=x\left(y^{2}-g(x, z)^{2} h(x, z)\right) \quad \text { where } \operatorname{mult}_{0} g \geq 1, \operatorname{mult}_{0} h=1 .
$$

(4.7.3.2.4): D has two components, so f is the product of two factors. One of them is smooth at the origin by $(4.10 .3)$. We can choose that to be $x . s^{2}+f$
defines a compound E_{7} point, thus the quadratic term of the other factor is a multiple of x^{2}. Hence we can write f in the form

$$
f=x\left(x^{2}+2 g(y, z) x+p(y, z)\right)
$$

The double curve contains $x=p=0$, which is planar. There must be another component, coming from the double curve of $x^{2}+2 g(y, z) x+p(y, z)=0$. Let $p^{2}-g^{2}=q(x, z)^{2} h(x, y)$, where h has no multiple factors. Then $y+g=$ $q=0$ is the double curve of $x^{2}+2 g(y, z) x+p(y, z)=0$. Since $z^{2}+f$ defines a $c E_{7}$ point, $\operatorname{mult}_{0} p \leq 3$. Therefore $\operatorname{mult}_{0} q=\operatorname{mult}_{0} h=1$. We may assume that $q=y$ to get the normal form

$$
f=x\left(x^{2}+2 g(y, z) x+g(y, z)^{2}+y^{2} h(y, z)\right) \quad \text { where } \operatorname{mult}_{0} h=1 .
$$

(4.10.6) Normal form of f for D irreducible. These cases seem much harder and we do not have complete results. For (4.7.3.1.2) B has a triple point and for (4.7.3.1.4) a quadruple point. These can be computed using the methods of (13.6.2). Moreover, for (4.7.3.1.2) we seem to get every triple point with irreducible tangent cone.

Concerning (4.7.3.1.4) we give only two examples:
(4.10.7) Examples. (4.10.7.1) The monomial curve $B=\operatorname{im}\left[t \mapsto\left(t^{4}, t^{9}, t^{15}\right)\right]$ is the double curve of the surface

$$
D=\left(z^{3}-3 x^{3} y^{2} z+y^{5}+x^{9} y=0\right)
$$

The normalization of D is smooth.
(4.10.7.2) The monomial curve $t \mapsto\left(t^{4}, t^{5}, t^{7}\right)$ cannot be the double curve of any surface triple point.
Proof of (4.10.7). All the partials of $z^{3}-3 x^{3} y^{2} z+y^{5}+x^{9} y$ vanish along B, thus B is contained in the double locus of D. Next view D as a family of curve singularities parametrized by x. For $x=0$ we have $z^{3}+y^{5}=0$, this has $p_{a}=4$. In the general fiber we have at least 4 nodes. Since p_{a} is upper semicontinuous [Teissier80], there are no other singularities in the general fiber. Thus p_{a} is constant, hence we have simultaneous normalization in the family. Therefore the normalization of D is smooth.

For the second part we claim that, in fact, no triple point is contained in the symbolic square of the ideal of the curve. If we give \mathbb{Z}-weights to the variables by $\alpha(x, y, z)=(4,5,7)$ then it is sufficient to consider weighted homogeneous elements of the symbolic square of α-degree at most 21 . Now a quick computation gives the result.

Finally we should address the question whether the above examples do lead to an extremal contraction $f: X \rightarrow Y$. The positive answer is supplied by the following:
(4.10.8) Proposition. Let $Y=\mathbb{C}^{3}$ and let $D=f(x, y, z)$ be a surface germ and let $B=\operatorname{Sing} D$. Assume that B is a curve and that B is an ordinary double curve on D outside the origin. Assume furthermore that
(i) the normalization of D is smooth,
(ii) B is not planar, and
(iii) $s^{2}-f=0$ defines a $c D V$ point.

Then there is an extremal nbd $f: X \rightarrow Y$ such that B is the image of the exceptional divisor. X has a single point of index two and no other points of index larger than one.
Proof. The singular locus of $Y^{\prime}=\left(s^{2}-f=0\right)$ is the curve B inside the $s=0$ plane and along it Y^{\prime} has generically A_{1} singularities. $s \mapsto-s$ gives a \mathbb{Z}_{2}-action on Y^{\prime} whose fixed point set is $D^{\prime} \cong D$. The resolution of the DuVal locus given in [Reid83, 2.6] gives a crepant morphism $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$, which is relatively projective, the exceptional divisor $S^{\prime} \subset X^{\prime}$ is \mathbb{Q}-Cartier, and the \mathbb{Z}_{2}-action lifts to X^{\prime}. Moreover X^{\prime} has isolated $c D V$ singularities. To see this we have to exclude the possibility that there is a singular curve $F \subset X^{\prime}$ which maps to a point $Q \in Y^{\prime}$. However, blowing up this curve yields a crepant exceptional divisor dominating a point of Y^{\prime}. This is impossible since Y^{\prime} is $c D V$.

Now take $X=X^{\prime} / \mathbb{Z}_{2}$ with the natural map $f: X \rightarrow Y$. Every singular point of X is the \mathbb{Z}_{2}-quotient of a $c D V$ point. We want to prove that they are all terminal. We need to check the fixed points of the \mathbb{Z}_{2}-action only. Let σ be a generator of $\omega_{Y^{\prime}}$. We can assume that under the \mathbb{Z}_{2}-action σ is antiinvariant. Since $f^{\prime *}(\sigma)$ is a generator of $\omega_{X^{\prime}}$ locally everywhere, at an isolated fixed point the quotient has index two. Such points are canonical by [KSB88, 6.12], and by the list of [Hayakawa-Takeuchi87] they are also terminal.

The nonisolated fixed points of the \mathbb{Z}_{2}-action an X^{\prime} are on the proper transform E^{\prime} of $D^{\prime} . \quad E^{\prime}$ is \mathbb{Q}-Cartier since $f^{\prime *}\left(D^{\prime}\right)=E^{\prime}+2 S^{\prime} . E^{\prime}$ lies on a hypersurface singularity and, therefore, it is also Cartier. E^{\prime} is smooth outside the origin since we blew up the double curve. This implies that E^{\prime} is normal, hence smooth by the assumption (i). Therefore X^{\prime} is smooth along E^{\prime} and X is smooth along the image of E^{\prime}.
(4.11) Next we use the previous results to describe extremal nbds of type $I I^{\vee}$. We already saw in (4.5) that such nbds are always divisorial. We will use the double cover construction of (4.3) in the following setting.
(4.11.1) Notation. Let $X \supset C \rightarrow Y \ni Q$ be an extremal nbd of type $I I^{\vee}$. By [Mori88, 6.1] the nbd is imprimitive, thus there is a double cover $(\bar{X} \supset \bar{C}) \rightarrow$ ($X \supset C$), which is étale outside the singular point. Note that \bar{C} is reducible. If $E \subset X$ is a transversal disc, let \bar{E} be its preimage. Now we can take the double cover of \bar{X} ramified along \bar{E} to obtain $f^{\prime}: X^{\prime} \supset C^{\prime} \rightarrow Y^{\prime}$. By construction X^{\prime} / X is Galois with Galois group \mathbb{Z}_{4}. Since \bar{X} is an extremal nbd with a single index two point, we already described it somewhere in (4.8). Thus we have to identify Y^{\prime} and the group action to describe $X \supset C \rightarrow Y \ni Q$.
(4.11.2) Theorem. Let $X \supset C \rightarrow Y \ni Q$ be an extremal nbd with a type $I I^{\vee}$ point. Let Y^{\prime} be as above. Then in suitable coordinates

$$
\begin{aligned}
Y^{\prime} & =\left(s^{2} g\left(x, s^{2}\right)+z^{2}-y^{2}=0\right) \quad B^{\prime}=(y=z=t=0) \\
Y & =Y^{\prime} / \mathbb{Z}_{4} \quad w t(x, y, z, s)=(2,2,0,1)
\end{aligned}
$$

The minimal resolution of the general member of $\left|\mathscr{O}_{X}\right|$ is given by the diagram:

Proof. Consider first the possibility that \bar{Y} is smooth. Then Y^{\prime} is given by an equation $s^{2}-f(x, y, z)=0$, where by (4.10.3) $\operatorname{mult}_{0} f=3 . z=f=0$ defines D^{\prime}, which in our case has two components. Also, the \mathbb{Z}_{4}-action interchanges the two components of D^{\prime}, hence f has even multiplicity, a contradiction. Thus \bar{Y} is singular and (since \bar{C} is reducible) we can write its equation in the form

$$
\left(s^{2} g\left(x, y, s^{2}\right)+z^{2}-f(x, y)^{2}=0\right)
$$

We have to extend the \mathbb{Z}_{2}-action $(0,0,0,1)$ to a \mathbb{Z}_{4} action. Let the \mathbb{Z}_{4}-action be given by wts (a, b, c, d). We know that

$$
(2 a, 2 b, 2 c, 2 d)=(0,0,0,2) \bmod 4
$$

Since the action is free, at most one of a, b, c, d can be zero. On the other hand, the quotient is an index two singularity. The list of those tells us that exactly one of a, b, c is zero. Thus $\mathrm{wt}(s)=1$ and among a, b, c one is 0 , the other two are 2 .

Assume first that mult ${ }_{0} f \geq 2$. Then g contains a linear term (4.8.5), say x. Since $0=\mathrm{wt}\left(z^{2}\right)=\mathrm{wt}\left(s^{2} g\right)=2+\mathrm{wt}(x)$, this implies that $\mathrm{wt}(x)=2$.

Now compute the blow up of the singular set $s=z=f=0$. The chart where we get the index four point is given by

$$
\begin{aligned}
g\left(x, y, s^{2}\right)+Z^{\prime 2}-F^{\prime 2} & =0 \\
f(x, y)-s F^{\prime} & =0
\end{aligned}
$$

where $z=Z^{\prime} s$ and

$$
\mathrm{wt}\left(x, y, s, F^{\prime}, Z^{\prime}\right)=(2, \mathrm{wt}(y), 1, \mathrm{wt}(f)-1, \mathrm{wt}(z)-1)
$$

g contains a linear term, thus we can use the first equation to eliminate x and the second equation becomes

$$
\begin{equation*}
f\left(\phi\left(y, s, Z^{\prime 2},{F^{\prime}}^{2}\right), s^{2}\right)-s F^{\prime}=0 \tag{4.11.3}
\end{equation*}
$$

By definition of $I I^{\vee}$ the wt of the above equation has to be two. Thus $\mathrm{wt}(f)=$ $\mathrm{wt}\left(s F^{\prime}\right)=2$.

The \mathbb{Z}_{4}-action interchanges the two components of D^{\prime} given by $(z-f=0)$ and $(z+f=0)$. Therefore $\mathrm{wt}(z)=0$ hence $\mathrm{wt}(y)=2$ and

$$
\mathrm{wt}\left(x, y, s, F^{\prime}, Z^{\prime}\right)=(2,2,1,1,3) .
$$

Since (4.11.3) defines a $I I^{\vee}$ point, $Z^{\prime 2}$ must appear in the equation with nonzero coefficient. This is only possible if f contains x with nonzero coefficient. This contradicts the starting assumption that mult ${ }_{0} f \geq 2$.

Thus mult ${ }_{0} f=1$ and we can write the equation as

$$
Y^{\prime}=\left(s^{2} g\left(x, s^{2}\right)+z^{2}-y^{2}=0\right)
$$

The \mathbb{Z}_{4}-action interchanges the two components of D^{\prime} given by ($z-y=0$) and $(z+y=0)$. Therefore $\mathrm{wt}(z) \neq \mathrm{wt}(y) . z$ and y are symmetric, thus we can assume that wts are $(2,2,0,1)$. This shows the first part of the theorem.

To see the second part we take $H_{Y}^{\prime}=\left(z-a x^{2}-b s^{4}=0\right)$ where a, b are general constants. We claim that this gives the required resolution for H_{X}. To get X^{\prime} we have to blow up $s=z=y=0$. The important chart is given by $y=y^{\prime} s, z=z^{\prime} s$ and we get the equations

$$
\begin{gathered}
g\left(x, s^{2}\right)+z^{\prime 2}-y^{\prime 2}=0 \quad\left(\text { equation for } X^{\prime}\right) \\
z^{\prime} s^{\prime}-a x^{2}-b s^{\prime 4}=0 \quad\left(\text { equation for } H_{X}^{\prime}\right)
\end{gathered}
$$

and

$$
\mathrm{wt}\left(x, y^{\prime}, z^{\prime}, s\right)=(2,1,3,1)
$$

By [Mori85, 12.3] mult ${ }_{0} g \geq 4$. The two equations give a singularity whose resolution we want to determine. This is made possible by the following observation:

If we blow up the origin then we get a chart $x=x^{\prime \prime} s, y^{\prime}=y^{\prime \prime} s, z^{\prime}=z^{\prime \prime} s, s=$ $s^{\prime \prime}$ and equations

$$
\begin{aligned}
\bar{g}\left(x^{\prime \prime}, s^{\prime \prime}\right)+z^{\prime \prime 2}-y^{\prime \prime 2} & =0 \\
z^{\prime \prime}-a x^{\prime \prime 2}-b s^{\prime \prime 2} & =0
\end{aligned}
$$

From here we can eliminate $z^{\prime \prime}$ to get

$$
\begin{equation*}
y^{\prime \prime 2}=\left(a x^{\prime \prime 2}+b s^{\prime \prime 2}\right)^{2}+\bar{g}\left(x^{\prime \prime}, s^{\prime \prime}\right) \tag{4.11.4}
\end{equation*}
$$

mult $_{0} \bar{g} \geq 4$ since mult ${ }_{0} g \geq 4$. Now (4.11.4) defines a simple elliptic or a cusp singularity, and their resolution is well understood. Everything else is a routine computation.
(4.12) Example. For completeness sake we give an example of an extremal nbd of type $I I B$. [Mori88, Appendix B] gives the local description. We will try to put together the simplest case as follows:

$$
\begin{aligned}
& X^{\sharp}=\left(x^{2}-y^{3}+z^{2}-t^{2}=0\right), \\
& C^{\sharp}=\left(x^{2}-y^{3}=z=t=0\right), \\
& H^{\sharp}=\left(x z+y t^{2}=0\right), \\
& \mathrm{wt}(x, y, z, t)=(3,2,1,1) .
\end{aligned}
$$

Explicit computation of the minimal resolution of H gives the diagram

This contracts to an A_{2} point and as in (13.8) leads to an example of an extremal nbd with a type $I I B$ point.

5. Nbds with three singular points

The following is the main theorem of this chapter.
(5.1) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd with three singular points. Then f is divisorial.

This (5.1) completes the proof of (2.2.3') as remarked in (2.4). We have the following description by (2.12.1-2.12.3).
(5.2). Under the notation and assumptions of (5.1), let P, R, and S be the singular points of X with index $P \geq$ index $R \geq$ index S. Then we can express

$$
\begin{aligned}
& (X, O)=\left(x_{1}, x_{2}, x_{3}\right) \supset(C, O)=x_{1} \text {-axis }, \\
& (X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1) \supset(C, P)=y_{1} \text {-axis } / \mathbb{Z}_{m} \\
& (X, R)=\left(z_{1}, z_{2}, z_{3}\right) / \mathbb{Z}_{2}(1,1,1) \supset(C, R)=z_{1}-\text { axis } / \mathbb{Z}_{2} \\
& (X, S)=\left(w_{1}, w_{2}, w_{3}, w_{4} ; \gamma\right) \supset(C, S)=w_{1}-\text { axis }
\end{aligned}
$$

using an odd number $m(\geq 3)$ and equation $\gamma \equiv w_{1} w_{3} \bmod \left(w_{2}, w_{3}, w_{4}\right)^{2}$, where $O \in C-\{P, R, S\}$ is an arbitrary point chosen for simplicity of the subsequent computation.

Unless otherwise mentioned, we will fix the meaning of these symbols above and P^{\sharp} and R^{\sharp} in (2.12) throughout this chapter.
(5.3) Remark. (5.3.1) By (2.12.5)-(2.12.7), we know that $(f(D), Q)$ is a D_{m+2}-point and (D, P) is an A_{m-1}-point for a general member D of $\left|-K_{X}\right|$ through C as explained in (2.12.7).
(5.3.2) By (1.10) and (8.9.1) of [Mori88], we see

$$
\begin{aligned}
C l^{s c}(X) & \xrightarrow{\dot{\otimes} \theta_{C}}\left\{\ell \text { - invertible } \mathscr{O}_{C} \text {-modules }\right\} / \text { isomorphisms } \\
& \xrightarrow{q l_{C}} Q L(C) \simeq \mathbb{Z} .
\end{aligned}
$$

The proof of (5.1) consists of several steps. The first step is to write down $\ell-$ splittings for $g r_{C}^{1} \mathscr{O}$ and $g r_{C}^{2} \mathcal{O}$ explicitly so that we can write down infinitesimal thickenings of C in subsequent arguments.
(5.4) Proposition. Under the notation and assumptions of (5.1), we have the ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}_{C}\left(K_{X}\right) \tilde{\oplus} \mathscr{O}_{C}\left((m-2) K_{X}\right) \tag{5.4.1}
\end{equation*}
$$

and

$$
\begin{aligned}
q l_{C} \mathscr{O}_{C}\left(K_{X}\right) & =-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}, \\
q l_{C} \mathscr{O}_{C}\left((m-2) K_{X}\right) & =-1+P^{\sharp}+R^{\sharp} .
\end{aligned}
$$

Furthermore we have an ℓ-splitting

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O}=\mathscr{O}_{C}(-D) \tilde{\oplus}_{C}\left(-D^{\prime}\right) \tag{5.4.2}
\end{equation*}
$$

where D and D^{\prime} are general members of $\left|-K_{X}\right|$ and $\left|-(m-2) K_{X}\right|$, respectively, and we are using the notation $\mathscr{O}_{C}(E)=\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{X}(E)$ for an ℓ-invertible $\mathscr{O}_{X^{-}}$ module $\mathscr{O}_{X}(E)$.
Proof. The ℓ-isomorphism (5.4.1) is given in (2.12.4). From the ℓ-isomorphisms

$$
\begin{aligned}
g r_{C}^{0}\left(\omega_{X}^{\dot{\otimes}(-1)}\right) & \simeq\left(-1+\frac{m+1}{2} P^{\sharp}+R^{\sharp}\right), \\
g r_{C}^{0}\left(\omega_{X}^{\dot{\otimes}(-m+2)}\right) & \simeq\left(-1+(m-1) P^{\sharp}+R^{\sharp}\right)
\end{aligned}
$$

given in (2.12), we see C is contained in the base loci of $\left|-K_{X}\right|$ and $\left|-(m-2) K_{X}\right|$, that is,

$$
\begin{gathered}
H^{0}\left(\mathscr{O}_{X}\left(-K_{X}\right)\right)=H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right)\right), \\
H^{0}\left(\mathscr{O}_{X}\left((2-m) K_{X}\right)=H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left((2-m) K_{X}\right)\right)\right.
\end{gathered}
$$

Let $(E, P)=\left\{y_{1}=0\right\} / \mathbb{Z}_{m}$. Then $E \in\left|-2 K_{X}\right|$ by $(E \cdot C)=1 / m$. From the ℓ-exact sequence

$$
0 \rightarrow \omega_{X} \rightarrow \mathscr{O}_{X}\left(-K_{X}\right) \rightarrow \mathscr{O}_{E}\left(-K_{X}\right) \rightarrow 0
$$

and $H^{1}\left(\omega_{X}\right)=0$, we see the surjection

$$
\begin{equation*}
H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right)\right) \rightarrow \mathscr{O}_{E}\left(-K_{X}\right) . \tag{5.4.3}
\end{equation*}
$$

We claim that the natural ℓ-surjection

$$
\begin{equation*}
F_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right) \rightarrow g r_{C}^{1} \mathscr{O} \tilde{\otimes} \mathscr{O}\left(-K_{X}\right)=\mathscr{O}_{C} \tilde{\oplus} \mathscr{O}_{C}\left((m-3) K_{X}\right) \tag{5.4.4}
\end{equation*}
$$

induces a surjection

$$
\begin{equation*}
H^{0}\left(F_{C}^{1} \mathscr{Q}_{X}\left(-K_{X}\right)\right) \rightarrow H^{0}\left(\mathscr{O}_{C}\right) \oplus H^{0}\left(\mathscr{O}_{C}\left((m-3) K_{X}\right)\right. \tag{5.4.5}
\end{equation*}
$$

To see (5.4.5), we first assume $m>3$. Then $y_{2} / d y_{1} \wedge d y_{2} \wedge d y_{3} \in \mathscr{O}_{E}\left(-K_{X}\right)$ lifts to $s \in H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right)\right)$ (5.4.3). Then the image \bar{s} of s by (5.4.4) generates the first factor because \bar{s} generates the trivial $\mathscr{O}_{C} \bmod I_{E}$ at P. So (5.4.5) is a surjection. If $m=3$, we lift another $y_{3} / d y_{1} \wedge d y_{2} \wedge d y_{3}$ together, and (5.4.5) is again surjective. Thus if $m=3,(5.4)$ is done. We assume $m>3$ for (5.4). Then just like (5.4.3), we see the surjection

$$
\begin{equation*}
H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-(m-2) K_{X}\right)\right) \rightarrow \mathscr{O}_{E}\left(-(m-2) K_{X}\right) \tag{5.4.6}
\end{equation*}
$$

because $H^{1}\left(\mathscr{O}_{X}\left((4-m) K_{X}\right)\right)=0$ by $4-m<0$. We consider the ℓ-surjection

$$
\begin{align*}
F_{C}^{1} \mathscr{O}_{X}\left(-(m-2) K_{X}\right) & \rightarrow g r_{C}^{1} \mathscr{O} \tilde{\otimes} \mathscr{O}_{X}\left(-(m-2) K_{X}\right) \\
& =\mathscr{\mathscr { O }}_{C}\left((3-m) K_{X}\right) \tilde{\oplus} \mathscr{\mathscr { O }}_{C} \tag{5.4.7}\\
& \rightarrow \mathscr{O}_{C}(\text { second projecton }) .
\end{align*}
$$

We claim that (5.4.7) induces a surjection

$$
\begin{equation*}
H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-(m-2) K_{X}\right)\right) \rightarrow H^{0}\left(\mathscr{O}_{C}\right) \tag{5.4.8}
\end{equation*}
$$

Indeed, similarly to (5.4.5), one can see it by lifting $y_{3} /\left(d y_{1} \wedge d y_{2} \wedge d y_{3}\right)^{m-2}$ by (5.4.6) to $s^{\prime} \in H^{0}\left(F_{C}^{1} \mathscr{O}_{X}\left(-(m-2) K_{X}\right)\right)$. Now (5.4.5) and (5.4.8) prove (5.4.2).
(5.5) Proposition. Under the notation and assumptions of (5.4), we have the nonzero vector space $H^{0}\left(X, \mathscr{G}_{X}\left(D^{\prime}-D\right)\right) \neq 0$. Let α be a general element of $H^{0}\left(X, \mathscr{O}_{X}\left(D^{\prime}-D\right)\right)$. Then the homomorphism $\alpha: \mathscr{O}_{X}\left(-D^{\prime}\right) \rightarrow \mathscr{O}_{X}(-D)$ is an ℓ-injection, which is an ℓ-isomorphism outside P^{\sharp}. Furthermore the induced ℓ-injection $\bar{\alpha}: \mathscr{O}_{C}\left(-D^{\prime}\right) \rightarrow \mathscr{O}_{C}(-D)$ is an isomorphism $\mathscr{O}_{C}(-1) \simeq \mathscr{O}_{C}(-1)$ of invertible sheaves if we forget ℓ-structures.
Proof. This follows from the ℓ-isomorphism

$$
\mathscr{O}_{C}\left(D^{\prime}-D\right) \simeq\left(\frac{m-3}{2} P^{\sharp}\right)
$$

which was given in the proof of (5.4).
We will fix the meaning of D, D^{\prime}, α, and $\bar{\alpha}$ above for the rest of this chapter.
(5.6) Proposition. Let the notation and assumptions be as in (5.5). By making coordinate changes to the coordinates in (5.2), we may assume that
(5.6.1) $\left(x_{2}, y_{2}, z_{2}, w_{2}\right)$ (resp. $\left(x_{3}, y_{3}, z_{3}, w_{4}\right)$) forms ℓ-free ℓ-bases of the ℓ-invertible sheaf $\mathscr{O}(-D)$ (resp. $\left.\mathscr{O}\left(-D^{\prime}\right)\right)$ at O, P, R, and S, respectively;
(5.6.2) $\alpha: \mathscr{O}\left(-D^{\prime}\right) \rightarrow \mathscr{O}(-D)$ sends $\left(x_{3}, y_{3}, z_{3}, w_{4}\right)$ to $\left(x_{2}, y_{1}^{(m-3) / 2} y_{2}, z_{2}\right.$, w_{2}) ;
(5.6.3) $\gamma=w_{1} w_{3}-G\left(w_{2}, w_{4}\right)$ for some $G \in\left(w_{2}, w_{4}\right)^{2} \mathbb{C}\left\{w_{2}, w_{4}\right\}$, where γ is the equation in (5.2).
Proof. The first assertion follows from (5.4). Then α sends

$$
\left(x_{3}, y_{3}, z_{3}, w_{4}\right) \quad \text { to } \quad\left(u_{x} x_{2}, u_{y} y_{1}^{(m-3) / 2} y_{2}, u_{z} z_{2}, u_{w} w_{2}\right)
$$

for some units u_{x}, u_{y}, u_{z}, and u_{w} at O, P, R, and S. Then we replace y_{2} (resp. z_{2}, w_{2}, x_{2}) by $u_{y}^{-1} y_{2}$ (resp. $u_{z}^{-1} z_{2}, u_{w}^{-1} w_{2}, u_{x}^{-1} x_{2}$) at P^{\sharp} (resp. R^{\sharp}, S, O), which attains (5.6.2). By making a coordinate change at S leaving w_{2} and w_{4} fixed, we may attain (5.6.3) because (X, S) is an isolated singularity and $\gamma \equiv w_{1} w_{3} \bmod \left(w_{2}, w_{3}, w_{4}\right)^{2}$ by (5.2).

The following deformation procedure allows us to make $G \in\left(w_{2}, w_{4}\right)^{2} \times$ $\mathbb{C}\left\{w_{2}, w_{4}\right\}$ in (5.6) general keeping other properties.
(5.7) Lemma. Let the notation and assumptions be as in (5.6). Let δ be an arbitrary power series in $\left(w_{2}, w_{4}\right)^{2} \mathbb{C}\left\{w_{2}, w_{4}\right\}$. Let $\left(X_{t}, S_{t}\right) \supset\left(C_{t}, S_{t}\right)$ be the deformation of $(X, S) \supset(C, S)$ given by

$$
\{\gamma+t \delta=0\} \supset w_{1} \text {-axis } \quad(t \in \Delta, \text { a small disk })
$$

Let $X_{t} \supset C_{t}$ be the twisted extension of $\left(X_{t}, S_{t}\right) \supset\left(C_{t}, S_{t}\right)$ by $\left(w_{2}, w_{4}\right)$. Let D, D^{\prime}, and α be trivially extended outside a small $n b d$ of S and extended to $\left(X_{t}, S_{t}\right)$ by $\left\{w_{2}=0\right\},\left\{w_{4}=0\right\}$, and w_{2} / w_{4}, which are consistent. If $X \supset C$ is isolated, then a nearby nbd $X_{t}^{\circ} \supset C_{t}$ is an isolated extremal nbd satisfying (5.2), (5.4), (5.5), and (5.6) except that G is replaced by $G-t \delta$.

This is similar to (2.9) and we omit the proof since it is similar to that of (2.9).

From now on in this chapter, we assume that f is isolated because of (5.7) (cf. (5.24)). Thus we may assume the following.
(5.8) Proposition. Let G_{ν} be the homogeneous part of degree ν of G in (5.6). Then for any n, we may assume that $G_{2}, G_{3}, \ldots, G_{n}$ are all general homogeneous polynomials (by replacing X with its nearby extremal nbd).
(5.9)Due to (5.8), we will assume that G_{2} and G_{3} are general in the rest of this chapter.
(5.10) Proposition. Under the notation and assumptions of (5.6) and (5.9), we have an ℓ-splitting

$$
g r_{C}^{2} \mathscr{O}=\mathscr{O}_{C}(-2 D) \tilde{\oplus} \mathscr{O}_{C}\left(-D-D^{\prime}\right) \tilde{\oplus} N
$$

such that

$$
\begin{aligned}
q l_{C} \mathscr{O}_{C}(-2 D) & =2 q l_{C} \mathscr{O}_{C}(-D)=-1+(m-1) P^{\sharp}, \\
q l_{C} \mathscr{\theta}_{C}\left(-D-D^{\prime}\right) & =q l_{C} \mathscr{O}_{C}(-D)+q l_{C} \mathscr{\theta}_{C}\left(-D^{\prime}\right)=-1+\frac{m+1}{2} P^{\sharp}, \\
q l_{C}(N) & =2 P^{\sharp},
\end{aligned}
$$

for some ℓ-invertible subsheaf N. Such an N is unique and is given by

$$
N=G_{2}(\alpha, 1) \cdot \mathscr{O}_{C}\left(-2 D^{\prime}\right)(S)
$$

In particular, $\left(G_{2}\left(x_{2}, x_{3}\right), G_{2}\left(y_{1}^{(m-3) / 2} y_{2}, y_{3}\right), G_{2}\left(z_{2}, z_{3}\right), w_{3}\right)$ forms ℓ-free ℓ bases of N at O, P, R, and S, respectively.
Proof. By (5.2), we see an ℓ-exact sequence

$$
0 \rightarrow \tilde{S}^{2} g r_{C}^{1} \mathscr{O} \rightarrow g r_{C}^{2} \mathscr{O} \rightarrow \mathbb{C}_{S} \cdot w_{3} \rightarrow 0
$$

By $\alpha^{i} \mathscr{O}_{C}\left(-2 D^{\prime}\right)=\mathscr{O}_{C}\left(-i D-(2-i) D^{\prime}\right) \subset \tilde{S}^{2} g r_{C}^{1} \mathscr{O}$ for $i \in[0,2]$, we see an ℓ-splitting

$$
\tilde{S}^{2} g r_{C}^{1} \mathscr{O}=\mathscr{O}_{C}(-2 D) \tilde{\oplus} \mathscr{O}_{C}\left(-D-D^{\prime}\right) \tilde{\oplus} G_{2}(\alpha, 1) \cdot \mathscr{O}_{C}\left(-2 D^{\prime}\right)
$$

because G_{2} is general. In the stalk of $g r_{C}^{2} \mathscr{O}$ at S, we have

$$
w_{1} w_{3}=G_{2}\left(w_{2}, w_{4}\right)=G_{2}(\alpha, 1) \cdot w_{4}^{2}
$$

whence $G_{2}(\alpha, 1) \cdot \mathscr{G}_{C}\left(-2 D^{\prime}\right)(S) \subset g r_{C}^{2} \mathscr{O}$. The uniqueness is obvious because $\mathscr{O}_{C}(-2 D) \simeq \mathscr{O}_{C}\left(-D-D^{\prime}\right) \simeq \mathscr{O}_{C}(-1)$ and $N \simeq \mathscr{O}_{C}$ if we ignore ℓ-structures.
(5.11) Remark. In view of the definition of $q l_{C}(F)$ [Mori88, (8.9.1)] for a locally ℓ-free \mathscr{O}_{C}-module on $C \simeq \mathbb{P}^{1}$, the following are easy to see.
(5.11.1) If $u: F \rightarrow G$ is an (ℓ-)injection of locally ℓ-free \mathscr{O}_{C}-modules that is generically an isomorphism, then $q l_{C}(F) \leq q l_{C}(G)$, that is, $q l_{C}(G)-q l_{C}(F) \in$ $\mathbb{Z}_{+} P^{\sharp}+\mathbb{Z}_{+} R^{\sharp}$. Furthermore u is an ℓ-isomorphism iff $q l_{C}(F)=q l_{C}(G)$.
(5.11.2) If $0 \rightarrow F \rightarrow G \rightarrow H \rightarrow 0$ is an ℓ-exact sequence of locally ℓ-free \mathscr{O}_{C} - modules, then $q l_{C}(G)=q l_{C}(F)+q l_{C}(H)$.
(5.12) Proposition. Under the notation and assumptions of (5.10), let J_{3} be the ideal such that $F_{C}^{2} \mathscr{O} \supset J_{3} \supset F_{C}^{3} \mathscr{O}$ and $J_{3} / F_{C}^{3} \mathscr{O}=N$. Then we have an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow F_{C}^{3} \mathscr{O} / F_{C}^{1} J_{3} \rightarrow g r_{C}^{0} J_{3} \rightarrow N \rightarrow 0 \tag{5.12.1}
\end{equation*}
$$

and ℓ-isomorphisms

$$
\begin{align*}
& F_{C}^{3} \mathscr{O} / F_{C}^{1} J_{3} \simeq \mathscr{O}_{C}(-3 D) \tilde{\oplus} \mathscr{O}_{C}\left(-2 D-D^{\prime}\right), \tag{5.12.2}\\
& F_{C}^{1} J_{3} / F_{C}^{4} \mathscr{O} \simeq N \tilde{\otimes} g r_{C}^{1} \mathscr{O},
\end{align*}
$$

where

$$
\begin{aligned}
q l_{C} \mathscr{O}_{C}(-3 D) & =-1+\frac{m-3}{2} P^{\sharp}+R^{\sharp}, \\
q l_{C} \mathscr{O}_{C}\left(-2 D-D^{\prime}\right) & =-1+R^{\sharp} .
\end{aligned}
$$

Proof. The kernel of the natural ℓ-surjection $J_{3} \rightarrow N$ is $F_{C}^{3} \mathscr{Q}$, which proves the first ℓ-exact sequence. By $F_{C}^{2} \mathscr{O} \supset J_{3} \supset F_{C}^{3} \mathscr{O}$, we have $F_{C}^{3} \mathscr{O} \supset F_{C}^{1} J_{3} \supset$ $F_{C}^{4} \mathscr{O}$. Since $J_{3} \tilde{\otimes} I_{C} \rightarrow F_{C}^{1} J_{3} / F_{C}^{4} \mathscr{O} \subset g r_{C}^{3} \mathscr{O}$ factors through $N \tilde{\otimes} g r_{C}^{1} \mathscr{O}$, we have an ℓ-homomorphism $u: N \tilde{\otimes} g r_{C}^{1} \mathscr{\theta} \rightarrow F_{C}^{1} J_{3} / F_{C}^{4} \mathscr{O}$. Let v be the natural ℓ homomorphism $\mathscr{O}_{C}(-3 D) \tilde{\oplus} \mathscr{O}_{C}\left(-2 D-D^{\prime}\right) \rightarrow F_{C}^{3} \mathscr{O} / F_{C}^{1} J_{3}$. It is easy to see that u and v are injections by

$$
J_{3}=\left(G_{2}\left(x_{2}, x_{3}\right)\right)+\left(x_{2}, x_{3}\right)^{3} \text { at } O .
$$

We see that the natural ℓ-isomorphism $\tilde{\alpha}_{3}: \tilde{S}^{3} g r_{C}^{1} \mathcal{O} \rightarrow g r_{C}^{3} \mathscr{O}$ is an ℓ-isomorphism outside S by (5.2). Since S is an ordinary double point, we have

$$
\operatorname{len}_{S} \operatorname{Coker} \tilde{\alpha}_{3}=i_{S}(3)=\left[3^{2} / 4\right]=2
$$

[Mori88, (4.9.ii)]. Thus

$$
\begin{equation*}
q l_{C}\left(g r_{C}^{3} \mathscr{O}\right)=q l_{C}\left(\tilde{S}^{3} g r_{C}^{1} \mathscr{O}\right)+2 \tag{5.12.3}
\end{equation*}
$$

By (5.11.1) applied to u and (5.10), we have

$$
\begin{align*}
q l_{C}\left(F_{C}^{1} J_{3} / F_{C}^{4} \mathscr{O}\right) & \geq q l_{C}\left(N \tilde{\otimes} g r_{C}^{1} \mathscr{O}\right) \tag{5.12.4}\\
& =q l_{C}\left(\mathscr{O}_{C}\left(-D-2 D^{\prime}\right) \tilde{\oplus} \mathscr{O}_{C}\left(-3 D^{\prime}\right)\right)+2
\end{align*}
$$

By (5.11.1) applied to v, we have

$$
\begin{equation*}
q l_{C}\left(F_{C}^{3} \mathscr{O} / F_{C}^{1} J_{3}\right) \geq q l_{C}\left(\mathscr{O}_{C}(-3 D) \tilde{\oplus} \mathscr{O}_{C}\left(-2 D-D^{\prime}\right)\right) \tag{5.12.5}
\end{equation*}
$$

Since $(5.12 .4)+(5.12 .5)$ reduces to the equality $(5.12 .3)$ by (5.11.2), we see that (5.12.4) and (5.12.5) are both equalities, whence u and v are ℓ-isomorphisms (5.11.1).
(5.13) Proposition. If we ignore ℓ-structures, then (5.12.1) is split and has a unique splitting submodule, say, $N_{1} \simeq \mathscr{O}_{C}$. The sheaf N_{1} has the following generators:

$$
\begin{aligned}
& O: G_{2}\left(x_{2}, x_{3}\right)+(\cdots) x_{2}^{3}+(\cdots) x_{2}^{2} x_{3}, \\
& P: y_{1}^{2} G_{2}\left(y_{1}^{(m-3) / 2} y_{2}, y_{3}\right)+u_{P} \cdot\left(b_{0} y_{1}^{(m-3) / 2} y_{2}^{3}+b_{1} y_{2}^{2} y_{3}\right), \\
& R: G_{2}\left(z_{2}, z_{3}\right)+(\cdots) z_{1} z_{2}^{3}+(\cdots) z_{1} z_{2}^{2} z_{3}, \\
& S: w_{3}+(\cdots) w_{2}^{3}+(\cdots) w_{2}^{2} w_{4},
\end{aligned}
$$

where $u_{P} \in \mathscr{O}_{C, P}$ is a unit and $b_{0}, b_{1} \in \mathbb{C}^{*}$ are general with respect to the coefficients of G_{2}.
Proof. By $a l_{C} \mathscr{\theta}_{C}\left(-2 D^{\prime}\right)=-1+2 P^{\sharp}$ and $q l_{C} \mathscr{\theta}_{C}\left(-2 D-D^{\prime}\right)=-1+R^{\sharp}$, we have

$$
-2 D^{\prime}-2 E_{P} \sim-2 D-D^{\prime}-E_{R}
$$

in a small enough nbd X of C, where $E_{P}=\left\{y_{1}=0\right\} / \mathbb{Z}_{m}$ and $E_{R}=\left\{z_{1}=\right.$ $0\} / \mathbb{Z}_{2}$ are considered Weil divisors on X. Let β be a meromorphic function on X such that $\beta \cdot \mathscr{O}_{X}\left(-2 D^{\prime}-2 E_{P}\right)=\mathscr{O}_{X}\left(-2 D-D^{\prime}-E_{R}\right)$ and β sends bases

$$
\left(x_{3}^{2}, y_{1}^{2} y_{3}^{2}, z_{3}^{2}, w_{4}^{2}\right) \quad \text { to } \quad\left(u_{O} x_{2}^{2}, u_{P} y_{2}^{2} y_{3}, u_{R} z_{1} z_{2}^{2} z_{3}, u_{S} w_{2}^{2} w_{4}\right)
$$

for some units u_{O}, u_{P}, u_{R}, and u_{S} of $\mathscr{O}_{X, O}, \mathscr{O}_{X, P}, \mathscr{O}_{X, R}$, and $\mathscr{O}_{X, S}$, respectively. We may assume $u_{S}(S)=1$ by multiplying β by a constant. Since G_{2} and G_{3} are general, we can find $b_{0}, b_{1}, c_{0}, c_{1} \in \mathbb{C}^{*}$, which are general with respect to G_{2} and

$$
G_{3}\left(w_{2}, w_{4}\right)=G_{2}\left(w_{2}, w_{4}\right) \cdot\left(c_{0} w_{2}+c_{1} w_{4}\right)+\left(b_{0} w_{2}^{3}+b_{1} w_{2}^{2} w_{4}\right)
$$

Using α in (5.6), we see $\alpha \beta \cdot \mathscr{O}\left(-2 D^{\prime}-2 E_{P}\right) \subset \mathscr{O}_{X}(-3 D)$, whence

$$
\left\{b_{0} \alpha \beta+b_{1} \beta+G_{2}(\alpha, 1)\right\} \cdot \mathscr{O}_{X}\left(-2 D^{\prime}-2 E_{P}\right) \subset J_{3} .
$$

We denote its image in $g r_{C}^{0}\left(J_{3}\right)$ by M, and we note that $M \simeq \mathscr{G}_{C}(-1)$.
First we work in a neighborhood of S. Since $w_{3} \in J_{3}$ (5.10) and $I_{C}^{3} \subset J_{3}$, we see that

$$
\left(F_{C}^{1} J_{3}\right)_{S} \supset w_{3}\left(w_{2}, w_{3}, w_{4}\right)+\left(w_{2}, w_{3}, w_{4}\right)^{4}
$$

Since $\gamma=0, G_{2} \in J_{3}(5.10)$, and $G_{\nu} \in F_{C}^{1} J_{3}(\forall \nu \geq 4)$, we see

$$
G_{2}\left(w_{2}, w_{4}\right)+\left(b_{0} w_{2}^{3}+b_{1} w_{2}^{2} w_{4}\right) \equiv w_{1} w_{3} \bmod F_{C}^{1} J_{3}
$$

We see that M is generated at S by

$$
\begin{aligned}
\left\{b_{0} \alpha \beta+b_{1} \beta+G_{2}(\alpha, 1)\right\} \cdot w_{4}^{2} & =u_{S} \cdot\left(b_{0} w_{2}^{3}+b_{1} w_{2}^{2} w_{4}\right)+G_{2}\left(w_{2}, w_{4}\right) \\
& \equiv w_{1} \cdot\left\{w_{3}+(\cdots) w_{2}^{3}+(\cdots) w_{2}^{2} w_{4}\right\} \bmod F_{C}^{1} J_{3}
\end{aligned}
$$

Hence $M(S) \subset g r_{C}^{0} J_{3}$ is the splitting subsheaf N_{1}.
Then, at P, we see that
$\left\{b_{0} \alpha \beta+b_{1} \beta+G_{2}(\alpha, 1)\right\} y_{1}^{2} y_{3}^{2}=u_{P}\left(b_{0} y_{1}^{(m-3) / 2} y_{2}^{3}+b_{1} y_{2}^{2} y_{3}\right)+y_{1}^{2} G_{2}\left(y_{1}^{(m-3) / 2} y_{2}, y_{3}\right)$ is a generator of N_{1}.
(5.14) By (5.3.1), the singularity $(f(D), Q)$ is a D_{m+2}-point and (D, P) is an A_{m-1}-point, where D is as in (5.4). From this it is easy to see the following.
(5.15) Lemma-Definition. There exist sections $\tilde{s}_{1}, \tilde{s}_{2} \in H^{0}\left(\mathscr{O}_{D}\right)$ such that the multiplicity of C in $\left\{\tilde{s}_{1}=0\right\}$ is 2 and $\tilde{s}_{2}=y_{3}^{m} \cdot($ unit $)$ on the germ (D, P). These lift to sections s_{1} and $s_{2} \in H^{0}\left(\mathscr{O}_{X}\right)$ by $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow H^{0}\left(\mathscr{O}_{D}\right)$ because $H^{1}(\odot(-D))=H^{1}\left(\omega_{X}\right)=0$. We will fix the meaning of s_{1} and s_{2} in the rest of this chapter.
(5.16) Proposition. (5.16.1) We have $s_{1} \in H^{0}\left(J_{3}\right)$ and its image \bar{s}_{1} in $g r_{C}^{0} J_{3}$ is a global generator of N_{1} in (5.13).
(5.16.2) We have $s_{2} \in H^{0}\left(F_{C}^{1} J_{3}\right)$ and, in the Taylor expansion of s_{2} in $\left(D^{\sharp}, P^{\sharp}\right), y_{3}^{m}$ appears with a nonzero coefficient.
Proof. We have $H^{0}\left(F_{C}^{1} \mathscr{O}\right)=H^{0}\left(F_{C}^{2} \mathscr{O}\right)$ (5.4) and $H^{0}\left(F_{C}^{2} \mathscr{O}\right)=H^{0}\left(J_{3}\right)$ (5.10). Hence $s_{1}, s_{2} \in H^{0}\left(J_{3}\right)$. Since $\left.s_{1}\right|_{D}$ vanishes to order 2 along C, we see that $s_{1} \notin H^{0}\left(F_{C}^{3} \mathscr{O}\right)$. Thus $\bar{s}_{1} \in H^{0}\left(N_{1}\right)$ is a global generator of $N_{1} \simeq \mathscr{O}_{C}$ by (5.13). If $s_{2} \notin H^{0}\left(F_{C}^{1} J_{3}\right)$, then its image \bar{s}_{2} in $g r_{C}^{0} J_{3}$ is also a global generator of N_{1} for the same reason. Then one can see, at O, that $\left.s_{2}\right|_{D}=s_{2}\left(x_{1}, 0, x_{3}\right)=$ $x_{3}^{2} \cdot$ (unit). This contradicts the choice of s_{2} in (5.2.1). Thus $s_{2} \in H^{0}\left(F_{C}^{1} J_{3}\right)$, and the rest is obvious from the choice of s_{2}.
(5.17) Proposition. Let $s \in H^{0}\left(\mathscr{O}_{X}\right)$ be a general linear combination of s_{1} and s_{2}. Then we have the congruence relations (up to multiplication by unit) at the following points.

$$
\begin{aligned}
& O: s \equiv G_{2}\left(x_{2}, x_{3}\right) \bmod F_{C}^{3} \mathscr{O}, \\
& P: s \equiv y_{1}^{2} G_{2}\left(y_{2}, y_{3}\right) \bmod F_{C}^{3} \mathscr{O}, \\
& R: s \equiv G_{2}\left(z_{2}, z_{3}\right) \bmod F_{C}^{3} \mathscr{O}, \\
& S: s \equiv w_{3} \bmod F_{C}^{3} \mathscr{O} .
\end{aligned}
$$

This follows from (5.13) and (5.16.1).
(5.18) To study s at P, we will make a weighted blow-up at P. To simplify the notation, we make the coordinate change $y_{i} \mapsto u_{P}^{-1} y_{i}(i=1,2,3)$. Let σ and τ be the \mathbb{Z}-wts (cf. (T.7))

$$
\sigma\left(y_{1}, y_{2}, y_{3}\right)=\left(1, \frac{m+1}{2}, m-1\right) \quad \tau\left(y_{1}, y_{2}, y_{3}\right)=\left(m-1, \frac{m-1}{2}, 1\right)
$$

(5.19) Proposition. We have $\sigma(s)=2 m$ and $\tau(s)=m$.
(5.19.1) If $m \geq 5$, then $s_{\sigma=2 m}$ (up to multiplication by constant) is a general linear combination of all the monomials of σ-wt $2 m$ in $\left(y_{2}, y_{3}\right)^{2}$ and $s_{\tau=m}$ is squarefree.
(5.19.2) If $m=3$, then we have (up to multiplication by constant)

$$
s_{\sigma=2 m}=y_{1}^{2} G_{2}\left(y_{2}, y_{3}\right)+H\left(y_{2}, y_{3}\right),
$$

where H is a homogeneous cubic polynomial which is squarefree and prime to G_{2}.
Proof. We have $\sigma(s)=2 m$ by (5.17) and $\tau(s)=m$ by (5.16.2). First we assume $m \geq 5$. Then $y_{1}^{2} y_{3}^{2}, y_{1}^{(m+1) / 2} y_{2} y_{3}, y_{1}^{m-1} y_{2}^{2}, y_{2}^{2} y_{3}, y_{1}^{(m-3) / 2} y_{2}^{3}$ are the only monomials in $\left(y_{2}, y_{3}\right)^{2}$ with σ-wt 2 m . Since all the elements in $\left(F_{C}^{4} \mathscr{O}\right)_{P}$ have σ-wt $>2 m$, we see that all the elements in $\left(F_{C}^{1} J_{3}\right)_{P}$ have σ-wt $>2 m$ by (5.12) and $m \geq 5$. Thus the first part of (5.19.1) follows by (5.13) and (5.16.1). Furthermore $y_{2}^{2} y_{3}, y_{2} y_{3}^{(m+1) / 2}, y_{3}^{m}$ are the only monomials with τ-wt m in $\left(y_{2}, y_{3}\right)^{2}$. Thus the second part of (5.19.1) follows from (5.13), and (5.16.2) by Bertini's theorem. When $m=3$, (5.19.2) follows also from (5.13), and (5.16.2) by Bertini's theorem.
(5.20) Let $H=\{s=0\}, \pi: \bar{H} \rightarrow(H, P)$ be the σ-blow-up (cf. (10.3)), \bar{C} the proper transform of C by π, and $E=\pi^{-1}(P)_{\text {red }}$.
(5.21) Lemma. (5.21.1) $E \subset \mathbb{P}\left(1, \frac{m+1}{2}, m-1\right)$ is isomorphic to a plane nodal cubic (i.e., \mathbb{P}^{1} with one node) with singularity at $P_{1}=(1: 0: 0)$, and

$$
\left(\bar{H}, P_{1}\right) \simeq(x, y, z ; y z) \supset\left(E, P_{1}\right)=\{x=0\}
$$

with $\bar{C}=x$-axis.
(5.21.2) If $m \geq 5$, then the singular locus of \bar{H} consists of \bar{C} and the two points $P_{2}=(0: 1: 0)$ and $P_{3}=(0: 0: 1)$ such that

$$
\begin{aligned}
\left(\bar{H}, P_{2}\right) & \simeq(x, y) / \mathbb{Z}_{(m+1) / 2}(1,1) \supset E=x \text {-axis } / \mathbb{Z}_{(m+1) / 2}, \\
\left(\bar{H}, P_{3}\right) & \simeq\left(u_{1}, u_{2}, u_{3} ; \phi\right) / \mathbb{Z}_{m-1}\left(m-2, \frac{m-3}{2}, 1 ; m-3\right) \supset E \\
& =\left\{u_{3}=0\right\} / \mathbb{Z}_{m-1},
\end{aligned}
$$

where $\rho(\phi)=m-3$ and $\phi_{\rho=m-3}$ is squarefree for \mathbb{Z}-wt $\rho\left(u_{1}, u_{2}, u_{3}\right)=(m-$ $\left.2, \frac{m-3}{2}, 1\right)$.
(5.21.3) If $m=3$, then the singular locus of H consists of \bar{C} and three A_{1}-points $\in E-\left\{P_{1}\right\}$.
Outline of proof. It is easy to see that $E \cap U_{1}$ is a cubic curve with exactly one node (cf. (10.3)). Then the rest follows from (5.19) by direct computation. We only make two comments. The assertion on ρ follows from that on τ in (5.19.1). When $m=3$, the three singular points of \bar{H} come from the singular locus $D_{+}\left(y_{1}\right)$ of the ambient space of the σ-blow-up.
(5.22) Computation. Assume $m \geq 5$. Under the notation of (5.21),

$$
\Delta\left(\left(\bar{H}, P_{3}\right) \supset\left(E, P_{3}\right)\right)
$$

is
(5.23) Conclusion. Since \bar{H} has nodes everywhere along \bar{C}, the inverse image of C in the minimal resolution H^{\prime} of \bar{H} is $C_{1}{ }^{\prime} \amalg C_{2}{ }^{\prime}$, where $C_{1}{ }^{\prime} \simeq C_{2}{ }^{\prime} \simeq \mathbb{P}^{1}$ and the proper transform E^{\prime} of E fits in $\Delta(\bar{H} \supset \bar{C})$ as follows
(cf. (10.5)). Using $\left(\left.2 m D\right|_{H} \cdot C\right)=1$, we can show $\left(C_{1}^{\prime}\right)^{2}=\left(C_{2}\right)^{2}=-1$ and $\left(E^{\prime}\right)^{2}=-5$ if $m \geq 5 \quad(-6$ if $m=3)$ by computing the pullback of $\left.2 m D\right|_{H}$ on H^{\prime}.

Hence $(f(H), Q)$ is a D_{4}-point and f is divisorial. Thus (5.1) is proved.
(5.24) Remark. (5.24.1) Since small deformations of an extremal nbd are not proved to be extremal nbds, the argument in this chapter only shows the divisoriality of f.
(5.24.2) One can define "formal" extremal nbd that are formal schemes X along $C \simeq \mathbb{P}^{1}$ in the usual way. Then it does not seem hard to prove that small deformations of a formal extremal nbd is extremal. Then our argument shows further that ($f(H), Q$) is a D_{4}-point for a sufficiently general formal extremal nbd.

6. General members of $\left|\mathscr{O}_{X}\right|_{C}$; isolated $c D / 3$ Case

We consider the following set-up in this chapter unless otherwise mentioned explicitly.
(6.1) Let $f: X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd with only one non-Gorenstein point P such that $X \supset C$ has a $I A$ point at P and (X, P) is a $c D / 3$ point. Let H_{X} be a general member of $\left|\mathscr{O}_{X}\right|$ through C and let $H_{Y}=f\left(H_{X}\right)$. Let $\Delta_{X}=\Delta\left(H_{X} \supset C\right)$ and $\Delta_{Y}=\Delta\left(H_{Y}\right)$. Let

$$
(X, P) \simeq\left(x, y, z, u ; u^{2}+z^{3}+g(x, y)+\cdots\right) / \mathbb{Z}_{3}(1,1,2,0 ; 0)
$$

with nonzero homogeneous cubic part g in x and y [Reid87, (6.1)] or [Mori85, Theorem 23]. Then g, up to linear transformations in x and y does not depend on the choice of such coordinates. If g is squarefree (resp. has simple and double factors, is the cube of a linear factor), we say that P is a simple (resp. double, triple) cD point.

Our main results in this chapter are the following.
(6.2) Theorem. Under the notation and assumptions of (6.1), assume that $i_{P}(1)$ $=1$. Then we have the following:
(6.2.1) X is smooth outside of IA point P, which is a simple or double $c D$ point with $\ell(P)=2$ and we have an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(P^{\sharp}\right) \tilde{\oplus}(0) . \tag{6.2.1.1}
\end{equation*}
$$

(6.2.2) $2 C=D \cdot D^{\prime \prime}$ for general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$.
(6.2.3) H_{X} is normal, and Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely and their configurations are as follows.

Case of simple $c D$ point P.

Case of double cD point P.

(6.2.4) Let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. If $X \supset C$ has the properties in (6.2.1), then it is an isolated extremal $n b d$ of type $c D$. (An example is given in (6.11).)
(6.3) Theorem. Under the notation and assumptions of (6.1), assume $i_{P}(1)>$ 1. Then $i_{P}(1)=2$ and we have the following:
(6.3.1) X is smooth outside of IA point P, which is a double cD point with $\ell(P)=3$ or 4 , and we have an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq \begin{cases}\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right) & \text { if } \ell(P)=3, \tag{6.3.1.1}\\ (0) \tilde{\oplus}\left(-1+2 P^{\sharp}\right) & \text { if } \ell(P)=4 .\end{cases}
$$

(6.3.2) $4 C=D \cdot D^{\prime}$ for general members D and D^{\prime} of $\left|K_{X}\right|$.
(6.3.3) H_{X} is normal, and Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely and their configurations are as follows.

(6.3.4) Let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. If $X \supset C$ has the the properties in (6.3.1), then it is an isolated extremal $n b d$ of type $c D$. (Examples are given in (6.17) and (6.21).)

We need the following lemma for the proof of (6.2.4), (6.3.4).
(6.4) Proposition. Let $X \supset C$ be the germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume that X has only terminal singularities on C and that the proper transform C^{\sharp} of C to the canonical cover $\left(X^{\sharp}, P^{\sharp}\right)$ of (X, P) is smooth at an arbitrary singular point P. Let I^{\sharp} be the defining ideal of C^{\sharp} in $\left(X^{\sharp}, P^{\sharp}\right)$. Then using the notation $\ell(P)=$ length $_{P^{\sharp}}\left(I^{\sharp(2)} / I^{\sharp^{2}}\right)$, we have

$$
\begin{equation*}
\left(K_{X} \cdot C\right)=\operatorname{qldeg}\left(g r^{1} \mathscr{O}\right)-2+\sum_{P}\left(1+\frac{\ell(P)-1}{m_{P}}\right) \tag{6.4.1}
\end{equation*}
$$

where P runs over all the singular points of X on C and m_{P} is the index of P.
Proof. We may give the homomorphism α_{1} in [Mori88, (2.2)] the ℓ-structure at P by

$$
\alpha_{1}^{\sharp}: \bigwedge^{2}\left(I^{\sharp} / I^{\sharp(2)}\right) \otimes \Omega_{C^{\sharp}} \rightarrow g r_{C^{\sharp}}^{0} \omega_{X^{\sharp}},
$$

where $\alpha_{1}{ }^{\sharp}(e \wedge f) \otimes g d h=g d e \wedge d f \wedge d h$ and Ω_{C}^{1} is given the ℓ-structure $\Omega_{C}^{1} \subset \Omega_{C^{\ddagger}}^{1}$ at P. This defines an ℓ-homomorphism

$$
\tilde{\alpha}_{1}: \tilde{\Lambda}^{2}\left(g r^{1} \mathscr{O}\right) \tilde{\otimes} \Omega_{C}^{1} \rightarrow g r_{C}^{0} \omega
$$

which is an isomorphism outside of singular points. At P, we have

$$
\left(X^{\sharp}, P^{\sharp}\right)=(x, y, z, u ; \phi) \supset C^{\sharp}=x \text {-axis, }
$$

for some $\phi \equiv x^{\ell(P)} y \bmod (y, z, u)^{2}$. Then $z \wedge u($ resp. $d x)$ is an ℓ-free ℓ-basis of $\tilde{\Lambda}^{2}\left(g r^{1} \mathscr{O}\right)$ (resp. Ω_{C}^{1}) at P. Furthermore $g r_{C}^{0} \omega$ has an ℓ-free ℓ basis

$$
\operatorname{Res}_{C^{4}} \frac{d x \wedge d y \wedge d z \wedge d u}{\phi}= \pm \frac{d x \wedge d z \wedge d u}{\phi_{y}}= \pm \frac{d x \wedge d z \wedge d u}{x^{\ell(P)}}
$$

Thus $\operatorname{Im}\left(\alpha_{1}{ }^{\sharp}\right)$ is generated by $d x \wedge d z \wedge d u$ and len $\operatorname{Coker} \alpha_{1}{ }^{\sharp}=\ell(P)-1$, which proves our claim (6.4.1) because

$$
\mathrm{qldeg} \Omega_{C}^{1}=-2+\sum_{P}\left(m_{P}-1\right) / m_{P}
$$

Let us express the $c D$ point as

$$
\begin{equation*}
(X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{3}(1,1,2,0 ; 0) \supset y_{1} \text {-axis } / \mathbb{Z}_{3} \tag{6.5}
\end{equation*}
$$

using an equation α such that $\alpha \equiv y_{1}^{\ell(P)} y_{i} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ with $i=2$ (resp. $3,4)$ if $\ell(P) \equiv 2($ resp. 1,0$) \bmod 3$ [Mori88, (2.16)].

Then
(6.6) Lemma. P is the only singular point of X on C.

Proof. It is enough to derive a contradiction assuming that X has a type III point R on C with $i_{R}(1)=1$ and that X is smooth outside of P and R (6.1). By deformation method (2.9), we may assume $\ell(P)=2$ [Mori88, (4.12.2)]. Then y_{3} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1)$. Hence, after a possible coordinates change, we claim an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq(0) \tilde{\oplus}\left(-1+P^{\sharp}\right) \tag{6.6.1}
\end{equation*}
$$

where y_{4} (resp. y_{3}) is an ℓ-free ℓ-basis of (0) (resp. $\left(-1+P^{\sharp}\right)$) at P. Indeed if otherwise, we have $g r_{C}^{1} \mathscr{O} \simeq\left(P^{\sharp}\right) \tilde{\oplus}(-1)(2.8)$, which implies $g r_{C}^{1} \omega \simeq$ $g r_{C}^{0} \omega \tilde{\otimes} g r_{C}^{1} \mathscr{O} \simeq(0) \tilde{\oplus}\left(-2+2 P^{\sharp}\right)$ and $H^{1}\left(\omega / F_{C}^{2} \omega\right) \neq 0$. This is a contradiction and (6.6.1) is proved. Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=(0)$ in the decomposition (6.6.1). Since P is a $c D$ point, we know that y_{4}^{2} and y_{3}^{3} as well as $y_{1}^{2} y_{2}$ appear with nonzero coefficients in the Taylor expansion of α. By deformation $\alpha+t y_{2}^{3}=0$ of (X, P) (2.9), we may further assume that P is a simple $c D$ point. Let $D=\left\{y_{1}=0\right\} \in\left|-K_{X}\right|$ and let $s \in H^{0}\left(\mathscr{O}_{X}\right)$ be a lifting of $y_{4} \in \mathscr{O}_{D}$ by $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow \mathscr{O}_{D}$. Then s induces a section \bar{s} of $g r_{C}^{1} \mathcal{O}$, which is a part of the ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}$. Thus \bar{S} is nowhere vanishing (6.6.1) and $E_{X}=\{s=0\} \in\left|\mathscr{O}_{X}\right|$ is smooth outside of P and R. Since $s \equiv y_{4} \cdot($ unit $) \bmod F_{C}^{2} \mathscr{O}$, it is easy to see that

$$
\left(E_{X}, P\right)=\left(y_{1}, y_{2}, y_{3} ; \bar{\alpha}\right) / \mathbb{Z}_{3}(1,1,2 ; 0)
$$

where $\bar{\alpha} \equiv y_{3}^{3}+g\left(y_{1}, y_{2}\right) \bmod \left(y_{1}, y_{2}, y_{3}\right)^{4}$ with a squarefree cubic part g in y_{1} and y_{2}. By the computation (6.7.1), Δ_{X} is

for some $a \geq b$ such that $a \geq 1$, where A_{a+b} at the right-hand side comes from $\left(H_{X}, R\right)$. Since Δ_{X} forms an exceptional set, we see $a=1$ and $b=0$
and that Δ_{Y} is A_{2}. This means $\left(H_{Y}, Q\right)$ and hence (Y, Q) is Gorenstein. This is a contradiction and (6.6) is proved.
(6.7) Computation. Let (D, P) be a normal surface singularity

$$
(D, P)=\left(y_{1}, y_{2}, y_{3} ; \alpha\right) / \mathbb{Z}_{3}(1,1,2 ; 0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{3}
$$

Let σ be the \mathbb{Z}-wt $\sigma\left(y_{1}, y_{2}, y_{3}\right)=(1,1,2)$ (T.7). Then in each of the following cases, $\Delta(D \supset C)$ consists of smooth rational curves and C^{\prime} intersects transversely with configuration as listed.
(6.7.1) $\alpha_{\sigma=3}=\alpha_{\sigma=3}\left(y_{1}, y_{2}, 0\right)$ is squarefree and $\alpha_{\sigma=6}(0,0,1) \neq 0$

(6.7.2) $\alpha_{\sigma=3}=y_{1}^{2} y_{2}$ and $\alpha_{\sigma=6}\left(0, y_{2}, y_{3}\right)$ is squarefree

 roots of $\alpha_{\sigma=6}\left(0,1, y_{3}\right)=0$ with respect to a certain coordinate system of the central \mathbb{P}^{1}.
(6.7.3) $\alpha_{\sigma=3}=y_{1} y_{2}^{2}$ and $\alpha_{\sigma=6}\left(y_{1}, 0, y_{3}\right)$ is square-free

$$
\begin{array}{cc}
0 \\
2 \\
& 1 \\
-0 & 0 \\
2 & 0 \\
3 & 2
\end{array}
$$

where $\underset{2}{\circ}-\underset{3}{\circ}$ intersects the central $\mathbb{P}^{1}\left(\underset{3}{(0)}\right.$) at $\infty, \bullet-\underset{2}{\circ}$ at 0 , and two ${\underset{2}{2}}_{\circ}$ at the two nonzero roots of $\alpha_{\sigma=6}\left(1,0, y_{3}\right)=0$ with respect to a certain coordinate system of the central \mathbb{P}^{1}.

A similar argument shows
(6.8) Lemma. If $i_{P}(1)=1$, then (6.2.1) holds.

Proof. By $i_{p}(1)=1$, we see $\ell(P)=2$ [Mori88, (2.16)]. Thus $y_{1}^{2} y_{2}$ appears

$g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(1) \oplus \mathscr{O}(-1)$ and $g r_{C}^{1} \mathscr{O} \simeq(1) \tilde{\oplus}\left(-1+P^{\sharp}\right)$ as in (6.6.1). A general global section s of \mathscr{O}_{X} vanishing along C induces a section \bar{s} of $g r_{C}^{1} \mathscr{O}$ which lies on the first factor (1) and vanishes at a point $R(\neq P)$ to order 1. Then $E_{X}=\{s=0\} \in\left|\mathscr{O}_{X}\right|$ has a point of type A at R and the analysis at P is the same as that in (6.6). Hence the same computation for (6.6) induces a contradiction. Thus $\operatorname{gr}_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}$ and it has an ℓ-free ℓ-basis $\left\{y_{3}, y_{4}\right\}$ at P, whence (6.2.1) follows.

We first prove (6.2) in two steps.
(6.9) Lemma. Let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which has the properties in (6.2.1). Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=\left(P^{\sharp}\right)$ in the ℓ-splitting (6.2.1.1). We will use the coordinates in (6.5) and assume that $y_{3}\left(\right.$ resp. $\left.y_{4}\right)$ is an ℓ-free ℓ-basis of $\left(P^{\sharp}\right)($ resp. (0)) in the ℓ-splitting (6.2.1.1) by modifying them. Then
(6.9.1) We have an ℓ-splitting

$$
\begin{equation*}
g r^{2}(\mathscr{O}, J)=\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right) \tag{6.9.1.1}
\end{equation*}
$$

such that $g r^{2,1}(\odot, J)=\left(2 P^{\sharp}\right)$ and $g r^{2,0}(\Theta, J) \simeq\left(P^{\sharp}\right)$. By changing coordinates if necessary we may assume further that $y_{3}\left(\right.$ resp. $\left.y_{2}\right)$ is an ℓ-free ℓ-basis of $\left(P^{\sharp}\right)$ (resp. ($\left.2 P^{\sharp}\right)$) in the ℓ-splitting (6.9.1.1).
(6.9.2) $X \supset C$ is an isolated extremal nbd and hence (6.2.4) holds.
(6.9.3) Let $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$ be general members. Then $D \cap D^{\prime \prime}$ is defined by J. In particular, $D \cdot D^{\prime \prime}=2 C$ and (6.2.2) holds.
Proof. We note $I^{\sharp}=\left(y_{2}, y_{3}, y_{4}\right)$ and $J^{\sharp}=\left(y_{2}, y_{3}, y_{4}^{2}\right)$ at P^{\sharp}. Since (X, P) is a $c D$ point, we may assume

$$
\alpha \equiv y_{4}^{2}+y_{1}^{2} y_{2} \bmod I^{\sharp} J^{\sharp}
$$

by a change of coordinates because $y_{1} y_{3}$ (resp. y_{4}^{2}) appears with zero (resp. nonzero) coefficient in the Taylor expansion of α. Thus $\left(y_{4}, y_{3}, y_{2}\right)$ is a $(1,2,2)$-monomializing ℓ-basis of $I \supset J$ at P of the second kind and $J^{\sharp}=$ $\left(y_{2}, y_{3}\right)$. We see $g r^{1}(\Theta, J) \simeq(0), g r^{2,0}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right)$, and $g r^{2,1}(\mathcal{O}, J) \simeq$ $g r^{1}(\odot, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(2 P^{\sharp}\right) \simeq\left(2 P^{\sharp}\right)$ [Mori88, (8.10)]. Hence we get (6.9.1.1) by (2.6), and (6.9.1) follows. From (6.9.1.1) follows that $g r_{C}^{0} F^{6}(\mathscr{O}, J)$ is ample on C by $g r_{C}^{0} F^{6}(\mathscr{O}, J) \simeq g r^{6}(\mathscr{O}, J) \supset \tilde{S}^{3} g r^{2}(\mathscr{O}, J) \simeq \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus(2)$. Thus C is contractible in X and $\left(K_{X} \cdot C\right)=-1 / 3$ (6.4), whence (6.9.2) follows. We also see that

$$
H^{1}\left(g r^{n}\left(\mathscr{O}\left(i K_{X}\right), J\right)\right)=0 \quad \forall n \geq 0, \forall i \leq 3
$$

Hence

$$
H^{0}\left(\mathscr{O}\left(i K_{X}\right)\right) \rightarrow H^{0}\left(g r^{2}\left(\mathscr{O}\left(i K_{X}\right), J\right)\right) \quad \text { for } i=1,2
$$

by $H^{0}\left(g r^{j}\left(\mathscr{O}\left(i K_{X}\right), J\right)\right)=0 \quad(j=0,1)$. Let $s_{i} \in H^{0}\left(\mathscr{O}\left(i K_{X}\right)\right)$ be such that its image globally generates the i th factor (0) in (6.9.1.1) $\dot{\otimes} \mathscr{O}\left(i K_{X}\right)$ for $i=$ 1,2. Let $D_{i}=\left\{s_{i}=0\right\} \in\left|i K_{X}\right|$ and I_{i} be the defining ideal of D_{i}. Then
$J=I_{1}+I_{2}+F^{3}(\odot, J)$ and $J^{\sharp}=I_{1}^{\sharp}+I_{2}^{\sharp}+J^{\sharp} I^{\sharp}$. Thus $J^{\sharp}=I_{1}^{\sharp}+I_{2}^{\sharp}$ and we also see that $J=I_{1}+I_{2}$ outside of P because $F^{3}(\mathscr{O}, J)=I J$ outside of P. Hence $J=I_{1}+I_{2}$ and we are done.
(6.10) Lemma. Under the notation and assumptions of (6.1), assume that $i_{P}(1)$ $=1$. Then (6.2.3) holds.
Proof. Let the notation and assumptions be as in (6.9). A general section s of $H^{0}\left(\mathscr{O}_{X}\right)$ vanishing on C is of the form $s=a y_{4}+\cdots+b y_{2} y_{3}+c y_{2}^{3}+\cdots$ with general $a, b, c \in \mathbb{C}$ by (6.8) and (6.9.1.1). Thus it induces a global section \bar{s} of $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}$ which is nowhere vanishing since \bar{s} is a part of basis of $g r_{C}^{1} \mathscr{O}$ at P, whence $H_{X}=\{s=0\} \in|\mathscr{O}|$ is smooth outside of P. At P, we have $y_{4}=\gamma\left(y_{1}, y_{2}, y_{3}\right)=\cdots+a^{\prime} y_{2} y_{3}+b^{\prime} y_{2}^{3}+\cdots$ with general $a^{\prime}, b^{\prime} \in \mathbb{C}$ and

$$
\left(H_{X}, P\right)=\left(y_{1}, y_{2}, y_{3} ; \beta\right) / \mathbb{Z}_{3}(1,1,2 ; 0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{3},
$$

where $\beta=\alpha\left(y_{1}, y_{2}, y_{3}, \gamma\right)$. Let τ be the \mathbb{Z}-wt $\tau\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(1,1,2,3)$ (T.7). Since y_{4} does not appear in α, we see that

$$
\beta_{\tau=3}=\alpha_{\tau=3}\left(y_{1}, y_{2}, y_{3}, 0\right) \quad \beta_{\tau=6}=\alpha_{\tau=6}\left(y_{1}, y_{2}, y_{3}, \gamma_{\tau=3}\right) .
$$

If P is a simple $c D$ point, then $y_{1} y_{3}$ and $y_{2} y_{3}$ do not appear in α and y_{3}^{3} appears in α, whence $\beta_{\tau=3}=\alpha_{\tau=3}\left(y_{1}, y_{2}, 0\right)$ and $\beta_{\tau=6}(0,0,1) \neq 0$. Thus we can apply (6.7.1). To get (6.2.3), we only need to mention that $\left(\bullet^{2}\right)=-1$ follows from $\left(C \cdot K_{H_{X}}\right)=\left(C \cdot K_{X}\right)<0$. Assume now that P is a double $c D$ point. By changing coordinates, we may further assume $\alpha_{\tau=3}=y_{1}^{2} y_{2}$ and we see that y_{4}^{2} and y_{3}^{3} appear in $\alpha_{\tau=6}$ (say, with coefficient 1 for simplicity). If

$$
\beta_{\tau=6}\left(0, y_{2}, y_{3}\right)=\alpha_{\tau=6}\left(0, y_{2}, y_{3}, a^{\prime} y_{2} y_{3}+b^{\prime} y_{2}^{3}\right)=b^{\prime 2} y_{2}^{6}+y_{3}^{3}+\cdots
$$

is not squarefree for general a^{\prime} and b^{\prime}, it has a multiple factor that is a polynomial in a^{\prime}, b^{\prime}, and y_{i} 's. Thus $\beta_{\tau=6}\left(0,1, y_{3}\right)=b^{\prime 2}+y_{3}^{3}+\cdots$ is a square because y_{2} is not a factor of $\beta_{\tau=6}\left(0, y_{2}, y_{3}\right)$, which is impossible because of y_{3}^{3}. Thus we can apply (6.7.2) and the rest is the same as the simple case.
(6.11) Example. Let $Z \supset C$ be a germ of a smooth 3-fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z} \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}$. Let $P \in C$ and let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates of (Z, P) such that $(C, P)=z_{1}$-axis. Let $(X, P) \supset(C, P)$ be a $c D$ point as in (6.5) with $\alpha \equiv y_{1}^{2} y_{2} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. For suitable ε_{1} and ε_{2} such that $0<$ $\varepsilon_{1}<\varepsilon_{2} \ll 1,\left(y_{1}^{3}, y_{4}, y_{1} y_{3}\right)$ form coordinates for $U=(X, P) \cap\left\{\varepsilon_{1}<\left|y_{1}^{3}\right|<\varepsilon_{2}\right\}$ by the implicit function theorem. Thus $z_{1}=y_{1}^{3}, z_{2}=y_{4}$, and $z_{3}=y_{1} y_{3}$ patch (X, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ along U. Thus $X \supset C$ is an isolated extremal nbd of type $c D$ by (6.2).

Thus (6.2) is proved, and we now treat the case $i_{p}(1) \geq 2$.
(6.12) Lemma. If $i_{P}(1) \geq 2$, then $i_{P}(1)=2$ and $\ell(P)=3$ or 4.

Proof. By [Mori88, (2.16)], we have $i_{P}(1)=1+[\ell(P) / 3]$. It is enough to disprove $\ell(P) \geq 5$. Let i be such that $\alpha \equiv y_{1}^{\ell(P)} y_{i} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ as in (6.5). By deformation $\alpha+t y_{1}^{\ell(P)-3} y_{i}=0$ of (X, P) (2.9), we get an isolated extremal nbd $X^{\prime} \supset C$ with a $c D$ point of index 3 and a $I I I$ point on C [Mori88, (4.12.2)] because $\ell(P)-3 \geq 2$. This contradicts (6.6) and we are done.

We treat the case $\ell(P)=3$ first.
(6.13) Lemma. If $\ell(P)=3$, then (6.3.1) holds.

Proof. By $\alpha \equiv y_{1}^{3} y_{4} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{4}$, we see that y_{2} and y_{3} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}$ at P.

To prove (6.3.1.1) first, we will derive a contradiction assuming that $g r_{C}^{1} \mathscr{O} \not \neq$ $\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$. Then we have $g r_{C}^{1} \mathscr{\theta} \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}\right)$. We may further assume that y_{2} (resp. y_{3}) is an ℓ-free ℓ-basis of ($2 P^{\sharp}$) (resp. $\left(-1+P^{\sharp}\right)$) after a change of coordinates. Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=\left(2 P^{\sharp}\right)$. We note $J^{\sharp}=\left(y_{2}, y_{3}^{2}, y_{4}\right)$ at P^{\sharp}. Since we are going to derive a contradiction, we may assume that $y_{1}^{2} y_{3}^{2}$ appears in α by deformation $\alpha+t y_{1}^{2} y_{3}^{2}$ (2.9.2). Replacing y_{3} by y_{3}. (invariant unit), we may assume $\alpha \equiv$ $y_{1}^{3} y_{4}+y_{1}^{2} y_{3}^{2} \bmod J^{\sharp} I^{\sharp}$, where $I^{\sharp}=\left(y_{2}, y_{3}, y_{4}\right)$. Then $u=y_{1} y_{4}+y_{3}^{2}$ generates the torsion part $\simeq \mathbb{C}\left\{y_{1}\right\} /\left(y_{1}^{2}\right)$ of $J^{\sharp} / J^{\sharp} I^{\sharp}$, whence $\left.F^{3}(\Theta) J\right)^{\sharp}=(u)+J^{\sharp} I^{\sharp}$. Hence $g r^{2}(\mathscr{O}, J)^{\sharp}=\mathscr{O}_{C^{\sharp}} y_{2} \oplus \mathscr{O}_{C^{\sharp}} y_{4}$ and $y_{3}^{2} \equiv-y_{1} y_{4} \bmod F^{3}(\mathscr{O}, J)^{\sharp}$. Thus $g r^{2,1}(\mathscr{O}, J) \simeq g r^{1}(\mathscr{O}, J)^{\dot{\otimes}^{2}} \tilde{\otimes}\left(P^{\sharp}\right) \simeq(-1)$ because J is a nested c.i. outside of P. We note that $g r^{1}(\mathscr{O}, J) \simeq\left(-1+P^{\sharp}\right)$ and $g r^{2,0}(\Theta, J) \simeq\left(2 P^{\sharp}\right)$ with ℓ-free ℓ-bases y_{3} and y_{2} at P, respectively. We claim that the following natural map is an ℓ-isomorphism

$$
\begin{equation*}
g r^{3, i}(\Theta, J) \simeq g r^{2, i}(\Theta, J) \tilde{\otimes} g r^{1}(\Theta, J) \tilde{\otimes}\left(i P^{\sharp}\right) \quad(i=0,1) . \tag{6.13.1}
\end{equation*}
$$

Since J is a nested c.i. outside of P, we only need to check (6.13.1) at P. We see that

$$
\begin{aligned}
F^{3}(\circlearrowleft, J)^{\sharp} & =I^{\sharp} J^{\sharp}+(u) \\
& \equiv\left(y_{2} y_{3}, y_{3}^{3}, y_{3} y_{4}\right)+(u) \bmod F^{4}(\Theta, J)^{\sharp} \\
& \equiv\left(y_{2} y_{3}, y_{3} y_{4}, u\right) \bmod F^{4}(\odot, J)^{\sharp}
\end{aligned}
$$

because $u y_{3}=y_{3}^{3}+y_{1} y_{3} y_{4} \in F^{4}(\Theta, J)^{\sharp}$. By $\alpha \equiv y_{1}^{2} u \bmod J^{\sharp} I^{\sharp}$, we have

$$
\alpha \equiv y_{1}^{2} u+g y_{1}^{3} y_{2} y_{3}+h y_{3}^{3} \bmod F^{4}(\mathscr{O}, J)^{\sharp}
$$

for some g and a unit $h \in \mathbb{C}\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ because P is a $c D$ point. Thus $y_{3}^{3} \equiv-y_{1}^{2}\left(u+g y_{1} y_{2} y_{3}\right) \bmod F^{4}(\mathscr{O}, J)^{\sharp}$ and $g r^{3}(\mathscr{O}, J)^{\sharp}=\mathscr{O}_{C^{4}} y_{2} y_{3} \oplus \mathscr{O}_{C^{t}} u$ at P^{\sharp}. Furthermore from $y_{3}^{3} \equiv-y_{1} y_{3} y_{4}$ above, we see that $y_{3} y_{4} \equiv y_{1}\left(u+g y_{1} y_{2} y_{3}\right)$
in $g r^{3}(\mathscr{O}, J)^{\sharp}$. Thus (6.13.1) is proved. Hence we have ℓ-isomorphisms

$$
\begin{aligned}
g r^{1}(\omega, J) & \simeq g r^{1}(\Theta, J) \tilde{\otimes} g r_{C}^{0} \omega \simeq(-1), \\
g r^{2,0}(\omega, J) & \simeq g r^{2,0}(\Theta, J) \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(P^{\sharp}\right), \\
g r^{2,1}(\omega, J) & \simeq g r^{2,1}(\mathscr{O}, J) \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-2+2 P^{\sharp}\right), \\
g r^{3,0}(\omega, J) & \simeq g r^{2,0}(\Theta, J) \tilde{\otimes} g r^{1}(\mathscr{O}, J) \tilde{\otimes} g r_{C}^{0} \omega \simeq\left(-1+2 P^{\sharp}\right), \\
g r^{3,1}(\omega, J) & \simeq g r^{2,1}(\Theta, J) \tilde{\otimes} g r^{1}(\overparen{O}, J) \tilde{\otimes} g r_{C}^{0} \omega \tilde{\otimes}\left(P^{\sharp}\right) \simeq\left(-2+P^{\sharp}\right) .
\end{aligned}
$$

Thus $H^{1}\left(\omega / F^{4}(\omega, J)\right) \neq 0$, which is a contradiction, and (6.3.1.1) is proved.
By changing coordinates if necessary, we assume that y_{3} (resp. y_{2}) is an ℓ-free ℓ-basis of $\left(P^{\sharp}\right)$ (resp. $\left(-1+2 P^{\sharp}\right)$) in (6.3.1.1) in addition to (6.5). We note $J^{\sharp}=\left(y_{2}^{2}, y_{3}, y_{4}\right)$ at P^{\sharp}. We will derive a contradiction assuming that $y_{1} y_{2}^{2}$ does not appear in α. Then we may further assume $\alpha \equiv$ $y_{1}^{3} y_{4} \bmod I^{\sharp} J^{\sharp}$ by replacing y_{4} by $y_{4}+y_{1} y_{2}^{2} \cdot(\cdots)$. Hence $\left.y_{4} \in F^{3}(\odot) J\right)^{\sharp}$ and we have ℓ-isomorphisms $g r^{2,1}(\mathscr{O}, J) \simeq g r^{1}(\mathscr{O}, J)^{\dot{\otimes} 2} \simeq\left(-1+P^{\sharp}\right)$ and $g r^{2}(\mathscr{O}, J) \simeq g r^{2,0}(\mathscr{O}, J) \tilde{\oplus} g r^{2,1}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}\right)$ by (2.6). By changing coordinates, we may assume that y_{3} (resp. y_{2}^{2}) is an ℓ-free ℓ-basis of (P^{\sharp}) (resp. $\left.\left(-1+P^{\sharp}\right)\right)$ in the ℓ-splitting. Let K be the ideal such that $J \supset K \supset F^{3}(\mathscr{O}, J)$ and $K / F^{3}(\mathscr{O}, J)=\left(P^{\sharp}\right)$ in the above ℓ-splitting. By [Mori88, (8.14)], K is a C-laminal ideal of width 3 and a nested c.i. outside of P. By $K^{\sharp} \supset\left(y_{2}^{3}, y_{3}, y_{4}\right)$, we have $K^{\sharp}=\left(y_{2}^{3}, y_{3}, y_{4}\right)$ at P^{\sharp}. By [Mori88, (8.14.1)], $g r^{1}(\mathscr{O}, K)=g r^{1}(\mathscr{O}, J) \simeq\left(-1+2 P^{\sharp}\right)$ and $g r^{3,0}(\mathscr{O}, K)=$ $g r^{2,0}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right)$. We claim that $\left(y_{2}, y_{3}, y_{4}\right)$ is a (1,3,3)-monomializing ℓ-basis of $I \supset J$ of the second kind at P. Indeed by $\alpha \equiv y_{1}^{3} y_{4} \bmod I^{\sharp} J^{\sharp}$, we have $\alpha \equiv y_{1}^{3} y_{4}+g y_{2}^{3} \bmod I^{\sharp} K^{\sharp}$ for some unit $g \in \mathbb{C}\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ because P is a $c D$ point. Thus the claim is proved. Hence by [Mori88, (8.12)], we have $g r^{2}(\odot, K) \simeq g r^{1}(\odot, K)^{\dot{\otimes} 2} \simeq\left(-1+P^{\sharp}\right)$ and $g r^{3,1}(\Theta, K) \simeq g r^{1}(\odot, K)^{\dot{\otimes} 3} \tilde{\otimes}$ $\left(3 P^{\sharp}\right) \simeq(0)$. Hence

$$
g r^{3}(\odot, K) \simeq g r^{3,0}(\odot, K) \tilde{\oplus} g r^{3,1}(\odot, K) \simeq\left(P^{\sharp}\right) \tilde{\oplus}(0)
$$

by (2.6). Then as in the argument for (6.9.2), we can see that $\operatorname{Spec}\left(\mathscr{O}_{X} / K\right)=$ $D \cdot D^{\prime}$ for some $D \in\left|\mathscr{O}_{X}\right|$ and $D^{\prime} \in\left|K_{X}\right|$. This means $\operatorname{Spec}\left(\mathscr{O}_{X} / K\right)$ moves in D^{\prime}, which is a contradiction. Hence P is a double $c D$ point and (6.3.1) holds.
(6.14) Lemma. Let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ that has the properties in (6.3.1) and that $\ell(P)=3$. Let J be the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{O}=\left(P^{\sharp}\right)$ in the ℓ-splitting (6.3.1.1). We will use the coordinates in (6.5) and assume that y_{3} (resp. y_{2}) is an ℓ-free ℓ-basis of $\left(P^{\sharp}\right)$ (resp. $\left(-1+2 P^{\sharp}\right)$) in the ℓ-splitting (6.3.1.1) by modifying them. Then we have an ℓ-splitting

$$
\begin{equation*}
g r^{2}(\Theta, J)=\left(P^{\sharp}\right) \tilde{\oplus}(0) \tag{6.14.1}
\end{equation*}
$$

such that $g r^{2,1}(\mathscr{O}, J)=(0)$ and $g r^{2,0}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right)$. By changing coordinates if necessary we may assume further that $y_{3}\left(\right.$ resp. $\left.y_{4}\right)$ is an ℓ-free ℓ-basis of (P^{\sharp}) (resp. (0)) in the ℓ-splitting (6.14.1).
Proof. Since P is a double $c D$ point, $y_{1} y_{2}^{2}$ appears in α. Then $\alpha \equiv y_{1}^{3} y_{4}+y_{1} y_{2}^{2}$ $\bmod I^{\sharp} J^{\sharp}$ after a change of coordinates. Hence $y_{2}^{2} \equiv-y_{1}^{2} y_{4} \bmod F^{3}(\mathscr{O}, J)$ and $g r^{2,1}(\mathscr{O}, J)^{\sharp}=\mathscr{O}_{C^{\sharp}} y_{4}$ at P^{\sharp} as in the argument for (6.13). Thus

$$
g r^{2,1}(\mathscr{O}, J) \simeq g r^{1}(\mathscr{O}, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(2 P^{\sharp}\right) \simeq(0)
$$

which implies (6.14.1) by $H^{1}\left(C, g r^{2,1}(\mathcal{O}, J) \tilde{\otimes} g r^{2,0}(\mathcal{O}, J)^{\dot{\otimes}(-1)}\right)=0$.
(6.15) Lemma. Let the notation and assumptions be as in (6.14). Then $X \supset C$ is an isolated extremal nbd of type $c D$ with $\ell(P)=3$, whence (6.3.4) holds. Furthermore the assertions (6.3.2) and (6.3.3) hold.
Proof. We treat as X the formal completion of X along C until C is proved to be contractible in (6.15.1), after which the assertions on the completion and the original X are equivalent by comparison theorems. By $g r^{1}(\mathscr{O}, J) \simeq(-1+$ $\left.2 P^{\sharp}\right)$ and (6.14.1), we see that $H^{0}\left(\mathscr{O}\left(K_{X}\right)\right)=H^{0}\left(F^{2}(\omega, J)\right)$ and $H^{0}\left(\mathscr{O}\left(K_{X}\right)\right) \rightarrow$ $H^{0}\left(g r^{2}(\omega, J)\right)$ as in the argument for (6.9.3). Similarly we see $H^{1}\left(\mathscr{O}_{X}\right)=0$. We note that the same argument does not lead to a contradiction as in the proof of (6.14) because J^{\sharp} is not a c.i. ideal.
(6.15.1) In this paragraph, we will prove that C is contractible (whence (6.3.4)) and (6.3.2). Since $g r(\omega, J)^{2} \simeq\left(-P^{\sharp}\right) \tilde{\oplus}(0)$, a general global section $s \in H^{0}\left(\mathscr{O}\left(K_{X}\right)\right)$ induces a global section \bar{s} of $g r^{2}(\omega, J)$ which is a global basis of (0). So $D=\{s=0\} \in\left|K_{X}\right|$ is smooth outside of P. We claim that D is a normal surface with only rational singularities and

$$
\begin{equation*}
\left.4 C \sim K_{X}\right|_{D} \quad \text { as Weil divisors on } D . \tag{6.15.1.1}
\end{equation*}
$$

Since P is a double $c D$ point, we may further assume that

$$
\alpha \equiv y_{1}^{3} y_{4}+y_{1} y_{2}^{2} \bmod J^{\sharp} I^{\sharp}
$$

after a change of coordinates. Since $s \equiv \Omega y_{3} \bmod F^{3}(\omega, J)^{\sharp}$ at P^{\sharp} for some ℓ-free ℓ-basis Ω of ω at P, D^{\sharp} is defined in X^{\sharp} by $y_{3}=\gamma\left(y_{1}, y_{2}, y_{4}\right)$ for some $\gamma \in \mathbb{C}\left\{y_{1}, y_{2}, y_{4}\right\} \cap F^{3}(\mathscr{O}, J)$. Hence

$$
(D, P) \simeq\left(y_{1}, y_{2}, y_{4} ; \beta\right) / \mathbb{Z}_{3}(1,1,0 ; 0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{3}
$$

where $\beta=\alpha\left(y_{1}, y_{2}, \gamma, y_{4}\right)$. Using the notation of (6.16), we see

$$
\beta_{\rho=3}=\alpha_{\rho=3}\left(y_{1}, y_{2}, \gamma_{\rho=2}, y_{4}\right)=\alpha_{\rho=3}\left(y_{1}, y_{2}, 0,0\right)=y_{1} y_{2}^{2}
$$

because P is a $c D$ point. Since $\left.\gamma\right|_{C^{1}} \equiv 0, \gamma_{\rho=2}$ is divisible by y_{2} whence $\gamma_{\rho=2}\left(y_{1}, 0, y_{4}\right)=0$. Hence

$$
\beta_{\rho=6}\left(y_{1}, 0, y_{4}\right)=\alpha_{\rho=6}\left(y_{1}, 0, \gamma_{\rho=5}\left(y_{1}, 0, y_{4}\right), y_{4}\right)=\alpha_{\rho=6}\left(y_{1}, 0,0, y_{4}\right)
$$

since $y_{1} y_{3}$ does not appear in α. Then $\beta_{\rho=6}\left(y_{1}, 0, y_{4}\right)=y_{1}^{3} y_{4}+c y_{4}^{2}$ for some $c \in \mathbb{C}^{*}$ because y_{4}^{2} appears in α. In particular, $\left(D^{\sharp}, P^{\sharp}\right)$ is a point of type D
and we can apply (6.16) to $(D, P) \supset C$. Then it is easy to see that the pull-up of the \mathbb{Q}-Cartier Weil divisor $4 C$ of D is given by

where the numbers denote the multiplicities. Since $\left(\bullet^{2}\right)=-1$ by $\left(K_{D} \cdot C\right)=$ $2\left(K_{X} \cdot C\right)<0(6.4)$, we see $\left(\mathscr{O}_{D}(4 C) \cdot C\right)=-1 / 3$. Since $\left(D^{\sharp}, P^{\sharp}\right)$ is a point of type $D, 4 F^{\sharp}$ is Cartier for every Weil divisor F^{\sharp} on (D^{\sharp}, P^{\sharp}). Thus $\mathscr{O}_{D}(4 C)$ is an ℓ-invertible \mathscr{O}_{D}-module at P. Hence $\mathscr{O}_{D}(4 C) \simeq \mathscr{O}_{D}\left(i K_{X}\right)$ near P for some i and we see that $i \equiv 1 \bmod (3)$ by $\left(\mathscr{O}_{D}(4 C) \cdot C\right) \equiv\left(\mathscr{O}_{D}\left(K_{X}\right) \cdot C\right)$ $\bmod \mathbb{Z}$. Hence $\left.K_{X}\right|_{D}-4 C$ is a Cartier divisor and we have (6.15.1.1) by $\left(\mathscr{O}_{D}(4 C) \cdot C\right)=\left(K_{X} \cdot C\right)=-1 / 3$ (6.4). Thus from the exact sequence

$$
0 \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{O}_{X}\left(K_{X}\right) \rightarrow \mathscr{O}_{D}(4 C) \rightarrow 0
$$

we have a surjection $H^{0}\left(\mathscr{O}_{X}\left(K_{X}\right)\right) \rightarrow H^{0}\left(\mathscr{O}_{D}(4 C)\right)=H^{0}\left(\mathscr{O}_{D}\right)$ by $H^{1}\left(\mathscr{O}_{X}\right)=0$. Hence for another general $D^{\prime} \in\left|K_{X}\right|$, we see $D \cdot D^{\prime}=4 C$. Thus (6.3.2) follows for the completion. In particular, (6.3.4) holds. Hence (6.3.2) holds as explained above.
(6.15.2) Let u be a general global section of \mathscr{O}_{X} vanishing on C. Then $u=\lambda y_{1} y_{3}+\mu y_{4}+\cdots$ for general $\lambda, \mu \in \mathbb{C}$ by (6.14.1). The divisor $H_{X}=\{u=$ $0\} \in\left|\mathscr{O}_{X}\right|$ is smooth outside of P because the image of u globally generates $g r^{2,0}(\mathscr{O}, J) \simeq \mathscr{O}_{C} \subset g r_{C}^{1} \mathscr{O}$. Then

$$
\left(H_{X}, P\right)=\left(y_{1}, y_{2}, y_{3} ; \bar{\alpha}\right) / \mathbb{Z}_{3}(1,1,2 ; 0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{3}
$$

where $\bar{\alpha}=\alpha\left(y_{1}, y_{2}, y_{3}, \nu y_{1} y_{3}+\cdots\right)$ with general $\nu \in \mathbb{C}$. Since $\alpha=c y_{4}^{2}+$ $y_{1}^{3} y_{4}+d y_{3}^{3}+y_{1} y_{2}^{2}+\cdots$ for some $c, d \in \mathbb{C}^{*}$ as in (6.15.1), it is easy to see that (6.7.3) applies. The rest is the same as (6.10) and (6.3.3) follows.
(6.16) Computation. Let (D, P) be a normal surface singularity

$$
(D, P)=\left(y_{1}, y_{2}, y_{4} ; \alpha\right) / \mathbb{Z}_{3}(1,1,0 ; 0) \supset C=y_{1}-\mathrm{axis} / \mathbb{Z}_{3}
$$

Let ρ be the \mathbb{Z}-wt $\rho\left(y_{1}, y_{2}, y_{4}\right)=(1,1,3)$ (T.7). Assume that $\alpha_{\rho=3}=y_{1} y_{2}^{2}$ and that $\alpha_{\rho=6}\left(y_{1}, 0, y_{4}\right)$ is squarefree. Then $\Delta(D \supset C)$ consists of smooth rational curves and C^{\prime} intersecting transversely, and its configuration is

(6.17) Example. Let $Z \supset C$ be a germ of a smooth 3-fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z}^{*} \simeq \mathscr{O}_{C} \oplus \mathscr{O}(-1)$. Let $P \in C$ and let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates of (Z, P) such that $(C, P)=z_{1}$-axis and z_{2} (resp. z_{3}) is a generator of \mathscr{O}_{C}
(resp. $\mathscr{G}(-1))$ in the splitting of $N_{C / Z}^{*}$. Let $(X, P) \supset(C, P)$ be a $c D$ point as in (6.5) with $\alpha \equiv y_{1}^{3} y_{4} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. As in (6.11), $z_{1}=y_{1}^{3}, z_{2}=y_{1} y_{3}$, and $z_{3}=y_{1}^{2} y_{2}$ patch (X, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ for some $\varepsilon_{1}>0$, and we have an isolated extremal nbd $X \supset C$ of type $c D$ such that $\ell(P)=3$.

Now (6.3) is proved in the case $\ell(P)=3$.

(6.18) Lemma. Assume $\ell(P)=4$. Then (6.3.1) holds.

Proof. Since $\alpha \equiv y_{1}^{4} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}, y_{2}$ and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1}\left(\mathscr{O}\right.$ at P. By deformation $\alpha+t y_{1}^{3} y_{4}=0$ of $(X, P)(2.9 .2), X_{t}^{\circ} \supset C_{t} \ni P_{t}$ is a $c D$ point of index 3 and $\ell(P)=3$. Since $y_{1}^{2} y_{2}$ appears in $\alpha+t y_{1}^{3} y_{4}$ by (6.14), so does $y_{1}^{2} y_{2}$ in α. In particular, P is a double $c D$ point. If (6.3.1.1) does not hold, then we have $g r_{C}^{1} \mathscr{O} \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}(-1)(2.8)$ and $g r_{C}^{1} \omega \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(-2+2 P^{\sharp}\right)$. This implies a contradiction $H^{1}\left(\omega / F_{C}^{2} \omega\right) \neq 0$, whence (6.3.1.1) and hence (6.3.1) hold.
(6.19) Lemma. Let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ that has the properties in (6.3.1) and that $\ell(P)=4$. By changing the embedding $(-1+$ $\left.2 P^{\sharp}\right) \subset g r_{C}^{1} \mathscr{O}$ in (6.3.1.1) and by changing the coordinates in (6.5), we may assume further that $y_{4}\left(\right.$ resp. $\left.y_{2}\right)$ is an ℓ-free ℓ-basis of $(0)\left(\right.$ resp. $\left.\left(-1+2 P^{\sharp}\right)\right)$ in the ℓ-splitting (6.3.1.1) and

$$
\begin{equation*}
y_{1}^{4} y_{3}+y_{4}^{2}+y_{1} y_{2}^{2} \equiv 0 \bmod F_{C}^{3} \mathscr{O}^{4} \tag{6.19.1}
\end{equation*}
$$

Proof. We may assume that y_{4} and y_{2} are ℓ-free ℓ-bases of the components (0) and $\left(-1+2 P^{\sharp}\right)$ in (6.3.1.1). By changing the embedding $\left(-1+2 P^{\sharp}\right) \subset$ $g r_{C}^{1} \mathscr{\theta}$, we can find a unit u at P such that y_{4} and $y_{2}+c u y_{1} y_{4}$ are also ℓ free ℓ-bases of the components (0) and $\left(-1+2 P^{\sharp}\right)$ of some ℓ-splitting like (6.3.1.1) for each $c \in \mathbb{C}$. Replacing y_{4} by $y_{4} \cdot$ (unit), we may assume $u=1$. By $\alpha \equiv y_{1}^{4} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{4}$, we see $y_{3} \in F_{C}^{2} \mathscr{O}^{\sharp}$ and $\alpha \equiv y_{1}^{4} y_{3}+p \cdot y_{4}^{2}+q$. $y_{1}^{2} y_{2} y_{4}+r \cdot y_{1} y_{2}^{2} \bmod F_{C}^{3} \mathscr{O}^{\sharp}$ for some $p, q, r \in \mathscr{O}_{C, P}$ such that $p(0) r(0) \neq 0$. Replacing y_{2} by $y_{2}-q(0) y_{1} y_{4} / 2 r(0)$, we may assume $q=0$ as explained above. Multilying y_{2} and y_{4} by units, we attain (6.19.1).

Under the notation and assumptions of (6.19), let L (resp. M) be the component (0) (resp. $\left(-1+2 P^{\sharp}\right)$) in the ℓ-splitting (6.3.1.1). Let $E \subset g r_{C}^{2} \mathcal{O}$ be the saturation of $L^{2}+M^{2}$ and let K be the ideal such that $F_{C}^{2} \mathscr{O} \supset \supset F_{C}^{3} \mathscr{O}$ such that $K / F_{C}^{3}=E$. Then
(6.20) Lemma. Under the above notation and assumptions, we have (6.20.1) (6.3.4) holds.
(6.20.2) $\operatorname{Spec}\left(\mathscr{O}_{X} / K\right)=D \cap D^{\prime}$ for two general members D and $D^{\prime} \in\left|K_{X}\right|$. In particular, (6.3.2) holds.
(6.20.3) (6.3.3) holds.

Proof. We have $g r_{C}^{2} \mathscr{O} \simeq S^{2} g r_{C}^{1} \mathscr{O}$ outside of P, whence $E=L^{\otimes 2} \oplus M^{\otimes 2}$ outside of P. Since $F_{C}^{2} \mathscr{O}^{\sharp}=\left(y_{3}, y_{2}^{2}, y_{2} y_{4}, y_{4}^{2}\right)$ by $\alpha \equiv y_{1}^{4} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$,
we see

$$
g r_{C}^{2} \mathscr{O}^{\sharp}=\mathscr{O}_{C^{\sharp}} y_{3} \oplus \mathscr{O}_{C^{\sharp}} y_{2} y_{4} \oplus \mathscr{O}_{C^{\sharp}} y_{2}^{2}
$$

and $E^{\sharp}=\mathscr{O}_{C^{4}} y_{3} \oplus \mathscr{O}_{C^{\sharp}} y_{2}^{2}$ by (6.19.1). Thus $g r_{C}^{2} \mathscr{O} / E \simeq L \tilde{\otimes} M$. We also see that $L^{\sharp^{2}}\left(P^{\sharp}\right) \subset E^{\sharp}$ by $y_{4}^{2}=-y_{1}\left(y_{2}^{2}+y_{1}^{3} y_{3}\right)$ and that $E^{\sharp} / L^{\sharp^{2}}\left(P^{\sharp}\right) \simeq M^{\sharp^{2}}\left(3 P^{\sharp}\right)$ by $y_{2}^{2} \equiv-y_{1}^{3} y_{3} \bmod \mathscr{O}_{C^{!}} y_{4}^{2} / y_{1}$. This induces an ℓ-exact sequence

$$
0 \rightarrow L^{\tilde{\otimes} 2}\left(P^{\sharp}\right) \rightarrow E \rightarrow M^{\dot{\otimes} 2}\left(3 P^{\sharp}\right) \rightarrow 0
$$

which is ℓ-split by $L^{\tilde{\otimes} 2}\left(P^{\sharp}\right) \simeq M^{\tilde{\otimes} 2}\left(3 P^{\sharp}\right) \simeq\left(P^{\sharp}\right)$ and (2.6). We will see $K^{\sharp}=$ (y_{3}, y_{2}^{2}) using $E^{\sharp}=\mathscr{O}_{C^{\sharp}} y_{3} \oplus \mathscr{O}_{C^{\sharp}} y_{2}^{2}$. Indeed by $\left(y_{3}, y_{2}^{2}\right) \subset K^{\sharp}$, it is enough to see that $y_{2}=y_{3}=0$ defines $2 C^{\sharp}$ in X^{\sharp} because \mathscr{O} / K is of length 4 at the generic point of C. Since y_{4}^{2} appears in α and $\alpha-y_{1}^{4} y_{3} \in\left(y_{2}, y_{3}, y_{4}\right)^{2}$, we see $y_{4}^{2} \in\left(y_{2}, y_{3}\right) \mathscr{O}_{X^{\sharp}}$. Thus we have $K^{\sharp}=\left(y_{3}, y_{2}^{2}\right)$ as claimed. Thus K is locally a c.i. ideal outside of P and K^{\sharp} is a c.i. ideal at P^{\sharp}. In particular, $g r_{C}^{0} K \simeq E \simeq$ $\left(P^{\sharp}\right) \tilde{\oplus}\left(P^{\sharp}\right)$. Thus C is contractible as in the argument for (6.9), and (6.3.4) follows from (6.4). We also see that \mathscr{G} / K has a filtration whose subquotients are $\mathscr{O}_{C} \simeq(0), L \simeq(0), M \simeq\left(-1+2 P^{\sharp}\right)$, and $L \tilde{\otimes} M \simeq\left(-1+2 P^{\sharp}\right)$. Then as in the argument for (6.9), one can see that $H^{0}\left(\mathscr{O}\left(K_{X}\right)\right)=H^{0}\left(\mathscr{O}\left(K_{X}\right) \tilde{\otimes} K\right)$, that $H^{0}\left(\mathscr{O}\left(K_{X}\right)\right)$ generates $g r_{C}^{0} \omega \tilde{\otimes} g r_{C}^{0} K \simeq(0) \tilde{\oplus}(0)$, and that $K=I_{1}+I_{2}$ for defining ideals I_{1} and I_{2} of general members D and D^{\prime} of $\left|K_{X}\right|$. Thus (6.20.2) is proved. Because of the above filtration, we also see that a general section s of \mathscr{O}_{X} vanishing on C is of the form $s=\lambda y_{4}+\mu y_{1} y_{3}+\cdots$ at P with general $\lambda, \mu \in \mathbb{C}$. Since its image into $g r_{C}^{1} \mathscr{O}=(0) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$ globally generates (0), $H_{X}=\{s=0\} \in\left|\mathscr{O}_{X}\right|$ is smooth outside of P. At P we have

$$
\left(H_{X}, P\right)=\left(y_{1}, y_{2}, y_{3} ; \bar{\alpha}\right) / \mathbb{Z}_{3}(1,1,2 ; 0) \supset C=y_{1}-\text { axis } / \mathbb{Z}_{3}
$$

where $\bar{\alpha}=\alpha\left(y_{1}, y_{2}, y_{3}, \nu y_{1} y_{3}+\cdots\right)$ with general $\nu \in \mathbb{C}$. Since $\alpha=c y_{4}^{2}+0$. $y_{1}^{3} y_{4}+y_{1}^{4} y_{3}+d y_{3}^{3}+e y_{1} y_{2}^{2}+\cdots$ for some $c, d, e \in \mathbb{C}^{*}(6.19)$, it is easy to see that (6.7.3) applies. The rest is the same as (6.10), and (6.3.3) follows.
(6.21) Example. Let $Z \supset C$ be a germ of a smooth 3-fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z}{ }^{*} \simeq \mathscr{O}_{C} \oplus \mathscr{O}(-1)$. Let $P \in C$ and let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates of (Z, P) such that $(C, P)=z_{1}$-axis and z_{2} (resp. z_{3}) is a generator of \mathscr{O}_{C} (resp. $\mathscr{O}(-1)$) in the splitting of $N_{C / Z}^{*}$. Let $(X, P) \supset(C, P)$ be a $c D$ point as in (6.5) with $\alpha \equiv y_{1}^{4} y_{3} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. As in (6.11), $z_{1}=y_{1}^{3}, z_{2}=y_{4}$ and $z_{3}=y_{1}^{2} y_{2}$ patch (X, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ for some $\varepsilon_{1}>0$, and we have an isolated extremal nbd $X \supset C$ of type $c D$ such that $\ell(P)=4$.

Thus the proof of (6.3) is completed.
The following lemma will be needed in the proof of the more general (13.11).
(6.22) Lemma. Let $X \supset C \ni P$ be an isolated extremal nbd of $c D / 3$ type. Let H be a general member of $\left|\mathscr{G}_{X}\right|$ through C and let H_{0} be another member such
that $\Delta\left(H_{0} \supset C\right)$ is equal to one of the two configurations for Δ_{X} in (6.2.3.16.2.3.2). Then $\Delta(H \supset C)=\Delta\left(H_{0} \supset C\right)$.

Proof. Let us use the coordinates (6.5) for (X, P). We may also assume that (H, P) is defined by $y_{4}=\gamma\left(y_{1}, y_{2}, y_{3}\right)$ in (X, P) such that $\alpha\left(y_{1}, y_{2}, y_{3}, \gamma\right)$ satisfies $(6,9.1)$ or (6.9.2) (cf. (6.10)). Since $\left(H_{0}, P\right)$ has the same configuration as one of (6.7), $\left(H_{0}, P\right)$ is isomorphic to one of (6.7.1-6.7.2) by [Laufer73] (cf. (13.8.2) for details). In particular $\left(H_{0}, P\right)$ is also defined in (X, P) by an equation $y_{4}=\delta\left(y_{1}, y_{2}, y_{3}\right)$ for some δ. Then we note

$$
\alpha_{\sigma=3}\left(y_{1}, y_{2}, y_{3}, \gamma\right)=\alpha_{\sigma=3}\left(y_{1}, y_{2}, y_{3}, \delta\right)
$$

for $\sigma=(1,1,2)$ because α does not have the term y_{4}. Since (6.7.1) is distinguished from (6.7.2) by the squarefreeness of the $\sigma=3$ part of the equation, we see $\Delta(H \supset C)=\Delta\left(H_{0} \supset C\right)$.

7. General members of $\left|\mathscr{G}_{X}\right|_{C}$; isolated $I I A$ case

We consider the following set-up in this chapter unless otherwise mentioned explicitly.
(7.1) Let $f: X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd with only one non-Gorenstein point P such that $X \supset C$ has a $I I A$ point at P. Let H_{X} be a general member of $\left|\mathscr{O}_{X}\right|$ through C and let $H_{Y}=f\left(H_{X}\right)$. Let $\Delta_{X}=$ $\Delta\left(H_{X} \supset C\right)$ and $\Delta_{Y}=\Delta\left(H_{Y}\right)$.

Our main results in this chapter are the following.
(7.2) Theorem. Under the notation and assumptions of (7.1), assume that $i_{P}(1)$ $=1$ and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}$. Then we have the following:
(7.2.1) X is smooth outside of IIA point P with $\ell(P)=1$ and we have an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right) . \tag{7.2.1.1}
\end{equation*}
$$

(7.2.2) $2 C=D^{\prime \prime} \cdot D^{\prime \prime \prime}$ for general $D^{\prime \prime} \in\left|2 K_{X}\right|$ and $D^{\prime \prime \prime} \in\left|3 K_{X}\right|$.
(7.2.3) H_{X} is normal, and Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely and their configurations are as follows.

(7.2.4) Let $X \supset C$ be a the germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ that need not be an extremal nbd. If $X \supset C$ has the properties in (7.2.1), then it is an isolated extremal $n b d$ of type IIA such that $i_{P}(1)=1$ and $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}$. (An example is given in (7.6.4).)
(7.3) Theorem. Under the notation and assumptions of (7.1), assume $i_{p}(1)=1$ and $g r_{C}^{1} \mathscr{O} \neq \mathscr{O} \oplus \mathscr{O}$. Then we have the following:
(7.3.1) Outside of IIA point P with $\ell(P)=1, X$ has exactly i singular point ($i=0$ or 1), which is of type III if any. Furthermore we have ℓ-isomorphisms

$$
\begin{gather*}
g r_{C}^{1} \mathscr{O} \simeq\left(1-i+P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right), \tag{7.3.1.1}\\
g r^{2}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}(0),
\end{gather*}
$$

where J is the C-laminal ideal of width 2 with $J / F_{C}^{2} \mathscr{O}=\left(1-i+P^{\sharp}\right)$ in (7.3.1.1).
(7.3.2) $2 k C=D \cdot D^{\prime \prime}$ for general $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$, where k is the axial multiplicity at P.
(7.3.3) H_{X} is normal, and Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely and their configurations are as follows.

(7.3.4) Let $X \supset C$ be the germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. If $X \supset C$ has the the properties in (7.3.1), then it is an isolated extremal nbd of type IIA such that $i_{P}(1)=1$ and ${g r_{C}^{1}}_{1}^{\theta} \not \approx \mathscr{\theta} \oplus \mathscr{O} .($ Examples are given in (7.9.4).)
(7.4) Theorem. Under the notation and assumptions of (7.1), assume $i_{P}(1) \geq$ 2. Then $i_{P}(1)=2$ and we have the following.
(7.4.1) X is smooth outside of IIA point P with $\ell(P)=3$ or 4 and we have an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq \begin{cases}\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) & \text { if } \ell(P)=3 \tag{7.4.1.1}\\ \left(P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) & \text { if } \ell(P)=4 .\end{cases}
$$

(7.4.2) $2 C=D \cdot D^{\prime \prime}$ for general $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$.
(7.4.3) H_{X} is normal, and Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely and their configurations are as follows.

(7.4.4) Let $X \supset C$ be a the germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. If $X \supset C$ has the the properties in (7.4.1), then it is an
isolated extremal nbd of type IIA such that $i_{P}(1)=2$. (Examples are given in (7.12.5).)
(7.5) Let us express the $I I A$ point as

$$
(X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{4}(1,1,3,2 ; 2) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{4}
$$

using an equation α such that $\alpha \equiv y_{1}^{\ell(P)} y_{i} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ with $i=2$ (resp. 3 , 4) if $\ell(P) \equiv 1($ resp. 3, 0$) \bmod 4$ [Mori88, (2.16)]. We note that $\ell(P) \not \equiv 2$ $\bmod 4$ because of the lack of a variable with $\mathrm{wt} \equiv 0 \bmod 4$.
(7.6) Proof of (7.2). By $i_{P}(1)=1$ and $\operatorname{deg} g r_{C}^{1} \mathscr{O}=0$, we see that X is smooth outside of P [Mori88, (2.3.1), (2.15)]. By $i_{P}(1)=1$, we also have $\ell(P)=1$ [Mori88, (2.16)] and hence $\alpha \equiv y_{1} y_{2}$ (7.5). Then y_{3} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}$. Hence, after a possible coordinates change, we have an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right), \tag{7.6.1}
\end{equation*}
$$

where y_{3} (resp. y_{4}) is an ℓ-free ℓ-basis of $\left(P^{\sharp}\right)$ (resp. ($2 P^{\sharp}$)) at P. Thus (7.2.1) is proved. Let J be the C-laminal ideal such that $I \supset J \supset I^{(2)}$ and $J / I^{(2)}=\left(2 P^{\sharp}\right)$ in (7.6.1). We write $I^{\sharp}=\left(y_{2}, y_{3}, y_{4}\right)$ and $J^{\sharp}=\left(y_{2}, y_{3}^{2}, y_{4}\right)$ at P^{\sharp}. Since y_{3}^{2} must appear in α by the description of $I I A$ points, we may assume

$$
\alpha \equiv y_{3}^{2}+y_{1} y_{2} \bmod I^{\sharp} J^{\sharp}
$$

by changing y_{3} by $\lambda \cdot y_{3}\left(\lambda \in \mathbb{C}^{*}\right)$. Thus $\left(y_{3}, y_{4}, y_{2}\right)$ is a ($1,2,2$)-monomializing ℓ-basis of $I \supset J$ at P of second kind and $J^{\sharp}=\left(y_{2}, y_{4}\right)$. We see ℓ-isomorphisms $g r^{1}(\odot, J) \simeq\left(P^{\sharp}\right), g r^{2,0}(\odot, J) \simeq\left(2 P^{\sharp}\right)$, and $g r^{2,1}(\mathscr{O}, J) \simeq$ $g r^{1}(\mathscr{O}, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(P^{\sharp}\right) \simeq\left(3 P^{\sharp}\right)$ [Mori88, (8.10)]. Hence we have an ℓ-splitting

$$
\begin{equation*}
g r^{2}(\mathscr{O}, J) \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}\left(3 P^{\sharp}\right), \tag{7.6.2}
\end{equation*}
$$

where y_{4} (resp. y_{2}) is an ℓ-free ℓ-basis of $\left(2 P^{\sharp}\right)$ (resp. ($\left.3 P^{\sharp}\right)$) after a possible change of coordinates. From (7.6.2), one sees $H^{1}\left(C, g r^{i}\left(\omega^{\dot{\otimes} j}, J\right)\right)=0$ for all $i \geq 0$ and $j \leq 3$, whence

$$
\begin{equation*}
H^{1}\left(C, F^{i}\left(\omega^{\dot{\otimes} j}, J\right)\right)=0 \quad \text { for all } i \geq 0 \text { and } j \leq 3 \tag{7.6.3}
\end{equation*}
$$

by the contractibility of C. From (7.6.2) follows

$$
H^{0}\left(\omega^{\dot{\otimes} j} / F^{2}\left(\omega^{\dot{\otimes} j}, J\right)\right)=0 \quad \text { for } j=2,3 .
$$

Thus the induced homomorphism

$$
H^{0}\left(\omega^{\dot{\otimes} j}\right) \rightarrow H^{0}\left(g r^{2}\left(\omega^{\dot{\otimes} j}, J\right)\right)=H^{0}\left(\left((2-j) P^{\sharp}\right) \tilde{\oplus}\left((3-j) P^{\sharp}\right)\right)
$$

is a surjection for $j=2,3$. Let $D^{\prime \prime} \in\left|2 K_{X}\right|$ and $D^{\prime \prime \prime} \in\left|3 K_{X}\right|$ be general members. Then from the above, it is easy to see that the natural map $I_{D^{\prime \prime}} \tilde{\oplus} I_{D^{\prime \prime \prime}} \rightarrow g r^{2}\left(\omega^{\dot{\otimes} j}, J\right)$ is an ℓ-surjection, where the symbol I_{Z} denotes the
defining ideal of a subscheme Z. Hence $J=I_{D^{\prime \prime}}+I_{D^{\prime \prime \prime}}$ since J^{\sharp} is a c.i. ideal. Thus (7.2.2) is proved. By (7.6.3) with $j=0$, we have a surjection

$$
H^{0}\left(F^{i}(\mathscr{O}, J)\right) \rightarrow H^{0}\left(g r^{i}(\mathscr{O}, J)\right) \text { for all } i
$$

Then a general member H_{X} of $\left|\mathscr{O}_{X}\right|$ containing C is defined at P by an equation β in which all of $y_{1} y_{3}, y_{2} y_{3}$, and y_{4}^{2} appear. This is because $y_{1} y_{3}$ (resp. $y_{2} y_{3}, y_{4}^{2}$) is a part of a basis (at P) of $F^{1}(\Theta, J)\left(\right.$ resp. $F^{3}(\mathscr{O}, J), F^{4}(\mathscr{O}, J)$), which is generated by global sections. Hence we can apply (7.7.1). We note that $(\bullet)^{2}=-1$ follows from $\left(C \cdot K_{H_{X}}\right)=\left(C \cdot K_{X}\right)<0$. Thus (7.2.3) follows. We now prove (7.2.4). Let us assume only (7.2.1). By (6.4), we see $\left(K_{X} \cdot C\right)=-1 / 4<0$. We only have to prove the contractibility of C by (7.2.1.1), which follows from the ampleness of

$$
g r_{C}^{4} \mathscr{O} \supset \tilde{S}^{4} g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(1)^{\oplus 4} \oplus \mathscr{O}(2)
$$

Thus (7.2.4) is proved.
(7.6.4) Example. Let $Z \supset C$ be a germ of a smooth 3 -fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z} \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}$. Let $P \in C$ and let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates of (Z, P) such that $(C, P)=z_{1}$-axis. Let $(X, P) \supset(C, P)$ be a IIA point as in (7.5) with $\alpha \equiv y_{1} y_{2} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. For suitable ε_{1} and ε_{2} such that $0<\varepsilon_{1}<\varepsilon_{2} \ll 1,\left(y_{1}^{4}, y_{1}^{2} y_{4}, y_{1} y_{3}\right)$ form coordinates for $U=(X, P) \cap$ $\left\{\varepsilon_{1}<\left|y_{1}^{4}\right|<\varepsilon_{2}\right\}$ by the implicit function theorem. Thus $z_{1}=y_{1}^{4}, z_{2}=y_{1}^{2} y_{4}$, and $z_{3}=y_{1} y_{3}$ patch (X, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ along U. This $X \supset C$ is an isolated extremal nbd of type IIA by (7.2).
(7.7) Computation. Let (D, P) be a normal surface singularity

$$
(D, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha, \beta\right) / \mathbb{Z}_{4}(1,1,3,2 ; 2,0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{4} .
$$

Let σ be the \mathbb{Z}-wt $\sigma\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(1,1,3,2)$ (T.7). We have the configuration of $\Delta(D \supset C)$ in each of the following cases.
(7.7.1) $\alpha_{\sigma=2}=y_{1} y_{2}$ and the coefficient of y_{3}^{2} in α is nonzero, and the coefficients of $y_{1} y_{3}, y_{2} y_{3}$ and y_{4}^{2} in β are nonzero. Then $\Delta(D \supset C)$ consists of smooth rational curves and C^{\prime} intersecting transversely with the following configuration.

(7.7.2) $\alpha_{\sigma=2}=y_{1} y_{2}$ and the coefficient of y_{3}^{2} in α is nonzero, the coefficient of $y_{1} y_{3}$ in β is zero, and the coefficients of $y_{2} y_{3}, y_{1}^{2} y_{4}$, and y_{4}^{2} in β are nonzero. Then $\Delta(D \supset C)$ consists of smooth rational curves and C^{\prime}
intersecting transversely with the following configuration.

(7.8) In this paragraph, we will prove (7.3.1). By (7.5) and [Mori88, (2.16)], we have $\ell(P)=1, \alpha \equiv y_{1} y_{2}$, and that y_{3} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathcal{O}$ at P. We note that X has at most one singular point outside of P, which is a type $I I I$ point (say, R) such that $i_{R}(1)=1$ [Mori88, (A.3) and (B.1)]. Thus X has exactly i singular point ($i=0$, or 1), which is of type III if any. We also have $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-i$ under the notation of (7.3.1).
(7.8.1) We first prove (7.3.1.1) when $i=0$. By (7.8), we have $g r_{C}^{1} \mathscr{O} \simeq$ $\mathscr{O}(1) \oplus \mathscr{O}(-1)$ because $H^{1}\left(g r_{C}^{1} \mathscr{O}\right)=0$. In view of (2.8), it is enough for (7.3.1.1) to show that $X \supset C$ is not isolated (a contradiction) assuming an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(1+2 P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}\right), \tag{7.8.1.1}
\end{equation*}
$$

where y_{4} and y_{3} form ℓ-free ℓ-bases of $\left(1+2 P^{\sharp}\right)$ and $\left(-1+P^{\sharp}\right)$. Let J be the ideal such that $I \supset J \supset I^{(2)}$ and $J / I^{(2)}=\left(1+2 P^{\sharp}\right)$. Then $J^{\sharp}=\left(y_{4}, y_{2}, y_{3}^{2}\right)$. Since y_{3}^{2} must appear in α by the description of IIA points, we may assume

$$
\alpha \equiv y_{3}^{2}+y_{1} y_{2} \bmod I^{\sharp} J^{\sharp}
$$

by changing y_{3} by $\lambda \cdot y_{3}\left(\lambda \in \mathbb{C}^{*}\right)$. Thus $\left(y_{3}, y_{4}, y_{2}\right)$ is a $(1,2,2)$-monomializing ℓ-basis of $I \supset J$ at P of the second kind and $J^{\sharp}=\left(y_{2}, y_{4}\right)$. By [Mori88, (8.10)], we see ℓ-isomorphisms $g r^{1}(\mathscr{O}, J) \simeq\left(-1+P^{\sharp}\right), g r^{2,0}(\mathscr{O}, J) \simeq$ $\left(1+2 P^{\sharp}\right)$, and $g r^{2,1}(\mathscr{O}, J) \simeq g r^{1}(\mathscr{O}, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(P^{\sharp}\right) \simeq\left(-2+3 P^{\sharp}\right)$ and an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow\left(-2+3 P^{\sharp}\right) \rightarrow g r^{2}(\mathscr{O}, J) \rightarrow\left(1+2 P^{\sharp}\right) \rightarrow 0 . \tag{7.8.1.2}
\end{equation*}
$$

Since we are going to show that our X is not isolated, we may replace X with its nearby deformation keeping our hypotheses including (7.8.1.1). To be specific, we may assume the most general possibility under (7.8.1.2):

$$
\begin{equation*}
g r^{2}(\mathscr{O}, J) \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) . \tag{7.8.1.3}
\end{equation*}
$$

This is because the twisted extension $X_{t}^{\circ} \supset C_{t}$ of the trivial deformation $(X, P) \times \mathbb{C}_{t}^{1} \supset(C, P) \times \mathbb{C}_{t}^{1}$ by $\left(y_{1}^{2} y_{4}+t y_{1}^{-1} y_{2}, y_{1} y_{3}\right)$ gives the general case (cf. [Mori88, (1b.8)]) for general t with $|t| \ll 1$.

The idea of our proof is to show that a general member of $\left|\mathscr{O}_{Y}\right|$ containing Q has only a rational double point at Q since it implies a contradiction that (Y, Q) is Gorenstein. We will begin by finding an auxiliary normal member $E \in\left|-K_{X}\right|$ containing C as well as the usual transversal $D \in\left|-K_{X}\right|$.
(7.8.1.4) Let $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{4} \in\left|-K_{X}\right|$. We note

$$
\begin{equation*}
F^{2}\left(\mathscr{O}_{X}(D), J\right) / F^{2}\left(\mathscr{O}_{X}, J\right) \simeq\left(g r^{2}\left(\mathscr{O}_{X}(D), J\right)\right) \tilde{\otimes} \mathscr{O}_{D} \simeq \mathbb{C} \cdot\left(y_{2} / y_{1}\right) \tag{7.8.1.5}
\end{equation*}
$$

We claim the surjection

$$
\begin{equation*}
H^{0}\left(X, F^{2}\left(\mathscr{O}_{X}(D), J\right)\right) \rightarrow F^{2}\left(\mathscr{O}_{X}(D), J\right) / F^{2}\left(\mathscr{O}_{X}, J\right) \tag{7.8.1.6}
\end{equation*}
$$

Indeed, we have the equality $H^{1}\left(X, F^{2}\left(\mathscr{O}_{X}, J\right)\right)=0$ from $H^{j}\left(g r^{1}\left(\mathscr{O}_{X}, J\right)\right)=$ 0 (all j) and $H^{1}\left(X, F^{1}\left(\mathscr{O}_{X}, J\right)\right)=H^{1}(X, I)=0$, which follows from the exact sequence $0 \rightarrow I \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{O}_{C} \rightarrow 0$. Thus (7.8.1.6) follows.
(7.8.1.7) By (7.8.1.6), a general global section s of $F^{2}\left(\mathscr{O}_{X}(D), J\right)$ restricts to $\lambda \cdot y_{2} / y_{1} \in F^{2}\left(\mathscr{O}_{X}(D), J\right) / F^{2}\left(\mathscr{O}_{X}, J\right)$ for some $\lambda \in \mathbb{C}^{*}$. This s is of the form $\left(y_{2}+y_{1}(\cdots)\right) / y_{1}$, and it induces a global section \bar{s} of $g r^{2}(\mathscr{O}(D), J)$, which is a part of an ℓ-free ℓ-basis at P. By (7.8.1.3), \bar{s} is a nowhere vanishing section of $g r^{2}(\mathscr{O}(D), J)$ and we have an ℓ-isomorphism

$$
g r^{2}\left(\mathscr{O}_{X}(-D), J\right) \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}_{C} \mathscr{O}_{C} .
$$

Let $E \in\left|-K_{X}\right|$ be the divisor defined by $s=0$. By the above ℓ-isomorphism, we see two ℓ-isomorphisms

$$
\begin{aligned}
& g r_{C}^{1}\left(\mathscr{O}_{E}\right) \simeq g r^{1}(\mathscr{O}, J) \simeq\left(-1+P^{\sharp}\right), \\
& g r_{C}^{2}\left(\mathscr{O}_{E}\right) \simeq\left\{g r^{2}(\mathscr{O}(D), J) / \mathscr{O}_{C} \bar{s}\right\} \tilde{\otimes} \mathscr{O}(-D) \simeq\left(2 P^{\sharp}\right) .
\end{aligned}
$$

Since the image of \bar{s} in $g r_{C}^{1} \mathscr{O}$ is nonzero, E is smooth at general points of C. By the construction of E, E is smooth outside of C, whence E is normal. Since $J^{\sharp}=\left(s y_{1}, y_{4}\right), 2 C^{\sharp}$ is a Cartier divisor of E^{\sharp} defined by $y_{4}=0$. Thus $\mathscr{O}_{E}(2 C)$ is an ℓ-invertible \mathscr{O}_{E}-module and $\mathscr{O}_{E}(-2 C) \tilde{\otimes} \mathscr{O}_{C} \simeq\left(2 P^{\sharp}\right)$. By $H^{1}\left(\mathscr{O}_{E}\right)=0$, we see $\operatorname{Pic} E \simeq \operatorname{Pic} C \simeq \mathbb{Z}$. Thus $2 D \cap E+2 C \sim 0$ on E and $y_{1}^{2} y_{4}=0$ is its equation in (E, P). Since $H^{0}\left(\mathscr{O}_{X}\right) \simeq H^{0}\left(\mathscr{O}_{E}\right)$, we have a global section $s_{1} \in H^{0}\left(\Theta_{X}\right)$ such that $s_{1} \equiv\left(\right.$ unit) $\cdot y_{1}^{2} y_{4} \bmod \left(s y_{1}\right)$. Also by the surjection $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow \mathscr{O}_{D}$, we have global sections $s_{2}, s_{3} \in H^{0}\left(\mathscr{O}_{X}\right)$ such that $s_{2} \equiv y_{4}^{2}, s_{3} \equiv y_{2} y_{3} \bmod \left(y_{1}\right)$. The natural map $H^{0}(I) \otimes \mathscr{O}_{C} \rightarrow g r_{C}^{1} \mathscr{O}$ factors through $H^{0}(I) \otimes \mathscr{O}_{C} \rightarrow\left(1+2 P^{\sharp}\right)$ (7.8.1.1), which is a surjection at P. Thus a general member H_{X} through C of $\left|\mathscr{O}_{X}\right|$ is normal and has exactly one point of type A outside of P as singularities. Now we study $\left(H_{X}, P\right)$. If we replace y_{2} by $s y_{1}\left(\right.$ we note $\left.s y_{1} \equiv y_{2} \bmod \left(y_{1}\right)\right)$, then the equation of H_{X} satisfies (7.7.2), because of the sections s_{1}, s_{2}, and s_{3}. As in (7.6), we can compute $\Delta\left(f\left(H_{X}\right)\right)$. In our case, it is A_{1} since C is contractible. This is a contradiction as mentioned earlier. This completes (7.8.1).
(7.8.2) We prove (7.3.1.2) when $i=0$. As in (7.8.1), we may assume that y_{3} and y_{4} form ℓ-free ℓ-bases of $\left(1+P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$ in (7.3.1.1). We have ℓ-isomorphisms $g r^{1}(\mathscr{O}, J) \simeq\left(-1+2 P^{\sharp}\right)$ and $g r^{2,0}(\mathscr{O}, J) \simeq\left(1+P^{\sharp}\right)$. We note that y_{4}^{2} does not appear in α because $w t y_{4}^{2} \not \equiv w t \alpha$. Thus by $I^{\sharp}=\left(y_{2}, y_{3}, y_{4}\right)$ and $J^{\sharp}=\left(y_{2}, y_{3}, y_{4}^{2}\right)$, we may further assume $\alpha \equiv y_{1} y_{2} \bmod I^{\sharp} J^{\sharp}$ after
changing coordinates. Hence $y_{2} \in F^{3}(\mathscr{O}, J)$ and we have an ℓ-isomorphism $g r^{2,1}(\odot, J) \simeq g r^{1}(\odot, J)^{\dot{\otimes} 2} \simeq(-1)$, which has an ℓ-free ℓ-basis y_{4}^{2}. Thus we have an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow(-1) \rightarrow g r^{2}(\odot, J) \rightarrow\left(1+P^{\sharp}\right) \rightarrow 0 . \tag{7.8.2.1}
\end{equation*}
$$

In view of (2.8), we note that (7.3.1.2) is the most general case under (7.8.2.1). It is enough for (7.3.1.2) to derive a contradiction assuming an ℓ-isomorphism

$$
\begin{equation*}
g r^{2}(\mathscr{O}, J) \simeq(1) \tilde{\oplus}\left(-1+P^{\sharp}\right) \tag{7.8.2.2}
\end{equation*}
$$

which is the second most general case. This is because the twisted extension $X_{t}^{\circ} \supset C_{t}$ of the trivial deformation $(X, P) \times \mathbb{C}_{t}^{1} \supset(C, P) \times \mathbb{C}_{t}^{1}$ by $\left(y_{1} y_{3}+t y_{4}^{2}, y_{4}\right)$ satisfies (7.8.2.2) if (7.8.2.1) is ℓ-split for $X \supset C$ (cf. [Mori88, (1b.8)]).

The idea of our proof is to show that $\left(f\left(H_{X}\right), Q\right)$ is a rational double point for a general member $H_{X} \in\left|\mathscr{\sigma}_{X}\right|$ containing C.

Let $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{4} \in\left|-K_{X}\right|$. Because of (7.8.2.1), the ℓ-summand (1) in (7.8.2.2) is generated at P by an element $u \in \mathscr{O}_{X, P}$ such that $u \equiv y_{4}^{2}+$ $y_{3}\left(y_{1}+\cdots\right)$ after replacing y_{3} by $\lambda \cdot y_{3}$ for some $\lambda \in \mathbb{C}^{*}$. Since $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow \mathscr{O}_{D}$ is a surjection, there is a section $s_{1} \in H^{0}\left(\mathscr{O}_{X}\right)$ such that $s_{1} \equiv u \bmod \left(y_{1}\right)$. Since $s_{1}(P)=0$, we see $s_{1} \in H^{0}(I)$ and $s_{1} \in H^{0}(J)$ by $H^{0}\left(g r^{1}(\mathscr{O}, J)\right)=0$. Thus s_{1} induces a section (unit) $\cdot u$ of $g r^{2}(\mathscr{O}, J)$ at P. In particular, $y_{1} y_{3}$ and y_{4}^{2} appear in s_{1}. Let $s_{2} \in H^{0}\left(\mathscr{O}_{X}\right)$ be a section extending $y_{2} y_{3} \in \mathscr{O}_{D}$. We see that $s_{2} \in H^{0}(J)$ and that $y_{2} y_{3}$ appears in s_{2}. Let $s \in H^{0}(I)$ be a general section. Then, as we saw above, $s \in H^{0}(J)$ and the induced section \bar{s} of $g r^{2}(\odot, J)$ is a basis of the ℓ-summand (1) of (7.8.2.2) at P. Thus its image in $g r_{C}^{1} \mathscr{G}$ has exactly one simple zero outside P. Hence $H_{X}=\{s=0\} \in\left|\sigma_{X}\right|$ has exactly one singular point outside of P, which we call R. As for $\left(H_{X}, P\right)$, we can apply (7.7.1) by the above.

We claim that $\left(H_{X}, R\right)$ is an A_{k} point for some $k \geq 2$. Since (7.8.2.2) is the splitting for (7.8.2.1), we can take coordinates $\left(z_{1}, z_{2}, z_{3}\right)$ of (X, R) such that $(C, R)=z_{1}$-axis and such that z_{3} is a basis for both of $\left(P^{\sharp}\right)$ in (7.3.1.1) at R and (1) in (7.8.2.2) at R. At R, we have $I=\left(z_{2}, z_{3}\right)$ and $J=\left(z_{3}, z_{2}^{2}\right)$. Whence

$$
\begin{equation*}
s \equiv(\text { unit }) \cdot z_{1} z_{3} \bmod \left(z_{2}^{3}, z_{2} z_{3}, z_{3}^{2}\right) \tag{7.8.2.3}
\end{equation*}
$$

which proves our claim. Since C is contractible, it is easy to see that (H_{X}, R) is an A_{2} point and $\Delta\left(H_{X}\right)$ consists of smooth rational curves intersecting transversely with the following configuration.

$$
\begin{aligned}
& \begin{array}{l}
0 \\
2
\end{array} \\
& \begin{array}{rrrrr}
0 & 0 & 0 & 0 & -0 \\
4 & 2 & 4 & 0 & 0
\end{array}
\end{aligned}
$$

This means that $\Delta\left(f\left(H_{X}\right)\right)$ is A_{1}, which is a contradiction as mentioned earlier. This completes (7.8.2).
(7.8.3) We will treat the case $i=1$ for (7.3.1) until the end of (7.8). Let R be the type $I I I$ point, which we express as

$$
(X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \gamma\right) \supset(C, R)=z_{1} \text {-axis }
$$

using an equation γ such that $\gamma \equiv z_{1} z_{2} \bmod \left(z_{2}, z_{3}, z_{4}\right)^{2}$.
(7.8.4) In view of (2.8) and (7.8), it is enough for (7.3.1.1) to derive a contradiction assuming an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq\left(-1+P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right),
$$

where y_{3} and y_{4} (resp. z_{3} and z_{4}) form ℓ-free ℓ-bases (resp. free bases) of $\left(-1+P^{\sharp}\right)$ and $\left(2 P^{\sharp}\right)$ at P (resp. R).

The idea of our proof is to construct a nearby deformation of $X \supset C$ that does not satisfy (7.3.1.1) in case $i=0$. Since it was proved in (7.8.1), we will have a contradiction as required.

Let $\left(X_{t}, R\right) \supset\left(C_{t}, R\right)$ be the deformation of $(X, R) \supset(C, R)$ given by the equation $\gamma+t z_{4}=0$. Let $X_{t}^{\circ} \supset C_{t}$ be its twisted extension by $\left(z_{3}, z_{4}\right)$. We now work on $X_{t}^{\circ} \supset C_{t}$ for sufficiently small $t \in \mathbb{C}^{*}$, which we denote by $\bar{X} \supset \bar{C}$. We also use the same y_{j} and z_{k} in the same sense for the new $\bar{X} \supset \bar{C}$.

The main point is that \bar{X} is now smooth outside of P and we have $t \cdot z_{4}+$ $z_{1} z_{2} \in\left(z_{2}, z_{3}, z_{4}\right)^{2}$. Thus we have $z_{4} \equiv($ unit $) \cdot z_{1} z_{2}$ in $g r \frac{1}{C} \mathscr{O}$ at R. Hence from $g r_{C}^{1} \bigcirc g r_{C}^{1} \Theta$, we get an ℓ-isomorphism

$$
g r_{\bar{C}}^{\frac{1}{\mathscr{C}}} \simeq\left(-1+P^{\sharp}\right) \tilde{\oplus}\left(1+2 P^{\sharp}\right) .
$$

This contradicts (7.8.1) as mentioned earlier and (7.3.1.1) is now proved.
(7.8.5) It remains to prove (7.3.1.2). Without loss of generality, we will assume that y_{3} and y_{4} (resp. z_{3} and z_{4}) form an ℓ-free ℓ-bases (resp. free bases) of $\left(P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$ at P (resp. R). We note that J now defined by (7.3.1.1) in (7.3.1) satisfies $g r^{1}(\mathscr{O}, J) \simeq\left(-1+2 P^{\sharp}\right), g r^{2,0}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right)$, and the equality at $P: g r^{2,1}(\mathscr{O}, J)=g r^{1}(\Theta, J)^{\tilde{\otimes} 2}$, which is proved by the same argument as (7.8.2). If z_{4}^{2} appears (resp. does not appear) in γ, then we have the equality at $R: g r^{2,1}(\mathscr{O}, J)=g r^{1}(\overparen{O}, J)^{\otimes 2}(R)\left(\right.$ resp. $\left.g r^{1}(\mathscr{O}, J)^{\otimes 2}\right)$. We first finish the proof of (7.3.1.2) assuming that z_{4}^{2} appears in γ. In this case, we have an ℓ-isomorphism $g r^{2,1}(\odot, J) \simeq(0)$ and the ℓ-exact sequence

$$
0 \rightarrow(0) \rightarrow g r^{2}(\mathscr{O}, J) \rightarrow\left(P^{\sharp}\right) \rightarrow 0
$$

is ℓ-split, whence (7.3.1.2) follows.
Now we will derive a contradiction assuming that z_{4}^{2} does not appear in γ, that is, $g r^{2,1}(\mathscr{O}, J)=g r^{1}(\Theta, J)^{\otimes 2}$ at R. In this case, we have an ℓ isomorphism $g r^{2,1}(\Theta, J) \simeq(-1)$. Then we have

$$
\begin{equation*}
g r^{2}(\odot, J) \simeq(0) \tilde{\oplus}\left(-1+P^{\sharp}\right) \tag{7.8.5.1}
\end{equation*}
$$

because otherwise we will have $g r^{2}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}(-1)$, which implies a contradiction $H^{1}\left(\omega / F^{3}(\omega, J)\right) \neq 0$. By changing coordinates, we may further assume that z_{3} is also a basis of (0) in (7.8.5.1). The rest of the argument is very similar to (7.8.2). To be specific, we can similarly prove that a general section $s \in H^{0}(I)$ defines a surface H_{X} which is smooth outside of $\{P, R\}$, all of $y_{1} y_{3}, y_{2} y_{3}$ and y_{4}^{2} appear in s at P, and z_{3} appears in s at R. Like (7.8.2.3), we have

$$
s \equiv(\text { unit }) \cdot z_{3} \bmod \left(z_{2}, z_{3}, z_{4}\right)^{2}
$$

Since z_{4}^{2} does not appear in γ, it is easy to see $\left(H_{X}, R\right)$ is an A_{k} point for some $k \geq 2$. The rest of the argument is the same as (7.8.2). This completes (7.8).
(7.9) In this paragraph, we will prove the rest of (7.3). To prove (7.3.4), we treat formal 3 -folds X along C satisfying the conditions in (7.3.1) for a while. We will still use the notation (7.5) at P.
(7.9.1) Proposition. Let $X \supset C$ be a formal 3-fold along $C \simeq \mathbb{P}^{1}$ that need not be an extremal nbd. Assume also that $X \supset C$ satisfies the conditions in (7.3.1). Then $X \supset C$ satisfies the condition in (7.3.2).
(7.9.1.1) Since J is a C-laminal ideal of width 2, we have an inclusion for arbitrary $n \geq 1$:

$$
g r^{n}(\odot, J) \supset\left(\tilde{S}^{[n / 2]} g r^{2}(\Theta, J)\right) \tilde{\otimes} g r^{n-2[n / 2]}(\Theta, J) .
$$

By (7.3.1.2) and $g r^{1}(\mathscr{O}, J) \simeq\left(-1+2 P^{1}\right)$ (7.3.1.1), we see that all the ℓ summands of $g r^{n}(\mathscr{O}, J)$ have qldeg $\geq \operatorname{qldeg}\left(-1+2 P^{\sharp}\right)=-1 / 2$ for all $n \geq 3$. Thus, by (6.4), we have ℓ-isomorphisms

$$
\begin{aligned}
& g r^{0}(\omega, J) \simeq\left(-1+3 P^{\sharp}\right) \\
& g r^{1}(\omega, J) \simeq\left(-1+P^{\sharp}\right), \\
& g r^{2}(\omega, J) \simeq(0) \tilde{\oplus}\left(-1+3 P^{\sharp}\right),
\end{aligned}
$$

and we see that all the ℓ-summands of $g r^{n}(\omega, J)$ have qldeg $\geq-3 / 4$ for all $n \geq 3$. Hence we see that $H^{0}(X, \omega) \simeq H^{0}\left(X, F^{2}(\omega, J)\right)$ and a surjection $H^{0}\left(X, F^{2}(\omega, J)\right) \rightarrow H^{0}\left(C, g r^{2}(\omega, J)\right) \simeq \mathbb{C}$ and a vanishing $H^{1}\left(X, \omega_{X}\right)=0$. Let s be a general global section of ω_{X} and $E \in\left|K_{X}\right|$ be the member defined by $s=0$. We will study the singularities of E.
(7.9.1.2) Lemma. The term y_{3} appears in the equation of E^{\sharp} at P and we have an isomorphism

$$
(E, P)=\left(y_{1}, y_{2}, y_{4} ; y_{1} y_{2}+y_{4}^{k}\right) / \mathbb{Z}_{4}(1,1,2) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{4}
$$

where k is the axial multiplicity of X at P. Furthermore, $\Delta((E, P) \supset(C, P))$ consists of smooth rational curves and C^{\prime} intersecting transversely with the following configuration:

Proof. As in (7.8), we see that ℓ-free ℓ-bases of the first and the second factors of $g r^{2}(\Theta, J)$ are of the forms $y_{3} \cdot($ unit $)+\cdots$ and $y_{4} \cdot($ unit $)+\cdots$, respectively. Since s generates the first factor of the ℓ-splitting of $g r^{2}(\omega, J)$ in (7.9.1.1), the first assertion of (7.9.1.2) follows. Since the equation of E^{\sharp} has wt $\equiv 3$ $\bmod 4$, no powers of y_{4} appear in it. It is easy to compute the configuration and we have (7.9.1.2).
(7.9.1.3) Lemma. If X does not have a type III point on C (i.e., $i=0$ in (7.3.1)), then E has exactly one singular point (say, R) outside of P. Furthermore (E, R) is a type A point.
Proof. By the natural surjection $g r^{2}(\mathscr{O}, J) \rightarrow g r^{2,0}(\mathscr{O}, J) \simeq\left(1+P^{\sharp}\right)$, we see $g r^{2,1}(\Theta, J) \simeq(-1)$ by (7.3.1.2). Hence the image \bar{s} of s in $\left(1+P^{\sharp}\right) \tilde{\otimes} \omega$ is nonzero and generates it at P. Thus \bar{s} vanishes at exactly one point R outside of P, and R is a simple zero. This proves (7.9.1.3).
(7.9.1.4) Lemma. If X has a type III point R on C (i.e., $i=1$ in (7.3.1)), then E is smooth outside of $\{P, R\}$. Furthermore (E, R) is a type A point.
Proof. We see ℓ-isomorphisms $g r^{2,0}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right)$ and $g r^{2,1}(\mathscr{O}, J) \simeq(0)$ as in the proof of (7.9.1.3). Thus the image \bar{s} of s globally generates $g r^{2,0}(\Theta, J) \tilde{\otimes} \omega \simeq(0)$. Hence using the notation of (7.8.3) at R, we see that z_{3} or z_{4} appears in the equation of (E, R) in (X, R). Since (X, R) is defined by $z_{1} z_{2}+\cdots=0$ in $\left(\mathbb{C}^{4}, 0\right)$, we see that (E, R) is a type A point.
(7.9.1.5) Lemma. The point (E, R) is always of type A_{1}, and $\Delta(E \supset C)$ consists of smooth rational curves and C^{\prime} intersecting transversely with the following configuration.

$$
\stackrel{o}{2}-0_{1}-o_{3}-\overbrace{\substack{o-\cdots-o_{2} \\ 2}}^{k-2}-\frac{0}{3}
$$

Furthermore, we have $\left.K_{X}\right|_{E} \nsim k \cdot C$ and $\left.2 K_{X}\right|_{E} \sim 2 k \cdot C$ among Weil divisors on E.
Proof. By $\left(K_{E} \cdot C\right)=\left(2 K_{X} \cdot C\right)=-1 / 2<0$ (6.4), we have $\left(\bullet^{2}\right)=-1$. Putting together the results of the above lemmas, we see that the configuration of (7.9.1.5) is the only possibility for C to be contractible to a non-Gorenstein point (Y, Q). Hence (E, R) is of type A_{1}. From the configuration, it is easy to compute $\left(C^{2}\right)=-1 / 4 k$. Since $k \cdot C^{\sharp}=\left(y_{2}\right)$ in $\left(E^{\sharp}, P^{\sharp}\right)$, we see that $\mathscr{O}_{E}(2 k$. $C)$ is ℓ-invertible at P and $\operatorname{qldeg}\left(\mathscr{O}_{E}(k \cdot C), P\right)=1$ and $\operatorname{qldeg}\left(\mathscr{O}_{X}\left(2 K_{X}\right), P\right)=$ 3. Thus we have (7.9.1.5) by $(k C \cdot C)=\left(K_{X} \cdot C\right)$.
(7.9.1.6) Lemma. If D is a general member of $\left|2 K_{X}\right|$, then $D \cdot E=2 k \cdot C$. Proof. Since $\mathscr{O}\left(K_{X}\right)$ is an ℓ-invertible \mathscr{O}_{X}-module, we have an ℓ-exact sequence

$$
0 \rightarrow \mathscr{O}_{X}\left(K_{X}\right) \rightarrow \mathscr{O}_{X}\left(2 K_{X}\right) \rightarrow \mathscr{O}_{E}(2 k \cdot C) \rightarrow 0
$$

Since $\left(C^{2}\right)<0$, we have $H^{0}\left(\mathscr{O}_{E}(2 k \cdot C)\right)=\mathbb{C}$. By $H^{1}\left(X, \mathscr{O}_{X}\left(K_{X}\right)\right)=0$ above (7.9.1.1), we have a surjection $H^{0}\left(X, \mathscr{O}_{X}\left(2 K_{X}\right)\right) \rightarrow H^{0}\left(E, \mathscr{O}_{E}(2 k \cdot C)\right)=\mathbb{C}$. Hence we have (7.9.1.6).

Thus the proof of (7.9.1) is completed.
(7.9.2) Lemma. (7.3.4) holds.

Proof. Let $X \supset C$ be a 3-fold satisfying the conditions in (7.3.1). By (7.9.1), C is contractible on the completion of X, whence contractible on X. Hence $X \supset C$ is an extremal nbd and (7.3.4) holds.
(7.9.3) Proposition. (7.3.3) holds.

Let $X \supset C$ be an extremal nbd satisfying the conditions in (7.3.1). We will prove (7.3.3) in several steps.

As in (7.9.1.1), we have $H^{1}\left(g r^{n}(\mathscr{O}, J)\right)=0$ for all n. Thus

$$
H^{1}\left(F^{n}(\mathscr{O}, J) / F^{m}(\mathscr{O}, J)\right)=0
$$

for all $n \geq m$ and $H^{1}\left(F^{n}(\mathscr{O}, J)\right)=0$ for all n because C is contractible. Hence we have a surjection $H^{0}\left(F^{2}(\mathscr{O}, J)\right) \rightarrow H^{0}\left(g r^{2}(\mathscr{O}, J)\right)$. Let s be a general element of $H^{0}(I)=H^{0}\left(F^{2}(\mathscr{O}, J)\right)$ and $H_{X} \in\left|\mathscr{O}_{X}\right|$ be the member defined by $s=0$. We will study the singularities of H_{X} as in (7.9.1.2)-(7.9.1.5).
(7.9.3.1) Lemma. The terms $y_{1} y_{3}, y_{2} y_{3}$, and y_{4}^{2} appear in s at P and $\Delta\left(\left(H_{X}, P\right) \supset(C, P)\right)$ consists of smooth rational curves and C^{\prime} intersecting transversely with the following configuration.

Proof. As in (7.8), the ℓ-free ℓ-basis of the first factor $\left(P^{\sharp}\right)$ of $g r^{2}(\mathscr{O}, J)$ is of the form $y_{3} \cdot($ unit $)+\cdots$. Hence $y_{1} y_{3}$ appears in s at P. Let $D=$ $\left\{y_{1}=0\right\} / \mathbb{Z}_{4} \in\left|-K_{X}\right|$. Since $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow \mathscr{O}_{D}$, the elements $y_{2} y_{3}$ and y_{4}^{2} of \mathscr{O}_{D} extend to global sections s_{1} and s_{2} of \mathscr{O}_{X}. Since $s_{1}(P)=s_{2}(P)=0$, we see $s_{1}, s_{2} \in H^{0}(I)$. Since $y_{2} y_{3}$ and y_{4}^{2} appear in s_{1} and s_{2} at P, they also appear in s at P. The rest follows from (7.7.1).

Since the rest is the same as (7.9.1.3)-(7.9.1.5), we only list the corresponding statements.
(7.9.3.2) Lemma. If X does not have a type III point on C (i.e., $i=0$ in (7.3.1)), then H_{X} has exactly one singular point (say, R) outside of P. Furthermore $\left(H_{X}, R\right)$ is a type A point.
(7.9.3.3) Lemma. If X has a type III point R on C (i.e., $i=1$ in (7.3.1)), then H_{X} is smooth outside of $\{P, R\}$. Furthermore $\left(H_{X}, R\right)$ is a type A point.
(7.9.3.4) Lemma. The point $\left(H_{X}, R\right)$ is always of type A_{1} and $\Delta\left(H_{X} \supset C\right)$ is as in (7.3.3).

Thus the proofs of (7.9.3) and hence (7.3) are completed.
(7.9.4) Example. Let $i=0$ or 1. Let $Z \supset C$ be a germ of a smooth 3 -fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z}^{*} \simeq \mathscr{O}_{C}(1-i) \oplus \mathscr{O}_{C}(-1)$. Let P and $R \in C$ be two distinct points and let $\left(z_{1}, z_{2}, z_{3}\right)$ (resp. $\left.\left(u_{1}, u_{2}, u_{3}\right)\right)$ be coordinates of
$(Z, P)($ resp. $(Z, R))$ such that $(C, P)=z_{1}$-axis (resp. $(C, R)=u_{1}$-axis) and z_{2} and z_{3} (resp. u_{2} and u_{3}) are generators of the first and the second summands of $N_{C / Z}^{*}$ above, respectively. Let

$$
(X, R)=\left(x_{1}, x_{2}, x_{3}, x_{4} ; x_{1} x_{2}+x_{3}^{2}+x_{4}^{2}\right) \supset C=x_{1} \text {-axis }
$$

Let $(Y, P) \supset(C, P)$ be a IIA point as in (7.5) with

$$
\alpha \equiv y_{1} y_{2} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}
$$

For suitable ε_{1} and ε_{2} such that $0<\varepsilon_{1}<\varepsilon_{2} \ll 1,\left(y_{1}^{4}, y_{1}^{2} y_{4}, y_{1} y_{3}\right)$ form coordinates for $U=(Y, P) \cap\left\{\varepsilon_{1}<\left|y_{1}^{4}\right|<\varepsilon_{2}\right\}$ by the implicit function theorem. We treat two cases.
(7.9.4.1) Case $i=0$. In this case, $z_{1}=y_{1}^{4}, z_{2}=y_{1} y_{3}+y_{1}^{-4} y_{4}^{2}$, and $z_{3}=y_{1}^{2} y_{4}$ patch (Y, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ along U. Then this $Y \supset C$ is an isolated extremal nbd of type $I I A$ satisfying (7.3.1.1) and (7.3.1.2) by (7.2).
(7.9.4.2) Case $i=1$. In this case, $z_{1}=y_{1}^{4}, z_{2}=y_{1} y_{3}$, and $z_{3}=y_{1}^{2} y_{4}$ patch (Y, P) and V, which is the complement of two closed neighbourhoods of P and R in Z, and $u_{1}=x_{1}, u_{2}=x_{3}$, and $u_{3}=x_{4}$ patch (X, R) and V. They patch together to an isolated extremal nbd of type IIA satisfying (7.3.1.1) and (7.3.1.2) by (7.2).
(7.10) In this paragraph, we will prove (7.4.1) in several steps. We use the notation of (7.5) at P. We note that X has at most one singular point outside of P, which is a type $I I I$ point, say R, such that $i_{R}(1)=1$ as we mentioned in (7.8). Thus we have $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-1-i$, where i is the number of singular points of X outside of P.

We first prove (7.4.1.1) in the case where $\ell(P)=3$ and $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-1$. By (7.5), we have $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1)$ by $H^{1}\left(g r_{C}^{1} \mathscr{O}\right)=0$ and see that y_{2} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}$ at P. In view of (2.8), it is enough to prove the following.
(7.10.1) Lemma. Let $X \supset C$ be an extremal nbd with a type IIA point P of $\ell(P)=3$ and with an ℓ-isomorphism

$$
g r_{C}^{1} \mathscr{O} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)
$$

such that y_{2} and y_{4} are ℓ-free ℓ-bases of $\left(3 P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$ under the notation of (7.5). Then X is not isolated.
(7.10.1.1) The proof will be done in several steps. Let J be the ideal such that $I \supset J \supset I^{(2)}$ and $J / I^{(2)}=\left(3 P^{\sharp}\right)$ in the ℓ-isomorphism of (7.10.1). Then $J^{\sharp}=$ $\left(y_{2}, y_{3}, y_{4}^{2}\right)$. Since y_{4}^{2} does not appear in α, we have $\alpha \equiv y_{1}^{3} y_{3}+y_{1}^{2} y_{4}^{2} \cdot \gamma\left(y_{1}^{4}\right)$ $\bmod I^{\sharp} J^{\sharp}$ for some $\gamma(T) \in \mathbb{C}\{T\}$. Since we are going to show that X is not isolated, we may replace X by its nearby deformation, which satisfies the ℓ-isomorphism in (7.10.1).
(7.10.1.2) Let σ be the \mathbb{Z}-wt $\sigma\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(1,1,3,2)$. Then $\sigma(\alpha) \equiv$ $w t \alpha \equiv 2 \bmod 4$ and $\sigma(\alpha)=6$ since none of $y_{1} y_{2}$ and y_{4} appear in α. Therefore $\alpha_{\sigma=6}\left(y_{1}, 0, y_{3}, y_{4}\right)=0$ at best defines a simple elliptic singularity.

Lemma. We may assume that the axial multiplicity of (X, P) is $3, \gamma(0) \neq 0$, and $\alpha_{\sigma=6}\left(y_{1}, 0, y_{3}, y_{4}\right)=0$ defines a simple elliptic singularity of degree 1 . Furthermore, on the smooth elliptic curve $\alpha_{\sigma=6}\left(y_{1}, 0, y_{3}, y_{4}\right)=0$ in $\mathbb{P}(1,3,2)$, $y_{1} y_{3}=0$ defines a divisor $2(1: 0: 0)+\left(0: 1: a_{1}\right)+\left(1: 0: a_{2}\right)$ of degree 4 for some $a_{1}, a_{2} \in \mathbb{C}^{*}$.
Proof. By the description of IIA points, we see that $y_{1}^{3} y_{3}$ and y_{3}^{2} appear in $\alpha_{\sigma=6}$. Let $\left(X_{t}, P\right) \supset(C, P)=y_{1}$-axis $/ \mathbb{Z}_{4}$ be the deformation of $(X, P) \supset$ (C, P) inside $\left(\mathbb{C}^{4}, 0\right)$ defined by

$$
\alpha_{t} \equiv \alpha+t\left(y_{1}^{2} y_{4}^{2}+y_{4}^{3}\right)=0
$$

Then P is a IIA point of $X_{t} \supset C$ with $\ell(P)=3$ and axial multiplicity 3. It is easy to see that $\left(\alpha_{t}\right)_{\sigma=6}\left(y_{1}, 0, y_{3}, y_{4}\right)=0$ defines a simple elliptic singularity of degree 1 for general t. The twisted extension $X_{t}^{\circ} \supset C_{t}$ of $\left(X_{t}, P\right) \supset(C, P)$ by $\left(y_{1}^{3} y_{2}, y_{1}^{2} y_{4}\right)$ satisfies the ℓ-isomorphism in (7.10.1) since X_{t} and X can be identified modulo $I^{(2)}$. The last assertion is a simple computation, because the terms y_{1}^{6} and $y_{1}^{4} y_{4}$ are missing in α_{t}.
(7.10.1.3) By $\gamma(0) \neq 0(7.10 .1 .2)$ and $y_{1} y_{3}+y_{4}^{2} \cdot \gamma\left(y_{1}^{4}\right) \equiv 0$ in $g r^{2}(\mathscr{O}, J)$, we see that $g r^{2,1}(\odot, J) \simeq g r^{1}(\odot, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(P^{\sharp}\right) \simeq\left(-1+P^{\sharp}\right)$ with ℓ-free ℓ-basis y_{3} at P. Thus we have an ℓ-exact sequence

$$
0 \rightarrow\left(-1+P^{\sharp}\right) \rightarrow g r^{2}(\mathscr{O}, J) \rightarrow\left(3 P^{\sharp}\right) \rightarrow 0
$$

Lemma. We may further assume an ℓ-isomorphism

$$
g r^{2}(\Theta, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) .
$$

Proof. The twisted extension of the trivial deformation $(X, P) \times \mathbb{C}_{t}^{1} \supset(C, P) \times$ \mathbb{C}_{t}^{1} by $\left(y_{1}^{3} y_{2}+t y_{1} y_{3}, y_{1}^{2} y_{4}\right)$ satisfies the ℓ-isomorphism in (7.10.1) and the above ℓ-exact sequence is not ℓ-split for X_{t} with general t. Hence we have the ℓ isomorphism by (2.8).
(7.10.1.4) Lemma. There is an element $s \in H^{0}(I)$ such that $y_{1} y_{3}$ appears in s at P and y_{4}^{2} does not appear in s at P.
Proof. Let $A=\left\{y_{1}=0\right\} / \mathbb{Z}_{4} \in\left|-K_{X}\right|$. Then from the ℓ-exact sequence

$$
0 \rightarrow I \rightarrow I \tilde{\otimes} \mathscr{O}_{X}(A) \rightarrow I \tilde{\otimes} \mathscr{O}_{A}(A) \rightarrow 0
$$

we have a surjection $H^{0}(I \tilde{\otimes} \mathscr{O}(A)) \rightarrow I \tilde{\otimes} \mathscr{O}_{A}(A)$. Then y_{2} / y_{1} lifts to a section $s \in H^{0}\left(I \tilde{\otimes} \mathscr{O}_{X}(A)\right)$. Since $H^{0}\left(g r^{1}\left(\mathscr{O}\left(-K_{X}\right), J\right)\right)=0$, we have

$$
s \in H^{0}\left(J \tilde{\otimes} \mathscr{O}_{X}(A)\right)
$$

Furthermore its image s^{\prime} in $g r^{2}(\mathscr{O}(A), J) \simeq\left(2 P^{\sharp}\right) \tilde{\oplus}(0)$ is nowhere vanishing outside of P since s restricts to y_{2} / y_{1} at P. Let $B=\{s=0\} \in|A|$.

We claim that B has exactly one singular point, say R, outside of P, and that R is an A_{1}-point. Let $s^{\prime \prime}$ be the image of s in $g r_{C}^{1}(\mathscr{O}(A))=(1) \tilde{\oplus}$ $\left(-1+3 P^{\sharp}\right)$. Then $s^{\prime \prime}$ generates (1) at P, whence it has exactly one zero R of order 1 outside of P. Let z_{1}, z_{2}, z_{3} be the coordinates of (X, R) such that $(C, Q)=z_{1}$-axis, z_{2} (resp. z_{3}) is the basis of ($3 P^{\sharp}$) (resp. $\left(-1+2 P^{\sharp}\right)$) at R in the ℓ-isomorphism of (7.10.1). Then $s^{\prime \prime}=$ (unit) $\cdot z_{1} z_{2}$ at R and $s^{\prime}=\left(\right.$ unit) $\cdot z_{1} z_{2}+r \cdot z_{3}^{2}$ for some $r \in \mathscr{O}_{X, R}$ since $J=\left(z_{2}, z_{3}^{2}\right)$ at R. Since s^{\prime} does not vanish at R, we see that r is a unit at R. This means that R is an A_{1}-point of B as claimed above.

We claim that (B, P) is a simple elliptic singularity of degree 4 . We note that the equation of B^{\sharp} in X^{\sharp} is $y_{1} s=y_{2}+\cdots \in J^{\sharp}$ or $y_{2}-\delta\left(y_{1}, y_{2}, y_{3}\right) \in J^{\sharp}$ such that $\sigma(\delta) \geq 5$ because $\sigma(\delta) \equiv 1 \bmod 4$ and $\sigma(\delta) \neq 1$, where σ is as given in (7.10.1.2). Thus B^{\sharp} is defined in $y_{1} y_{3} y_{4}$-space by $\bar{\alpha}\left(y_{1}, y_{3}, y_{4}\right)=$ $\alpha\left(y_{1}, \delta, y_{3}, y_{4}\right)=0$, and we see that $\sigma(\delta)=6$ and $\bar{\alpha}_{\sigma=6}=\alpha_{\sigma=6}\left(y_{1}, 0, y_{3}, y_{4}\right)$ since $y_{1} y_{2}$ does not appear in α. Hence (B^{\sharp}, P^{\sharp}) is a simple elliptic singularity of degree 1 by (7.10.1.2) and the claim follows.

Thus we have 3 curves on the minimal resolution $\rho: B^{\prime} \rightarrow B$; the proper transform C^{\prime} of C, a smooth elliptic curve P^{\prime} over P, and a smooth rational curve R^{\prime} over R. They form a linear chain and $\Delta(B \supset C)$ is as follows:

$$
P_{4}^{\prime}-C_{1}^{\prime}-R_{2}^{\prime}
$$

Let us consider the divisor $\left(y_{1} y_{3}\right)$ on (B, P). Since $y_{1} y_{3}+y_{4}^{2} \cdot \gamma\left(y_{1}^{4}\right) \equiv 0$ in $g r^{2}(\mathscr{O}, J), C^{\prime}$ has multiplicity 2 in $\left(y_{1} y_{3}\right)$. By (7.10.1.2), we see that $\rho^{*}\left(\left(y_{1} y_{3}\right)\right)=R^{\prime}+T_{1}{ }^{\prime}+T_{2}{ }^{\prime}+2 C^{\prime}$ for some divisors $T_{1}{ }^{\prime}$ and $T_{2}{ }^{\prime}$ such that $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}$, and C^{\prime} are disjoint from each other and $\left(T_{1}{ }^{\prime} \cdot R^{\prime}\right)=\left(T_{2}{ }^{\prime} \cdot R^{\prime}\right)-1$. Thus the divisor $F^{\prime}=R^{\prime}+T_{1}{ }^{\prime}+T_{2}{ }^{\prime}+2 C^{\prime}+R^{\prime}$ descends to a Cartier divisor F on B such that $(F \cdot C)=0$. Since we have Pic $B \simeq \operatorname{Pic} C$ by $H^{1}\left(\mathscr{O}_{B}\right)=H^{1}\left(\mathscr{O}_{X}\right)=0$, we have $F \sim 0$. Thus a global defining equation \bar{s} of F in B lifts to an element $s \in H^{0}(I)$. Since $\bar{s}=$ (unit) $\cdot y_{1} y_{3}$ near P, we have (7.10.1.4).
(7.10.1.5) Lemma. There are elements $s_{1}, s_{2} \in H^{0}(I)$ such that $s_{1} \equiv y_{4}^{2}$ and $s_{2} \equiv y_{2} y_{3} \bmod \left(y_{1}\right)$ near P^{\sharp}.
Proof. With A in (7.10.1.4), we only have to lift elements $y_{4}^{2}, y_{2} y_{3} \in \mathscr{O}_{A}$ to those in $H^{0}\left(\mathscr{O}_{X}\right)$ by $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow \mathscr{O}_{A}$.
(7.10.1.6) Let H_{X} be a general member of $\left|\mathscr{O}_{X}\right|$ through C defined by a section $s \in H^{0}(J)$. Since $y_{1} y_{3}$ appears in s at P, s generates the first factor \mathscr{O} of $g r^{2}(\mathscr{O}, J) \simeq \mathscr{O} \oplus \mathscr{O}(-1)$ whence the first factor \mathscr{O} of $g r_{C}^{1} \mathscr{O}$ by (7.10.1.3). Thus H_{X} is smooth outside of P. We can now apply (7.11) to
compute $\Delta\left(H_{X} \supset C\right)$, which is as follows.

This contracts to D_{5}, which means that (Y, Q) is Gorenstein. Thus X is not isolated. This completes the proof of (7.10.1).
(7.10.2) Lemma. Let X be an extremal nbd with a type IIA point P with $i_{P}(1)=2$ and a type III point R. Then X is not isolated.
Proof. It is enough to prove that a nearby extremal nbd of X is not isolated. Deforming (X, P) by $\alpha+t y_{1}^{3} y_{3}=0$, we may assume $\ell(P)=3$. Since $\operatorname{deg} g r_{C}^{1} \mathscr{O}=-2$, we have $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O}(-1)^{\oplus 2}$ by $H^{1}\left(g r_{C}^{1} \mathscr{O}\right)=0$. We may therefore assume an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(-1+3 P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right), \tag{7.10.2.1}
\end{equation*}
$$

such that y_{2} and y_{4} are ℓ-free ℓ-bases of $\left(-1+3 P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$. We will take coordinates for (X, R)

$$
(X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \beta\right) \supset(C, R)=z_{1} \text {-axis }
$$

where $\beta \equiv z_{1} z_{3} \bmod \left(z_{2}, z_{3}, z_{4}\right)^{2}$ and z_{2} and z_{4} are bases of $\left(-1+3 P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$ in $(7.10 .2 .1)$ at R.

Let $\left(X_{t}, R\right) \supset(C, R)$ be the deformation of $(X, R) \supset(C, R)$ in z-space given by $\beta+t z_{2}=0$. Let $X_{t} \supset C_{t}$ be its twisted extension by $\left(z_{2}, z_{4}\right)$. In

$$
g r_{C_{t}}^{1} \mathscr{O} \otimes \mathscr{O}_{C_{t}, R}=\mathscr{O}_{C_{t}, R} z_{3} \oplus \mathscr{O}_{C_{t}, R} z_{4},
$$

we see $\mathscr{O}_{C_{t}} z_{2}=\mathscr{O}_{C_{t}} z_{1} \cdot z_{3}$. Thus comparing $g r_{C}^{1} \mathscr{O}$ and $g r_{C_{t}}^{1} \mathscr{O}$, we get an ℓ-isomorphism

$$
g r_{C_{t}}^{1} \mathscr{O} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right) .
$$

By (7.10.1), X_{t} is not isolated.
We will prove (7.4.2) in the case $\ell(P)=4$. In this case, $\alpha \equiv y_{1}^{4} y_{4} \bmod$ $\left(y_{2}, y_{3}, y_{4}\right)^{2}(7.5)$ and y_{2} and y_{3} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{O}$ at P. Thus it is enough to prove the following.
(7.10.3) Lemma. Let X be an extremal nbd with a type IIA point P of $\ell(P)=$ 4 and with an ℓ-isomorphism

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}\right) \tag{7.10.3.1}
\end{equation*}
$$

Then X is not isolated.
Proof. By (7.10.3.1), X is smooth outside of P. We may assume that y_{2} and y_{3} are ℓ-free ℓ-bases of $\left(3 P^{\sharp}\right)$ and $\left(-1+P^{\sharp}\right)$. Let $\left(X_{t}, P\right) \supset(C, P)$ be a
deformation given by $\alpha+t y_{1}^{3} y_{3}=0$. Then P is a type IIA point of X_{t} with $\ell(P)=3$. Let $X_{t} \supset C_{t}$ be the twisted extension of $\left(X_{t}, P\right) \supset(C, P)$ by $\left(y_{2}, y_{3}\right)$. Comparing $g r_{C}^{1} \mathscr{O}$ and $g r_{C_{t}}^{1} \mathscr{\theta}$, we see $g r_{C_{t}}^{1} \mathscr{O} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$. Thus X is not isolated by (7.10.1).

The following is the last step for the proof of (7.4.1).
(7.10.4) Lemma. Let X be an extremal nbd with a type IIA point P of $\ell(P) \geq$ 5. Then X is not isolated.

Proof. If $\ell(P) \geq 5$, then the deformation $\left(X_{t}, P\right) \supset(C, P)$ given by $\alpha+$ $t y_{1}^{5} y_{2}=0$ has a type IIA point P with $\ell(P)=5$. Hence we may assume $\ell(P)=5$. Then we may assume $\alpha \equiv y_{1}^{5} y_{2} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ after a change of coordinates. Thus y_{3} and y_{4} form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{\theta}$ at P. There are two possibilities for $g r_{C}^{1} \mathscr{O}$. If it is in the special case $\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}\right)$ with ℓ-free ℓ-basis u for $\left(2 P^{\sharp}\right)$ (resp. v for $\left(-1+P^{\sharp}\right)$), then the twisted extension of the trivial deformation $(X, P) \times \mathbb{C}_{t}^{1} \supset(C, P) \times \mathbb{C}_{t}^{1}$ by $\left(y_{1}^{2} u+t y_{1} v, y_{1} v\right)$ will be in the general case $\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$ for small enough $t \neq 0$. Therefore we may assume the ℓ-isomorphism $g r_{C}^{1} \mathscr{O} \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$ such that y_{3} and y_{4} are ℓ-free ℓ-bases of $\left(P^{\sharp}\right)$ and $\left(-1+2 P^{\sharp}\right)$. Let $\left(X_{t}, P\right) \supset(C, P)$ be the deformation of $(X, P) \supset(C, P)$ in \mathbb{C}^{4} given by $\alpha+t y_{1}^{3} y_{3}=0$. Then $\left(X_{t}, P\right) \supset(C, P)$ has a type $I I A$ point P with $\ell(P)=3$ and its twisted extension $X_{t} \supset C_{t}$ by $\left(y_{1} y_{3}, y_{1}^{2} y_{4}\right)$ satisfies $g r_{C_{1}}^{\mathscr{O}} \simeq\left(3 P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right)$ for small enough $t \neq 0$. Then X is not isolated by (7.10.1).

This completes the proof of (7.4.1).
(7.11) Computation. Let (C, P) be a normal surface singularity

$$
(D, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha, \beta\right) / \mathbb{Z}_{4}(1,1,3,2 ; 2,0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{4}
$$

Let σ be the \mathbb{Z}-wt $\sigma\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(1,1,3,2)$. Assume that $\alpha_{\sigma=2}=y_{2}^{2}$, and let

$$
\begin{aligned}
& \alpha_{\sigma=6}=y_{3}^{2}+a^{\prime} y_{1}^{3} y_{3}+b^{\prime} y_{1}^{4} y_{4}+c^{\prime} y_{1} y_{3} y_{4}+\cdots \\
& \beta_{\sigma=4}=y_{4}^{2}+a y_{1} y_{3}+b y_{2} y_{3}+c y_{1}^{2} y_{4}+d y_{1}^{3} y_{2}+\cdots
\end{aligned}
$$

where $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{C}$. Then in each of the following cases, $\Delta(D \supset C)$ consists of smooth rational curves and C^{\prime} intersecting transversely with configuration as listed.
(7.11.1) $a \neq 0$, and the equations $y^{2}+a^{\prime} y+b^{\prime} x+c^{\prime} x y=0$ and $x^{2}+a y+c x=$ 0 have 4 distinct roots $x=0$ and (say) $\alpha_{1}, \alpha_{2}, \alpha_{3}$ after the elimination of y.

In the diagram, $\bullet-\underset{2}{\circ}$ intersects the central $\left.\mathbb{P}^{1} \underset{4}{(\circ)}\right)$ at $0, \underset{2}{\circ}-\underset{2}{\circ}$ at ∞, and three ${ }_{2}^{\circ}$ at α_{1}, α_{2}, and α_{3}, with respect to a certain coordinate system of the central \mathbb{P}^{1}.
(7.11.2) $a a^{\prime} d \neq 0, b^{\prime}=c=0$, and the equation $x^{2}+a c^{\prime} x-a a^{\prime}=0$ has two distinct roots (say) α_{1} and α_{2}.

In the diagram, $-\underset{2}{0}-\underset{2}{0}-\underset{2}{0}$ intersects the central $\mathbb{P}^{1} \underset{4}{(0)}$ at $0, \underset{2}{0}-\underset{2}{0}$ at ∞, and the two ${ }_{2}^{\circ}$ at α_{1} and α_{2}, with respect to a certain coordinate system of the central \mathbb{P}^{1}.
(7.12) In this paragraph, we prove the rest of (7.4). To prove (7.4.4), we consider formal 3-folds X along C satisfying the conditions in (7.4.1) for a while. We will still use the notation (7.5) at P.
(7.12.1) Lemma. Let $X \supset C$ be a formal 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that $X \supset C$ satisfies the conditions in (7.4.1). Let J be the ideal such that $I \supset J \supset I^{(2)}$ and $J / I^{(2)}=\left((5-\ell(P)) P^{\sharp}\right)$ under the notation of (7.4.1.1). Then we have ℓ-isomorphisms

$$
\begin{aligned}
& g r^{1}(\Theta, J) \simeq\left(-1+3 P^{\sharp}\right), \\
& g r^{2}(\Theta, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right),
\end{aligned}
$$

and we can choose coordinates at P such that $\left(y_{2}, y_{4}, y_{3}\right)$ (resp. $\left(y_{2}, y_{3}, y_{4}\right)$) is a (1,2,2)-monomializing ℓ-basis of $I \supset J$ of the second kind at P. In particular, $J^{\sharp}=\left(y_{3}, y_{4}\right)$.
Proof. If $\ell(P)=3$ (resp. 4), we see $\alpha \equiv y_{1}^{3} y_{3}$ (resp. $\left.y_{1}^{4} y_{4}\right) \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$ and we may assume that y_{4} (resp. y_{3}) and y_{2} are ℓ-free ℓ-bases of the first and the second ℓ-summands of $g r_{C}^{1} \mathscr{Q}$ given in (7.4.1.1). In particular, $J^{\sharp}=\left(y_{2}^{2}, y_{3}, y_{4}\right)$ in either case. Since none of y_{1}^{2} or $y_{1} y_{2}$ appears in α, y_{2}^{2} appears in α by the description of IIA points. Thus

$$
\alpha \equiv y_{1}^{3} y_{3}-(\text { unit }) \cdot y_{2}^{2}\left(\text { resp. } y_{1}^{4} y_{4}-(\text { unit }) \cdot y_{2}^{2}\right) \bmod I^{\sharp} \cdot J^{\sharp} .
$$

Hence we have the assertion on the monomializing ℓ-basis. From the above, we have

$$
(\text { unit }) \cdot y_{2}^{2}=y_{1}^{3} y_{3}\left(\text { resp. } y_{1}^{4} y_{4}\right) \text { in } g r^{2}(\circlearrowleft, J)
$$

Whence we have an ℓ-isomorphism

$$
g r^{2,1}(\mathscr{O}, J) \simeq g r^{1}(\Theta, J)^{\dot{\otimes} 2} \tilde{\otimes}\left(\ell(P) P^{\sharp}\right) \simeq\left((\ell(P)-2) P^{\sharp}\right) .
$$

Thus we have $g r^{2}(\mathscr{O}, J) \simeq\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right)$.
(7.12.2) Lemma. Under the notation and assumptions of (7.12.1), we have $\operatorname{Spec}(\odot / J)=D \cdot D^{\prime \prime}$ for general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$. In particular, (7.4.2) holds.

We omit the proof, because it follows from (7.12.1) by the argument in (7.6).

(7.12.3) Lemma. (7.4.4) holds.

Proof. Since (7.12.2) applies to the completion X of X along C, we have $2 C=D \cdot D^{\prime \prime}$ such that $(D \cdot C),\left(D^{\prime \prime} \cdot C\right)<0$ in X. This implies that C is formally contractible in X and hence contractible. Thus $X \supset C$ is an isolated extremal nbd by (2.6).
(7.12.4) Lemma. (7.4.3) holds.

Proof. Since the argument is the same as (7.6), we will only sketch the proof. Let H_{X} be a general member of $\left|\mathscr{O}_{X}\right|$ through C defined by $s \in H^{0}(I)$. By (7.12.1), we see that $y_{1} y_{3}$ and $y_{1}^{2} y_{4}$ (resp. $y_{1}^{2} y_{3}^{2}, y_{1}^{3} y_{3} y_{4}$ and y_{4}^{2}) form a free basis at P of globally generated $g r^{2}(\mathscr{O}, J)$ (resp. $g r^{4}(\mathscr{O}, J)$). As in (7.6), we get a surjection $H^{0}\left(F^{i}(\mathscr{O}, J)\right) \rightarrow H^{0}\left(g r^{i}(\mathscr{O}, J)\right)$ for each i. Hence $y_{4}^{2}, y_{1} y_{3}$, and $y_{1}^{2} y_{4}$ appear in s at P with independent coefficients. This first means that the image \bar{s} of s in $g r_{C}^{1} \mathcal{O}$ is nowhere vanishing outside of P, whence H_{X} is smooth outside of P. It also means that we can apply (7.11.1) to ($\left.H_{X}, P\right)$. The rest is the same as (7.6).
(7.12.5) Example. Let $Z \supset C$ be a germ of a smooth 3-fold along $C \simeq \mathbb{P}^{1}$ such that $N_{C / Z}^{*} \simeq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(-1)$. Let $P \in C$ and let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates of (Z, P) such that $(C, P)=z_{1}$-axis and z_{2} (resp. z_{3}) is a generator of the first (resp. second) summand of $N_{C / Z}^{*}$. Let $(X, P) \supset(C, P)$ be a IIA point as in (7.5) with $\alpha \equiv y_{1}^{3} y_{3}\left(\right.$ resp. $\left.y_{1}^{4} y_{4}\right) \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}$. For suitable ε_{1} and ε_{2} such that $0<\varepsilon_{1}<\varepsilon_{2} \ll 1,\left(y_{1}^{4}, y_{1}^{3} y_{2}, y_{1}^{2} y_{4}\right)$ (resp. $\left(y_{1}^{4}, y_{1}^{3} y_{2}, y_{1} y_{3}\right)$) form coordinates for $U=(X, P) \cap\left\{\varepsilon_{1}<\left|y_{1}^{4}\right|<\varepsilon_{2}\right\}$ by the implicit function theorem. Thus $z_{1}=y_{1}^{4}, z_{2}=y_{1}^{2} y_{4}$ and $z_{3}=y_{1}^{3} y_{2}$ (resp. $z_{1}=y_{1}^{4}, z_{2}=y_{1} y_{3}$, and $z_{3}=y_{1}^{3} y_{2}$) patch (X, P) and $Z-(Z, P) \cap\left\{\left|z_{1}\right| \leq \varepsilon_{1}\right\}$ along U. This $X \supset C$ is an isolated extremal nbd with a type $1 I A P$ of $\ell(P)=3$ (resp. 4) satisfying (7.4.1.1) by (7.2).

8. General members of $\left|ब_{X}\right|_{C} ; I C$ case

We consider the following set up in this chapter unless otherwise mentioned explicitly.
(8.1) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd with only one singular point P such that $X \supset C$ has an $I C$ point at P. Let H_{X} be a general member of $\left|\mathscr{O}_{X}\right|$ through C and let $H_{Y}=f\left(H_{X}\right)$. Let $\Delta_{X}=\Delta\left(H_{X} \supset C\right)$ and $\Delta_{Y}=\Delta\left(H_{Y}\right)$.
(8.2) Let

$$
(X, P)=\left(y_{1}, y_{2}, y_{4}\right) / \mathbb{Z}_{m}(2, m-2,1) \supset C=\left(\text { locus of }\left(t^{2}, t^{m-2}, 0\right)\right) / \mathbb{Z}_{m}
$$

with odd index $m \geq 5$. We have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus}\left(-1+(m-1) P^{\sharp}\right)
$$

by (2.10.2), and hence the unique $\left(4 P^{\sharp}\right)$ in $g r_{C}^{1} \mathscr{O}$. Since y_{4} and $y_{1}^{m-2}-y_{2}^{2}$ form an ℓ-free ℓ-basis of $g r_{C}^{1} \mathscr{G}$ at $P,\left(4 P^{\sharp}\right)$ has an ℓ-free ℓ-basis

$$
\lambda_{1} y_{1}^{(m-5) / 2} y_{4}+\mu_{1}\left(y_{1}^{m-2}-y_{2}^{2}\right)
$$

for some λ_{1} and $\mu_{1} \in \mathscr{O}_{C, P}$. We remark that it is easy to see that whether $\lambda_{1}(P) \neq 0$ does not depend on the choice of coordinates.

Our main result in this chapter is the following.
(8.3) Theorem. Under the notation and assumptions of (8.2), we have the following:
(8.3.1) H_{X} is normal, Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely.
(8.3.2) Δ_{X} and Δ_{Y} are as follows.
(8.3.2.1) Case $\lambda_{1}(P) \neq 0$.
(8.3.2.2) Case $\lambda_{1}(P)=0$.

(8.3.3) Corollary. There exist no divisorial extremal nbds of type IC.
(8.4) Remark. By (2.10), we can choose coordinates y_{1}, y_{2}, y_{4} so that there is a normal member $E \in\left|-K_{X}\right|$ with the singularities as described in (2.2.2)
and that $E=\left\{y_{4}=0\right\} / \mathbb{Z}_{m}$ in a neighborhood of P. In particular, we have an ℓ-splitting

$$
\begin{equation*}
g r_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus} \mathscr{O}_{C}(-E) . \tag{8.4.1}
\end{equation*}
$$

We will prove (8.3) in several steps.
(8.5) Let $I=I_{C}$. Let J be the C-laminal ideal such that $I \supset J \supset F_{C}^{2}$ and $J / F_{C}^{2} \mathscr{O}=\left(4 P^{\sharp}\right)$ in (8.4.1). Since J is locally a nested c.i. on $C-\{P\}$ and $\left(y_{4}, u\right)$ is a (1,2)-monomializing ℓ-basis of $I \supset J$ at P with $u=\lambda_{1} y_{1}^{(m-5) / 2} y_{4}+$ $\mu_{1}\left(y_{1}^{m-2}-y_{2}^{2}\right)$ as in (8.2), we have an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{C}(-2 E) \rightarrow g r_{C}^{0} J \rightarrow\left(4 P^{\sharp}\right) \rightarrow 0 \tag{8.5.1}
\end{equation*}
$$

and an ℓ-isomorphism $\mathscr{O}_{C}(-2 E) \simeq\left(-1+(m-2) P^{\sharp}\right)$. Thus we have $g r_{C}^{0} J \simeq$ $\mathscr{O} \oplus \mathscr{O}(-1)$ as \mathscr{O}_{C}-modules. The unique $\operatorname{Gr} r_{C}^{0} J$ is generated near P by

$$
\begin{equation*}
y_{1}^{2} u+\alpha y_{2} y_{4}^{2} \bmod F^{3}(\Theta, J) \tag{8.5.2}
\end{equation*}
$$

for some $\alpha \in \mathscr{O}_{C, P}$. We note the following.

(8.5.3) Lemma.

$$
F^{3}(\mathscr{O}, J)^{\sharp} \subset\left(\left(y_{1}^{m-2}-y_{2}^{2}\right)^{2},\left(y_{1}^{m-2}-y_{2}^{2}\right) y_{4}, \lambda_{1} y_{1}^{(m-5) / 2} y_{4}^{2}, y_{4}^{3}\right) .
$$

Proof. We have $F^{3}(\mathscr{O}, J)_{P^{\sharp}}^{\sharp} \subset\left(u^{2}, u y_{4}, y_{4}^{3}\right)$. By

$$
u \in\left(y_{1}^{m-2}-y_{2}^{2}, \lambda_{1} y_{1}^{(m-5) / 2} y_{4}\right),
$$

we have (8.5.3).
(8.6) Lemma. The ℓ-exact sequence (8.5.1) is ℓ-split iff $\alpha(P)=0$.

Proof. If $\alpha(P)=0$, then $\alpha=y_{1} y_{2} \cdot \alpha^{\prime}$ for some $\alpha^{\prime} \in \mathscr{G}_{C, P}$. Then $\alpha y_{2}=$ $\alpha^{\prime} \cdot y_{1} y_{2}^{2}=\alpha^{\prime} \cdot y_{1}^{m-1}$ and the element (8.5.2) is divisible by y_{1}^{2} in $\mathscr{O}_{X^{\sharp}, p^{\sharp}}$, whence (8.5.1) is ℓ-split. If (8.5.1) is ℓ-split, then the unique \mathscr{O} in $g r_{C}^{0} J$ must be the ℓ-splitting submodule $\left(4 P^{\sharp}\right)$ and (8.5.2) is divisible by y_{1}^{2}. Now we have $\alpha(P)=0$ by $\alpha y_{2} \in y_{1}^{2} \mathscr{O}_{C^{4}, P^{t}}$.
(8.7) Proposition. If $m \geq 7$, then $\alpha(P) \neq 0$.

Proof. Assume that $\alpha(P)=0$, that is, (8.5.1) is ℓ-split. Then $g r_{C}^{0} J$ contains a unique $\left(4 P^{\sharp}\right)$. Let K be the C-laminal ideal such that $J \supset K \supset F_{C}^{1} J$ and $K / F_{C}^{1} J=\left(4 P^{\sharp}\right)$. By [Mori88, (8.14)], K is locally a nested c.i. on $C-\{P\}$ and (1,3)-monomializable at P, and we have ℓ-isomorphisms

$$
\begin{equation*}
g r^{i}(\mathscr{O}, K) \simeq\left(-1+(m-i) P^{\sharp}\right) \quad(i=1,2) \tag{8.7.1}
\end{equation*}
$$

and an ℓ-exact sequence

$$
\begin{equation*}
0 \rightarrow\left(-1+(m-3) P^{\sharp}\right) \rightarrow g r^{3}(\odot, K) \rightarrow\left(4 P^{\sharp}\right) \rightarrow 0 . \tag{8.7.2}
\end{equation*}
$$

By (8.7.1) $\tilde{\otimes} \omega_{X}$, we see
$g r^{i}\left(\omega_{X}, K\right) \simeq\left(-1+(m-i-1) P^{\sharp}\right) \quad$ and $\quad H^{1}\left(g r^{i}\left(\omega_{X}, K\right)\right)=0 \quad$ for $i=1,2$
by $m-2, m-3 \in 2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}$. Hence by $H^{1}\left(\omega_{X}\right)=0$ and the standard exact sequences

$$
0 \rightarrow F^{i+1}\left(\omega_{X}, K\right) \rightarrow F^{i}\left(\omega_{X}, K\right) \rightarrow g r^{i}\left(\omega_{X}, K\right) \rightarrow 0
$$

we have $H^{1}\left(F^{3}(\mathscr{O}, K)\right)=0$. Hence $H^{1}\left(g r^{3}(\mathscr{O}, K)\right)=0$ since C is a 1 dimensional fiber of proper f. Now by (8.7.2) $\tilde{\otimes} \omega_{X}$, we have

$$
0 \rightarrow\left(-2+(2 m-4) P^{\sharp}\right) \rightarrow g r^{3}\left(\omega_{X}, K\right) \rightarrow\left(-1+(m+3) P^{\sharp}\right) \rightarrow 0
$$

We note $\left(-1+(m+3) P^{\sharp}\right) \simeq \mathscr{O}(-1)$ as \mathscr{O}_{C} - modules because $3 \notin 2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}$ by $m \geq 7$. We similarly note that $\left(-2+(2 m-4) P^{\sharp}\right) \simeq \mathscr{O}(-2)$ by $m-4 \notin$ $2 \mathbb{Z}_{+}+(m-2) \mathbb{Z}_{+}$. Hence $H^{1}\left(g r^{3}\left(\omega_{X}, K\right)\right) \neq 0$, which is a contradiction.
(8.8) Proposition. (8.8.1) $\mathscr{O}_{E}(-C)$ is an ℓ-invertible \mathscr{O}_{E}-module with an ℓ-free ℓ-basis $y_{1}^{m-2}-y_{2}^{2}$ at P and an ℓ-isomorphism.

$$
\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E}(-C) \simeq\left(4 P^{\sharp}\right) .
$$

(8.8.2) $H^{0}\left(\mathscr{O}_{E}(-\nu C)\right) \rightarrow H^{0}\left(\mathscr{O}_{C} \tilde{\otimes}_{\mathscr{O}_{E}}(-\nu C)\right)$ for all $\nu \geq 0$.
(8.8.3) There are sections s_{1} and $s_{2} \in H^{0}(I)$ such that

$$
\begin{aligned}
& s_{1} \equiv(\text { unit }) \cdot y_{1}^{2}\left(y_{1}^{m-2}-y_{2}^{2}\right) \bmod y_{4} \text { near } P, \\
& s_{2} \equiv(\text { unit }) \cdot y_{2}\left(y_{1}^{m-2}-y_{2}^{2}\right)^{(m-1) / 2} \bmod y_{4} \quad \text { near } P .
\end{aligned}
$$

$$
\begin{equation*}
H^{0}(I) \rightarrow H^{0}\left(g r_{C}^{0} J\right)=H^{0}\left(I / F^{3}(\odot, J)\right) \simeq \mathbb{C} \tag{8.8.4}
\end{equation*}
$$

Proof. (8.8.1) follows from the construction of E. Hence $H^{1}\left(\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E}(-\nu C)\right)=$ 0 for all $\nu \geq 0$ and $H^{1}\left(\mathscr{O}_{E}(-\nu C)\right)=0$ since C is a fiber of proper f. Thus we have (8.8.2). (8.8.3) follows from (8.8.2), and (8.8.4) follows from (8.8.3) by $H^{0}\left(g r_{C}^{0} J\right) \simeq \mathbb{C}$.
(8.9) By (8.7), there are four cases to treat.
(8.9.1) Case $m \geq 7, \alpha(P) \neq 0$.
(8.9.2) Case $m=5, \lambda_{1}(P) \neq 0$.
(8.9.3) Case $m=5, \lambda_{1}(P)=0, \alpha(P) \neq 0$.
(8.9.4) Case $m=5, \lambda_{1}(P)=0, \alpha(P)=0$.

We first prove (8.3) in the easy cases.
(8.10) Proof of (8.3). Cases (8.9.1) and (8.9.3). By (8.5.2) and (8.8), a general section $s \in H^{0}(I)$ satisfies

$$
s \equiv(\text { unit }) \cdot\left\{y_{1}^{2} u+\alpha y_{2} y_{4}^{2}\right\} \bmod F^{3}(\mathscr{O}, J) \quad \text { at } P
$$

where $\alpha(P) \neq 0$ by assumption. Let us take s_{2} given in (8.8.3). We claim that s_{2} belongs to $H^{0}\left(F^{3}(\mathscr{O}, J)\right)$. Indeed it is obvious that $s_{2} \notin \mathbb{C} s+F^{3}(\mathscr{O}, J)$ near P. Hence by $H^{0}\left(I / F^{3}(\mathscr{O}, J)\right)=\mathbb{C} s$, we have $s_{2} \in H^{0}\left(F^{3}(\mathscr{O}, J)\right)$ as claimed. By (8.5.3), we see that the coefficient of $y_{2} y_{4}^{2}$ (resp. y_{2}^{m}) in the Taylor expansion of s_{2} at P^{\sharp} is 0 (resp. nonzero) because $m \geq 7$ or $\lambda_{1}(P)=0$. We
now analyze the set $H=\{s=0\}$. By Bertini's theorem, H is smooth outside C. Since $\mathscr{O} s$ is the unique \mathscr{O} in $g r_{C}^{1} \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1), H$ is smooth on $C-\{P\}$. To study (H, P), we will apply (10.7). Indeed if $\lambda_{1}(P)=0$, then $\mu_{1}(P) \neq 0$ by the construction (8.2). Thus (10.7.1) holds by (8.5.3). The existence of s_{2} ensures (10.7.2). Since $m \geq 7$ or $\lambda_{1}(P)=0$, we can now apply (10.7). It only remains to check $\left(\bullet^{2}\right)=-1$ in (8.3.2). Since

$$
\left(C \cdot K_{H}\right)_{H}=\left(C \cdot K_{X}+H\right)_{X}=-\frac{1}{m}<0
$$

the proper transform - of C in the minimal resolution H^{\prime} of H satisfies $\left(\bullet^{2}\right)=-1$.
(8.11) Proof of (8.3). Case (8.9.2). The argument is the same as (8.10) except that we need to check (10.7.3) when we apply (10.7).

We note $\mu_{1}(P) \neq 0$ by (8.4.1). For $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{m} \in\left|-2 K_{X}\right|$, we have a surjection $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right) \rightarrow \mathscr{O}_{D}\left(-K_{X}\right)$ by $H^{1}\left(\omega_{X}\right)=0$. Let $\phi \in H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$ be a section sent to

$$
\left\{u-\lambda_{1}(P) y_{4}\right\} / d y_{1} \wedge d y_{2} \wedge d y_{4} \in \mathscr{O}_{D}\left(-K_{X}\right)
$$

Thus the image of ϕ under the homomorphism

$$
I \tilde{\otimes} \mathscr{O}_{X}\left(-K_{X}\right) \rightarrow g r_{C}^{1} \mathscr{O}_{X}\left(-K_{X}\right)=(1) \tilde{\oplus}(0) \rightarrow(0)
$$

is nonzero by $\lambda_{1}(P) \neq 0$. Hence $E^{\prime}=\{\phi=0\} \in\left|-K_{X}\right|$ is smooth outside $\{P\}$ and we may choose ϕ so that E^{\prime} is furthermore normal by Bertini's theorem. We have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus} \mathscr{O}_{C}\left(-E^{\prime}\right) .
$$

By the construction of E^{\prime}, we see that $\left(E^{\prime}, P\right)=\{v=0\} / \mathbb{Z}_{m}$ where $v=$ $y_{1}^{3}-y_{2}^{2}+\lambda_{1}{ }^{\prime} \cdot y_{4}$ for some $\lambda_{1}{ }^{\prime} \in \mathscr{O}_{C, P}$ such that $\lambda_{1}{ }^{\prime}(P)=0$. As in (8.8), we see that $\mathscr{O}_{E^{\prime}}(-C)$ is an ℓ-invertible $\mathscr{O}_{E^{\prime}}$-module with an ℓ-free ℓ-basis u at P and an ℓ-isomorphism

$$
\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E^{\prime}}(-C) \simeq\left(4 P^{\sharp}\right) .
$$

We similarly see

$$
H^{0}\left(\mathscr{O}_{E^{\prime}}(-\nu C)\right) \rightarrow H^{0}\left(\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E^{\prime}}(-\nu C)\right) \quad \text { for all } \nu \geq 0
$$

We note that $y_{1}^{2} u, y_{2} u^{2}, y_{1} u^{3}, y_{2}^{2} u^{4}, u^{5}$ are bases of $\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E^{\prime}}(-\nu C)$ at P for $\nu=1, \ldots, 5$, respectively. Thus for arbitrary $a_{1}, \ldots, a_{5} \in \mathbb{C}$, there exist $s \in H^{0}(I)$ such that

$$
s \equiv a_{1} y_{1}^{2} u+\cdots+a_{5} u^{5} \bmod \left(v, u^{6}\right)
$$

Hence by $\left(v, u^{6}\right) \subset\left(y_{1}^{3}, y_{2}^{2}, y_{4}^{6}\right)$, there exist $s^{\prime} \in H^{0}(I)$ such that

$$
s^{\prime} \equiv a_{1} y_{1}^{2} y_{4}+a_{2} y_{2} y_{4}^{2}+a_{3} y_{1} y_{4}^{3}+a_{5} y_{4}^{5} \bmod \left(y_{1}^{3}, y_{2}^{2}, y_{4}^{6}\right)
$$

By this, it is easy to check (10.7.3). The rest is the same as (8.10).
Now (8.3) follows if we prove the following.
(8.12) Proposition. The case (8.9.4) does not occur.

Proof. We assume that we are in case (8.9.4). Since $\lambda_{1}(P)=0$, we have $\mu_{1}(P) \neq 0$ by (8.2). By $\alpha(P)=0$, we have $\alpha y_{2}=\lambda_{2} y_{1}^{m-1}$ for some $\lambda_{2} \in \mathscr{O}_{C, P}$ as in (8.6). Thus a general section $s \in H^{0}(I)$ satisfies, near P, the following:

$$
\begin{equation*}
s \equiv(\text { unit }) \cdot y_{1}^{2}\left(u+\lambda_{2} y_{1}^{m-3} y_{4}^{2}\right) \bmod F^{3}(\mathscr{O}, J) \tag{8.12.1}
\end{equation*}
$$

Let $H=\{s=0\} \subset X$. As in (8.10), H is normal and has the exceptional curve C. We will construct a flat deformation $\pi: \mathscr{H} \rightarrow T=(\mathbb{C}, 0)$ of H with $\mathscr{C}=C \times T \subset \mathscr{H}$ such that $\mathscr{H}_{0}=H \supset \mathscr{C}_{0}=C$ as follows, where $\mathscr{H}_{t}=\pi^{-1}(t)$ and $\mathscr{C}_{t}=C \times t \quad(t \in \mathbb{C})$.
Construction. Let s_{t} be a local section at P :

$$
s_{t}=s+t\left(y_{1} y_{4}^{3}+y_{2} y_{4} u\right) \quad(t: \text { parameter })
$$

We note $s_{t} \equiv s \bmod F^{3}(\mathscr{O}, J)$. Let $\left(X_{t}, P_{t}\right) \supset\left(C_{t}, P_{t}\right)$ be the trivial deformation of $(X, P) \supset(C, P)$ with parameter t. Let $\mathscr{X} \supset \mathscr{C}$ be the twisted extension of $\left(X_{t}, P_{t}\right) \supset\left(C_{t}, P_{t}\right)$ by $\left(s_{t}, y_{1}^{2} y_{4}\right)$ with parameter t (cf. [Mori88, (1b.8)]). By the construction, there is a section $\tilde{s} \in H^{0}\left(\mathscr{O}_{\mathscr{R}}\right)$ such that

$$
\left.\tilde{s}\right|_{\mathscr{R}_{t}}= \begin{cases}s & \text { outside of a nbd of } P_{t} \\ s_{t} & \text { in a nbd of } P_{t}\end{cases}
$$

We now set $\mathscr{H}=\{\tilde{s}=0\} \subset \mathscr{X}$.
Since C is analytically contractible in H, so is \mathscr{C}_{t} in \mathscr{H}_{t} for sufficiently small t. We will derive a contradiction by showing that \mathscr{C}_{t} is not analytically contractible in our \mathscr{H}_{t}. Since H is a normal surface, so is \mathscr{H}_{t}. We know that the images of s and $s_{t}\left(\right.$ by $\left.s_{t} \equiv s \bmod F^{3}(\mathscr{O}, J)\right)$ in $g r_{C}^{1} \mathscr{O}$ are nowhere vanishing on $C-\{P\}$. Thus P_{t} is the only singular point of \mathscr{H}_{t} on \mathscr{C}_{t}. By (8.12.1) and the definition of s_{t}, we can apply (10.8) and $\Delta\left(\mathscr{H}_{t} \supset \mathscr{C}_{t}\right)$ is as follows.

Since the deformation $\left(\mathscr{R}_{t}, P_{t}\right)$ is induced by the deformation of the canonical cover of $(H, P), 5 K_{\mathscr{H}}$ is a Cartier divisor and we see $\left(K_{\mathscr{H}} \cdot \mathscr{C}_{t}\right)=-1 / 5<0$ as in (8.10). Thus follows $\left(\bullet^{2}\right)=-1$. Then it is easy to see that $\Delta\left(\mathscr{H}_{t} \supset \mathscr{C}_{t}\right)$ contracts to $\underset{0}{\circ}$, which is not contractible. This is a contradiction and thus (8.9.4) is disproved.
(8.13) Remark. Except for the usual vanishing of the cohomologies of the extremal nbd $X \supset C$, we have used in this chapter that C is contractible
in H (8.12) to treat the case (8.9.4). Thus the birationality of the morphism $f: X \rightarrow Y$ is used here.

9. General members of $\left|\mathscr{O}_{X}\right|_{C}$; isolated $k A D$ case

(9.1) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd of type ($k A D$) with singular points P and R of indices $m(\geq 3)$ and 2. Let H_{X} be a general member of $\left|\sigma_{X}\right|$ through C and let $H_{Y}=f\left(H_{X}\right)$. Let $\Delta_{X}=\Delta\left(H_{X} \supset C\right)$ and $\Delta_{Y}=\Delta\left(H_{Y}\right)$. Our main result of this section is the following.
(9.2) Theorem. If $X \supset C$ is an isolated extremal nbd, then we have the following:
(9.2.1) H_{X} is normal, Δ_{X} and Δ_{Y} consist of smooth rational curves intersecting transversely.
(9.2.2) Δ_{X} and Δ_{Y} are as follows

where $\underset{3}{\circ}-\overbrace{\substack{0 \\ 2}}^{(m-7) / 2}-\underset{2}{0}-$ reduces to ${\underset{4}{\circ}}_{\circ}$ if $m=5$. To be precise, o at the left end of Δ_{X} lies over R and the rest of \circ 's in Δ_{X} over P.

We note first the following.
(9.3) Proposition. If $X \supset C$ of type ($k A D$) is isolated, then it is as described in (2.13.10).
Proof. In view of (2.13.13.3), it is enough to show that $X \supset C$ as described in (2.13.3.2) is not isolated. Indeed if such an $X \supset C$ is isolated, then so are arbitrary nearby nbds $X_{t}^{\circ} \supset C_{t}$. By (2.13.3), there are nearby nbds of type ($k 3 A$), which are divisorial by (5.1). This is a contradiction and we are done.

We restate (2.13.10) with a slight modification.
(9.4) Proposition (Set up). (9.4.1) We have

$$
\begin{aligned}
& (X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1) \supset(C, P)=y_{1} \text {-axis } / \mathbb{Z}_{m} \\
& (X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \gamma\right) / \mathbb{Z}_{2}(1,1,1,0 ; 0) \supset(C, R)=z_{1} \text {-axis/} \mathbb{Z}_{2}
\end{aligned}
$$

where m is an odd integer ≥ 5 and $\gamma \equiv z_{1} z_{3}-z_{2}^{2} \bmod \left(z_{4}\right)+z_{3} I$.
(9.4.2) We have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=L \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right),
$$

where $L=\left((m-1) / 2 P^{\sharp}+R^{\sharp}\right)$ or $\left((m-1) / 2 P^{\sharp}\right)$ according as (X, R) is a quotient singularity or not.

Furthermore the ideal $I=I_{C}$ contains a C-laminal ideal J of width 2 such that $J / I^{(2)} \simeq \mathscr{O},\left(J^{\sharp}, P^{\sharp}\right)=\left(y_{2}, y_{3}^{2}\right),\left(J^{\sharp}, R^{\sharp}\right)=\left(z_{3}, z_{4}\right)$, and an ℓ isomorphism and an ℓ-splitting

$$
\begin{aligned}
I / J & \simeq\left(-1+P^{\sharp}+R^{\sharp}\right) \quad \text { with } \ell \text {-bases }\left(y_{3}, z_{2}\right) \text { at } P, R, \\
g r_{C}^{0} J & =\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right),
\end{aligned}
$$

where $\left(2 P^{\sharp}\right)\left(\right.$ resp. $\left.\left(-1+(m-1) / 2 P^{\sharp}+Q^{\sharp}\right)\right)$ has ℓ-bases

$$
\begin{array}{ll}
\left(y_{1}^{(m-5) / 2} y_{2}+y_{3}^{2}, z_{4}\right)\left(\text { resp. }\left(y_{2}, z_{3}\right)\right) & \text { if } m \geq 7 \\
\left(y_{2}, z_{4}\right)\left(\text { resp. }\left(\mu y_{1}^{m} y_{2}+y_{3}^{2}, z_{3}\right)\right) & \text { if } m=5
\end{array}
$$

at P and R, and $\mu \in \mathscr{O}_{C, P}$.
Proof. Let k be the axial multiplicity of R. We treat the case $k>1$ first. In view of (2.13.10), we may take $\gamma \equiv z_{1} z_{3}-z_{2}^{2} \bmod \left(z_{3}, z_{4}\right) I$ and need to check the last part on ℓ-bases. Since $\left(2 P^{\sharp}\right) \rightarrow L=\left((m-1) / 2 P^{\sharp}\right)$ in (2.13.10) induces an isomorphism of invertible sheaves, $\left(2 P^{\sharp}\right)$ has ℓ-bases $\left(y_{1}^{(m-5) / 2} y_{2}+\right.$ $\left.\alpha y_{3}^{2}, z_{4}+\beta z_{1} z_{3}\right)$ at P and R for some $\alpha \in \mathscr{Q}_{C, P}$ and $\beta \in \mathscr{O}_{C, R}$. We note that α is a unit if $m \geq 7$ since $y_{1}^{(m-5) / 2} y_{2}+\alpha y_{3}^{2}$ is not divisible by y_{1}. At P, we can make a coordinate change $y_{3} \mapsto($ unit $) \cdot y_{3}$ if $m \geq 7\left(y_{2} \mapsto y_{2}+(\cdots) y_{3}^{2}\right.$ if $m=5$) so that $\left(2 P^{\sharp}\right)$ has the claimed ℓ-basis at P. At R, a coordinate change $z_{4} \mapsto z_{4}+(\cdots) z_{1} z_{3}$ will make z_{4} an ℓ-basis of $\left(2 P^{\sharp}\right)$ at R keeping $\gamma \equiv z_{1} z_{3}-z_{2}^{2} \bmod \left(z_{3}, z_{4}\right) I$. If $m \geq 7$, then the standard choice $g r^{2,1}(\overparen{O}, J)$ of $\left(-1+(m-1) / 2 P^{\sharp}+R^{\sharp}\right)$ in the ℓ-splitting of $g r_{C}^{0} J$ has the claimed ℓ-bases by [Mori88, (8.11.1.ii)]. If $m=5$, then among $\infty^{1}\left(-1+(m-1) / 2 P^{\sharp}+R^{\sharp}\right)$'s in the ℓ-splitting of $g r_{C}^{0} J$ we will choose one with an ℓ-basis $\mu y_{1}^{m} y_{2}+y_{3}^{2}$ at P for some $\mu \in \mathscr{O}_{C, P}$. A coordinate change $z_{3} \mapsto z_{3}+(\cdots) z_{1} z_{4}$ at R will attain the assertion on ℓ-bases keeping the other conditions.

We now assume $k=1$. If we use the expression

$$
(X, R)=\left(z_{1}, z_{2}, z_{3}\right) / \mathbb{Z}_{2}(1,1,1) \supset(C, R)=z_{1} \text {-axis } / \mathbb{Z}_{2},
$$

the previous argument provides us with an ℓ-basis $z_{2}^{2}-\alpha z_{1} z_{3}$ of $\left(2 P^{\sharp}\right)$ at P with unit $\alpha \in \mathscr{O}_{C, R}$, because $\left(2 P^{\sharp}\right) \rightarrow L=\left((m-1) / 2 P^{\sharp}+R^{\sharp}\right)$ induces an isomorphism of invertible sheaves. By a coordinate change $z_{1} \mapsto($ unit $) \cdot z_{1}$ at R, we may assume $\alpha=1$ and will set $z_{4}=z_{2}^{2}-z_{1} z_{3}$. The rest is easy.
(9.5) Proposition. There is a member $E \in\left|-K_{X}\right|$ such that:
(9.5.1) E is a normal surface smooth outside of $\{P, R\}$;
(9.5.2) $\mathscr{O}_{C}(-E) \quad\left(=\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}(-E)\right)$ is equal to $\left(-1+(m-1) / 2 P^{\sharp}+R^{\sharp}\right)$ in (9.4.2);
(9.5.3) $\mathscr{O}_{E}(-2 C)=J / \mathscr{O}(-E)$ and it is an ℓ-invertible \mathscr{O}_{E}-module with ℓ isomorphisms

$$
\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E}(-i C)= \begin{cases}\left(i P^{\sharp}\right) & \text { i even }, \\ \left(-1+i P^{\sharp}+R^{\sharp}\right) & \text { i odd } ;\end{cases}
$$

(9.5.4) $H^{0}\left(\mathscr{O}_{E}(-\nu C)\right) \rightarrow H^{0}\left(\mathscr{O}_{C} \tilde{\otimes}_{E}(-\nu C)\right)$ for all $\nu \geq 0$,
(9.5.5) We may change coordinates in (9.4) and we can assume $(E, P)=$ $\left\{y_{2}=0\right\} / \mathbb{Z}_{m}$ if $m \geq 7$ and $(E, R)=\left\{z_{3}=0\right\} / \mathbb{Z}_{2}$ in addition to (9.4).
Proof. Let $D=\left\{y_{1}=0\right\} / \mathbb{Z}_{m} \in\left|-2 K_{X}\right|$. We have a surjection $H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right) \rightarrow$ $\mathscr{O}_{D}\left(-K_{X}\right)$ by $H^{1}\left(\omega_{X}\right)=0$. Since $g r^{i}\left(\mathscr{O}\left(-K_{X}\right), J\right) \simeq \mathscr{O}_{C}(-1)$ for $i=0$ and 1 by (9.4), we have $H^{0}\left(F^{2}\left(\mathscr{O}\left(-K_{X}\right), J\right)\right)=H^{0}\left(\mathscr{O}\left(-K_{X}\right)\right)$. Thus the above surjection factors through

$$
\begin{aligned}
g r^{2}\left(\mathscr{O}\left(-K_{X}\right), J\right) & =g r_{C}^{0} J \tilde{\otimes} \mathscr{O}\left(-K_{X}\right) \\
& =\left(-1+\frac{m+5}{2} P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}(0) .
\end{aligned}
$$

Let $\phi \in H^{0}\left(F^{2}\left(\mathscr{O}\left(-K_{X}\right), J\right)\right)$ be an element sent to $y_{2} / d y_{1} \wedge d y_{2} \wedge d y_{3} \bmod$ $y_{1} \in \mathscr{O}_{D}\left(-K_{X}\right) \quad\left(\left(\mu y_{1}^{m} y_{2}+y_{3}^{2}\right) / d y_{1} \wedge d y_{2} \wedge d y_{3} \bmod y_{1}\right.$ if $\left.m=5\right)$ and $E=$ $\{\phi=0\}$. Since $F^{3}\left(\mathscr{O}\left(-K_{X}\right), J\right)$ is generated by global sections outside C, we may assume that E is smooth outside C. By construction, (9.5.2) is obvious and hence (9.5.1) follows. It is easy to see $(2 C, P)=\left\{y_{1}^{(m-5) / 2} y_{2}+y_{3}^{2}=0\right\} / \mathbb{Z}_{m}$ $\left(\left\{y_{2}=0\right\} / \mathbb{Z}_{5}\right.$ if $\left.m=5\right)$ in (E, P) and $(2 C, R)=\left\{z_{4}=0\right\} / \mathbb{Z}_{2}$ in (E, R). Thus (9.5.3) follows. (9.5.4) follows from (9.5.3), and (9.5.5) is obvious.

We will construct C-laminal ideals $J=J_{2} \supset J_{3} \supset J_{4} \supset J_{5}$ successively.
(9.6) Proposition. Let $J_{2}=J$ and J_{3} be such that $J_{2} \supset J_{3} \supset F_{C}^{1} J_{2}$ and $J_{3} / F_{C}^{1} J_{2}=\left(2 P^{\sharp}\right)$ given in (9.4). Then
(9.6.1) $I \supset J_{3}$ has ℓ-bases
$(1,3,2)$-monomializing $\left(y_{3}, y_{1}^{(m-5) / 2} y_{2}+y_{3}^{2}, y_{2}\right)$ at P if $m \geq 7$, $(1,3)$-monomializing $\left(y_{3}, y_{2}\right)$ at P if $m=5$, ($1,3,2$)-monomializing $\left(z_{2}, z_{4}, z_{3}\right)$ at R;
(9.6.2) We have ℓ-isomorphisms

$$
\begin{aligned}
g r^{i}\left(\mathscr{O}, J_{3}\right) & \simeq \begin{cases}\left(-1+P^{\sharp}+R^{\sharp}\right) & \text { if } i=1, \\
\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) & \text { if } i=2,\end{cases} \\
g r^{3,0}\left(\mathscr{O}, J_{3}\right) & \simeq\left(2 P^{\sharp}\right), \\
g r^{3,1}\left(\mathscr{O}, J_{3}\right) & \simeq\left(-1+\frac{m+1}{2} P^{\sharp}\right) \simeq g r^{2,1}\left(\mathscr{O}, J_{2}\right) \tilde{\otimes} g r^{1}\left(\mathscr{O}, J_{2}\right) ;
\end{aligned}
$$

(9.6.3) The induced ℓ-exact sequence

$$
0 \rightarrow g r^{3,1}\left(\odot, J_{3}\right) \rightarrow g r^{3}\left(\odot, J_{3}\right) \rightarrow g r^{3,0}\left(\odot, J_{3}\right) \rightarrow 0
$$

is ℓ-split.

Indeed (9.6.3.1) follows from the definition of monomializing ℓ-bases, (9.6.3.2) from [Mori88, (8.11.1)], and (9.6.3.3) from (9.6.3.2) via

$$
H^{1}\left(g r^{3,1}\left(\odot, J_{3}\right) \tilde{\otimes} g r^{3,0}\left(\odot, J_{3}\right)^{\tilde{\otimes}(-1)}\right)=0
$$

The following (9.7) and (9.8) can be seen similarly.
(9.7) Proposition. Let J_{4} be such that $J_{3} \supset J_{4} \supset F_{C}^{1} J_{3}$ and $J_{4} / F_{C}^{1} J_{3}$ is the unique subsheaf ($2 P^{\sharp}$) of $g r^{3}\left(\mathscr{G}, J_{3}\right)$ given by (9.6.2). Then we have ℓ-isomorphism

$$
\begin{aligned}
& g r^{4,0}\left(\mathscr{O}, J_{4}\right) \simeq\left(2 P^{\sharp}\right), \\
& g r^{4,1}\left(\mathscr{O}, J_{4}\right) \simeq\left(-1+(m-1) P^{\sharp}\right) \simeq g r^{2}\left(\mathscr{O}, J_{3}\right)^{\dot{\otimes} 2}
\end{aligned}
$$

and the induced ℓ-exact sequence

$$
0 \rightarrow g r^{4,1}\left(\odot, J_{4}\right) \rightarrow g r^{4}\left(\odot, J_{4}\right) \rightarrow g r^{4,0}\left(\odot, J_{4}\right) \rightarrow 0
$$

is ℓ-exact.
(9.8) Proposition. Let J_{5} be such that $J_{4} \supset J_{5} \supset F_{C}^{1} J_{4}$ and $J_{5} / F_{C}^{1} J_{4}$ is the unique subsheaf $\left(2 P^{\sharp}\right)$ of $g r^{4}\left(\odot, J_{4}\right)$ given by (9.7). Then
(9.8.1) The monomializing ℓ-bases of $I \supset J_{3}$ at P given in (9.6) lift to the $(1,5,2)$ - and $(1,5)$-monomializing ℓ-bases of $I \supset J_{5}$ at P

$$
\begin{aligned}
\left(y_{3}, y_{1}^{(m-5) / 2} y_{2}+y_{3}^{2}+\alpha_{3} y_{1}^{(m-3) / 2} y_{3}+\alpha_{4} y_{1}^{m-3} y_{2}^{2}, y_{2}\right) & \text { if } m \geq 7 \\
\left(y_{3}, y_{2}\right) & \text { if } m=5
\end{aligned}
$$

for some $\alpha_{3}, \alpha_{4} \in \mathscr{O}_{C, P}$ by [Mori88, (8.15.1) and (8.16)] (modulo a coordinate change

$$
y_{2} \mapsto y_{2} \cdot(\text { unit })+y_{1} y_{3}^{3}(\cdots)+y_{1}^{2} y_{3}^{4}(\cdots)
$$

if $m=5$, which keeps the earlier conditions satisfied);
(9.8.2) We have ℓ-isomorphisms

$$
\begin{aligned}
g r^{i}\left(\Theta, J_{5}\right) & \simeq\left\{\begin{array}{l}
\left(\frac{i}{2}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \quad \text { if } i=2,4,\right. \\
\left(-1+P^{\sharp}+R^{\sharp}+\frac{i-1}{2}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \quad \text { if } i=1,3,\right.
\end{array}\right. \\
g r^{5,0}\left(\Theta, J_{5}\right) & \simeq\left(2 P^{\sharp}\right), \\
g r^{5,1}\left(\Theta, J_{5}\right) & \simeq\left(-1+R^{\sharp}\right)
\end{aligned}
$$

by [Mori88, (8.11.1)].
Under these notation and assumptions, we have the following.
(9.9) Lemma. At P^{\sharp}, we have

$$
F^{6}\left(\circlearrowleft, J_{5}\right)^{\sharp}\left\{\begin{array}{l}
\subset\left(y_{1} y_{2} y_{3}, y_{1} y_{2}^{2}, y_{3}^{3}, y_{2}^{3}, y_{2} y_{3}^{2}\right) \quad \text { if } m \geq 7 \\
=\left(y_{2} y_{3}, y_{2}^{2}, y_{3}^{6}\right) \quad \text { if } m=5 .
\end{array}\right.
$$

Proof. Let $u=y_{1}^{(m-5) / 2} y_{2}+y_{3}^{2}+\alpha_{3} y_{1}^{(m-3) / 2} y_{2} y_{3}+\alpha_{4} y_{1}^{m-3} y_{2}^{2}$, assuming $m \geq 7$. Then $u \in\left(y_{1} y_{2}, y_{3}^{2}\right)$. By $F^{6}\left(\odot, J_{5}\right)^{\sharp}=\left(u^{2}, u y_{3}, u y_{2}, y_{2}^{3}\right)$ [Mori88, (8.11)], we see the assertion. The case $m=5$ follows from [Mori88, (8.10)].
(9.10) Proposition. (9.10.1) There are sections s_{1} and $s_{2} \in H^{0}(I)$ satisfying the following relations near P :

$$
\begin{aligned}
& s_{1} \equiv \begin{cases}(\text { unit }) \cdot y_{1}^{2} y_{3}^{2} \bmod y_{2} & \text { if } m \geq 7, \\
(\text { unit }) \cdot y_{1}^{2} y_{2} \bmod \phi & \text { if } m=5,\end{cases} \\
& s_{2} \equiv \begin{cases}(\text { unit }) \cdot y_{3}^{m} \bmod y_{2} & \text { if } m \geq 7, \\
(\text { unit }) \cdot y_{2}^{2} y_{3} \bmod \phi & \text { if } m=5,\end{cases}
\end{aligned}
$$

where ϕ is the equation for E at P^{\sharp} given in (9.5) and $\phi \equiv \mu y_{1}^{m} y_{2}+y_{3}^{2}$ $\bmod \left(y_{2}^{2}, y_{2} y_{3}, y_{3}^{3}\right)$.
(9.10.2) The coefficient of $y_{1}^{2} y_{3}^{2}$ (resp. $y_{1}^{2} y_{2}$) in the Taylor expansion of s_{1} at P is non-zero if $m \geq 7$ (resp. $m=5$),
(9.10.3) The coefficient of $y_{1}^{2} y_{3}^{2}$ (resp. $y_{1}^{2} y_{2}$) is zero and the one of y_{3}^{m} (resp. $y_{2}^{2} y_{3}$) is non-zero in the Taylor expansion of s_{2} at P if $m \geq 7$ (resp. $m=5$),
(9.10.4) $H^{0}(I) \rightarrow H^{0}\left(g r^{5}\left(\mathscr{O}, J_{5}\right)\right)=H^{0}\left(\mathscr{O} / F^{6}\left(\mathscr{O}, J_{5}\right)\right) \simeq \mathbb{C}$.

Proof. We note that y_{3}^{2} (resp. y_{2}) is the ℓ-free ℓ-basis of $\mathscr{O}_{C} \tilde{\otimes} \mathscr{O}_{E}(-2 C)$ at P if $m \geq 7$ (resp. $m=5$) by (9.4.2) and (9.5.3). We have a surjection $H^{0}\left(\mathscr{O}_{X}\right) \rightarrow H^{0}\left(\mathscr{O}_{E}\right)$ by $H^{1}\left(\omega_{X}\right)=0$. Hence the assertion on s_{1} follows from (9.5.4). The assertion on s_{2} is proved similarly. If $m \geq 7$, then (9.10.2) and (9.10.3) are obvious. If $m=5$, then it is easy to see that the coefficients of $y_{1}^{2} y_{2}$ and $y_{2}^{2} y_{3}$ are zero in the Taylor expansion at P of an arbitrary \mathbb{Z}_{m} invariant element of $\phi \mathscr{O}_{X^{1}, P^{\sharp}}$. Whence (9.10.2) and (9.10.3) follow. By (9.8.2), we see $H^{0}\left(g r^{i}\left(\mathscr{O}, J_{5}\right)\right)=0$ for $i \in[1,4]$ and $H^{0}\left(g r^{5}\left(\mathscr{O}, J_{5}\right)\right) \simeq \mathbb{C}$. Then $H^{0}(I) \rightarrow H^{0}\left(\mathscr{O} / F^{6}\left(\mathscr{O}, J_{5}\right)\right)$ is non-zero by (9.10.2), and we are done.
(9.11) Proposition. Let $s \in H^{0}(I)$ be a general section. Then
(9.11.1) $H=\{s=0\}$ is a normal surface smooth outside $\{P, R\}$, and (H, R) is a rational singularity
$(H, R) \simeq\left(z_{1}, z_{2}, z_{3} ; z_{1} z_{3}+z_{2}^{2}\right) / \mathbb{Z}_{2}(1,1,1 ; 0) \supset(C, R)=z_{1}$-axis $/ \mathbb{Z}_{2} ;$
(9.11.2) $\Delta((H, R) \supset(C, R))$ is $\bullet-\frac{0}{4}$.

Proof. Since $g r^{5}\left(\odot, J_{5}\right) \rightarrow g r^{2}\left(\mathscr{O}, J_{2}\right)$ induces an ℓ-isomorphism of their subschemes ($2 P^{\sharp}$), the image \bar{s} of s in $g r_{C}^{1} \mathscr{O}$ is nonvanishing outside $\{P, R\}$ and $s \equiv($ unit $) \cdot z_{4} \bmod F^{3}\left(\mathscr{O}, J_{2}\right)$ at R. At R^{\sharp}, we see $F^{3}\left(\mathscr{O}, J_{2}\right)^{\sharp}=\left(z_{3}, z_{4}\right)$. $\left(z_{2}, z_{3}, z_{4}\right)$ by (9.4.2). Thus we have (9.11.1), and (9.11.2) follows from (9.11.1).
(9.12) By (9.8.2), the standard ℓ-exact sequence for $\left.g r^{5}(\odot), J_{5}\right)$ takes the form

$$
\begin{equation*}
0 \rightarrow\left(-1+R^{\sharp}\right) \rightarrow g r^{5}\left(\mathscr{O}, J_{5}\right) \rightarrow\left(2 P^{\sharp}\right) \rightarrow 0 . \tag{9.12.1}
\end{equation*}
$$

(9.13) Proposition. If $m \geq 7$, then (9.12.1) is not ℓ-split.
(9.13.1) Remark. The isolatedness of the nbd $X \supset C$ is not used in the proof of (9.13).

Proof. Assuming that (9.12.1) is ℓ-split, we will derive $H^{1}\left(\omega_{X} / F^{8}\left(\omega_{X}, J_{5}\right)\right) \neq$ 0 , which is a contradiction. By (9.8.2) and $g r_{C}^{0} \omega \simeq\left(-1+(m-1) / 2 P^{\sharp}+R^{\sharp}\right)$, we see $H^{i}\left(g r^{j}\left(\omega_{X}, J_{5}\right)\right)=0$ for all $i=0,1$ and $1 \leq j \leq 4$. Similarly we see $H^{i}\left(g r^{5}\left(\omega_{X}, J_{5}\right)\right)=0$ for $i=0,1$. For $g r^{6}\left(\mathscr{O}, J_{5}\right)$, we have an ℓ-exact sequence

$$
0 \rightarrow\left(-1+\frac{m-3}{2} P^{\sharp}+R^{\sharp}\right) \rightarrow g r^{6}\left(\mathscr{O}, J_{5}\right) \rightarrow\left(-1+3 P^{\sharp}+R^{\sharp}\right) \rightarrow 0
$$

by [Mori88, (8.11.1)]. Hence by $m \geq 7$, we see $H^{i}\left(g r^{6}\left(\omega_{X}, J_{5}\right)\right)=0$ for $i=0,1$. Thus

$$
H^{1}\left(\omega_{X} / F^{8}\left(\omega_{X}, J_{5}\right)\right) \simeq H^{1}\left(g r^{7}\left(\omega_{X}, J_{5}\right)\right)
$$

We see an ℓ-isomorphism

$$
g r^{5}\left(\Theta, J_{5}\right) \tilde{\otimes} g r^{2}\left(\Theta, J_{5}\right) \simeq g r^{7}\left(\Theta, J_{5}\right)
$$

and $(9.12 .1) \tilde{\otimes} g r^{2}\left(\mathscr{O}, J_{5}\right)$ is the standard ℓ-exact sequence for $g r^{7}\left(\mathscr{O}, J_{5}\right)$ [Mori88, (8.11.1)]. Since (9.12.1) is ℓ-split, we have an ℓ-isomorphism

$$
g r^{7}\left(\omega_{X}, J_{5}\right) \simeq\left(-2+(m-1) P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(P^{\sharp}\right)
$$

This implies $H^{1}\left(g r^{7}\left(\omega_{X}, J_{5}\right)\right) \neq 0$ and we have the contradiction as claimed.
(9.14) Proposition. If $m=5$, then (9.12.1) is not ℓ-split.
(9.14.1) Remark. The proof actually shows that $X \supset C$ is not isolated if $m=5$ and (9.12.1) is ℓ-split. The argument is very similar to the proof of (8.12).

Proof. We assume (9.12.1) is ℓ-split and $X \supset C$ is isolated. Then $g r^{5}\left(\mathscr{O}, J_{5}\right)$ contains ($2 P^{\sharp}$) and it has an ℓ-basis y_{2} (unit) $+\alpha_{5} y_{1}^{3} y_{3}^{5}$ at P for some $\alpha_{5} \in$ $\mathscr{O}_{C, P}$. Then a general section $s \in H^{0}(I)$ satisfies, near P, the following:

$$
s \equiv(\text { unit }) \cdot\left(y_{1}^{2} y_{2}+\alpha_{5} y_{1}^{5} y_{3}^{5}\right) \bmod F^{6}\left(\mathscr{O}, J_{5}\right)
$$

for some $\alpha_{5} \in \mathscr{O}_{X, P}$. Let $H=\{s=0\} \subset X$. By (9.11), H is normal and has the exceptional curve C. We will construct a flat deformation $X_{t} \supset C_{t}$ of $X \supset C$.
Construction. Let s_{t} be a local section at P :

$$
s_{t}=s+t\left(y_{1} y_{3}^{6}+y_{2} y_{3}^{3}+y_{2}^{2} y_{3}\right) \quad(t: \text { parameter })
$$

We note $s_{t} \equiv s \bmod F^{6}\left(\mathscr{O}, J_{5}\right)$. Let $\left(X_{t}, P_{t}\right) \supset\left(C_{t}, P_{t}\right)$ be the trivial deformation of $(X, P) \supset(C, P)$ with parameter $t \in \mathbb{C}$. Let $\mathscr{X} \supset \mathscr{C}$ be the twisted extension of $\left(X_{t}, P_{t}\right) \supset\left(C_{t}, P_{t}\right)$ by $\left(s_{t}, y_{1} y_{3}\right)$ with parameter t (cf. [Mori88, (1b.8)]). By the construction, there is a section $\tilde{s} \in H^{0}\left(\mathscr{O}_{\mathscr{X}}\right)$ such that

$$
\left.\tilde{s}\right|_{\mathscr{P}_{t}}= \begin{cases}s & \text { outside of a nbd of } P_{t} \\ s_{t} & \text { in a nbd of } P_{t}\end{cases}
$$

We set $\mathscr{H}=\{\tilde{s}=0\} \subset \mathscr{X}$. We denote by X_{t}, H_{t}, C_{t} the fibers of \mathscr{X}, \mathscr{H}, \mathscr{C} over t.

Since H is a normal surface, so is H_{t}. We know that the images of s and s_{t} (by $s_{t} \equiv s \bmod F^{6}\left(\mathscr{O}, J_{5}\right)$) in $g r^{5}\left(\mathscr{O}, J_{5}\right)$ and $g r_{C}^{1} \mathscr{O}$ are nowhere vanishing on $C-\{P, R\}$. At $R_{t}(=R)$, the singularity of H_{t} is as described in (9.11). By the definition of s_{t}, we can apply (10.9) to study $\left(H_{t}, P_{t}\right) \supset\left(C_{t}, P_{t}\right)$, where our y_{1}, y_{2}, y_{3} correspond to x_{1}, x_{3}, x_{2} in (10.9). Then $\Delta\left(H_{t} \supset C_{t}\right)$ is as follows.

Since $5 K_{\mathscr{H}}$ is a Cartier divisor, we see $\left(K_{\mathscr{H}} \cdot C_{t}\right)=-1 / 10<0$ by $\left(K_{H}\right.$. $C)=-1 / 10$. Thus $\left(\bullet^{2}\right)=-1$ and $H_{t} \supset C_{t}$ contracts to an A_{1}-point. Since $X \supset C$ is isolated, so is its nearby nbd $X_{t}^{\circ} \supset C_{t}$. Hence the contraction Y_{t} of $X_{t} \supset C_{t}$ is not Gorenstein. Since H_{t} is normal, the contraction of C_{t} in H_{t} is a hypersurface section of Y_{t}. This is a contradiction.

We now finish the proof of (9.2).
(9.15) Since (9.12.1) is not ℓ-split, $g r^{5}\left(\mathscr{O}, J_{5}\right)$ has a unique subsheaf of \mathscr{O}_{C} which is generated at P by
$s_{P}= \begin{cases}y_{1}^{(m-1) / 2} y_{2}+y_{1}^{2} y_{3}^{2}+\alpha_{3} y_{1}^{(m+1) / 2} y_{3}+\alpha_{4} y_{1}^{m-1} y_{2}^{2}+(\text { unit }) y_{2}^{2} y_{3} \quad \text { if } m \geq 7, \\ y_{1}^{2} y_{2}+(\text { unit }) y_{3}^{5} \quad \text { if } m=5\end{cases}$
modulo $F^{6}\left(\mathscr{O}, J_{5}\right)$. Hence by (9.10.4), a general section $s \in H^{0}(I)$ satisfies $s \equiv($ unit $) \cdot s_{P} \bmod F^{6}\left(\mathscr{O}, J_{5}\right)$ near P and let $s_{2} \in H^{0}\left(F^{6}\left(\mathscr{O}, J_{5}\right)\right)$ be a section such that the coefficient of y_{3}^{m} (resp. $y_{2}^{2} y_{3}$) is nonzero in its Taylor expansion when $m \geq 7$ (resp. $m=5$).

Let $H=\{s=0\}$. Then we know the singularity of H outside $\{P\}$ by (9.11). We apply the case " $a_{0} \neq 0$ " of (10.7) to study $(H, P) \supset(C, P)$, where our y_{1}, y_{2}, y_{3} correspond to x_{1}, x_{3}, x_{2} in (10.7). Using s_{2} and (9.9), we can check (10.7.2). If $m=5$, we see $c=0$ and $e \neq 0$ in (10.7), hence (10.7.3). Thus we have Δ_{X} as in (9.2.2), where $\left(\bullet^{2}\right)=-1$ follows by $\left(K_{H} \cdot C\right)<0$. Thus (9.2) is proved.

10. Sample computations

In this chapter, we recall the notion of weighted projective space and exhibit several computations related to group quotients. There is nothing new in this chapter. The materials are contained only for convenience of reference.
(10.1) Proposition-Definition. Let $a_{1}, \ldots, a_{n}>0$ be integers with the property that g.c.d. $\left(a_{1}, \ldots, a_{n}\right)=1$. Then we define the weighted projective space

$$
\mathbb{P}\left(a_{1}, \ldots, a_{n}\right)=\left(\mathbb{C}^{n}-\{0\}\right) / \mathbb{C}^{*}
$$

where $\xi \in \mathbb{C}^{*}$ acts on $\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\xi\left(x_{1}, \ldots, x_{n}\right)=\left(\xi^{a_{1}} x_{1}, \ldots, \xi^{a_{n}} x_{n}\right)
$$

Then
(10.1.1) We have

$$
\mathbb{P}\left(a_{1}, \ldots, a_{n}\right) \simeq \operatorname{Proj} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

where x_{i} has weight $a_{i}(i=1, \ldots, n)$;
(10.1.2) Let $U_{i}=D_{+}\left(x_{i}\right)=\left\{x \in \mathbb{P} \mid x_{i} \neq 0\right\}$; then

$$
U_{i}=\operatorname{Spec} \mathbb{C}\left[y_{1}, \ldots, \stackrel{i \text { th }}{1}, \ldots, y_{n}\right] / \mathbb{Z}_{a_{i}}\left(-a_{1}, \ldots, \stackrel{i \text { th }}{0}, \ldots,-a_{n}\right)
$$

where $\bar{x}_{i}=x_{i}^{1 / a_{i}}$ and $y_{j}=x_{j} / \bar{x}_{i}^{a_{j}} \quad(j \neq i)$;
(10.1.3) The sheaf $\mathscr{O}_{\mathbb{P}}(r)(b y(10.1 .1))$ is locally free if $a_{i} \mid r(\forall i)$;
(10.1.4) If $D \in\left|\mathscr{O}_{\mathbb{P}}(s)\right|$ for some $s>0$, then we have

$$
(D \cdot \overbrace{\mathscr{O}(r) \cdots(r)}^{n-2 \text { times }})=\frac{s \cdot r^{n-2}}{a_{1} \cdots a_{n}},
$$

for all r.
The proof is left to the reader.
(10.2) Let

$$
X=\left(x_{1}, \ldots, x_{n}\right) / \mathbb{Z}_{m}\left(a_{1}, \ldots, a_{n}\right)
$$

where x_{1}, \ldots, x_{n} are variables and $m, a_{1}, \ldots, a_{n}>0$ are integers with the property that g.c.d. $\left(a_{1}, \ldots, a_{n}\right)=1$. Let

$$
\begin{gathered}
e=\frac{1}{m}\left(a_{1}, \ldots, a_{n}\right) \\
e_{i}=(0, \ldots, 0, \stackrel{i \mathrm{th}}{1}, 0, \ldots, 0) \in \mathbb{Q}^{n} \quad(i \in[1, n]) .
\end{gathered}
$$

By the theory of torus embeddings, X corresponds to the lattice $\mathbb{Z} e_{1}+\cdots+\mathbb{Z} e_{n}+$ $\mathbb{Z} e$ and the cone $C(X)=\mathbb{Q}_{+} e_{1}+\cdots+\mathbb{Q}_{+} e_{n}$ in \mathbb{Q}^{n}, where $\mathbb{Q}_{+}=\{z \in \mathbb{Q} \mid z \geq 0\}$.
(10.3) Proposition-Definition. Let σ be the \mathbb{Z}-wt given by $\sigma\left(x_{i}\right)=a_{i}$ (cf. (T.7)). Then the σ-blow-up $\pi_{\sigma}: B_{\sigma}(X) \rightarrow X$ of X is the proper birational morphism from a normal variety $B_{\sigma}(X)$ corresponding to the cone decomposition of $C(X)$ consisting of $C_{i}=\sum_{j \neq i} \mathbb{Q}_{+} e_{j}+\mathbb{Q}_{+} e$ for $i=1, \ldots, n$ (and their intersections). Then
(10.3.1) The open set U_{i} of $B_{\sigma}(X)$ corresponding to C_{i} is given by

$$
U_{i}=\left(y_{1}, \ldots, y_{n}\right) / \mathbb{Z}_{a_{i}}\left(-a_{1}, \ldots, \stackrel{i \mathrm{th}}{m}, \ldots,-a_{n}\right)
$$

where $\bar{x}_{i}=x_{i}^{1 / a_{i}}, y_{i}=\bar{x}_{i}^{m}$, and $y_{j}=x_{j} / \bar{x}_{i}^{a_{i}} \quad(j \neq i)$;
(10.3.2) The exceptional set $\Delta=\pi_{\sigma}^{-1}(0)_{\text {red }}$ is a \mathbb{Q}-Cartier Weil divisor and

$$
\Delta \cap U_{i}=\left\{y_{i}=0\right\} / \mathbb{Z}_{a_{i}} \quad \Delta \simeq \mathbb{P}\left(a_{1}, \cdots, a_{n}\right) \quad \mathscr{O}_{\Delta}(r \Delta) \simeq \mathscr{O}_{\mathbb{P}}(-m r)
$$

for r divisible by Πa_{i}.

If H is a subvariety of X, then the proper transform of H by π_{σ} is the σ-blow-up of H.
Comments on proof. Since $\mathbb{Q}^{n}=\sum_{j \neq i} \mathbb{Q} e_{j}+\mathbb{Q} e$ for any i, the relation

$$
-a_{i} e_{i}=m e-\sum_{j \neq i} a_{j} e_{i}
$$

implies (10.3.1) modulo a simple computation. The assertion (10.3.2) follows from (10.3.1) and (10.1).
(10.4) Let

$$
X=(x, y) / \mathbb{Z}_{m}(1, q)
$$

for variables x, y and relatively prime integers m and q such that $1 \leq$ $q<m$. Let $\left(u_{0}, v_{0}\right)=(0, m)$ and $\left(u_{1}, v_{1}\right)=(1, q) \in \mathbb{Z}^{2}$. The elements $\left(u_{i+1}, v_{i+1}\right) \in \mathbb{Z}^{2}$ and the integers $a_{i} \geq 2(i \geq 1)$ are inductively defined by

$$
\left(u_{i+1}, v_{i+1}\right)=a_{i}\left(u_{i}, v_{i}\right)-\left(u_{i-1}, v_{i-1}\right) \quad\left(0 \leq v_{i+1}<v_{i}\right)
$$

while $i \leq r$, where $r>0$ is the integer such that $v_{r}>0$ and $v_{r+1}=0$.
(10.5) Proposition [Hirzebruch53]. (10.5.1) $\left(u_{r+1}, v_{r+1}\right)=(m, 0)$.
(10.5.2) Let $\pi: Y \rightarrow X$ be the minimal resolution. Then π has exactly r exceptional curves C_{1}, \ldots, C_{r}. After appropriate renumbering, $C_{0}, C_{1}, \ldots, C_{r}$, and C_{r+1} form a linear chain, where C_{0} and C_{r+1} are the proper transforms of x-axis $/ \mathbb{Z}_{m}$ and y-axis $/ \mathbb{Z}_{m}$. Furthermore $\left(C_{i}\right)^{2}=-a_{i}$ for $i \in[1, r]$

$$
\begin{equation*}
\frac{m}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{r}}}} \tag{10.5.3}
\end{equation*}
$$

where $a_{i} \geq 2$ for all i.
(10.5.4) For arbitrary $c, d \in \mathbb{Z}$ such that $c+q d \equiv 0 \bmod (m)$, the Cartier divisor $\left\{x^{c} y^{d}=0\right\}$ is pulled back to

$$
\left\{\pi^{*}\left(x^{c} y^{d}\right)=0\right\}=\sum_{i=0}^{r+1}\left(c u_{i}+d v_{i}\right) C_{i} .
$$

We list a few computations which are used in Chapters 8 and 9.
(10.6) Let (H, P) be a normal surface singularity

$$
\begin{aligned}
& (H, P)=\left(x_{1}, x_{2}, x_{3} ; h\right) / \mathbb{Z}_{m}(2, m-2,1 ; 0), \\
& \left(Y_{0}, P\right)=\left(\text { the locus of }\left(t^{2}, t^{m-2}, 0\right)\right) / \mathbb{Z}_{m}(2, m-2,1), \\
& \left(Y_{1}, P\right)=x_{1} \text {-axis } / \mathbb{Z}_{m}(2, m-2,1)
\end{aligned}
$$

where m is an odd integer ≥ 5. Let σ be the \mathbb{Z}-wt given by $\sigma\left(x_{1}, x_{2}, x_{3}\right)=$ $(2, m-2,1)$. We note $\sigma(h) \geq m$. We remark that $x_{1} x_{2}, x_{2} x_{3}^{2}$, and $(m+$ 1)/2 terms $x_{1}^{(m-1) / 2-i} x_{3}^{2 i+1}(i=0, \ldots,(m-1) / 2)$ are all the monomials with $\sigma-\mathrm{wt}=m$.
(10.7) Computation. In the Taylor expansion of h, assume that $x_{1} x_{2}$ (resp. $x_{2} x_{3}^{2}$) appears with coefficient 0 (resp. 1) and let a_{0}, b, c, d, and $e \in \mathbb{C}$ be the coefficients of $x_{1}^{(m-1) / 2} x_{3}, x_{1}^{m}, x_{1}^{2} x_{2}^{2}, x_{2}^{(m+1) / 2} x_{3}$, and x_{2}^{m}. Assume that
(10.7.1) $a_{0} \neq 0$ or $b c \neq 0$, and
(10.7.2) $d^{2}-4 e \neq 0$.

If $m=5$ and $a_{0} \neq 0$, then assume furthermore
(10.7.3) $a_{0} Z_{1} Z_{3}+Z_{3}^{2}+c Z_{1} Z_{2}+d Z_{2} Z_{3}+e Z_{2}^{2}$ is a nondegenerate quadratic form in $\left(Z_{1}, Z_{2}, Z_{3}\right)$.

Then (H, P) is a rational singularity and the configuration of the exceptional curves in the minimal resolution H^{\prime} of (H, P) is the following:
(10.7.3.1) Case $a_{0} \neq 0$.
(10.7.3.2) Case $a_{0}=0$.
where

(10.7.3.4) If $Y_{0} \subset H$, then $b+c=0$ and the proper transform $Y_{0}{ }^{\prime}$ in H^{\prime} intersects only with \triangle and $\left(Y_{0}{ }^{\prime} \cdot \triangle\right)=1$;
(10.7.3.5) If $Y_{1} \subset H$, then $b=0$ and the proper transform $Y_{1}{ }^{\prime}$ in H^{\prime} intersects only with \square and $\left(Y_{1}{ }^{\prime} \cdot \square\right)=1$.
(10.7.4) Remark. (10.7.4.1) Under the notation of (10.7), we have

$$
h_{\sigma=m}=x_{2} x_{3}^{2}+\sum_{i=0}^{(m-1) / 2} a_{i} x_{1}^{(m-1) / 2-i} x_{3}^{1+2 i}
$$

for some $a_{i} \in \mathbb{C}$. The σ-blow-up $\pi_{\sigma}: B_{\sigma}(H) \rightarrow H$ of H is the proper transform of H under

$$
\pi_{\sigma}: B_{\sigma}(X) \rightarrow X, \quad \text { where } X=\left(x_{1}, x_{2}, x_{3}\right) / \mathbb{Z}_{m}(2, m-2,1)
$$

The exceptional set E of $B_{\sigma}(H) \rightarrow H$ is a curve $\subset \Delta=\mathbb{P}(2, m-2,1)$ defined by the weighted homogeneous equation $h_{\sigma=m}=0$.
(10.7.4.2) Assume that we are in case (10.7.3.1). Then E is a reduced curve with exactly two components; one (denoted by E^{\prime}) defined by $x_{3}=0$ corresponding to Δ and the other (denoted by $E^{\prime \prime}$) corresponding to \circ with
$(m+3) / 2$ in the configuration (10.7.3.1); $E^{\prime} \cap E^{\prime \prime}=\{(0: 1: 0)\}$, and Sing $B_{\sigma}(H)=\{(1: 0: 0),(0: 1: 0)\} \subset \Delta$, and $(1: 0: 0)$ is an ordinary double point of $B_{\sigma}(H)$ corresponding to \square. These can be checked by a direct computation using ($10.1-10.3$), and a further computation at $(0: 1: 0)$ proves (10.7.3.1).
(10.7.4.3) Later in Chapter 13, we will consider a family H_{t} defined by $h+t\left(x_{1} x_{2}-x_{3}^{m}\right)=0$ (denoted by $h_{t}=0$) with h in (10.7.3.1) and variable coefficient t. For generic t, it is easy to see that $\left(H_{t}, P\right)$ is a rational singularity and the configuration of the exceptional curves in the minimal resolution H_{t}^{\prime} of $\left(H_{t}, P\right)$ is

$$
\begin{equation*}
\square_{2}-\triangle_{(m+5) / 2}-\overbrace{\substack{o-\cdots-0 \\ 2}}^{(m-5) / 2}-0 \tag{10.7.4.4}
\end{equation*}
$$

Although H_{t}^{\prime} does not fit in a flat family, one can construct a flat family of simultaneous blow-ups of H_{t} and see how some curves specialize as $t \rightarrow 0$ as follows. We note $\sigma(h)=\sigma\left(h_{t}\right)=m$ and

$$
\left(h_{t}\right)_{\sigma=m}=h_{\sigma=m}+t\left(x_{1} x_{2}-x_{3}^{m}\right) .
$$

Thus the σ-blow-up $B_{\sigma}\left(H_{t}\right) \rightarrow H_{t}$ exists in a flat family; and for a generic t the exceptional set $E_{t} \subset \Delta$ of $B_{\sigma}\left(H_{t}\right)$ is an irreducible curve corresponding to \triangle in (10.7.4.4) and it passes through ($1: 0: 0$) and ($0: 1: 0$), Sing $B_{\sigma}\left(H_{t}\right)=$ $\{(1: 0: 0),(0: 1: 0)\}$, and $(1: 0: 0)$ is an ordinary double point corresponding to \square. These can also be checked similarly to (10.7.4.2).

In summary, we see that the blow-up $Y_{t}=B_{(1: 0: 0)} B_{\sigma}\left(H_{t}\right)$ of $B_{\sigma}\left(H_{t}\right)$ at ($1: 0: 0$) deforms in a flat family; $H_{0}{ }^{\prime} \rightarrow Y_{0}$ is a morphism contracting exactly the exceptional curves marked • in

and $H_{t}^{\prime} \rightarrow Y_{t}$ with generic t contracts \bullet 's in

$$
\square-\Delta-\overbrace{\bullet-\cdots-\bullet}^{(m-5) / 2}-\bullet
$$

\square (resp. \triangle) in Y_{t} specializes to the reduced curve which consists of \square (resp. two \triangle) in Y_{0}.
(10.8) Computation. Under the notation of (10.6), assume that $m=5$ and that the coefficients of $x_{1} x_{2}, x_{2} x_{3}^{2}, x_{1}^{2} x_{3}$ (resp. $x_{1} x_{3}^{3}, x_{1}^{5}, x_{1}^{2} x_{2}^{2}, x_{2}^{3} x_{3}$) are all 0 (resp. all nonzero) in the Taylor expansion of h. Then (H, P) is a rational singularity and the configuration of the exceptional curves in the
minimal resolution H^{\prime} of (H, P) is

where if $Y_{0} \subset(H, P)$ then the proper transform $Y_{0}{ }^{\prime}$ of Y_{0} in H^{\prime} intersects only with \triangle and $\left(Y_{0}{ }^{\prime} \cdot \triangle\right)=1$.
(10.9) Computation. Under the notation of (10.6), assume that $m=5$ and that the coefficients of $x_{1} x_{2}, x_{1}^{5}, x_{1}^{2} x_{2}^{2}, x_{1}^{3} x_{2}^{3}, x_{2}^{5}$ (resp. $x_{2} x_{3}^{2}, x_{1}^{2} x_{3}, x_{2}^{3} x_{3}$, $x_{1} x_{2}^{6}$) are all 0 (resp. all nonzero) in the Taylor expansion of h. Then (H, P) is a rational singularity and the configuration of the exceptional curves in the minimal resolution H^{\prime} of (H, P) is

$$
\begin{gathered}
\begin{array}{cc}
\circ & 0 \\
2 & 4 \\
1 & \mid \\
\square \\
\square
\end{array}-\underset{2}{0}-\underset{3}{\circ}-\frac{0}{3}-\frac{0}{2}
\end{gathered}
$$

where if $Y_{1} \subset(H, P)$ then the proper transform $Y_{1}{ }^{\prime}$ of Y_{1} in H^{\prime} intersects only with \square and $\left(Y_{1}{ }^{\prime} \cdot \square\right)=1$.

11. How to flip

The aim of this chapter is to give a somewhat new proof of the existence of flips. This proof will then work to show that flips are continuous in families. The result depends on viewing an extremal nbd as a one parameter family of surfaces and then understanding the deformation theory of certain surface singularities. For quotient singularities the theory was developed in [KSB88]. We recall the relevant facts.
(11.1) Definition. (11.1.1) A quotient singularity is called a T-singularity if it is a DuVal singularity or is analytically equivalent to

$$
\left(x y-z^{d n}=0\right) / \mathbb{Z}_{n}(1,-1, a) \quad \text { where }(a, n)=1
$$

In [KSB88, 3.11] it is explained how to recognize these singularities from the dual graph of their minimal resolution.
(11.1.2) Given a T-singularity $P \in U$ the deformations of the form

$$
\left(x y-z^{d n}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{n}(1,-1, a, 0)
$$

fill out a whole component of the deformation space. We call this the $q G$ component (for \mathbb{Q}-Gorenstein) and denote it by $\operatorname{Def}^{q G}(P \in U)$. Any $q G$ deformation of a T-singularity is again a T-singularity.
(11.1.3) If U is a complex space with only T-singularities then by $\operatorname{Def}^{q G} U$ we mean the closed subset of the deformation space $\operatorname{Def} U$ of U consisting of deformations that induce a $q G$-deformation everywhere locally. This makes sense since $\operatorname{Def}^{q G} U$ is the preimage of the product of the $q G$-components under the natural morphism

$$
\operatorname{Def} U \rightarrow \prod_{i} \operatorname{Def}\left(P_{i} \in U\right)
$$

A deformation of U is called a $q G$-deformation if it can be obtained from Def ${ }^{q G} U$ via base change.
(11.1.4) Let V be a quotient singularity. A P-modification $f: U \rightarrow V$ is a proper bimeromorphic morphism f such that U is normal with only T singularities and $K_{U / V}$ is f-ample.

A large part of the theory in [KSB88, Chapter 3] can be generalized to more general rational singularities (see [Kollár91, Chapter 6]), though at the moment the scope of this generalization or even the correct definitions are unclear. Since we need to have this for a single class of singularities only, we make the necessary definitions only in this case. It should be clear that these definitions are adopted for temporary convenience only and they should be changed if used for any other purpose.
(11.2) Definition. (11.2.1) A nonquotient rational singularity is called a T singularity if the dual graph of its minimal resolution has the form

These singularities are log-canonical and they are quotients of certain elliptic double points

$$
\left(x^{2}+g(y, z)=0\right) / \mathbb{Z}_{2}(1,1,1)
$$

where g is a homogeneous polynomial of degree four without multiple factors..
(11.2.2) Given a T-singularity $P \in U$ as above the deformations of the form

$$
\left(x^{2}+g(y, z)+t f(x, y, z, t)=0\right) / \mathbb{Z}_{2}(1,1,1,0)
$$

fill out a whole component of the deformation space. We call this the $q G$ component (for \mathbb{Q}-Gorenstein) and denote it by $\operatorname{Def}^{q G}(P \in U)$. It has dimension 5 . From the explicit description it is easy to see that any $q G$-deformation of a T-singularity is again a T-singularity.
(11.2.3) If U is a complex space with only T-singularities then by $\operatorname{Def}^{q G} U$ we mean the closed subset of the deformation space Def U of U consisting of deformations that induce a $q G$-deformation everywhere locally. This makes
sense since $\operatorname{Def}^{q G} U$ is the preimage of the product of the $q G$-components under the natural morphism

$$
\operatorname{Def} U \rightarrow \prod_{i} \operatorname{Def}\left(P_{i} \in U\right)
$$

A deformation of U is called a $q G$-deformation if it can be obtained from Def ${ }^{q G} U$ via base change.
(11.2.4) Let V be any rational singularity. A P-modification $f: U \rightarrow V$ is a proper bimeromorphic morphism f such that U is normal with only T singularities and $K_{U / V}$ is f-ample.
(11.3) Comparing certain deformation spaces. We will study the relationship between deformation spaces of certain analytic spaces. It is very convenient if these deformation spaces exist not only as formal schemes but as germs of analytic spaces. The existence is known in the following three cases:
(11.3.1) U is a compact complex space [Grauert74];
(11.3.2) $0 \in V$ is the germ of an isolated singularity [Grauert72];
(11.3.3) U is a proper modification of an isolated singularity [Bingener87]. More precisely, there is a proper morphism $f: U \rightarrow V$ where $0 \in V$ is a germ of an isolated singularity and f^{-1} is an isomorphism outside 0 .

By $\operatorname{Def} U$ resp. $\operatorname{Def}(0 \in V)$ we denote either the germ or a suitable analytic representative of the versal deformation space of the corresponding objects. This will not lead to any confusion. Let $v: \mathscr{V} \rightarrow \operatorname{Def} V$ and $u: \mathscr{U} \rightarrow \operatorname{Def} U$ be the versal families.
(11.4) Proposition. Use the same notation as above. (11.4.1) Let $f: U \rightarrow$ V be a proper morphism of complex spaces. Assume that $f_{*} \mathscr{O}_{U}=\mathscr{O}_{V}$ and $R^{1} f_{*} \mathscr{O}_{U}=0$. Assume furthermore that either U and V are proper or that $f: U \rightarrow V$ is as in (11.3.3). Then there are natural morphisms F and \mathscr{F} that make the following diagram commutative:

Here v and u are the projections $F[U]=[V]$ and $\mathscr{F} \mid U=f$.
(11.4.2) Let $0 \in V$ be the germ of an isolated singularity and let $f: U \rightarrow V$ be a proper morphism such that f^{-1} is an isomorphism outside 0. Assume that $f^{-1}(0)$ is a curve and that U has only finitely many singularities $P_{i} \in U$. Then the natural morphism

$$
\operatorname{Def} U \rightarrow \prod \operatorname{Def}\left(P_{i} \in U\right)
$$

is smooth, in particular, surjective.
Proof. In the formal category the diagram (11.4.1.1) exists in both cases by [Wahl76].

To see that the diagram (11.4.1.1) exists in the category of analytic spaces consider first the case when U and V are proper. Let $W \subset U \times V$ be the graph
of f. We want to find the graph of F that is a closed subset $\mathscr{W} \subset \mathscr{U} \times \mathscr{V}$ such that the first projection is an isomorphism and $\mathscr{W} \cap(U \times V)=W$. A component D of the relative Douady space of $\mathscr{U} \times \mathscr{V} / \operatorname{Def} U \times \operatorname{Def} V$ parametrizes graphs of morphisms and D is an analytic space. The projection morphism $[W] \in$ $D \rightarrow 0 \in \operatorname{Def} U$ has a formal section given by the formal contraction morphism. Thus by [Artin68, 1.5] it has an analytic section. This gives (11.4.1.1) in the category of analytic spaces

If $f: U \rightarrow V$ is a proper modification of an isolated singularity as in (11.3.3) then the contraction morphism f extends to a contraction morphism \mathscr{F} : $\mathscr{U} / \operatorname{Def} U \rightarrow Z / \operatorname{Def} U$ by results of [Markoe-Rossi71, Siu71]. (Note that in general Z is not a deformation of V.) If I_{U} is the ideal sheaf of $U \subset \mathscr{U}$ then we get the exact sequence

$$
\mathscr{F}_{*} \mathscr{O}_{\mathscr{U}} \rightarrow \mathscr{F}_{*} \mathscr{O}_{U} \rightarrow R^{1} \mathscr{F}_{*} I_{U} .
$$

Since $R^{1} f_{*} \mathscr{O}_{U}=0$, the theorem of formal functions gives that $R^{1} \mathscr{F}_{*} I_{U}=0$. Thus the central fiber of $Z / \operatorname{Def} U$ is isomorphic to V and $Z / \operatorname{Def} U$ is flat. Thus Z is the total space of a deformation of V. Thus we have a (nonunique) morphism $F: \operatorname{Def} U \rightarrow \operatorname{Def} V$ such that $\operatorname{Def} V \times_{F} \mathscr{U} \cong Z$. This is what we want.

To see (11.4.2) it is sufficient to note that the obstruction to globalize a deformation in $\Pi \operatorname{Def}\left(P_{i} \in U\right)$ lies in $R^{2} f_{*} T_{U}$. This is zero since f has only one-dimensional fibers. Therefore $\operatorname{Def} U \rightarrow \prod \operatorname{Def}\left(P_{i} \in U\right)$ is smooth of relative dimension $\operatorname{dim}\left(R^{1} f_{*} T_{U}\right)$.
(11.5) Let $f: U \rightarrow V$ be a P-modification of a rational singularity V. Let $\mathscr{U}^{q G} \rightarrow \operatorname{Def}^{q G}(U)$ be the versal $q G$-deformation of U. By (11.4) we obtain a diagram

By definition $\mathscr{F}^{U}: \mathscr{U}^{q G} \rightarrow \mathscr{V}^{U}$ is proper and $K_{\mathscr{U ^ { q G }} / \mathscr{V}^{U}}$ is \mathbb{Q}-Cartier and relatively ample. \mathscr{F}^{U} is an isomorphism over the smooth locus of \mathscr{V}^{U} / Z^{U} since a smooth surface has no modification with relatively ample canonical class.
(11.6) Proposition. Let $P \in V$ be either a quotient singularity or a singularity with the following dual resolution graph:

Let $0 \in Z$ be the normalization of a component of $\operatorname{Def}(P \in V)$ and let v_{Z} : $\mathscr{V}^{Z} \rightarrow Z$ be the versal family of deformations over Z. Then there is a unique P-modification $f: U \rightarrow V$ such that

$$
\left(v_{Z}: \mathscr{V}^{Z} \rightarrow Z\right) \cong\left(\mathscr{V}^{U} \rightarrow Z^{U}\right)
$$

In particular, we get a proper morphism $\mathscr{F}^{U}: \mathscr{U}^{q G} \rightarrow \mathscr{V}^{Z}$ such that:
(11.6.2.1) $K_{\mathscr{U}^{q G} / \mathscr{V}^{Z}}$ is \mathbb{Q}-Cartier and relatively ample;
(11.6.2.2) \mathscr{F}^{U} has at most one dimensional fibers;
(11.6.2.3) \mathscr{F}^{U} is an isomorphism above the smooth locus of v_{Z}.

Proof. If $P \in V$ is a quotient singularity then this was proved in [KSB88, Chapter 3]. Any singularity as in (11.6.1) is a rational quadruple point. This case was treated in [Stevens91b]. According to his results, there are two P modifications of this singularity. U_{1} is the minimal DuVal resolution and U_{2} is the resolution obtained by contracting all the curves except the one marked •.

This result easily implies the existence of flips in families:
(11.7) Theorem. Let $f_{0}: X_{0} \supset C_{0} \rightarrow Y_{0} \ni Q_{0}$ be an extremal nbd. Let $\mathscr{X} \rightarrow S$ be a flat deformation of X_{0} over the germ of a normal space $0 \in S$. Then
(11.7.1) f_{0} extends to a contraction morphism $F: \mathscr{X} \rightarrow \mathscr{Y}$;
(11.7.2) The flip $F^{+}: \mathscr{X}^{+} \rightarrow \mathscr{Y}$ exists and commutes with any base change $S^{\prime} \rightarrow S$;
(11.7.3) If H^{\prime} is a general hypersurface section of Y_{0} through Q_{0} then \mathscr{X}^{+} is obtained as the total space of a $q G$-deformation of a suitable P-modification $H^{+} \rightarrow H^{\prime}$ over the base space $S \times \Delta$.
Proof. The contraction morphism F exists by (11.4.1). This gives us \mathscr{Y}, which is a flat deformation of Y_{0} over S. By (1.8) the general surface section H^{\prime} of Y_{0} through Q_{0} is either a quotient singularity or a singularity as in (11.2.6). Therefore we can view \mathscr{Y} as a flat deformation of H^{\prime} over $S \times \Delta$. This gives a morphism $m: S \times \Delta \rightarrow Z \subset \operatorname{Def} H^{\prime}$ where Z is a component of $\operatorname{Def} H^{\prime}$. Using the notation of (11.6) we get that

$$
\mathscr{Y} \cong \mathscr{V}^{Z} \times_{Z}(S \times \Delta)
$$

Now we construct the flip as

$$
\left(F^{+}: \mathscr{X}^{+} \rightarrow \mathscr{Y}\right) \cong\left(\mathscr{F}^{U} \times m: \mathscr{U}^{q G} \times_{Z}(S \times \Delta) \rightarrow S \times \Delta\right) .
$$

The fibers of F^{+}are at most one-dimensional and, in fact, zero-dimensional over the smooth locus of $\mathscr{F} /(S \times \Delta)$. Thus the exceptional set has codimension
at least two. Furthermore, $K_{\mathscr{Z}}+\mathscr{Y}$ is \mathbb{Q}-Cartier and relatively ample since these properties are preserved under base change. Therefore \mathscr{X}^{+}is the flip of \mathscr{X}. The flip clearly commutes with base change and (11.7.3) directly follows from the construction.
(11.8) Guessing the P-modification. Let $X \supset C$ be an extremal nbd. By (11.7.3) it is clear that the P-modification H^{+}is one of the most important invariants of X^{+}. Knowing it tells us for instance the number of exceptional curves after flip and the indices of the singularities of X^{+}.

In [KSB88, 3.14] there is an algorithm to compute all P-modifications of a quotient singularity. Unfortunately this algorithm is rather tedious. Recently better algorithms were found by [Christophersen91, Stevens91a]. Frequently there are several P-modifications as natural candidates. Therefore it is important to have some additional information. We will prove for instance (13.5) that if $X \rightarrow Y$ is an extremal nbd then the exceptional curve of $X^{+} \rightarrow Y$ is irreducible. This means that we only have to consider those P-modifications that have only one exceptional curve C. The computationally messy condition that $K_{U / V}$ be nef reduces in this case to computing the coefficient of C in the relative canonical class. $K_{U / V}$ is nef iff this coefficient is negative. The computations are especially easy for noncyclic quotient singularities.

Consider a noncyclic quotient singularity V with the following dual graph of the minimal resolution:

Let $U \rightarrow V$ be a P-modification with only one exceptional curve $C \subset U$ and let $U^{\prime} \rightarrow U \rightarrow V$ be the minimal resolution of U. Let $C^{\prime} \subset U^{\prime}$ be the proper transform of C.

If U^{\prime} is also the minimal resolution of V then C^{\prime} is one of the curves in (11.8.1). After removing this curve we have only T-singularities, in particular, the remaining graph contains no vertex with degree three. In particular, C^{\prime} is one of the curves adjacent to \diamond or \diamond itself. In all four cases it is easy to see if the complement has T-singularities.

If U^{\prime} is not the minimal resolution of V then C^{\prime} is a (-1)-curve on U^{\prime}. Thus U^{\prime} is obtained from the configuration of (11.8.1) by repeatedly blowing up intersection points of certain curves. At the end, after removing C^{\prime} the remaining graph contains no vertex with degree three. Thus at each step we have to blow up an intersection point of \diamond and another curve. This reduces the number of possibilities to a handful of cases.
(11.8.2) Example. We will need to study the icosahedral quotient singularity

$$
\begin{aligned}
& 2 \\
& \begin{array}{lll}
0 & - & 0 \\
3 & 2 & 0
\end{array}
\end{aligned}
$$

Let U be a P-modification with only one exceptional curve. It is easy to check that U^{\prime} cannot be dominated by the minimal resolution. Short computation gives that the only P-modification with one exceptional curve is obtained as follows:

Here \diamond becomes the curve C^{\prime}. Thus the flip has one index two point and one index three point.
(11.9) Flips and local Picard groups. Sometimes additional restrictions can be obtained by computing the rank of the local Picard group of Y in two ways. The computations rest on the following simple result:
(11.9.1) Claim. Let $0 \in V$ be an isolated analytic threefold singularity and let $f: U \rightarrow V$ be a bimeromorphic morphism. Assume that f is an isomorphism outside $0, U$ has only finitely many singular points $P_{j} \in U$, and $f^{-1}(0)$ is one-dimensional.

If the rank of the local Picard group of $0 \in V$ is finite then

$$
\left.\begin{array}{rl}
\operatorname{rank}(& \operatorname{Pic}(0 \in V))=\sum \operatorname{rank}(
\end{array} \operatorname{Pic}\left(P_{j} \in U\right)\right) .
$$

In order to apply this we need some information about the local Picard groups of terminal singularities. One easy result is the following:
(11.9.2) Lemma. Assume that

$$
Y=\left(x y+f\left(z^{m}, t\right)=0\right) / \mathbb{Z}_{m}(a,-a, b, 0) \quad(a b, m)=1
$$

defines an isolated singularity. If z^{m} appears with nonzero coefficient in $f\left(z^{m}, t\right)$ then Y is \mathbb{Q}-factorial.
Proof. This follows directly from [Kollár91, 2.2.7].
The following examples will be needed later.
(11.9.3) Examples. (11.9.3.1) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd. Let $H^{\prime} \subset Y$ be a hypersurface section through Q and let $H=f^{*} H^{\prime}$. Assume that the configuration of compact curves on the minimal resolution of H is

$$
\text { i }-\underset{5}{0}-\underset{2}{o}
$$

where - is the proper transform of C. This contracts to the quadruple point

$$
\begin{aligned}
& \circ \\
& 4
\end{aligned}-\quad 0
$$

Claim. The flip of the above extremal nbd has an index two point.
Proof. We view the nbd as a one-parameter family $H_{t}: t \in \Delta$ where $H_{0}=H$. We can apply any base change $t=t^{\prime m}$. This way we get a nbd $X_{m} \rightarrow Y_{m}$ with a single singular point on X_{m} having equation $y_{1} y_{3}-y_{2}^{3}+y_{4} h\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=$ $0 / \mathbb{Z}_{3}(1,1,2,0) . \operatorname{By}(11.9 .2)$ this is always \mathbb{Q}-factorial. Therefore the rank of the local Picard group of Y_{m} is one.

The flip is given as a family $H_{t}^{+}: t \in \Delta$ where H_{0}^{+}is a P-modification of H^{\prime}. It is easy to see that there are only two P-modifications. Assume that H_{0}^{+} is the minimal DuVal resolution of H^{\prime}. Then, after a base change, this family can be blown up to a deformation of the minimal resolution. Thus the rank of the local Picard group of Y_{m} is two for suitable m since we can have two exceptional curves. This is a contradiction. Thus the flip has to be given by the only other P-modification. This contracts the (-4)-curve, hence gives rise to an index two point.
(11.9.3.2) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd with a possibly reducible central curve. Let $H^{\prime} \subset Y$ be a hypersurface section through Q and let $H=f^{*} H^{\prime}$. Assume that the configuration of compact curves on the minimal resolution of H is one of the following:

where - are the proper transforms of the f-exceptional curves. Both contract to

$$
\begin{array}{r}
0 \\
4
\end{array}-0-0
$$

Claim. The flip of the above extremal nbd has an index two point.
Proof. Again we have only two P-modifications. We exclude the minimal DuVal resolution as before because after a base change this would give three exceptional curves.
(11.9.3.3) Let $f: X \supset C \rightarrow Y \ni Q$ be an extremal nbd with a reducible central curve. Let $H^{\prime} \subset Y$ be a hypersurface section through Q and let $H=f^{*} H^{\prime}$. Assume that the configuration of compact curves on the minimal resolution of H is

where - denotes the proper transforms of the f-exceptional curves. Repeatedly contracting (-1)-curves we obtain

$$
\begin{array}{r}
\circ \\
2
\end{array}-\quad \begin{array}{r}
\circ \\
4
\end{array}
$$

Claim. The flip of the above extremal nbd has an index two point.
Proof. Again we have only two P-modifications. The singular point on H has equation

$$
\left(x y-z^{m}=0\right) / \mathbb{Z}_{m}(2, m-2,1)
$$

Thus (11.9.2) again applies and we exclude the minimal DuVal resolution as before because after a base change this would give three exceptional curves.

Finally for later reference we consider flops in families.
(11.10) Theorem. Let $f_{0}: X_{0} \rightarrow Y_{0}$ be a proper morphism between normal threefolds. Assume that X_{0} has only terminal singularities. Assume that f_{0} contracts a curve $C_{0} \subset X_{0}$ to a point $Q_{0} \in Y_{0}$ and that $K_{X_{0}}$ has zero intersection with any component of C_{0}. Let $X_{S} \rightarrow S$ be a flat deformation of X_{0} over the germ of a complex space $0 \in S$. Then
(11.10.1) f_{0} extends to a contraction morphism $F_{S}: X_{S} \rightarrow Y_{S}$;
(11.10.2) The flop $F_{S}^{+}: X_{S}^{+} \rightarrow Y_{S}$ exists and commutes with any base change $S^{\prime} \rightarrow S$.
Proof. By [Kollár91, 2.2] the flop of X_{0} is independent of the choice of an f_{0}-ample divisor.

Let U be a miniversal deformation space of X_{0} and let $X_{U} \rightarrow U$ be the corresponding deformation. By (11.4.2) U is smooth. By (11.4.1) there is a contraction morphism $F_{U}: X_{U} \rightarrow Y_{U}$ which induces f_{0} on X_{0}. Therefore $Y_{U} \rightarrow U$ is a flat deformation of Y_{0}. By the classification of terminal singularities we can represent Y_{U} in the form of a hypersurface quotient

$$
\left(x^{2}+f\left(y, z, t, u_{1}, \ldots, u_{k}\right)=0\right) / \mathbb{Z}_{n}
$$

or

$$
\left(x y+f\left(z, t, u_{1}, \ldots, u_{k}\right)=0\right) / \mathbb{Z}_{n}
$$

where the coordinates are eigenfunctions of the group action and the u_{i} are coordinates on U. The construction of the flop given in [Kollár91, 2.2] is unchanged if we replace the single coordinate t used there with a collection of coordinates $\left(t, u_{1}, \ldots, u_{k}\right)$. In particular, the flop $F_{U}^{+}: X_{U}^{+} \rightarrow Y_{U}$ exists.

There is a morphism $g: S \rightarrow U$ such that $X_{S} / S \cong g^{*} X_{U} / S$. Let $Y_{S}=$ $g^{*} Y_{U}, X_{S}^{+}=g^{*} X_{U}^{+}$and let $F_{S}^{+}: X_{S}^{+} \rightarrow Y_{S}$ be the natural morphism. On every fiber, X_{S}^{+}is the flop of X_{S}. Since the flop is unique, X_{S}^{+}is the flop of X_{S}.
(11.11) Corollary. Use the same notation as in (11.10). Let $S_{\text {gen }}$ be a generic point of S and let $X_{\text {gen }}$ be the fiber of X_{S} over $S_{\text {gen }}$. Let $\left\{C_{0}^{i}\right\}$ be the irreducible components of C_{0}. Then for every i, there is a curve $C_{\mathrm{gen}}^{i} \subset X_{\mathrm{gen}}$ such that C_{gen}^{i} specializes to a multiple of C_{0}^{i}.
Proof. By replacing X_{S} with an analytic neighborhood of C_{0}^{i} we may assume that $C_{0}=C_{0}^{i}$. Thus we only need to prove that $X_{\text {gen }} \rightarrow Y_{\text {gen }}$ is not finite. Assume the contrary. Let $T=\operatorname{Spec} \mathbb{C}[[t]]$. After a sufficiently general base change, $T \rightarrow S$ we get $f_{T}: X_{T} \rightarrow Y_{T}$, which is an isomorphism outside Q_{0}.

Let $D_{T} \subset X$ be a general hyperplane section through a general point of C_{0}^{i}. Therefore $f_{T}\left(D_{T}\right)$ is Cartier outside Q_{0} but not \mathbb{Q}-Cartier at $Q_{0} . Y_{T}$ is a quotient of a four-dimensional hypersurface singularity, hence parafactorial [Grothendieck68, XI.3.13]. This is a contradiction.

12. Applications

(12.1) Factoriality and deformations. In this section we consider the behavior of factoriality and \mathbb{Q}-factoriality under flat deformations.
(12.1.1) Lemma. Let $y \in Y$ be the germ of an analytic space. Let $f: X \rightarrow Y$ be a proper morphism such that $f_{*} \mathscr{O}_{X}=\mathscr{G}_{Y}$. Assume that X is smooth and that $f^{-1}(y)=\bigcup D_{i}$ is a divisor with normal crossings only. Then
(12.1.1.1) $R^{1} f_{*} \Theta_{X}=0$ implies that $H^{1}\left(\cup D_{i}, \mathbb{Z}\right)=0$.
(12.1.1.2) $R^{1} f_{*} \mathscr{O}_{X}=R^{2} f_{*} \mathscr{O}_{X}=0$ implies that $\operatorname{Pic}(X) \rightarrow H^{2}\left(\cup D_{i}, \mathbb{Z}\right)$ is an isomorphism and $H_{2}\left(\cup D_{i}, \mathbb{Q}\right)$ is generated by algebraic cycles.
Proof. Consider the exponential sequence on X and apply f_{*}. We obtain the exact sequence

$$
\begin{aligned}
0 & \longrightarrow f_{*} \mathbb{Z}_{X} \longrightarrow f_{*} \mathscr{O}_{X} \longrightarrow f_{*} \mathscr{O}_{X}^{*} \longrightarrow R^{\exp } \longrightarrow R^{1} \mathscr{O}_{X} \longrightarrow f_{*} \longrightarrow \mathscr{O}_{X}^{*} \longrightarrow \mathbb{Z}_{X} \longrightarrow R^{1} \longrightarrow f^{2} \mathscr{O}_{X} \longrightarrow R^{2} \longrightarrow \mathscr{O}_{X}^{*}
\end{aligned}
$$

Since Y is a germ, exp is surjective, thus $R^{1} f_{*} \mathscr{O}_{X}=0$ implies that $H^{1}\left(\bigcup D_{i}, \mathbb{Z}\right)=R^{1} f_{*} \mathbb{Z}_{X}=0$.

If $R^{1} f_{*} \mathscr{O}_{X}=R^{2} f_{*} \mathscr{O}_{X}=0$, then

$$
\operatorname{Pic}(X)=R^{1} f_{*} \mathscr{O}_{X}^{*} \rightarrow R^{2} f_{*} \mathbb{Z}_{X}=H^{2}\left(\bigcup D_{i}, \mathbb{Z}\right)
$$

is an isomorphism. Algebraic cycles generate a subvectorspace $V \subset H_{2}\left(\cup D_{i}, \mathbb{Q}\right)$, which is dual to $\operatorname{Pic}\left(\cup D_{i}\right) / \operatorname{Pic}^{\tau}\left(\cup D_{i}\right)$. Thus $V=H_{2}\left(\cup D_{i}, \mathbb{Q}\right)$.
(12.1.2) Definition. (12.1.2.1) Let $f: X \rightarrow Y$ be a continuous map of topological spaces. Let $H_{i}(X / Y, \mathbb{C}) \subset H_{i}(X, \mathbb{C})$ be the subspace generated by the images of $H_{i}\left(X_{y}, \mathbb{C}\right) \rightarrow H_{i}(X, \mathbb{C})$ where X_{y} runs through all the fibers of f.
(12.1.2.2) Let $f: X \rightarrow Y$ be a morphism of algebraic spaces. Let $N_{i}(X / Y, \mathbb{C})$ $\subset N_{i}(X, \mathbb{C})$ be the subspace generated by the images of $N_{i}\left(X_{y}, \mathbb{C}\right) \rightarrow N_{i}(X, \mathbb{C})$ where X_{y} runs through all the fibers of f.
(12.1.3) Theorem. Let $f: X \rightarrow Y$ be a proper morphism between algebraic varieties or complex spaces having rational singularities only. Assume that either f is bimeromorphic or f is projective and $R^{1} f_{*} \mathscr{O}_{X}=0$. Then

$$
\begin{equation*}
0 \rightarrow H_{2}(X / Y, \mathbb{C}) \stackrel{i}{\rightarrow} H_{2}(X, \mathbb{C}) \stackrel{f_{.}}{\rightarrow} H_{2}(Y, \mathbb{C}) \rightarrow 0 \tag{12.1.3.1}
\end{equation*}
$$

is exact. If, in addition, $R^{2} f_{*} \mathscr{G}_{X}=0$ then $H_{2}(X / Y, \mathbb{C})$ is generated by algebraic cycles.
Proof. By taking a resolution of X we see that it is sufficient to prove the surjectivity of f_{*} if X is smooth and f is locally projective. Using this observation, exactness in the middle is also reduced to the case when X is smooth. Moreover, it is sufficient to prove the results after some further birational modifications on X.

Next we claim that $R^{1} f_{*} \mathbb{C}_{X}=0$. This statement is local on Y. Given $y \in Y$ we may assume that $f^{-1}(y)=\bigcup D_{i}$ is a divisor with normal crossings only. If U is a small contractible neighborhood of y then $f^{-1}(U)$ retracts to $f^{-1}(y)$ thus $H^{1}(U, \mathbb{C})=0$ by (12.1.1). Therefore $R^{1} f_{*} \mathbb{C}=0$.

Using this the Leray spectral sequence for f gives the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{2}(Y, \mathbb{C}) \rightarrow H^{2}(X, \mathbb{C}) \rightarrow H^{0}\left(Y, R^{2} f_{*} \mathbb{C}\right) \tag{12.1.3.2}
\end{equation*}
$$

By duality this shows that f_{*} is surjective. Comparing these two sequences we see that (12.1.3.1) is exact at $H_{2}(X, \mathbb{C})$ if the following statement holds:

Given any $S \in H^{2}(X, \mathbb{C})$ such that its image in $H^{0}\left(Y, R^{2} f_{*} \mathbb{C}\right)$ is nonzero, there is a 2 -cycle C in a fiber such that the intersection product $C \cdot S$ is nonzero.

To see that (*) holds note that S corresponds to a nonzero section of $R^{2} f_{*} \mathbb{C}$. Let y be a general point of its support. We may assume that X is smooth and that $f^{-1}(y)=\bigcup D_{i}$ is a divisor with normal crossings only. S restricts to a nonzero element of $H^{2}\left(\cup D_{i}, \mathbb{C}\right)$. Therefore there is a 2-cycle $C \subset \cup D_{i}$ such that $C \cdot S$ is nonzero. This proves the exactness of (12.1.3.1). The additional claim about algebraic cycles follows directly from (12.1.1.2).
(12.1.4) Proposition. Let $f: X \rightarrow Y$ be a projective surjective morphism between algebraic varieties or complex spaces. Assume that X has rational singularities only. Assume that $f_{*} \mathscr{O}_{X}=\mathscr{O}_{Y}$ and $R^{1} f_{*} \mathscr{O}_{X}=0$. Let L be a line bundle on X such that if $C \subset X$ is an irreducible curve which is mapped to a point by f then $L \cdot C=0$.

Then any compact subset of Y has an open neighborhood U such that

$$
L^{k}\left|f^{-1}(U) \cong f^{*} f_{*}\left(L^{k}\right)\right| f^{-1}(U)
$$

holds for some $k>0$.
Proof. The claim is local on Y so we need to prove it only for a small contractible neighborhood U of some $u \in Y$ such that $H^{1}\left(U, \mathscr{O}_{U}\right)=0$. We are also allowed to perform some birational modifications on X, so we may assume that X is smooth and that $f^{-1}(u) \subset X$ is a divisor with normal crossings. Let $V=f^{-1}(U)$. Since $H^{1}\left(V, \mathscr{O}_{V}\right)=H^{1}\left(U, \mathscr{O}_{U}\right)=0$, we see that Pic V injects into $H^{2}(V, \mathbb{Z}) . V$ retracts to $f^{-1}(u)$, thus Pic V injects into $H^{2}\left(f^{-1}(u), \mathbb{Z}\right)$. By the assumption, $L \mid f^{-1}(u)$ is numerically trivial hence torsion. Thus $L \in \operatorname{Pic} V$ is torsion.
(12.1.5) Corollary. (12.1.5.1) Let $f: X \rightarrow Y$ be a projective morphism between proper algebraic spaces having rational singularities only. Assume that f has connected fibers and $R^{1} f_{*} \mathscr{O}_{X}=0$. Then

$$
0 \rightarrow N_{1}(X / Y) \rightarrow N_{1}(X) \rightarrow N_{1}(Y) \rightarrow 0
$$

is exact.
(12.1.5.2) Let Y be a proper algebraic space with rational singularities only. Then numerical and homological equivalences coincide for 1-cycles.
Proof. In the first part the only question is exactness in the middle. Assume that $z \in N_{1}(X)-N_{1}(X / Y)$. Then there is an $L \in \operatorname{Pic} X$ such that $L \cdot z \neq 0$ but $L \cdot N_{1}(X / Y) \equiv 0$. By (12.1.4) there is a $k>0$ such that $f_{*}\left(L^{k}\right)$ is a line bundle on Y. It also satisfies $f(z) \cdot f_{*}\left(L^{k}\right) \neq 0$, which proves exactness.

As for the second part, choose a resolution of singularities $f: X \rightarrow Y$. We need to show that if Z is a 1 -cycle on Y that is numerically equivalent to zero then it is also homologically equivalent to zero. Let Z^{\prime} be a 1 -cycle on X such that $f\left(Z^{\prime}\right)=Z$. By (12.1.5.1) there is a cycle $Z^{\prime \prime}$ in X such that every irreducible component of $Z^{\prime \prime}$ is contained in a fiber of f and Z^{\prime} is numerically equivalent to $Z^{\prime \prime}$. On X numerical and homological equivalences coincide, hence $Z^{\prime \prime}$ and Z^{\prime} are homologically equivalent. Thus $0=f\left(Z^{\prime \prime}\right)$ and Z are homologically equivalent.

Note that we used only $R^{1} f_{*} \mathscr{\sigma}_{X}=0$, which is weaker than rationality of the singularities.
(12.1.6) Proposition. Let Y be an algebraic variety with rational singularities. Let $f: X \rightarrow Y$ be a resolution of singularities and let $X \subset \bar{X}$ be a smooth compactification. Let $E_{i} \subset X$ be the f-exceptional divisors. Then Y is \mathbb{Q} factorial iff

$$
\operatorname{im}\left[H^{2}(\bar{X}, \mathbb{Q}) \xrightarrow{p_{1}} H^{0}\left(Y, R^{2} f_{*} \mathbb{Q}_{X}\right)\right]=\operatorname{im}\left[\sum \mathbb{Q}\left[E_{i}\right] \xrightarrow{p_{2}} H^{0}\left(Y, R^{2} f_{*} \mathbb{Q}_{X}\right)\right] .
$$

Proof. p_{1} is the composite $H^{2}(\bar{X}, \mathbb{Q}) \rightarrow H^{2}(X, \mathbb{Q}) \rightarrow H^{0}\left(Y, R^{2} f_{*} \mathbb{Q}_{X}\right) .\left[\bar{E}_{i}\right]$ is a class in $H^{2}(\bar{X}, \mathbb{Q})$, thus p_{2} factors through p_{1}.

First we prove sufficiency. Let $D \subset Y$ be a Weil divisor and $\bar{D} \subset \bar{X}$ be the closure of its proper transform. By assumption there are $a_{i} \in \mathbb{Q}$ such that $p_{1}\left([\bar{D}]-\sum a_{i}\left[\bar{E}_{i}\right]\right)=0$. By (12.1.4) $m\left(\bar{D} \mid X-\sum a_{i} E_{i}\right)$ is the pull back of a Cartier divisor $D^{\prime} \sim m D$.

To see necessity let $\dot{H}^{\prime} \subset H^{2}(\bar{X}, \mathbb{Q})$ be the smallest sub Hodge structure (defined over \mathbb{Q}) such that $H^{\prime} \otimes \mathbb{C}$ contains $H^{0,2}(\bar{X}, \mathbb{C})+H^{2,0}(\bar{X}, \mathbb{C})$. Let $H^{\prime \prime} \subset H^{2}(\bar{X}, \mathbb{Q})$ be the orthogonal complement of H^{\prime} (consisting of type (1, 1) elements only). By (12.1.1) $H^{\prime} \subset \operatorname{ker} p_{1}$.

Let $z \in H^{2}(\bar{X}, \mathbb{Q})$. By the above, there is a \mathbb{Q}-divisor $D^{\prime \prime}$ on \bar{X} such that $\left[D^{\prime \prime}\right] \in H^{\prime \prime}$ and $p_{1}(z)=p_{1}\left(\left[D^{\prime \prime}\right]\right)$. By assumption $f_{*}\left(D^{\prime \prime} \mid X\right)$ is \mathbb{Q}-Cartier, thus $f^{*}\left(f_{*}\left(D^{\prime \prime} \mid X\right)\right)=D^{\prime \prime} \mid X-\sum a_{i} E_{i}$ for some $a_{i} \in \mathbb{Q}$. Therefore

$$
p_{1}(z)=p_{1}\left(\left[D^{\prime \prime}\right]\right)=p_{1}\left(f^{*}\left(f_{*}\left(D^{\prime \prime} \mid X\right)\right)\right)+\sum a_{i} p_{2}\left(\left[E_{i}\right]\right)=\sum a_{i} p_{2}\left(\left[E_{i}\right]\right)
$$

(12.1.7) Proposition. Let $g: Y \rightarrow S$ be a connected flat family of algebraic varieties or complex spaces. In the analytic case choose a $W \subset Y$ such that $g: W \rightarrow S$ is proper; in the algebraic case set $W=Y$. Assume that all the fibers have rational singularities only. Assume that the set of fibers that are \mathbb{Q} factorial in a neighborhood of W is dense in the Zariski or Euclidean topology. Then there is a dense Zariski (or Euclidean) open set $U \subset S$ such that every fiber above U is \mathbb{Q}-factorial in a neighborhood of W.
Proof. We take a resolution of singularities $f: X \rightarrow Y$. By (12.1.6) the \mathbb{Q} factoriality of a space with rational singularities depends only on the topology of a given resolution. This is unchanged over an open subset U of S. Thus we have \mathbb{Q}-factorial fibers over U since by assumption the \mathbb{Q}-factorial fibers form a dense subset of S.
(12.1.8) Lemma. Let X be a scheme, $X \supset Z$ a closed subscheme, $X_{0}=(t=$ 0) a Cartier divisor, F a sheaf on $U=X-Z$, and $i: U \rightarrow X$ the injection. Assume that
(12.1.8.1) codim $\left(Z \cap X_{0}, X_{0}\right) \geq 3$;
(12.1.8.2) F is S_{3}; and
(12.1.8.3) $i_{*}\left(F \mid U \cap X_{0}\right)$ is S_{3} as a sheaf on X_{0}.

Then $\left(i_{*} F\right) \mid X_{0}=i_{*}\left(F \mid U \cap X_{0}\right)$.
Proof. Let $F_{0}=F \mid U \cap X_{0}$. We have an exact sequence

$$
0 \rightarrow F \xrightarrow{t} F \rightarrow F_{0} \rightarrow 0 .
$$

Applying i_{*} we get the sequence

$$
0 \rightarrow i_{*} F \xrightarrow{t} i_{*} F \rightarrow i_{*} F_{0} \rightarrow R^{1} i_{*} F \xrightarrow{t} R^{1} i_{*} F \rightarrow R^{1} i_{*} F_{0} .
$$

Here $R^{1} i_{*} F_{0}=H_{Z \cap X_{0}}^{2}\left(i_{*} F_{0}\right)=0$ by [Grothendieck68, III 3.3] and $R^{1} i_{*} F$ is coherent by [Grothendieck68, VII 3.1]. Therefore by the Nakayama lemma $R^{1} i_{*} F=0$.
(12.1.9) Corollary. Let X be an algebraic variety and let X_{0} be a Cartier divisor. Assume that X_{0} is S_{3} (e.g., Cohen-Maculay and of dimension of least 3), $\operatorname{codim}\left(\operatorname{Sing} X_{0}, X_{0}\right) \geq 3$, and X_{0} is factorial (resp. \mathbb{Q}-factorial). Then X is factorial (resp. \mathbb{Q}-factorial) in a neighborhood of X_{0}.
Proof. The problem is local on X, so we may assume that X is an affine neighborhood of a point $x \in X_{0}$.

If G is a Weil divisor in a neighborhood of x choose $m>0$ so that $m\left(G \mid X_{0}\right)$ is Cartier. We can apply the above lemma with

$$
Z=\{\text { the locus where } m G \text { is not Cartier }\} \quad \text { and } \quad F=\mathscr{O}(m G)
$$

to get that $F \otimes \mathscr{O}_{X_{0}}$ is locally free. Thus F is locally free near x and $m G$ is Cartier in a neighborhood $x \in U_{G} \subset X$. Unfortunately U_{G} may depend on G. By (12.1.6.1) $\mathrm{Weil}(X) / \operatorname{Pic}(X)$ is finitely generated, thus we may take $U=\bigcap U_{G_{i}}$ where G_{i} runs through a generating set of $\operatorname{Weil}(X) / \operatorname{Pic}(X)$.
(12.1.10) Theorem. Let $g: Y \rightarrow S$ be a connected proper and flat family of algebraic varieties. Assume that all the fibers have rational singularities only and
that in each fiber the singular set has codimension at least 3. Then the set

$$
S_{Q f a c t}=\left\{s \in S: g^{-1}(s) \quad \text { is } \mathbb{Q} \text {-factorial }\right\}
$$

is open.
This is a special case of the following more general result:
(12.1.11) Theorem. Let $g: Y \rightarrow S$ be a flat family of algebraic varieties. Assume that all the fibers have rational singularities only and that in each fiber the singular set has codimension at least 3. Then the set

$$
Y_{Q \text { fact }}=\left\{y \in Y \mid g^{-1}(g(w)) \text { is } \mathbb{Q} \text {-factorial in a neighborhood of } w\right\}
$$

is open.
Proof. We may assume that S is irreducible and reduced. Let $\pi: S^{\prime} \rightarrow S$ be a resolution of singularities and let $Y^{\prime}=S^{\prime} \times_{S} Y$. Then

$$
Y_{Q \mathrm{fact}}^{\prime}=S^{\prime} \times_{S}\left(Y_{Q \mathrm{fact}}\right)
$$

thus it is sufficient to prove openness of $Y_{Q \text { fact }}^{\prime}$. Thus we may assume to start with, that S is smooth.

Let W be the complement of $Y_{Q \text { fact }}$. Assume that $y \in Y-W$ is in the closure of W. By induction on $\operatorname{dim} S$ we may assume that $g(W \cap U)$ is dense in S for every open $y \in U \subset Y$.

We claim that Y is \mathbb{Q}-factorial in a neighborhood of y. We prove this by induction on $\operatorname{dim} S$. If $\operatorname{dim} S=1$ then this is (12.1.9). In general let $T \subset S$ be a smooth hypersurface containing $g(y)$. By induction $g^{-1}(T)$ is \mathbb{Q}-factorial. Applying again (12.1.9) to the pair $g^{-1}(T) \subset Y$ we conclude that Y is \mathbb{Q}-factorial in a neighborhood $y \in U_{0} \subset Y$.

There is a countable union of proper closed subvarieties $\cup S_{i} \subset S$ such that if $s \notin \bigcup S_{i}$ and $D_{s} \subset Y_{s}$ is any Weil divisor then there is a Weil divisor $D \subset Y$ such that $D \mid Y_{s}=D_{s}$. By the previous remarks D is \mathbb{Q}-Cartier on U_{0}, thus D_{s} is also \mathbb{Q}-Cartier on $Y_{s} \cap U_{0}$. By (12.1.7) there is an open subset $S_{0} \subset S$ such that for every $s \in S_{0}$ the fiber $Y_{s} \cap U_{0}$ is \mathbb{Q}-factorial. This contradicts our assumption that $g\left(W \cap U_{0}\right)$ is dense in S.
(12.1.12) Remark. (12.1.10) is probably also true in the analytic case, however, (12.1.11) is false. The reason is that local divisors globalise in the algebraic case but not in the analytic case.
(12.1.13) Examples. (12.1.13.1) Consider $X_{s t}=\left(x^{2}+y^{2}+z^{2}+t u^{2}+s=0\right)$ as a family of threefolds depending on t and $s . X_{s t}$ is \mathbb{Q}-factorial iff $s \neq 0$ or $s=t=0$.
(12.1.13.2) Consider $x^{2}+y^{2}+z^{2}+u^{3}+t u^{2}=0$ as a family of threefolds depending on t. For $t=0$ it is \mathbb{Q}-factorial, and so the same must hold for $t \neq 0$. It has a singularity that is not analytically \mathbb{Q}-factorial, but the non- \mathbb{Q} Cartier divisor does not exist globally.
(12.2) Projectivity and deformations. (12.2.1) Conditions. For the rest of this section we consider fiberspaces X / S satisfying the following properties:
(12.2.1.1) X and S are irreducible analytic spaces of finite type.
(12.2.1.2) X / S is a proper and flat relative algebraic space; i.e., it is bimeromorphic to a projective fiberspace.
(12.2.1.3) Let $p: \Delta \rightarrow S$ be any morphism and let X_{Δ} / Δ be the pull-back family. We assume that if $D \subset X_{\Delta}$ is a Weil divisor proper over Δ such that D is Cartier outside finitely many fibers then D is \mathbb{Q}-Cartier.
(12.2.1.4) Remark. This last assumption is satisfied in the following cases:
(12.2.1.4.1) If X / S is smooth (clear).
(12.2.1.4.2) If every fiber has only rational \mathbb{Q}-factorial singularities and is smooth in codimension two. (This follows from (12.1.9).)
(12.2.1.4.3) If every fiber is smooth in codimension two and has only singularities that are locally the quotient of a hypersurface singularity by a group that acts freely in codimension two. In particular, if every fiber X_{s} is a threefold with only terminal singularities. (Under these assumptions X_{T} has parafactorial singularities [Grothendieck68, XI.3.13], [Kollár83, 3.2.2] or [Ran89, 2.3].)
(12.2.2) Definition. Given X / S as above let $\mathscr{N}^{1}(X / S)$ be the functor

$$
\mathscr{N}^{1}(X / S)\left(S^{\prime}\right)=\mathbb{Q} \otimes\left(\operatorname{Pic}\left(X \times_{S} S^{\prime} / S^{\prime}\right) / \operatorname{Pic}^{\tau}\left(X \times_{S} S^{\prime} / S^{\prime}\right)\right)
$$

(12.2.3) Proposition. The functor $\mathscr{N}^{1}(X / S)$ is representable by a separated and unramified algebraic space $N S_{\mathbb{Q}}(X / S) / S$. It has countably many connected components and they are proper over S.
Proof. This is a straightforward consequence of the result about the similar properties of the relative Picard functor [Grothendieck62, 232]. We had to tensor with \mathbb{Q} since in general the specialization of a Cartier divisor is only Q-Cartier.
(12.2.4) Definition. Given X / S as above let $\mathscr{G} \mathscr{N}^{1}(X / S)$ be the following sheaf on S in the Euclidean topology. Given $U \rightarrow S$ let

$$
\mathscr{G} \mathscr{N}^{1}(X / S)(U)=\left\{\text { sections of } \mathscr{N}^{1}(X / S) \text { over } U \text { with open support }\right\} .
$$

(12.2.5) Proposition. The above $\mathscr{G} \mathscr{N}^{1}(X / S)$ is a local system with finite monodromy on S. There are countably many proper closed subvarieties $Z_{i} \subset S$ such that if $s \in S-\cup Z_{i}$ then $\mathscr{G N}^{1}(X / S) \mid s \cong N^{1}\left(X_{s}\right)$.
Proof. Consider the relative Hilbert space [Artin69] that parametrizes codimension one cycles. This has countably many components and every component satisfies the valuative criterion of properness over S. Let Z_{i} be the images of those components that do not dominate S. The injection $Z_{i} \subset S$ also satisfies the valuative criterion of properness over S, thus the Z_{i} are closed in S. If $s \in S-\bigcup Z_{i}$ then for every divisor D_{s} on X_{s} there is a dominant component H of the relative Hilbert space such that D_{s} is one of the divisors parametrized by H.

Let $U \subset S$ be open and consider a dominant connected component g : $H \rightarrow U$ of the relative Hilbert space that patrametrizes codimension one cycles. Assume first that U is a small analytic neighborhood of a point $0 \in S$.

Then $g^{-1}(0)$ is connected; in particular, all divisors in X_{0} parametrised by H_{0} are numerically equivalent. Since $\mathscr{N}^{1}(X / S)$ is unramified, all divisors in X_{s} parametrized by H_{s} are also numerically equivalent for $s \in U$. Thus if $s \in S-\bigcup Z_{i}$, then for every divisor D_{s} on X_{s} there is a section of $\mathscr{G} \mathscr{N}^{1}(X / S)(U)$ which induces $\left[D_{s}\right]$.

Consider a projective resolution $p: Y / S \rightarrow X / S$. There is a Zariski open dense subset $U \subset S$ such that the fiberspace $Y \times_{S} U / U$ is smooth and projective. On relative divisors we have the pull back map from $X \times_{S} U / U$ to $Y \times{ }_{S} U / U$. Therefore, we have an injection

$$
\mathscr{G N}^{1}(X / S) \mid U \rightarrow \mathscr{G}^{1}\left(Y \times_{S} U / U\right)
$$

Therefore, it is sufficient to prove that the latter has finite monodromy.
If $g: H \rightarrow U$ is a dominant connected component of the relative Hilbert scheme of $Y \times_{S} U / U$ that patrametrizes codimension one cycles then H / U is proper since $Y \times{ }_{S} U / U$ is projective. Therefore $g^{-1}(u)$ has only finitely many components for every $u \in U$. Thus the monodromy has only finite orbits and, therefore, it is finite.
(12.2.6) Proposition. Let X / S be as in (12.2.1). Let $C / S \subset X / S$ be a flat family of $1-c y c l e s$. If $C_{0} \subset X_{0}$ is numerically equivalent to zero for some $0 \in S$ then $C_{s} \subset X_{s}$ is numerically equivalent to zero for every $s \in S$.
Proof. It is clearly sufficient to prove this after a surjective base change $S^{\prime} \rightarrow S$. Thus we may assume that $\mathscr{G N}^{1}(X / S)$ is a trivial local system. If L is a global section of $\mathscr{G} \mathscr{N}^{1}(X / S)$ then $L_{0} \cdot C_{0}=0$ by assumption, hence $L_{s} \cdot C_{s}=0$ for every s. By (12.2.5) this means that if $s \in S-\bigcup Z_{i}$ then $C_{s} \subset X_{s}$ is numerically equivalent to zero.

To see that $C_{s} \subset X_{s}$ is numerically equivalent to zero for every s pick any $s \in S$ and a disc $s \in \Delta$ such that Δ is not contained in any of the Z_{i}. We take base change with Δ to obtain a family $C / \Delta \subset X / \Delta$ such that $C_{t} \subset X_{t}$ is numerically equivalent to zero for all but countably many $t \in \Delta$. After possibly further base change there is a semistable modification $f: Y / \Delta \rightarrow X / \Delta$. For each $t \in \Delta-\{s\}$ we can consider the family of 1-cycles with rational coefficients $C_{t}^{\prime} \subset Y_{t}$ such that $f_{*}\left(C_{t}^{\prime}\right)=C_{t}$ and $\left[C_{t}^{\prime}\right]=0 \in H_{2}\left(Y_{t}, \mathbb{Q}\right)$. By (12.1.5) this family is nonempty for all but countably many $t \in \Delta-\{s\}$. Since the Hilbert scheme of Y / Δ has only countably many components, there must exist a flat family of 1-cycles $C^{\prime} / \Delta \subset Y / \Delta$ such that $f_{*}\left(C^{\prime} / \Delta\right)=C / \Delta$ and $\left[C_{t}^{\prime}\right]=0 \in H_{2}\left(Y_{t}, \mathbb{Q}\right)$ for all but countably many $t \in \Delta-\{s\}$.

Since Y retracts to Y_{0}, we also have that $\left[C_{s}^{\prime}\right]=0 \in H_{2}\left(Y_{s}, \mathbb{Q}\right)$, thus $\left[C_{s}\right]=f_{*}\left[C_{s}^{\prime}\right]=0 \in H_{2}\left(X_{s}, \mathbb{Q}\right)$. This implies that $C_{s} \subset X_{s}$ is numerically zero.
(12.2.7) Definition. (12.2.7.1) Given X / S as above let $\mathscr{G} \mathscr{N}_{1}(X / S)$ be the following sheaf of vectorspaces on S in the Euclidean topology. Given $U \rightarrow S$ let

$$
\mathscr{G} \mathscr{N}_{1}(X / S)(U)=\left\{\begin{array}{l}
\text { Flat families of 1-cycles } C / U \subset X \times_{S} U / U \text { with real } \\
\text { coefficients; modulo fiberwise numerical equivalence. }
\end{array}\right\}
$$

(12.2.7.2) Given X / S as above let $\mathscr{G} \mathscr{E}(X / S)$ be the following sheaf of cones on S in the Euclidean topology. Given $U \rightarrow S$ let
$\mathscr{G} \mathbb{E}(X / S)(U)$
$=\left\{\begin{array}{l}\text { Flat families of 1-cycles } C / U \subset X \times_{S} U / U \text { with nonnegative } \\ \text { real coefficients; modulo fiberwise numerical equivalence. }\end{array}\right\}$
(12.2.8) Proposition. The above $\mathscr{G \mathscr { N }}_{1}(X / S)$ is a local system on S. There are countably many proper closed subvarieties $Z_{i} \subset S$ such that if $s \in S-\bigcup Z_{i}$ then $\mathscr{G N}_{1}(X / S) \mid s \cong N_{1}\left(X_{s}\right)$ and $\mathscr{G} \mathfrak{E}(X / S) \mid s \cong N E\left(X_{s}\right)$. Moreover, $\mathscr{G N}_{1}(X / S)$ has finite monodromy.
Proof. The same arguments as in the proof of (12.2.5) show all but the last claim. The latter is true since by its definition $\mathscr{G \mathscr { N }}_{1}(X / S)$ injects into the dual of $\mathscr{\mathscr { N }}{ }^{1}(X / S)$.
(12.2.9) Corollary. The local systems $\mathscr{G} \mathscr{N}_{1}(X / S)$ and $\mathscr{G N}^{1}(X / S)$ are dual to each other. In particular, if X / S is projective then

$$
N_{1}(X / S)=H^{0}\left(S, \mathscr{S}_{1}(X / S)\right)
$$

Proof. Intersection product in any fiber provides the duality map. This pairing is perfect since in a sufficiently general fiber we recover the pairing between the Néron-Severi group and 1-cycles modulo numerical equivalence. Since $N_{1}(X / S)$ is defined to be the dual of the relative Neron-Severi group, the last assertion is clear.
(12.2.10) Theorem. Let X / S be as in (12.2.1). Assume that for some $0 \in S$ the fiber X_{0} is projective. Then there is a Zariski open neighborhood $0 \in U \subset S$ such that X_{s} is projective for every $s \in U$.

Remark. It is not true, however, that X / S is projective in a neighborhood of 0 .

Proof. Again we may assume that $\mathscr{G N}_{1}(X / S)$ is the trivial local system. Restriction gives injective maps

$$
\begin{aligned}
& H^{0}\left(S, \mathscr{G N}_{1}(X / S)\right) \hookrightarrow N_{1}\left(X_{0}\right) \\
& H^{0}(S, \mathscr{G N}(X / S)) \hookrightarrow N E\left(X_{0}\right)
\end{aligned}
$$

Since X_{0} is projective, Kleiman's criterion tells us that $N E\left(X_{0}\right) \subset N_{1}\left(X_{0}\right)$ is a convex cone and not even its closure contains straight lines. Therefore the same holds for the cone $H^{0}(S, \mathscr{G} \mathscr{E}(X / S)) \subset H^{0}\left(S, \mathscr{G} \mathcal{N}_{1}(X / S)\right)$. Since $H^{0}\left(S, \mathscr{G N}^{1}(X / S)\right)$ is dual to $H^{0}\left(S, \mathscr{G} \mathscr{N}_{1}(X / S)\right)$, there is a relative divisor H such that H defines a strictly positive linear functional on the closure of the cone $H^{0}(S, \mathscr{G} \mathscr{E}(X / S))$. By (12.2.7) if $s \in S-\bigcup Z_{i}$ then H_{s} is strictly positive on $\overline{N E}\left(X_{s}\right)-\{0\}$. In particular, H_{s} is ample, again by Kleiman's criterion.

Ampleness is an open condition, thus there is a Zariski open $V \subset S$ such that H_{s} is ample on X_{s} if $s \in V$. If $0 \in V$ then we are done. Otherwise we
repeat the argument with the irreducible components of $S-V$ and so on. This completes the proof.

(12.3) Deformation of extremal rays.

(12.3.1) Theorem. Let $g: Y \rightarrow S$ be a proper flat morphism of complex spaces. Assume that for some $0 \in S$ the fiber Y_{0} is a projective variety with only \mathbb{Q} factorial rational singularities, $\operatorname{dim} Y_{0} \geq 3$. Let $f_{0}: Y_{0} \rightarrow Z_{0}$ be the contraction of an extremal ray $C_{0} \subset Y_{0}$. By (11.4) there is a proper flat morphism $Z \rightarrow S$ and a factorisation

$$
g: Y \xrightarrow{f} Z \longrightarrow S .
$$

Then there is an open neighborhood $0 \in U \subset S$ such that if f_{0} contracts a subset of codimension at least two (resp. contracts a divisor; resp. is a fiber space of generic relative dimension k) then f_{s} contracts a subset of codimension at least two (which may be empty) (resp. contracts a divisor; resp. is a fiberspace of generic relative dimension k) if $s \in U$.

Proof. The first part follows from the upper semicontinuity of fiber dimension. Next assume that f_{0} contracts a divisor or is a fiber space of generic relative dimension k. The proof in these cases is essentially the same as in [Mori82, §11]. For illustration we present the case when the contraction $f_{0}: Y_{0} \rightarrow Z_{0}$ given by C_{0} contracts a divisor D_{0} to a point.

Let H be ample on Z_{0} and let $H^{\prime}=f^{*} H$. Let $m D_{0}$ be Cartier. Consider the exact sequence

$$
0 \rightarrow \mathscr{O}(-k H) \rightarrow \mathscr{O}\left(-k H+m D_{0}\right) \rightarrow \mathscr{O}_{m D_{0}}\left(m D_{0}\right) \rightarrow 0 .
$$

For large k the divisor $k H-m D_{0}$ is ample, thus $H^{i}\left(\mathscr{O}_{m D_{0}}\left(m D_{0}\right)\right)=0$ for $i=0,1$. Thus by [Grothendieck62, 221] the relative Hilbert scheme of Y / S is smooth of relative dimension 0 at $\left[m D_{0}\right]$. Thus in every nearby Y_{s} at least a divisor is contracted. By semicontinuity of fiber dimension f_{s} has to be birational.
(12.3.2) Theorem. Notation and assumptions are as in (12.3.1). Assume in addition that Y_{0} is a threefold with terminal singularities only. If f_{0} contracts only finitely many curves $\left\{C_{0}^{i}\right\}$, then for every i, there is a dominating family of curves \mathscr{C}^{i} / U such that $\left(\mathscr{C}^{i} / U\right)_{0}$ is a multiple of C_{0}^{i}.
Proof. By considering a suitable analytic neighborhood of C_{0}^{t}, it is sufficient to treat the case when exactly one curve is contracted. Let $E \subset Y$ be the f exceptional locus. We want to show that E dominates S. If this is not the case then we can find a $\Delta \subset S$ such that the induced contraction morphism $f_{\Delta}: Y \times_{S} \Delta \rightarrow Z \times_{S} \Delta$ is an isomorphism outside finitely many points of $Z \times_{s} \Delta$. Now consider the flip $f_{\Delta}^{+}: Y^{+} \times_{S} \Delta \rightarrow Z \times_{S} \Delta$. This is again an isomorphism outside finitely many points of $Z \times_{S} \Delta$. Thus both f_{Δ} and f_{Δ}^{+} have one-dimensional exceptional loci. This contradicts [KMM87, 5.1.17].
(12.3.3) Corollary. Notation and assumptions are as in (12.3.2). Then there is a dominating family of curves \mathscr{C} / U such that $(\mathscr{C} / U)_{0}$ is in the extremal ray contracted by f_{0}.

Proof. If f_{0} contracts only finitely many curves then this is (12.3.2). Otherwise, it follows from (12.3.1). Indeed, $-K_{Y}$ is f-ample, therefore, f is projective and there are plenty of curves in the fibers.
(12.3.4) Corollary. Notation is as in (12.3.1). Assume that every fiber of Y / S is projective. Then $f_{s}: Y_{s} \rightarrow Z_{s}$ is the contraction of an extremal ray for every s in a suitable neighborhood of 0 .
Proof. We may assume that S is irreducible. By shrinking S we may assume that all the fibers have \mathbb{Q}-factorial singularities (12.1.10).

Next we claim that every Z_{s} is projective. This will follow from (12.2.10) once we check the conditions (12.2.1). To check (12.2.1.3) we make a base change by $p: T \rightarrow S$ and let $D_{\text {gen }} \subset Z_{\text {gen }}$ be a Cartier divisor. Thus $f_{\text {gen }}^{*}\left(D_{\text {gen }}\right)$ $\subset Y_{\text {gen }}$ is again Cartier, hence its closure $\bar{D} \subset Y_{T}$ is \mathbb{Q}-Cartier. If $C_{0} \subset Y_{0}$ is contracted by f_{0} then by (12.3.3) we conclude that $C_{0} \cdot \bar{D}=0$. Thus by (12.1.4) the divisor

$$
f_{T}(\bar{D})=\left(\text { the closure of } D_{\text {gen }} \text { in } Z_{T}\right)
$$

is again \mathbb{Q}-Cartier. This was to be proved.
Since Z_{s} is projective and $-K_{Y_{s}}$ is f_{s}-ample, f_{s} is a contraction of an extremal face. We will prove that this face is one dimensional. Assume that for some $t \in U$ it is not. Then f_{t} contracts at least two different extremal rays E_{t}^{1} and E_{t}^{2}. By (12.3.3) we obtain two flat families of curves \mathscr{E}^{1} / V and \mathscr{E}^{2} / V over some Zariski open neighborhood of t. These families are contracted by f. Since the relative Hilbert scheme satisfies the valuative criterion of properness, these extend to flat families of curves over S. Thus we obtain $\left(\mathscr{E}^{1}\right)_{0}$ and $\left(\mathscr{E}^{2}\right)_{0}$. These are both contracted by f_{0}, hence they are in the same extremal ray. Thus by (12.2.6) the same holds for every $s \in U$. This is a contradiction.
(12.3.5) Remarks. (12.3.5.1) Even if Y / S is projective we cannot prove that Z / S is again projective. This is not known even when Y / S is smooth.
(12.3.5.2) It is essential to assume that Y_{0} is \mathbb{Q}-factorial. Let Y be the total space of the rank two vector bundle $\mathscr{O}(-1) \oplus \mathscr{O}(-1)$ over \mathbb{P}^{2}. Thus \mathbb{P}^{2} can be contracted to a point to get $f: Y \rightarrow Z$. If $t=0$ is a general section of Z through the singular point then $Y_{0}=\left(f^{*} t=0\right)$ defines a 3-fold containing \mathbb{P}^{2}. It has only one singular point, it is a node $(x y-u v=0)$ and $\mathbb{P}^{2} \subset Y_{0}$ is not \mathbb{Q}-Cartier there. The line $C_{0} \subset \mathbb{P}^{2} \subset Y_{0}$ generates an extremal ray, but no multiple of it lifts to the general fiber.
(12.3.6) Corollary. Notation is as in (12.3.1). Assume that Y / S is projective and that $\mathscr{G N}_{1}(X / S)$ has trivial monodromy. Let $f: Y \rightarrow Z$ be the contraction of a relative extremal ray. Then $f_{s}: Y_{s} \rightarrow Z_{s}$ is the contraction of an extremal ray for every $s \in S$.
Proof. By (12.2.8) f_{s} is the contraction of an extremal ray for a dense set of $s \in S$. As in (12.3.4) we get that it is the contraction of an extremal ray everywhere.
(12.4) Minimal models in families. The aim of this section is to prove the following.
(12.4.1) Theorem. Let S be a connected normal quasi-projective variety or a complex space and let X / S be a flat, projective family of threefolds such that every fiber has only \mathbb{Q}-factorial terminal singularities. Assume that not every fiber is uniruled. Then there is a flat projective family Y / S and a rational map $f: X / S \cdots>Y / S$ such that on each fiber f induces a birational map, each fiber of Y / S has only terminal singularities, and $K_{Y / S}$ is nef; i.e., minimal models exist in families.

In general we have a slightly weaker result:
(12.4.2) Theorem. Let S be a connected normal quasi-projective variety or a complex space and let X / S be a flat, projective family of threefolds such that every fiber has only \mathbb{Q}-factorial terminal singularities. Then there is a finite, étale and Galois base change $p: S^{\prime} \rightarrow S$, a flat projective family Y^{\prime} / S^{\prime}, and a rational map $f^{\prime}: p^{*} X / S^{\prime} \cdots>Y^{\prime} / S^{\prime}$ such that on each fiber f^{\prime} induces a birational map, each fiber of Y^{\prime} / S^{\prime} has only \mathbb{Q}-factorial terminal singularities and $K_{Y^{\prime} / S^{\prime}}$ is either relatively nef or Y^{\prime} / S^{\prime} admits a relative Fano-contraction.
Proof. After a finite, étale and Galois base change $p: S^{\prime} \rightarrow S$ we may assume that $\mathscr{G} \mathscr{N}_{1}\left(p^{*} X / S^{\prime}\right)$ has trivial monodromy (12.2.8). Now take any $p^{*} X / S^{\prime}$ extremal ray and contract. By (12.3.6) this induces the contraction of an extremal ray in every fiber. If necessary we flip (11.7) and we can continue the usual steps of the minimal model program. Finally we get a Y^{\prime} / S^{\prime} such that $K_{Y^{\prime} / S^{\prime}}$ is either relatively nef or there is a relative Fano-contraction.

Assume that not all fibers are uniruled. Let G be the Galois group of S^{\prime} / S. Then G also acts on $p^{*} X$, and this way we get a birational action of G on Y^{\prime}. By [Fujiki81, Levine81] none of the fibers of X / S is uniruled hence $K_{Y^{\prime} / S^{\prime}}$ is nef. As in [Kollár89, 4.3] there is a subscheme $E \subset Y^{\prime}$ such that every fiber of E / S^{\prime} is at most one dimensional and G acts regularly on $Y^{\prime}-E$. As in [Kollár89, 3.6] we want to find a different compactification of $Y^{\prime}-E$ where the action of G is regular. To do this let H be a relatively ample divisor, and let $D=\sum_{g \in G} g(H)$. By [KMM87, 3.2] if D is not relatively nef, then there is a ($K_{Y^{\prime}}+\varepsilon D$)-extremal ray R for small ε and $R \cdot K_{Y^{\prime}}=0$. By construction only curves in E / S can be in R. Let the contraction corresponding to R be $g: Y^{\prime} / S^{\prime} \rightarrow Z^{\prime} / S^{\prime}$. The exceptional set of g is a subset of E, thus in every fiber of Y^{\prime} / S^{\prime} the morphism g induces a small contraction. By (11.10) the D / S^{\prime}-flop of g exists. Any sequence of D / S^{\prime}-flops terminates since they terminate in every fiber.

After finitely many flops D^{+}, the proper transform of D, becomes nef. Now we can apply relative base point freeness [KMM87, 3.1] to get a model \tilde{Y} / S^{\prime} such that \tilde{D}, the proper transform of D, is relatively ample and G-invariant. Thus G acts regularly on \tilde{Y}. Now we can take the quotient $Y=\tilde{Y} / G$ to get the required family of minimal models.
(12.4.3) Remark. Note that we may not have \mathbb{Q}-factorial singularities on the fibers of Y / S because of monodromy. An easy example is: take a threefold with a nonfactorial node and arrange for the monodromy to interchange the two generators of the local Pic. Blowing up the nodal set gives a smooth family X / S.
(12.4.4) Theorem. Let $0 \in S$ be the germ of a normal complex space and let X / S be a flat, proper family of complex threefolds. Assume that the central fiber X_{0} is projective with only \mathbb{Q}-factorial terminal singularities. Then there is a flat proper family Y / S and a bimeromorphic map $f: X / S \cdots>Y / S$ such that on each fiber f induces a bimeromorphic map, each fiber of Y / S has only \mathbb{Q} factorial terminal singularities, and $K_{Y / S}$ is either relatively nef or Y / S admits a relative Fano contraction.
Proof. Take the contraction of an extremal ray $f_{0}: X_{0} \rightarrow Z_{0}$. This extends to a contraction $f: X / S \rightarrow Z / S$. If necessary we can flip (11.7) and continue until we get a family Y / S where either $K_{Y_{0}}$ is nef or Y_{0} admits a Fano contraction. In either case the same is true for Y / S.
(12.5) Deformation invariance of plurigenera. The aim of this section is to derive the following consequence of the continuity of flips:
(12.5.1) Theorem. Let X / S be a flat family of projective threefolds with \mathbb{Q} factorial terminal singularities, and assume that S is connected. Then all the plurigenera are constant in the family.
Proof. The results of [Nakayama87] show that (12.4.4) implies (12.5.1). We will give a different proof in (12.5.5) following [Levine83] that works in a more general setting.
(12.5.2) Corollary. Let X / S be a flat family of projective threefolds with \mathbb{Q} factorial terminal singularities, and assume that S is connected. Then the Kodaira dimension of the fibers is constant in the family.
(12.5.3) Case $\kappa=-\infty$. If $P_{m}\left(X_{0}\right)=0$ for every m for some fiber X_{0} then X_{0} is uniruled by [Miyaoka88]. Therefore all the fibers are uniruled [Fujiki81, Levine81], thus all the plurigenera are constant.

The other cases follow from the next slightly stronger result:
(12.5.4) Theorem. Let X / S be a proper flat family of complex analytic threefolds with \mathbb{Q}-factorial terminal singularities. Let $0 \in S$ and assume that X_{0} is projective and $P_{m}\left(X_{0}\right) \geq 1$ for some m. Then there is an open neighborhood $0 \in U \subset S$ such that all the plurigenera are constant in the family over U.

The proof will rest on the following result, which is a variant of some results of [Levine83].
(12.5.5) Theorem. Let X / Δ be a proper flat family of complex analytic spaces of dimension d. Assume that X_{0} is projective, smooth in codimension two, and has only log-terminal singularities. Assume that $\omega_{X_{0}}^{m}$ is locally free and is generated by global sections for some $m>0$. Then for every $k, P_{k}\left(X_{t}\right)$ is locally constant near 0 .

Proof. Let $\Delta_{n}=\operatorname{Spec} \mathbb{C}[[t]] / t^{n}$ and let a subscript n denote the fiber over Δ_{n}. Let $s \in H^{0}\left(\omega_{X_{n}}^{m}\right)$ be a general section such that its divisor is smooth in codimension two. Let \bar{s} be its restriction to $H^{0}\left(\omega_{X_{0}}^{m}\right)$. We want to identify the obstruction of lifting \bar{s} to $H^{0}\left(\omega_{X_{n+1}}^{m}\right)$.

Let Y_{n} be the m-fold cyclic cover of X_{n} defined by s and let $\pi: Y_{n} \rightarrow X_{n}$ be the projection.
(12.5.6) Lemma. Let X be a scheme and $i: U \hookrightarrow X$ be an open subset. Let F and G be sheaves on X. Assume that
(12.5.6.1) G is torsion free in codimension 1 ;
(12.5.6.2) F is S_{3};
(12.5.6.3) $\operatorname{codim}_{X}(X-U) \geq 3$.

Then the natural restriction map

$$
\operatorname{Ext}_{X}^{1}(G, F) \rightarrow \operatorname{Ext}_{U}^{1}(G|U, F| U)
$$

is an isomorphism.
Proof. Let $T \subset G$ be the torsion subsheaf. Then $\operatorname{Ext}^{1}(G, F)=\operatorname{Ext}^{1}(G / T, F)$ thus we may assume that G is torsion free. First we construct the inverse of the restriction map. Let

$$
0 \rightarrow F\left|U \rightarrow E_{U} \rightarrow G\right| U \rightarrow 0
$$

be an extension. Now apply i_{*} to get

$$
0 \rightarrow i_{*}(F \mid U) \rightarrow i_{*}\left(E_{U}\right) \rightarrow i_{*}(G \mid U) \rightarrow R^{1} i_{*}(F \mid U)
$$

By [Grothendieck68, III 3.3] $R^{1} i_{*}(F \mid U)=0$, hence the above sequence becomes

$$
0 \rightarrow F \rightarrow i_{*}\left(E_{U}\right) \rightarrow i_{*}(G \mid U) \rightarrow 0
$$

Using the natural injection $G \rightarrow i_{*}(G \mid U)$ we obtain an extension

$$
0 \rightarrow F \rightarrow \bar{E} \rightarrow G \rightarrow 0
$$

where \bar{E} is the preimage of $G \subset i_{*}(G \mid U)$ under the map $i_{*}\left(E_{U}\right) \rightarrow i_{*}(G \mid U)$.
One still has to check that this, in fact, is the inverse. To this end take an exact sequence

$$
0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0
$$

and consider the diagram

This clearly shows that $\operatorname{im}\left[E \rightarrow i_{*}(E \mid U)\right]=\bar{E}$.
(12.5.7) Lemma. There is a natural map

$$
\operatorname{Ext}^{1}\left(\Omega_{X_{n}}^{1}, \mathscr{O}_{X_{n}}\right) \times H^{0}\left(Y_{n},\left(\pi^{*} \omega_{X_{n}}\right)^{* *}\right) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{Y_{n}}^{1}, \omega_{Y_{n}}\right)
$$

Proof. Let D denote the ramification divisor of $\pi: Y_{n} \rightarrow X_{n}$ and let S denote the set of singular points of X_{0} or of Y_{0} (this will not lead to any confusion). Thus we have the following maps:

$$
\begin{aligned}
\operatorname{Ext}^{1}\left(\Omega_{X_{n}}^{1}, \mathscr{O}_{X_{n}}\right) & \rightarrow \operatorname{Ext}^{1}\left(\Omega_{X_{n}-S}^{1}, \mathscr{O}_{X_{n}-S}\right) \\
& \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}-S}^{1}, \mathscr{O}_{Y_{n}-S}\right) \\
& \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}-S}^{1}, \mathscr{O}_{Y_{n}}\right),
\end{aligned}
$$

where the first and the last maps are isomorphisms by (12.5.6) and the one in the middle is simply tensoring with $\mathscr{O}_{Y_{n}-S}$.

Also, $\left(\pi^{*} \omega_{X_{n}}\right)^{* *}=\omega_{Y_{n}}(-(n-1) D)$. This is clear over smooth points, and the double dual on the left automatically extends the isomorphism across the singularities. Thus we have a Yoneda product

$$
\begin{aligned}
& \operatorname{Ext}^{1}\left(\Omega_{X_{n}}^{1}, \mathscr{O}_{X_{n}}\right) \times H^{0}\left(Y_{n},\left(\pi^{*} \omega_{X_{n}}\right)^{* *}\right) \\
& \quad \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}}^{1}, \mathscr{O}_{Y_{n}}\right) \times H^{0}\left(Y_{n}, \omega_{Y_{n}}(-(n-1) D)\right) \\
& \quad \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}}^{1}, \omega_{Y_{n}}(-(n-1) D)\right) \\
& \quad=\operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}}^{1}((n-1) D), \omega_{Y_{n}}\right) .
\end{aligned}
$$

The natural injection

$$
\Omega_{Y_{n}}^{1} \rightarrow \pi^{*} \Omega_{X_{n}}^{1}((n-1) D),
$$

gives

$$
\operatorname{Ext}^{1}\left(\pi^{*} \Omega_{X_{n}}^{1}((n-1) D), \omega_{Y_{n}}\right) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{Y_{n}}^{1}, \omega_{Y_{n}}\right)
$$

This gives the required map.
(12.5.8) Construction of the obstruction. The Kodaira-Spencer map of X_{n} / T_{n} gives an element of $\operatorname{Ext}^{1}\left(\Omega_{X_{n} / T_{n}}^{1}, \mathscr{O}_{X_{n}}\right) \cong \operatorname{Ext}^{1}\left(\Omega_{X_{n}}^{1}, \mathscr{O}_{X_{n}}\right)$, call it ρ. $H^{0}\left(Y_{n},\left(\pi^{*} \omega_{X_{n}}\right)^{* *}\right)$ has a natural section coming from the $\mathscr{G}_{X_{n}}$ summand of

$$
\pi_{*}\left(\pi^{*} \omega_{X_{n}}\right)^{* *}=\omega_{X_{n}}+\mathscr{O}_{X_{n}}+\cdots
$$

Call this section ω. The above lemma gives an element

$$
(\rho \cdot \omega) \in \operatorname{Ext}^{1}\left(\Omega_{Y_{n}}^{1}, \omega_{Y_{n}}\right)
$$

The dual of the map $d: H^{d-1}\left(\mathscr{O}_{Y_{n}}\right) \rightarrow H^{d-1}\left(\Omega_{Y_{n}}^{1}\right)$ gives

$$
d: \operatorname{Ext}^{1}\left(\Omega_{Y_{n}}^{1}, \omega_{Y_{n}}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathscr{O}_{Y_{n}}, \omega_{Y_{n}}\right)=H^{1}\left(\omega_{Y_{n}}\right) .
$$

Multiplying by ω^{m-1} yields $\omega^{m-1} d(\rho \cdot \omega) \in H^{1}\left(\omega_{Y_{n}}^{m}\right)$. Take the trace in order to obtain $\operatorname{Tr}\left(\omega^{m-1} d(\rho \cdot \omega)\right) \in H^{1}\left(\omega_{X_{n}}^{m}\right)$.
(12.5.9) Claim. $\operatorname{Tr}\left(\omega^{m-1} d(\rho \cdot \omega)\right) \in H^{1}\left(\omega_{X_{n}}^{m}\right)$ is the obstruction to lifting \bar{s} to an element of $H^{0}\left(\omega_{X_{n+1}}^{m}\right)$.
Proof. $H^{1}\left(\omega_{X_{n}}^{m}\right) \rightarrow H^{1}\left(\omega_{X_{n}-S}^{m}\right)$ is injective and over the smooth points of X_{0} the above element is the obstruction by computations of [Levine83].
(12.5.10) Lemma [Kawamata85]. Y_{0} has only canonical singularities.

Proof. By definition, Y_{0} is a Cartier divisor in

$$
\operatorname{Spec}_{X_{0}}\left(\mathscr{O}+\omega^{[-1]}+\omega^{[-2]}+\cdots\right) .
$$

This latter has canonical singularities since it is locally a quotient of $\mathbb{C} \times$ (the Gorenstein cover of X_{0}). Since $\omega_{Y_{n}}^{m}$ is generated by global section, the corresponding linear system on $\operatorname{Spec}_{X_{0}}\left(\mathscr{O}+\omega^{[-1]}+\omega^{[-2]}+\cdots\right)$ is base point free, thus the general member Y_{0} also has canonical singularities.
(12.5.11) End of proof. Since Y_{0} has canonical singularities the same proof as in [Levine83, Proposition 2] yields that the map

$$
d: \operatorname{Ext}^{1}\left(\Omega_{Y_{n}}^{1}, \omega_{Y_{n}}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathscr{O}_{Y_{n}}, \omega_{Y_{n}}\right)=H^{1}\left(\omega_{Y_{n}}\right)
$$

is zero. Thus the obstruction to lifting vanishes. This proves that general sections of $H^{0}\left(\omega_{X_{0}}^{m}\right)$ lift to sections of $H^{0}\left(\omega_{X / T}^{m}\right)$. Since general sections generate the space of all sections this proves that the plurigenera $P_{m k}$ are constant in the family. The rest of the proof of (12.5.5) now follows as in [Levine85].
(12.5.12) Proof of (12.5.4). By shrinking S, we can apply (12.4.4) to get a fiberspace Y / S which is fiberwise bimeromorphic to X / S such that Y_{0} is projective with only \mathbb{Q}-factorial terminal singularities. By [Kawamata91] some multiple of $K_{Y_{0}}$ is base point free. For fixed k consider $P_{k}\left(Y_{s}\right)$ as a function on S. This is upper semicontinuous in the Zariski topology, thus we can apply (12.5.5) to conclude that $P_{k}\left(Y_{s}\right)$ is constant in a neighborhood S_{k} of 0 . Our aim is to find a neighborhood U where all the plurigenera are constant.

To do this fix a k such that $\omega_{Y_{0}}^{[k]}$ is locally free and is generated by global sections. There is a neighborhood V of 0 such that the same holds for $\omega_{Y_{s}}^{[k]}$ for $s \in V$. Now we can consider the k-canonical morphism

$$
\phi_{k}: Y / V \rightarrow Z / V \subset \mathbb{P}_{V} \quad \text { such that } \quad \omega_{Y / V}^{[m k]} \cong \phi_{k}^{*} \mathscr{G}_{\mathbb{P} / V}(m)
$$

where \mathbb{P}_{V} is a projective space bundle over V and m is any positive integer. The varieties Z_{s} all have the same degree, thus they form a bounded family. In particular, there are only finitely many Hilbert functions

$$
H_{s}(m)=H^{0}\left(Z_{s}, \mathscr{O}_{Z_{s}}(m)\right)=H^{0}\left(Y_{s}, \omega_{Y_{s}}^{[m k]}\right)
$$

Similarly, considering the family of sheaves

$$
F_{s}^{j}=\left(\phi_{k}\right)_{*} \omega_{Y_{s}}^{[j]} \quad \text { for } j<k
$$

we see that there are only finitely many Hilbert functions

$$
H_{s}^{j}(m)=H^{0}\left(Z_{s}, F_{s}^{j} \otimes \mathscr{O}_{Z_{s}}(m)\right)=H^{0}\left(Y_{s}, \omega_{Y_{s}}^{[j+m k]}\right)
$$

Thus there is an $N>0$ such that if $P_{m}\left(Y_{s}\right)=P_{m}\left(Y_{s^{\prime}}\right)$ for every $m<N$ then $P_{m}\left(Y_{s}\right)=P_{m}\left(Y_{s^{\prime}}\right)$ for every m. Therefore there is an open neighborhood $0 \in U \subset S$ such that all the plurigenera are constant over U.
(12.5.13) Corollary. Let $f: X \rightarrow S$ be a flat family of projective threefolds with \mathbb{Q}-factorial terminal singularities and assume that S is connected. The canonical models of the fibers also form a flat family.
Proof. The relative canonical model is

$$
\operatorname{Proj}_{S}\left(\sum f_{*}\left(\omega_{X / S}^{[j]}\right)\right)
$$

If the fibers are uniruled the canonical model is the empty set. Otherwise the sheaves $f_{*}\left(\omega_{X / S}^{[j]}\right)$ are locally free, hence the Proj is flat and commutes with base change. Thus the relative canonical model is the family of canonical models of the fibers.
(12.5.14) Theorem. Let X / S be a proper flat family of complex analytic threefolds with \mathbb{Q}-factorial terminal singularities. Let $0 \in S$ and assume that X_{0} is a projective threefold of general type. Then there is an open neighborhood $0 \in U \subset S$ such that all the fibers over U are also projective threefolds of general type.
Proof. Consider the relative canonical model. Its canonical class is relatively ample, hence it is projective. Thus X / S is a relative algebraic space. Hence by (12.2.10) nearby fibers are also projective.
(12.6) Local birational deformation spaces. (12.6.1) If S is a nonruled surface and S^{\prime} is its minimal model then any deformation of S is obtained from a suitable deformation of S^{\prime} by repeatedly blowing up some sections. Thus up to birational equivalence the deformations of S^{\prime} give all the deformations of S. Thus Def S^{\prime} can be viewed as the deformation space of the birational equivalence class of S.

If X is a 3-fold and $C \subset X$ is a smooth curve then C need not be liftable to certain deformations of X, thus X can have deformations that do not give deformations of $B_{C} X$. Thus the deformation spaces of different smooth models differ more than in the surface case. To make things worse, minimal models are not unique. Nonetheless one can define a good local birational deformation space thanks to the following results:
(12.6.2) Theorem. Let X_{0} and X_{0}^{\prime} be projective 3-folds with \mathbb{Q}-factorial terminal singularities. Assume that $K_{X_{0}}$ and $K_{X_{0}^{\prime}}$ are both nef. Let $g: X_{0} \cdots>X_{0}^{\prime}$ be a birational map. Then g induces an isomorphism g_{*} : Def $X_{0} \xrightarrow{\sim} \operatorname{Def} X_{0}^{\prime}$. Proof. By [Kollár89, 4.9], X_{0}^{\prime} is obtained from X_{0} by a sequence of flops. Let $h: X_{0} \cdots>X_{0}^{+}$be the first flop; then it is sufficient to construct an isomorphism $h_{*}: \operatorname{Def} X_{0} \xrightarrow{\sim} \operatorname{Def} X_{0}^{+}$. If X / T is a deformation of X_{0}, then (11.10) gives
the corresponding flat deformation X^{+} / T of X_{0}^{+}. This gives a morphism Def $X_{0} \rightarrow$ Def X_{0}^{+}, which is clearly an isomorphism.
(12.6.3) Remarks. (12.6.3.1) The same result holds for compact complex 3folds with analytically \mathbb{Q}-factorial singularities.
(12.6.3.2) \mathbb{Q}-factoriality is a necessary assumption.
(12.6.4) Proposition-Definition. Let \mathscr{X} be a birational equivalence class of nonuniruled 3-folds. By [Mori88] there is a member $X \in \mathscr{Z}$ with \mathbb{Q}-factorial terminal singularities and K_{X} nef. Its deformation space will be called the local deformation space of \mathscr{X} and is denoted by Def \mathscr{X}. By (12.6.2) this definition is independent of the minimal model chosen.

By (12.4.4) and (12.6.2), if X^{\prime} has \mathbb{Q}-factorial terminal singularities and $g: X^{\prime} \cdots>X$ is a birational map, then it induces a morphism Def $X^{\prime} \rightarrow$ $\operatorname{Def} X \cong \operatorname{Def} \mathscr{X}$.
(12.6.5) Proposition. Let T be the spectrum of a DVR. Let X_{0} be a projective 3-fold with \mathbb{Q}-factorial terminal singularities such that $K_{X_{0}}$ is nef. Let X^{1} / T and X^{2} / T be two flat deformations of X_{0} (i.e., $X_{0}^{i} \simeq X_{0}$). Assume that the generic fibers $X_{\text {gen }}^{1}$ and $X_{\text {gen }}^{2}$ are birationally equivalent. Then there is a birational map $g_{0}: X_{0} \cdots>X_{0}$ such that the induced morphism $g_{0 *}:$ Def $X_{0} \rightarrow$ Def X_{0} takes the family X^{1} / T to X^{2} / T.
Proof. Let $g_{g e n}$ be the given birational equivalence and let $\Gamma / T \subset X^{1} \times_{T} X^{2}$ be the closure of its graph. We will prove in (12.7.6.6) that if $Z \rightarrow X^{i}$ is any resolution of singularities, then all the exceptional divisors are uniruled. Thus by [Matsusaka-Mumford64], Γ_{0} is the graph of a birational equivalence $g_{0}: X_{0} \cdots>X_{0}$. We can factor g_{0} into a sequence of flops, and this can be extended to X^{1} / T. This way we obtain X^{1+} / T. The graph of the new birational equivalence $\Gamma^{+} \subset X^{1+} \times_{T} X^{2}$ is such that Γ_{0}^{+}is the graph of an isomorphism. Thus Γ^{+}is the graph of an isomorphism as well. This shows that $g_{0 *}$ maps the family X^{1} / T to X^{2} / T.
(12.7) Global birational moduli spaces. (12.7.1) The global birational moduli problem is much more delicate than the local one. Usually one has to introduce some extra structure (distinguished homology basis or polarization). Here we discuss the case when the threefolds come nearly endowed with a polarization, i.e., threefolds of general type.

Already for surfaces the minimal model is not the right object to use to construct global moduli spaces. Although it is unique, it leads to a very nonseparated moduli space. Therefore we consider instead the canonical model. If S is minimal, then by [Brieskorn71] the morphism Def $S \rightarrow \operatorname{Def} S^{\text {can }}$ is finite and surjective. Hence the deformation theory of S and S^{can} is very similar.

In the threefold case this is not so, as shown by the following.
(12.7.2) Example. Let $X \subset \mathbb{C P}^{4}$ be a hypersurface with a single ordinary triple point at $0 \in X$. Then $B_{0} X \rightarrow X$ is a resolution of singularities with a smooth cubic surface E as exceptional divisor. Thus X is canonical. We want
to understand $\operatorname{Def} B_{0} X \rightarrow \operatorname{Def} X . \quad N_{E \mid B_{0} X} \simeq \mathscr{O}_{E}(-1)$, thus $H^{1}\left(N_{E \mid B_{0} X}\right)=0$. Therefore if Y / T is a deformation with $Y_{0} \simeq B_{0} X$ then $E \subset B_{0} X$ lifts to a flat family of exceptional surfaces over T. This implies that

$$
\operatorname{im}\left(\operatorname{Def} B_{0} X \rightarrow \operatorname{Def} X\right)
$$

consists exactly of those hypersurfaces that contain a triple point.
(12.7.3) Proposition. Let X be a proper threefold with canonical singularities, and let $f: Y \rightarrow X$ be a projective \mathbb{Q}-factorial, terminal, and crepant partial resolution. Then the natural morphism $F: \operatorname{Def} Y \rightarrow \operatorname{Def} X$ is finite.
Proof. The morphism exists by (11.4). If F is not finite, then there is a deformation $\mathscr{Y} / T \quad(T=\operatorname{Spec} \mathbb{C}[[t]])$ such that it maps to the trivial deformation $F: \mathscr{Y} \rightarrow X \times T$. This means that there is a birational map $\mathscr{Y} \rightarrow X \times T \cdots>Y \times T$. We can apply (12.6.5) to $\mathscr{F} \cdots>Y \times T$ to get that \mathscr{Y} is also a trivial deformation of Y.
(12.7.4) Proposition-Definition. Notation is the same as above.
(12.7.4.1) The subspace $\operatorname{im}[\operatorname{Def} Y \rightarrow \operatorname{Def} X]$ is closed and is independent of the choice of Y. It will be called the SFCT subspace of Def X (for simultaneous \mathbb{Q}-factorial crepant terminalization).
(12.7.4.2) Openness of versality for SFCT subspaces: Let $\mathscr{Y} \rightarrow \operatorname{Def} Y \rightarrow$ Def X be the versal SFCT family at $Y \rightarrow X$. This family is also a versal SFCT family at every nearby pair $Y_{t} \rightarrow X_{t}$.
(12.7.4.3) A flat family of threefolds X / S satisfies $S F C T$ if for every $s \in S$ the image of the natural morphism $(s, S) \rightarrow \operatorname{Def} X_{s}$ lies in the $S F C T$ subspace of $\operatorname{Def} X_{s}$.
Proof. The independence follows from (12.6.4). By (12.1.10) and (12.5.14) Y_{t} is again projective with \mathbb{Q}-factorial terminal singularities. The morphism $Y_{t} \rightarrow X_{t}$ is crepant. Now openness of versality for Def Y implies (12.7.4.2).
(12.7.5) Formulation of the birational moduli problem. Fix a function $P(k)$ (the Hilbert function).
(12.7.5.1) Let \mathscr{M}_{P} be the functor
$\mathscr{M}_{P}(S)=\left\{\begin{array}{l}\text { Proper flat families } X / S \text { such that } X \text { is an algebraic space, for } \\ \text { every } s \in S \text { the fiber } X_{s} \text { is a projective 3-fold with } \mathbb{Q} \text {-factorial } \\ \text { terminal singularities and } h^{0}\left(X_{s}, \omega_{X_{s}}^{[k]}\right)=P(k) \text { for every } k \geq 2 . \\ \text { Two families are equivalent if there is an isomorphism between } \\ \text { open dense subsets } f: X^{1} / S \cdots>X^{2} / S \text { which is birational on } \\ \text { every fiber. }\end{array}\right\}$
(12.7.5.2) Let $\mathscr{M}_{P}^{\text {can }}$ be the functor
$\mathscr{M}_{P}^{\text {can }}(S)=\left\{\begin{array}{l}\text { Projective flat families } X / S \text { such that for every } s \in S \text { the fiber } \\ X_{s} \text { is a canonical 3-fold such that } \chi\left(X_{s}, \omega_{X_{s}}^{[k]}\right)=P(k) \text { for every } \\ k \text { and such that } X / S \text { satisfies SFCT. }\end{array}\right\}$
(12.7.5.3) Note that by (12.5 .13) there is a natural transformation

$$
\mathscr{M}_{p} \rightarrow \mathscr{M}_{P}^{\mathrm{can}}
$$

As is the case already for surfaces, these two functors agree on closed points, but they differ infinitesimally. The functor \mathscr{M}_{P} is very nonseparated. While \mathscr{M}_{P} is more interesting from the point of view of smooth threefolds, technically $\mathscr{M}_{P}^{\text {can }}$ is easier to deal with.
(12.7.5.4) Let X be a canonical threefold. Then by vanishing $\chi\left(X, \omega_{X}^{[k]}\right)=$ $h^{0}\left(X, \omega_{X}^{[k]}\right)$ for $k \geq 2$. In general $\chi\left(X, \omega_{X}^{[k]}\right)$ is not a birational invariant even for smooth threefolds. This is the reason why we use h^{0} in (12.7.5.1) and χ in (12.7.5.2).
(12.7.6) Theorem (Birational moduli for threefolds of general type).
(12.7.6.1) For every $P(k)$ the functor $\mathscr{M}_{P}^{\text {can }}$ is coarsely represented by a separated algebraic space of finite type \mathbf{M}_{P}.
(12.7.6.2) Let Y / S be a smooth family of projective 3-folds of general type and assume that S is connected. For some $s \in S$, let $P(k)=h^{0}\left(Y_{s}, \omega_{Y}^{k}\right)$ for $k \geq 2$. Then there is a morphism $f: S \rightarrow \mathbf{M}_{P}$ such that for every $s \in S$ the image $f(s)$ is the moduli point of the canonical model of Y_{s}.

The proof will be done in several steps.
(12.7.6.3) Let Z / Δ be a proper flat family of algebraic varieties with canonical singularities. Then $\chi\left(Z_{t}, \omega_{Z_{t}}^{[n]}\right)$ is locally constant for every n.

This was proved in [Kollár83, 3.1.4]. The point is that usually double dual will not commute with specialization. The argument is the following. Pick $z \in$ Z_{0} and let $\left(y, Y_{0}\right) \rightarrow\left(z, Z_{0}\right)$ be the local index one cover. By [Kollár83, 3.2.2] or [Ran89, 2.3], this extends to a cover $f:(y, Y) \rightarrow(z, Z)$. By construction $f_{*} \mathscr{O}_{Y} \simeq \sum_{0}^{k-1} \omega_{Z}^{[i]}$ and $\omega_{Z}^{[k]}$ is locally free. Thus $\omega_{Z}^{[i+k]} \simeq \omega_{Z}^{[k]} \otimes \omega_{Z}^{[i]}$. Hence $\omega_{Z}^{[j]} \otimes \mathscr{O}_{Z_{0}} \simeq \omega_{Z_{0}}^{[j]}$ locally everywhere, hence also globally. This implies the claim.
(12.7.6.4) Canonical 3-folds with fixed $P(k)=\chi\left(X, \omega_{X}^{[k]}\right)$ form a bounded family.

This was proved in [Kollár83, 3.1.4]. Using more recent information a proof can be obtained as follows. By [Reid87, 10.3],

$$
\chi\left(X, \omega_{X}^{[n]}\right)=\frac{n(n-1)(2 n-1)}{12} K_{X}^{3}+\left(1-2 \chi\left(\mathscr{O}_{X}\right)\right) n+c n+\phi(n)
$$

where $c=(1 / 12) \sum\left(r_{i}-r_{i}^{-1}\right)$ and summation ranges over certain integers r_{i} such that index $X=\operatorname{lcm}\left(r_{i}\right)$ and $\phi(n)=0$ if n is sufficiently divisible. Notice that given a function $P(k)$, there is at most one way of writing it in the above form. Thus $P(k)$ determines the above c, hence we can bound the index of X in terms of $P(k)$. If the index is m, then $\left(X, \omega_{X}^{[m]}\right)$ is a 3-fold with an ample Cartier divisor of fixed Hilbert polynomial. These form a bounded family by [Kollár85, 2.1.3].
(12.7.6.5) Let X / Δ be a flat family of 3-folds. Assume that X_{0} has canonical singularities and that X / Δ satisfies SFCT. Then all nearby fibers have only canonical singularities.

Let $f_{0}: Y_{0} \rightarrow X_{0}$ be a \mathbb{Q}-factorial crepant terminalization. By definition of SFCT, possibly after a finite and surjective base change, there is a deformation Y / Δ of Y_{0} and a proper birational map $f: Y / \Delta \rightarrow X / \Delta$. By [KSB88, Chapter

6] Y_{t} has terminal singularities. Since $Y_{t} \rightarrow X_{t}$ is crepant, X_{t} has canonical singularities.
(12.7.6.6) Let X / Δ be a flat family of 3-folds satisfying SFCT. Let $Z / \Delta \rightarrow$ X / Δ be a proper birational morphism and let $E \subset Z$ be an exceptional divisor. Then E is uniruled.

Let $g: U / \Delta \rightarrow X / \Delta$ be a proper generically finite and surjective morphism such that any g-exceptional divisor is uniruled. Then it is sufficient to prove the above claim for U / Δ instead of X / Δ. Then first we can take $f: Y / \Delta \rightarrow X / \Delta$ as above. The f-exceptional divisors are uniruled by [Reid80]. The question is also local on Y / Δ. By [Reid83] locally everywhere we have a morphism $h: U \rightarrow Y$ such that U is smooth and there are no h-exceptional divisors. For a smooth variety the claim is clear, hence we are done.
(12.7.6.7) Completion of the proof. The first part is clear since by the above considerations all the conditions of [Kollár85, 4.1.1] are satisfied by $\mathscr{M}_{P}^{\text {can }}$.

The second part is a reformulation of (12.5.13).

13. FURTHER RESULTS ON EXTREMAL NBDS AND FLIPS

The aim of this chapter is to get further information about extremal nbds. The idea is to view X as a one-parameter family of surfaces and to exploit the deformation theory of surfaces to understand X. The general framework is the following:
(13.1) A method for constructing extremal nbds. Let $X \supset C$ be an extremal nbd. Let $t \in \mathscr{O}_{X}$ be a function vanishing on C and let $H=(t=0)$. Thus X can be viewed as the family of level sets of the function t. We can try to recover X as a deformation of the surface germ H. This can be done as follows:

Let us start with a rational surface singularity H^{\prime}. Consider a proper bimeromorphic morphism $f: H \rightarrow H^{\prime}$. Assume that H is normal and every singularity of H can be the hyperplane section of a terminal threefold singularity. This means that every $P_{i} \in H$ has a one-parameter deformation $H_{i, i}: t \in \Delta$ such that the total space is a three-dimensional terminal singularity. By (11.4.2) we can choose a deformation $H_{t}: t \in \Delta$ of $H=H_{0}$ which induces the above deformations at the singular points. Let X be the total space of this deformation of H. This X is an analytic threefold which has only terminal singularities by construction. By (11.4.1) f_{0} extends to a contraction morphism $f_{t}: H_{t} \rightarrow H_{t}^{\prime}$. Here $H_{t}^{\prime}: t \in \Delta$ is a flat deformation of H_{0}^{\prime}; let Y be the total space. The natural morphism $f: X \rightarrow Y$ is proper and bimeromorphic. By the adjunction formula $K_{X} \mid H=K_{H}$. Therefore if $-K_{H}$ is f-ample then $f: X \rightarrow Y$ is an extremal nbd where C is possibly reducible. It is not clear whether the nbd constructed is isolated or not. Some criteria will be given later.
(13.2) A method for deforming extremal nbds. Let $X \supset C$ be an extremal nbd. Let $t \in \mathscr{O}_{X}$ be a function vanishing on C and let $H=(t=0)$. Thus X can be viewed as the total space of a one-parameter deformation H_{t} of the surface germ H. If $H_{s, t}:(s, t) \in \Delta(s) \times \Delta(t)$ is a two-parameter deformation of H
such that $H_{0, t}=H_{t}$ then we can view $X_{s}=\bigcup_{t} H_{s, t}: s \in \Delta$ as a deformation of the extremal nbd $X_{0}=X$.

Assume that we have X and at the singular points we specify a deformation of $X \supset H \ni P_{i}$. This way we get a morphism

$$
v: \Delta(s) \times \Delta(t) \rightarrow \prod \operatorname{Def}\left(P_{i} \in H\right)
$$

The deformation in the t-direction is the one realized by X, thus we have a specified lifting of $v \mid \Delta(t)$ to a morphism $\Delta(t) \rightarrow \operatorname{Def} H$. By (11.4.2) the restriction morphism $\operatorname{Def} H \rightarrow \Pi \operatorname{Def}\left(P_{i} \in H\right)$ is smooth, thus locally a direct product. Therefore there is a lifting

$$
V: \Delta(s) \times \Delta(t) \rightarrow \operatorname{Def} H
$$

which induces the above two-parameter deformations at the singularities. We can fix s and let t vary, this way we get a one-parameter family $X_{s}: s \in \Delta$. By construction $X_{0} \cong X$.

The disadvantage of this method is that it is frequently very hard to understand the exceptional curves $C_{s} \subset X_{s}$.
(13.3) Theorem. Let $X \supset C$ be an extremal nbd, C possibly reducible. Let $t \in \mathscr{O}_{X}$ be a function vanishing on C and let $H=(t=0)$. Assume that for every $P \in H$ one of the following conditions is satisfied:
(13.3.1.1) In suitable local coordinates X is given by an equation of the form

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0\right) / \mathbb{Z}_{m}\left(a_{1}, a_{2}, a_{3}, 0\right)
$$

and H is locally defined by $y_{4}=t=0$.
(13.3.1.2) In suitable local coordinates X is given by an equation of the form

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0\right) / \mathbb{Z}_{4}(1,1,3,2)
$$

where $g_{\operatorname{deg}=2}\left(y_{1}, y_{2}, y_{3}, 0\right)$ has rank three and H is locally defined by $f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=t=0$ where $f_{\operatorname{deg}=2}\left(0,0,0, y_{4}\right)$ is nonzero.
(13.3.1.3) In suitable local coordinates X is given by an equation of the form

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0\right) / \mathbb{Z}_{4}(1,1,3,2) .
$$

where $g_{\operatorname{deg}=2}\left(y_{1}, y_{2}, y_{3}, 0\right)=g_{\operatorname{deg}=2}\left(0, y_{2}, y_{3}, 0\right)$ has rank two and H is locally defined by $f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=t=0$ where $f_{\text {deg }=2}\left(0,0,0, y_{4}\right)$ is nonzero.

Then there is a flat deformation

$$
\left(X_{s} \supset H_{s} \supset C_{s}\right): s \in \Delta ; \quad\left(X_{0} \supset H_{0} \supset C_{0}\right) \cong(X \supset H \supset C)
$$

such that the following conditions are satisfied:
(13.3.2.1) $\left(H_{s} \supset C_{s}\right)$ is the trivial deformation of $\left(H_{0} \supset C_{0}\right)$; in fact, we have a natural identification $H_{0} \cong H_{s}$.
(13.3.2.2) If $P \in H$ is as in (13.3.1.1) then X_{s} has a cyclic quotient singularity at $P \in H_{s}$ for $s \neq 0$.
(13.3.2.3) If $P \in H$ is as in(13.3.1.2) then for $s \neq 0$ in suitable coordinates X_{s} at $P \in H_{s}$ is given by

$$
\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{3}=0\right) / \mathbb{Z}_{4}(1,1,3,2) .
$$

(13.3.2.4) If $P \in H$ is as in (13.3.1.3) then for $s \neq 0$ in suitable coordinates X_{s} at $P \in H_{s}$ is given by

$$
\left(y_{1}^{6}+y_{2}^{2}+y_{3}^{2}+y_{4}^{3}=0\right) / \mathbb{Z}_{4}(1,1,3,2) .
$$

(13.3.3) In all cases X_{s} has only analytically \mathbb{Q}-factorial singularities along H_{s} for $s \neq 0$.
(13.3.4) Warning: In general X_{s} will have other singular points and other exceptional curves too.
Proof. X can be thought of as the total space of a one-parameter deformation $H_{t}: t \in \Delta$ of $H_{0}=H$.

If $P \in H$ is as in (13.3.1.1) then introduce a new parameter s and consider the deformation of the singularity

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+s y_{4}=0\right) / \mathbb{Z}_{m}\left(a_{1}, a_{2}, a_{3}, 0\right) .
$$

If $P \in H$ is as in (13.3.1.2-13.3.1.3) then introduce a new parameter s and consider the deformation of the singularity

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+s\left(y_{4}+\mu y_{1}^{2}\right) f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0\right) / \mathbb{Z}_{4}(1,1,3,2)
$$

where μ is a sufficiently general constant.
These deformations can be globalized as in (13.2).
If $P \in H$ is as in (13.3.1.1) then for $s \neq 0$ the local equation for the index one cover of X_{s} contains $s y_{4}$ with nonzero coefficient, thus X_{s} has a quotient singularity at P.

If $P \in H$ is as in (13.3.1.2-13.3.1.3) then the local equation g_{s} is such that $\left(g_{s}\right)_{\operatorname{deg}=2}\left(y_{1}, y_{2}, y_{3}, 0\right)$ has rank at least two (these come from g). In case (13.3.1.2) $\left(g_{s}\right)_{\operatorname{deg}=2}\left(y_{1}, y_{2}, y_{3}, 0\right)$ has rank three and we get the equation (13.3.2.3).

If $\left(g_{s}\right)_{\operatorname{deg}=2}$ has rank two then introduce a \mathbb{Z}-wt by $\sigma\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=$ (1, 3, 3, 2). Then
$\left(g_{s}\right)_{\sigma \leq 6}=y_{2}^{2}+y_{3}^{2}+\left(a_{1} s+a_{0}\right) y_{4}^{3}+\left(b_{2} s \mu+b_{1} s+b_{0}\right) y_{1}^{2} y_{4}^{2}+c y_{1}^{4} y_{4}+d y_{1}^{6}+e y_{1}^{3} y_{3}$, where $a_{1} b_{2} \neq 0, c, d$, and e depend on s, μ linearly. For general s, μ in suitable new coordinates this can be brought to the form

$$
\left(g_{s}\right)_{\sigma \leq 6}=\bar{y}_{2}^{2}+\bar{y}_{3}^{2}+\bar{y}_{4}^{3}+\bar{y}_{1}^{6} .
$$

Adding higher σ-wt terms does not change the isomorphism class of this singularity.

A cyclic quotient singularity is \mathbb{Q}-factorial. For the singularity in (13.3.2.3) \mathbb{Q}-factoriality follows from [Kollár91, 2.2.7] since $y_{3}^{2}+y_{4}^{3}$ is irreducible. Also by [Kollár91, 2.2.7] the local Picard group of

$$
\left(y_{2}^{2}-y_{3}^{2}+y_{4}^{3}-y_{1}^{6}=0\right)
$$

is generated by the divisors

$$
D_{j}=\left(y_{2}-y_{3}=y_{4}-\varepsilon^{j} y_{1}^{2}=0\right) \quad \text { where } \varepsilon^{3}=1 \text { and } j=0,1,2 .
$$

The \mathbb{Z}_{4}-action ($1,1,3,2$) sends D_{j} to

$$
D_{j} \mapsto D_{j}^{\prime}=\left(i y_{2}-i^{3} y_{3}=i^{2} y_{4}-\varepsilon^{j} i^{2} y_{1}^{2}=0\right)=\left(y_{2}+y_{3}=y_{4}-\varepsilon^{j} y_{1}^{2}=0\right)
$$

Since

$$
D_{j} \cup D_{j}^{\prime}=\left(y_{4}-\varepsilon^{j} y_{1}^{2}=0\right)
$$

is principal, the action of \mathbb{Z}_{4} on the Picard group is by -id. Thus the Picard group of the quotient

$$
\left(y_{2}^{2}-y_{3}^{2}+y_{4}^{3}-y_{1}^{6}=0\right) / \mathbb{Z}_{4} \cong\left(y_{1}^{6}+y_{2}^{2}+y_{3}^{2}+y_{4}^{3}=0\right) / \mathbb{Z}_{4}
$$

is torsion.
The following example shows some of the intricate features of these deformations
(13.3.5) Example. We consider a deformation X_{t} of $I I A$ type extremal nbds given by equations as in (7.9.4.1). The deformation parameter will be t. The family will be patched together from two charts. One chart is

$$
\left(y_{1} y_{2}+y_{3}^{2}+y_{4}^{1+2 k}-t y_{4}=0\right) / \mathbb{Z}_{4}(1,1,3,2,0)
$$

and the other one is \mathbb{C}^{4} with coordinates u_{1}, u_{2}, u_{3}, t. The patching relations are

$$
u_{1}^{-1}=y_{1}^{4} \quad u_{1} u_{2}=y_{1} y_{3}+y_{1}^{-4} y_{4}^{2} \quad u_{1}^{-1} u_{3}=y_{1}^{2} y_{4} .
$$

The curve C_{t} is the y_{1}-axis. By (7.9.4) for every t this is a nbd of type (7.3.1). $\quad H_{t}$ is difficult to write down explicitly, but by (7.3) it is unchanged under the deformation.

We are looking for other exceptional curves D_{t} that specialise to C_{0} as $t \rightarrow 0$. First, from the above equations we obtain

$$
u_{2}=y_{1}^{5} y_{3}+y_{4}^{2} \quad u_{1} u_{2}-u_{3}^{2}=y_{1} y_{3}
$$

Both sides of these equalities are regular, thus they define regular functions on X_{t} for every t. Therefore they are constant on $D_{t} .\left(y_{1}=0\right)$ intersects C_{0} transversally, thus it also intersects D_{t} nontrivially for $|t|$ small. Thus $y_{1} y_{3}$ vanishes at some point of D_{t}. It is also constant, thus $y_{3} \mid D_{t}=0$. From the first function we see that y_{4} is also constant on D_{t}. Substituting into the equation $y_{1} y_{2}+y_{3}^{2}+y_{4}^{1+2 k}-t y_{4}=0$, we conclude that $y_{4}^{1+2 k}-t y_{4} \mid D_{t}=0$.

This has two kinds of solutions. The trivial one is $y_{4}=0$, which gives C_{t}. Also, for every $v^{2 k}=t$ we obtain another compact curve $D_{t, v}$ given as

$$
\begin{gathered}
y_{2}=y_{3}=0, \quad y_{4}=v \quad \text { in the first chart } \\
u_{2}=v^{2}, \quad v^{2} u_{1}=u_{3}^{2} \quad \text { in the second chart. }
\end{gathered}
$$

By the group action on the first chart, $D_{t, v}=D_{t,-v}$. Thus we obtain k other exceptional curves for $t \neq 0$.
(13.4) Corollary. Let $X \supset C \rightarrow Y$ be an isolated extremal nbd. Assume that C is irreducible. Let $X^{+} \supset C^{+} \rightarrow Y$ be the flip. Then C^{+}is also irreducible.
Proof. As a simple application of (11.9.1) we see that if X is analytically \mathbb{Q} factorial and C is irreducible then C^{+}is also irreducible.

To get the result in general we apply the deformation constructed in (13.3). Let $H \in\left|\mathscr{O}_{X}\right|$ be a general member containing C. As we have seen in Chapters 3 and $6-9, C \subset H \subset X$ is everywhere of the form (13.3.1.1-13.3.1.3).

We can view the four-dimensional total space of the deformation as a twoparameter family of surfaces: $H_{s, t}:(s, t) \in \Delta(s) \times \Delta(t)$. The contraction morphism gives a family $Y_{s}: s \in \Delta(s)$ and this again can be viewed as a twoparameter family: $H_{s, t}^{\prime}:(s, t) \in \Delta(s) \times \Delta(t)$. Note that by (13.3.1) $H_{s, 0}^{\prime} \cong$ $H_{0,0}^{\prime}$. By (11.7.3) the flip $X_{s}^{+}: s \in \Delta(s)$ exists and is obtained as a twoparameter family $H_{s, t}^{+}:(s, t) \in \Delta(s) \times \Delta(t)$ where $H_{s, t}^{+}$is a P-modification of $H_{s, t}^{\prime}$.

We claim that $H_{s, 0}^{+} \cong H_{0,0}^{+}$. To see this consider the family $H_{s, 0}^{+}: s \in \Delta(s)$. This is a modification of the trivial family $H_{s, 0}^{\prime}: s \in \Delta(s)$. A singularity has only finitely many P-modifications, thus we may assume that $H_{s, 0}^{+}$is independent of $s \in \Delta(s)-\{0\}$. Denote this common P-modification by H_{*}^{+}. Thus the threefolds $\bigcup H_{s, 0}^{+}: s \in \Delta(s)$ and $H_{*}^{+} \times \Delta(s)$ are isomorphic over $\Delta(s)-\{0\}$. They both have a proper morphism onto $H_{0,0}^{\prime} \times \Delta(s)$ and the relative canonical class is relatively ample in both cases. Therefore [Matsusaka-Mumford64] implies that they are isomorphic. This proves the claim.

For general s the space X_{s} has only \mathbb{Q}-factorial singularities along C_{s}. Therefore for general s the curve C_{s}^{+}is irreducible. This implies that $H_{s, 0}^{+} \rightarrow$ $H_{s, 0}^{\prime}$ has only one exceptional curve for $s \neq 0$. Since $H_{0,0}^{+} \rightarrow H_{0,0}^{\prime}$ is isomorphic to $H_{s, 0}^{+} \rightarrow H_{s, 0}^{\prime}, C_{0}^{+}$is also irreducible.
(13.5) Theorem. Let $f: X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd with C possibly reducible. Let $f^{+}: X^{+} \supset C^{+} \rightarrow Y \ni Q$ be the flip. Then
$\#\left(\right.$ irreducible components of $\left.C^{+}\right) \leq \#(i r r e d u c i b l e ~ c o m p o n e n t s ~ o f ~ C) . ~$
Proof. We start flipping one curve at a time. We get a series of morphisms $f^{i}: X^{i} \supset C^{i} \rightarrow Y \ni Q$. By (13.4) each exceptional curve C^{i} has the same number of components. Finally we stop when the canonical class becomes nef. Then we take the relative canonical model, thus we may contract some of the curves.

Before giving an example that shows that there can be fewer curves after flip, we need methods to recognize isolated nbds. There are several ways of doing this, for our purposes criteria concerning $H^{\prime} \subset X$ will be the most useful. Note that if H^{\prime} has normal singularities, the rational numbers $C_{i} \cdot K_{H^{\prime}}$ and $C_{i} \cdot C_{i}$ are defined (\cdot is the intersection product).
(13.6) Proposition. Let $f: X \rightarrow Y$ be an extremal nbd constructed as in (13.2). Let C_{i} be the exceptional curves of f_{0}. The exceptional set of f is one dimensional if any of the following conditions are satisfied:
(13.6.1) $\sum a_{i} C_{i} \cdot K_{H^{\prime}}=-1$ has no solutions $a_{i} \in \mathbb{Z}_{+}$.
(13.6.2) $\sum a_{i} C_{i} \cdot K_{H^{\prime}}=-k$ and $\left(\sum a_{i} C_{i}\right) \cdot\left(\sum a_{i} C_{i}\right)=-k$ have no simultaneous solutions $a_{i}, k \in \mathbb{Z}_{+}$.
(13.6.3) f_{0} has only one exceptional curve, X is a primitive extremal nbd, and H is not a DuVal singularity.
(13.6.4) f_{0} has only one exceptional curve, the torsion subgroup of $C l^{s c} X$ has order m, and H is log-terminal but not of the form

$$
\left(x y-z^{m d}=0\right) / \mathbb{Z}_{m}(1,-1, a) \quad \text { where }(a, m)=1
$$

Proof. The proof of the above conditions is relatively straightforward if X has only \mathbb{Q}-factorial singularities. (13.3) and the following lemına will reduce the general case to the \mathbb{Q}-factorial one.
(13.6.5) Lemma. Let $f_{s}: X_{s} \supset H_{s} \supset C_{s} \rightarrow Y_{s}: s \in \Delta$ be a one-parameter deformation of the extremal nbd $f_{0}: X_{0} \supset H_{0} \supset C_{0} \rightarrow Y_{0}$. Then $X_{0} \supset H_{0} \supset C_{0}$ is divisorial iff $X_{s} \supset H_{s} \supset C_{s}$ is divisorial for all small s.
Proof. Note first that in general X_{s} is not a germ, thus it is not an extremal nbd. In fact it can contain several disjoint contracted curves. We claim the strongest version of the above lemma: if X_{0} is divisorial then the germ along C_{s} is divisorial.

Let \mathscr{X} (resp. \mathscr{Y}) be the total spaces of the deformations of X_{0} (resp. Y_{0}) and let $F: \mathscr{Z} \rightarrow \mathscr{Y}$ be the contraction morphism. Let \mathscr{E} be the exceptional set of F. If $X_{s} \supset H_{s} \supset C_{s}$ is divisorial for all small $s \neq 0$ then \mathscr{E} has dimension three. Thus $\mathscr{E} \cap X_{0}$ has dimension at least two, hence X_{0} is divisorial.

Conversely assume that X_{0} is divisorial. Let $B \subset X_{0}$ be a general contracted curve. Then B does not pass through any singularities and it is a smooth rational curve with normal bundle $\mathscr{O}+\mathscr{O}(-1)$. Therefore the normal bundle of B in \mathscr{X} is $\mathscr{O}+\mathscr{O}+\mathscr{O}(-1)$. Thus B has a two-parameter family of embedded deformations in \mathscr{X}. Thus \mathscr{E} has a three-dimensional component \mathscr{C}_{1} containing at least one component of $C_{0} . \mathscr{H}=\bigcup H_{s}$ is a Cartier divisor on \mathscr{X}. Therefore $\mathscr{H} \cap \mathscr{E}_{1}$ is at least two dimensional. Therefore $H_{s} \cap \mathscr{E}_{1}$ is a compact curve contracted by f_{s}, thus $X_{s} \supset H_{s} \supset C_{s}$ is divisorial for all small s.

In the analytically \mathbb{Q}-factorial case we argue as follows. If f contracts a divisor then in the general fiber we have $f_{t}: H_{t}^{\prime} \rightarrow H_{t}$, which contracts some curves $D_{j, t}$. By construction H_{t}^{\prime} is smooth and $-K_{H_{t}^{\prime}}$ is f_{t}-ample. Therefore every f_{t}-exceptional curve is a (-1)-curve.

To see (13.6.1) pick any of these (-1)-curves and specialize it to the special fiber. The limit cycle is an integral linear combination $\sum a_{i} C_{i}$ of the exceptional curves. The intersection number with K_{X} remains constant in the procedure. Thus $\sum a_{i} C_{i} \cdot K_{H^{\prime}}=-1$.

If X has \mathbb{Q}-factorial singularities and there is an exceptional divisor E then it must be \mathbb{Q}-Cartier. We compute the intersection number $E \cdot E \cdot H^{\prime}$ in two ways. First, $E \cdot H$ is an integral linear combination $\sum a_{i} C_{i}$ of exceptional curves. Thus

$$
\left(\sum a_{i} C_{i}\right) \cdot\left(\sum a_{i} C_{i}\right)=E \cdot E \cdot H^{\prime}
$$

On the other hand, $E \cdot E \cdot H^{\prime}=E \cdot E \cdot H_{t}^{\prime}$. Since $E \cdot H_{t}^{\prime}$ is a collection of k (-1)-curves, the above intersection number is $-k$. Computing $K_{X} \cdot E \cdot H^{\prime}$ as before gives the other equality.

In case (13.6.3) if f contracts a divisor then it has to be a divisorial contraction of a single extremal ray, thus Y has terminal singularities. Assume that Y is not Gorenstein. Let $Y^{\prime} \rightarrow Y$ be the Gorenstein cover. Take $X^{\prime}=$ normalization of $\left(X \times_{Y} Y^{\prime}\right)$. The morphism $X^{\prime} \rightarrow X$ is étale outside C. By purity it has to be étale outside the singular points of X. Thus X is not primitive. Therefore H is rational and Gorenstein thus DuVal.

The previous argument also shows that the torsion in $C l^{s c} X$ and the index of K_{H} are equal. The only log-terminal singularites with index m that can be surface sections of terminal singularities are exactly those listed in (13.6.4) (see [KSB88, 3.10]).
(13.6.6) Remark. Note that (13.6.3) can be formulated as a necessary and sufficient condition: Assume that f_{0} has only one exceptional curve and X is a primitive extremal nbd. Then f is a divisorial contraction if and only if H is a DuVal singularity.
(13.7) Example. We give an example of the following situation: $f: X \rightarrow Y$ is an isolated extremal nbd such that the exceptional curve $C=\bigcup C_{i}$ has several components. After flip we get $f^{+}: X^{+} \rightarrow Y$ and the exceptional set of f^{+}is an irreducible curve. Thus the number of curves can decrease under flips.
(13.7.1) Construction. We start with the triple point resolution

We blow up ($m-1$) disjoint points in the (-3)-curve. We get $(m-1)$ curves with selfintersection (-1), and the rest is the following.

We call these curves B_{m-1}, \ldots, B_{1} from left to right. (13.7.1.1) is the dual graph of the resolution of the quotient singularity of the form

$$
\mathbb{C}^{2} / \mathbb{Z}_{m^{2}}(1, m-1) \cong\left(x y-z^{m}=0\right) / \mathbb{Z}_{m}(1,-1,1)
$$

In particular, it can be the hyperplane section of a terminal quotient singularity. Thus we can contract this configuration and deform the resulting surface to obtain an extremal nbd X with reducible central curve. In the central fiber there are $(m-1)$ exceptional curves and a single quotient singularity.
(13.7.2) Claim. (13.7.2.1) The above extremal nbd X is isolated.
(13.7.2.2) After flip we have only one exceptional curve.

Proof. We will use (13.6.2) to show that the nbd is isolated. Let $H \subset X$ be the chosen member of \mathscr{O}_{X}. Let C_{1}, \ldots, C_{m-1} be the exceptional curves in $H \subset X$. We want to compute $C_{i} \cdot K_{H}$ and $C_{i} \cdot C_{j}$. Let $g: \bar{H} \rightarrow H$ be the minimal resolution of the singular point of H. Let \bar{C}_{i} be the proper transform of C_{i}. This is a (-1)-curve on \bar{H}. By projection formula

$$
C_{i} \cdot K_{H}=\bar{C}_{i} \cdot g^{*} K_{H}=(-1)-\bar{C}_{i} \cdot K_{\bar{H} / H}
$$

$K_{\bar{H} / H}$ is easy to compute

$$
K_{\bar{H} / H}=-\frac{m-1}{m} B_{m-1}-\frac{m-2}{m} B_{m-2}-\cdots-\frac{1}{m} B_{1} .
$$

Therefore we get that

$$
C_{i} \cdot K_{H}=-\frac{1}{m}
$$

Similarly, $C_{j} \cdot C_{i}=C_{j} \cdot g^{*} C_{i} \cdot g^{*} C_{i}$ can be written as

$$
g^{*} C_{i}=\bar{C}_{i}+\frac{m-1}{m^{2}} B_{m-1}+\frac{m-2}{m^{2}} B_{m-2}+\cdots+\frac{1}{m^{2}} B_{1}
$$

Therefore we get that

$$
C_{i} \cdot C_{i}=-1+\frac{m-1}{m^{2}}, \quad \text { and } \quad C_{i} \cdot C_{j}=\frac{m-1}{m^{2}} \quad \text { if } i \neq j
$$

We need to solve the equations

$$
\begin{aligned}
\sum a_{i} C_{i} \cdot K_{H} & =-k \\
\left(\sum a_{i} C_{i}\right) \cdot\left(\sum a_{i} C_{i}\right) & =-k
\end{aligned}
$$

By the above formulas

$$
\begin{aligned}
-k & =\left(\sum a_{i} C_{i}\right) \cdot\left(\sum a_{i} C_{i}\right)=\sum a_{i}^{2} C_{i}^{2}+\sum_{i \neq j} a_{i} a_{j} C_{i} C_{j} \\
& =\left(\sum a_{i}^{2}\right)\left(-1+\frac{m-1}{m^{2}}\right)+\frac{m-1}{m^{2}} \sum_{i \neq j} a_{i} a_{j} \\
& =-\sum a_{i}^{2}+\frac{m-1}{m^{2}}\left(\sum a_{i}\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum a_{i}^{2}=k+\frac{m-1}{m^{2}}\left(\sum a_{i}\right)^{2} \tag{13.7.3}
\end{equation*}
$$

From $\sum a_{i} C_{i} \cdot K_{H}=-k$ we obtain that $\sum a_{i}=k m$. Using the inequality

$$
\sum_{i=1}^{m-1} a_{i}^{2} \geq \frac{1}{m-1}\left(\sum_{i=1}^{m-1} a_{i}\right)^{2}
$$

(13.7.3) becomes

$$
\frac{1}{m-1} k^{2} m^{2} \leq k^{2} m^{2} \frac{m-1}{m^{2}}+k
$$

which can be rearranged as

$$
\frac{1}{m-1} \leq \frac{m-1}{m^{2}}+\frac{1}{k m^{2}} \leq \frac{1}{m}
$$

This is impossible, therefore no divisor is contracted in X.
A rational triple point has an irreducible deformation space, the Artin component. By (11.7.3) the flip is constructed by taking the minimal DuVal resolution
of the singularity and taking a deformation of it. The minimal DuVal resolution contains exactly one curve-the (-3)-curve-thus C^{+}is irreducible.
(13.8) In previous chapters we computed what we expect the general section H of \mathscr{O}_{X} to be like. In order to construct examples of extremal nbds we will proceed in reverse. First we construct H as expected and then we deform it. Here we face the following problem. We identified H only by computing $\Delta(H \supset C)$. Usually, however, the dual graph of a singularity does not determine the singularity up to isomorphism. There are two ways of overcoming this problem, both are of interest. The first approach is to claim that in general we can construct surface germs along curves with arbitrary prescribed singularities. The second approach is the observation that in our cases $\Delta(H \supset C)$ nearly determines H up to isomorphism.
(13.8.1) Construction of surface germs with prescribed local structure. Let $P_{i} \in D_{i} \subset V_{i}: i=1, \ldots, k$ be germs of isolated surface singularities with an irreducible curve germ and let N be an integer. Then there is a germ of a surface along a proper curve $C \subset H$ such that
(13.8.1.1) C is irreducible and rational;
(13.8.1.2) H has exactly k singular points Q_{i} along C and

$$
\left(Q_{i} \in C \subset H\right) \cong\left(P_{i} \in D_{i} \subset V_{i}\right) \quad \text { for every } i
$$

(13.8.1.3) The selfintersection number of $C \subset H$ satisfies

$$
N \leq C^{2}<N+1
$$

Proof. Start with a surface germ $C^{\prime}=\mathbb{P}^{1} \subset H^{\prime}=\mathbb{P}^{1} \times \Delta$ and pick $k+1$ points $Q_{0}^{\prime}, \ldots, Q_{k}^{\prime}$ in C^{\prime}. Let A_{i} (resp. B_{i}) be a small open (resp. closed) disc of radius ε (resp. $\varepsilon / 2$) around Q_{i}^{\prime}. We may assume that ε is so small that the closures of the discs A_{i} are disjoint.

We can choose a suitable representative of $P_{i} \in D_{i} \subset V_{i}$ in such a way that $D_{i} \hookrightarrow V_{i}$ is proper. Furthermore one can choose an identification $g_{i}: D_{i} \rightarrow$ $\Delta_{\varepsilon} \subset \mathbb{C}$ such that $g_{i}^{-1}\left(\Delta_{\varepsilon}-\bar{\Delta}_{\varepsilon / 2}\right)$ has an open neighborhood G_{i} such that there is a biholomorphism

$$
\left(D_{i} \cap G_{i} \subset G_{i}\right) \cong\left(\Delta_{\varepsilon}-\bar{\Delta}_{\varepsilon / 2} \subset \Delta \times\left(\Delta_{\varepsilon}-\bar{\Delta}_{\varepsilon / 2}\right)\right)
$$

which induces g_{i} on $D_{i} \cap G_{i}$.
Remove $B_{i} \times \Delta$ from H^{\prime} and identify $G_{i} \subset V_{i}$ with $\Delta \times\left(A_{i}-B_{i}\right) \subset H^{\prime}$. If we do this for $i=1, \ldots, k$ then the resulting surface germ $C^{\prime \prime} \subset H^{\prime \prime}$ satisfies conditions (13.8.1.1-13.8.1.2).
Q_{0} will be used to adjust the selfintersection number. Let z be a local parameter at Q_{0} and let t be a local parameter on Δ. Remove $B_{0} \times \Delta$ from $H^{\prime \prime}$ and then identify

$$
\Delta \times\left(A_{0}-B_{0}\right) \subset H^{\prime \prime} \quad \text { and } \quad \Delta \times\left(A_{0}-B_{0}\right) \subset \Delta \times A_{0} \quad \text { via }(t, z) \mapsto\left(z^{k} t, z\right)
$$

We obtain a surface germ $C \subset H$ and the selfintersection of C differs from the selfintersection of $C^{\prime \prime}$ by k. Thus if we choose k suitably we can satisfy condition (13.8.1.3) too.
(13.8.2) Theorem. Let $0 \in S$ be a normal surface singularity such that the dual graph of its minimal resolution is one of the graphs (without the curve •) given in (6.7.1), (6.7.2), (6.7.3), (7.7.1), (7.11.1), (10.7.3.1), or (10.7.3.2).

Then $0 \in S$ is isomorphic to a singularity given by the equations at the corresponding place.

In particular, any such $0 \in S$ occurs as a hyperplane section of a terminal singularity in the expected way.
Proof. This is an immediate consequence of the results of [Laufer73]. He classified those singularities that are determined up to isomorphism by the reduced exceptional divisor of their minimal resolution. In our cases the reduced exceptional divisor has no moduli, except in the cases (6.7.2), (6.7.3), and (7.11.1) when a cross ratio is the only modulus. By the results (6.7.2), (6.7.3), and (7.11.1) we can get any nonzero value of this cross ratio. Therefore it is sufficient to prove that all our singularities are determined up to isomorphism by the reduced exceptional divisor of their minimal resolution. This is immediate from Laufer's lists. We give the location of our singularities in his lists, without explaining his notation.

singularity	place in [Laufer73]
$(6.7 .1)$	p. 136, III. 2
$(6.7 .2)$	p. 162, III.i
$(6.7 .3)$	p. 162, III.i
$(7.7 .1)$	p. 136, III. 2
$(7.11 .1)$	p. 162, III.i
$(10.7 .3 .1)$	p. 137, IV $L_{1} J_{1} R_{1}$
$(10.7 .3 .2)$	p. 137, IV $L_{5} J_{1} R_{1}$

We are ready to prove several existence and structure theorems for extremal nbds. We will prove that all types of nbds not excluded so far do indeed exist. Also, $\Delta(H \supset C)$ determines the type of the neighborhood with a few exceptions.
(13.9) Theorem. Type IC extremal nbds exist for every odd $m \geq 5$. For every m both possibilities listed in (8.3) do occur.

If $H \supset C$ is the germ of a normal surface along a smooth rational curve C such that $\Delta(H \supset C)$ is as in (8.3.1) (resp. (8.3.2)) then there is an extremal nbd $X \supset H \supset C$ such that $H \in\left|\mathscr{O}_{X}\right|$.

If $C \subset X$ is a threefold germ along a complete curve C with terminal singularities and $C \subset H \subset X$ is a member of $\left|\mathscr{G}_{X}\right|$ such that $\Delta(H \supset C)$ is as in (8.3.1) (resp. (8.3.2)) then $C \subset X$ is an extremal nbd of type IC with $\lambda_{1}(P) \neq 0$ (resp. $\lambda_{1}(P)=0$).
Proof. By (13.8) for every odd $m \geq 5$ there is a pair $H \supset C$ such that $\Delta(H \supset C)$ is as in (8.3.1) (resp. (8.3.2)). Thus the existence follows from the second part of the theorem.

By (13.8.2) and (10.7) we can deform H in such a way that we obtain an extremal nbd X with the required singularity. By construction any such X has a type $I C$ singular point of index m. By (11.4) the contraction morphism of
$C \subset H$ extends to a morphism $f: X \rightarrow Y$ which contracts C. Thus $C \subset X$ is an extremal nbd. Having type $I C$ is determined by the germ $C \subset H$ at the singular point. Y has a hyperplane section Δ_{Y} as in (8.3.1) (resp. (8.3.2)). Note that these are not DuVal singularities. X is also primitive. (13.6.3) implies that the extremal nbd is isolated.

We still must show that the vanishing of $\lambda_{1}(P)$ is determined by $\Delta(H \supset C)$. Let us consider an extremal nbd of type $I C$. Assume that there are $s_{3}, s_{4} \in$ $\Gamma\left(\mathscr{G}_{X}\right)$ such that $\Delta\left(\left(s_{3}=0\right) \supset C\right)$ is given by (8.3.2) and $\Delta\left(\left(s_{4}=0\right) \supset C\right)$ is given by (8.3.1).

Consider $s_{3}+\alpha s_{4}=0$. This defines a normal surface H_{α}. By (10.7), $\Delta\left(H_{\alpha} \supset C\right)$ is given by (8.3.1). for $\alpha \neq 0$. Thus after contraction we obtain a flat family of surface singularities $f\left(H_{\alpha}\right)$. By construction $f\left(H_{0}\right)$ has mutiplicity three and $f\left(H_{\alpha}\right)$ has multiplicity 4 for $\alpha \neq 0$. This is impossible. Thus $\Delta(H \supset C)$ determines the vanishing of $\lambda_{1}(P)$.
(13.9.1) Remark. The following interesting phenomenon helped us to distinguish the two cases of type $I C$ nbds.

By looking at $\lambda_{1}(P)$ we expect that the nbds of type (8.3.2) are the special ones. This is reflected by the fact that the singularity of H_{X} at P is more special for (8.3.2) than for (8.3.1). However, if we look at the singularity of H_{Y} then it has multiplicity 3 for (8.3.2) and multiplicity 4 for (8.3.1). Thus we could claim that the case (8.3.1) describes a more special nbd.

One can easily construct a deformation of a nbd of type (8.3.2) where in the general fiber we have a nbd of type (8.3.1). By the above considerations, the general fiber has to contain another contracted curve.
(13.10) Theorem. For every odd $m \geq 5$ and every k there is an extremal nbd of type $k A D$ with two singular points of indices 2 and m such that the axial multiplicity at the index two point is k. The singularities are always \mathbb{Q}-factorial.

If $H \supset C$ is the germ of a normal surface along a smooth rational curve C such that $\Delta(H \supset C)$ is as in (9.2) then there is an extremal nbd $X \supset H \supset C$ such that $H \in\left|\mathscr{O}_{X}\right|$.

If $C \subset X$ is a threefold germ along a complete curve C with terminal singularities and $C \subset H \subset X$ is a member of $\mid \mathscr{O}_{X}!$ such that $\Delta(H \supset C)$ is as in (9.2) then $C \subset X$ is an extremal nbd of type $k A D$.

Proof. The index m singularity is a cyclic quotient. The other singularity is of the form $\left(x y+z^{2}-t^{k}=0\right) / \mathbb{Z}_{2}(1,1,1,0)$ where k is the axial multiplicity. By [Kollár91, 2.2.7], this is a \mathbb{Q}-factorial singularity.

All the cases can be constructed exactly as in (13.9). For the same reason they are always isolated. We still must show that they are not semistable. Assume that $\left|\mathscr{O}_{X}\right|$ has a more general member, which shows that it is in fact a semistable extremal nbd. We will compute the singularity of this member H^{s}.

At the index two point the original member has the form

$$
\left(x_{1} y_{1}-z_{1}^{2}=0\right) / \mathbb{Z}_{2}(1,1,1) .
$$

This is the most general possible so this has to be the local form of H^{s}. At the index m point the threefold singularity is $\mathbb{C}^{3} / \mathbb{Z}_{m}\left(1,-1, \frac{m+1}{2}\right)$. Thus in
suitable coordinates the local description of H^{s} is

$$
\left(x_{2} y_{2}-z_{2}^{d m}=0\right) / Z_{m}\left(1,-1, \frac{m+1}{2}\right)
$$

for some natural number d. The dual graph of the resolution of these singularities is the following:
for $d=1$:

$$
\stackrel{2}{\circ}-\frac{\frac{m+5}{2}}{0}-\underbrace{\stackrel{2}{0}-\cdots-{ }_{0}^{2}}_{\frac{m-5}{2} \text {-times }}-\stackrel{3}{0}
$$

for $d>1$:

$$
2_{0}^{2}-\underbrace{\frac{m+3}{2}}_{(d-2) \text {-times }}-\underbrace{2-\cdots-2_{0}^{2}}_{\frac{m-5}{2} \text {-times }}-3_{0}^{\underbrace{2}_{0}-\cdots-2_{0}^{2}}-0_{0}^{3}
$$

The minimal resolution of H^{s} is obtained be attaching

to the left end of the above dual graphs. Contracting the (-1)-curves twice we obtain a cyclic quotient singularity of multiplicity $\frac{m+5}{2}$.

As in (13.9) this cannot be a small deformation of a singularity of multiplicity four. This shows that such a nbd is never semistable.
(13.11) Theorem. All cases listed in (6.2-6.3) for type cD/3 extremal nbds occur.

If $H \supset C$ is the germ of a normal surface along a smooth rational curve C such that $\Delta(H \supset C)$ is as in (6.2.3.1), (6.2.3.2), or (6.3) then there is an extremal nbd $X \supset H \supset C$ such that $H \in\left|\mathscr{G}_{X}\right|$.

If $C \subset X$ is a threefold germ along a complete curve C with terminal singularities and $C \subset H \subset X$ is a member of $\left|\mathscr{G}_{X}\right|$ such that $\Delta(H \supset C)$ is as in (6.2.3.1), (6.2.3.2), or (6.3) then $C \subset X$ is an extremal nbd of type $c D / 3$ or $k 1 A$. If X has type $c D / 3$ then
(13.11.1) $i_{p}(1)=1$ and X has a simple cD point iff $\Delta(H \supset C)$ is as in (6.2.3.1);
(13.11.2) $i_{p}(1)=1$ and X has a double $c D$ point iff $\Delta(H \supset C)$ is as in (6.2.3.2);
(13.11.3) $i_{p}(1)=2$ iff $\Delta(H \supset C)$ is as in (6.3).

Proof. The proof of the existence is the same as in (13.9); it also follows from $(6.11 ; 6.17 ; 6.21)$. There are only three cases if we look only at $\Delta(H \supset C)$. However, we can also specify the value of $\ell(P)$ as in (6.2.1) and (6.3.1.1) since this value depends only on the singularity at P.

By (13.3) any of the above H does lie on an extremal nbd of type $k 1 A$ too. In all cases the singularity of H_{Y} is rational but not DuVal. Thus the nbd is isolated by (13.6.3).

The proof that $\Delta(H \supset C)$ determines $i_{P}(1)$ goes as in (13.9) once we observe that Δ_{Y} has multiplicity 4 in (6.2) and multiplicity 3 in (6.3). By (6.22) the local structure of H at the singular point determines whether the $c D / 3$ point on X is simple or double.
(13.12) Theorem. All cases listed in (7.2-7.4) for type IIA extremal nbds occur. If $H \supset C$ is the germ of a normal surface along a smooth rational curve C such that $\Delta(H \supset C)$ is as in (7.2), (7.3), or (7.4) then there is an extremal nbd $X \supset H \supset C$ such that $H \in\left|\mathscr{O}_{X}\right| . X$ is necessarily of type IIA.

If $C \subset X$ is a threefold germ along a complete curve C with terminal singularities and $C \subset H \subset X$ is a member of $\left|\mathscr{O}_{X}\right|$ such that $\Delta(H \supset C)$ is as in (7.2), (7.3), or (7.4) then $C \subset X$ is an extremal nbd of type IIA. Furthermore, if $\Delta(H \supset C)$ is as in (7.1) (resp. (7.2) resp. (7.3)) then X is as described in (7.1) (resp. (7.2) resp. (7.3)).

Proof. The existence is the same as in (13.9); it also follows from (7.6.4; 7.9.4; 7.12.5). There are only three cases if we look only at $\Delta(H \supset C)$. However, we can also specify the value of $\ell(P)$ as in (7.2.1), (7.3.1), and (7.4.1.1) since this value depends only on the singularity at P.

Let $P \in H$ be the unique index four point of H and let $P^{\sharp} \in H^{\sharp} \subset \mathbb{C}^{4}$ be the index one cover. By (7.7) and (7.11) the \mathbb{Z}_{4}-action is given by weights ($1,1,3,2$) and H^{\sharp} is the complete intersection of two hypersurfaces; one invariant and another anti-invariant under the \mathbb{Z}_{4}-action. Thus if H is a hypersurface section of a terminal singularity then this three-dimensional singularity is the quotient of an anti-invariant hypersurface by a \mathbb{Z}_{4}-action. Thus by definition, X is of type $I I A$.

We can apply (13.6.3) to conclude that the nbd is isolated.
The method of (13.9) can be used to distinguish (7.1) from the other two cases. We claim that the cases (7.2) and (7.3) are distinguished already locally at the index 4 point. Indeed, let g be the equation of the canonical cover of the terminal singularity at the index 4 point. From (7.7) and (7.11) we see that rank $g_{\text {deg }=2}$ is determined by H. rank $g_{\text {deg }=2}=3$ for (7.2) and rank $g_{\text {deg }=2}=2$ for (7.3).

Next we deal with semistable nbds. It is easier to describe those with two singular points. Let H be a general member of \mathscr{O}_{X}. By (3.5.1) at the singular points we can choose coordinates such that the three-dimensional singularity is

$$
\left(x y-z^{d n}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{n}(1,-1, a, 0) \text { where }(a, n)=1
$$

C^{\sharp} is the x-axis and $t=0$ is the local equation of H. We can formulate a description of such nbds.
(13.13) Theorem. Given two singularities as above with numerical invariants (n, a, d) and $\left(n^{\prime}, a^{\prime}, d^{\prime}\right)$ there is an extremal nbd of type $k 2 A$ with the above local description at the singular points iff $(a, n)=1,\left(a^{\prime}, n^{\prime}\right)=1$, and the following condition is satisfied:

$$
1<\frac{a}{n}+\frac{a^{\prime}}{n^{\prime}}<1+\frac{1}{d n^{2}}+\frac{1}{d^{\prime} n^{\prime 2}} .
$$

Proof. The relative prime conditions come from the conditions on terminal singularities.

Let the two singular points be P and P^{\prime}. Then

$$
C \cdot K_{X}=-1+w_{P}(0)+w_{P^{\prime}}(0)=-1+\frac{n-a}{n}+\frac{n^{\prime}-a^{\prime}}{n^{\prime}} .
$$

This gives the left side of the inequality in the theorem. To get the right-hand side we compute the self-intersection of C inside H. This should be negative, proving the necessity of the above conditions.

In general consider a quotient singularity $0 \in S \cong 0 \in \mathbb{C}^{2} / \mathbb{Z}_{m}(1, q)$ and let C be the image of the x-axis in the quotient. If we resolve this singularity then the dual graph of the resolution is a chain of rational curves $B_{i}: i=1, \ldots, s$ whose self-intersections $-b_{i}$ are computed from a modified continued fraction expansion of $\frac{n}{q}$. The proper transform of C intersects the curve B_{1}. The pullback of C to the resolution is a cycle $C+\sum c_{i} B_{i}$ where the c_{i} are rational. They satisfy the relations

$$
c_{i-1}-b_{i} c_{i}+c_{i+1}=0 \text { for } i=1, \ldots, s, \text { where } c_{0}=1 \text { and } c_{s+1}=0
$$

This can be rewritten as

$$
\frac{c_{i-1}}{c_{i}}=b_{i}-\frac{1}{c_{i} / c_{i+1}} .
$$

This is the same recursive formula that computes the b_{i}. Therefore we obtain that $c_{1}=\frac{q}{n}$. If this local set-up sits on a global surface then we see that if we take the minimal resolution of $0 \in S$ then the self-intersection of C decreases by $\frac{q}{n}$.

Now we go back to H. The singularities of H are quotient singularities given as $\mathbb{C}^{2} / \mathbb{Z}_{d n^{2}}(1, d a n-1)$ resp. $\mathbb{C}^{2} / \mathbb{Z}_{d^{\prime} n^{\prime 2}}\left(1, d^{\prime} a^{\prime} n^{\prime}-1\right)$. The proper transform of C in the minimal resolution of H is a (-1)-curve, thus we get that the self-intersection of C in H is

$$
-1+\frac{d a n-1}{d n^{2}}+\frac{d^{\prime} a^{\prime} n^{\prime}-1}{d^{\prime} n^{\prime 2}} .
$$

If this number is nonnegative then C cannot be contractible inside H. If it is zero then H contracts to a curve, thus H should be the exceptional set of the contraction morphism. This is, however, impossible since the exceptional divisor has negative intersection with C whereas H has zero intersection. Thus the self-intersection of C is negative. Rearranging this we get the other inequality of the theorem.

Conversely, we can always take two singularities H_{1} and H_{2} as above and patch them together to get $C \subset H$ such that

$$
C \cdot K_{H}=-1+\frac{n-a}{n}+\frac{n^{\prime}-a^{\prime}}{n^{\prime}} .
$$

If the conditions are satisfied then C has negative self-intersection in H, therefore, it can be contracted. (13.1) gives an extremal nbd with the required local structure.
(13.14) Imprimitive case. An extremal nbd as above with numerical invariants (n, a, d) and ($n^{\prime}, a^{\prime}, d^{\prime}$) is imprimitive iff $\left(n, n^{\prime}\right)=p>1$. In this case we can take a p-fold cover of the nbd. This is again an extremal nbd of the same type. Locally the new singularities are

$$
\left(x y-z^{d n}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{m}(1,-1, a p, 0), \quad \text { where } n=p m
$$

resp.

$$
\left(x y-z^{d^{\prime} n^{\prime}}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{m^{\prime}}\left(1,-1, a^{\prime} p, 0\right), \quad \text { where } n^{\prime}=p m^{\prime}
$$

Considering our convention this gives that the covers have numerical invariants

$$
(m, \overline{a p}, d p) \quad \text { resp. }\left(m^{\prime}, \overline{a^{\prime} p}, d^{\prime} p\right)
$$

where - denotes residue $\bmod m\left(\right.$ resp. $\left.m^{\prime}\right)$.
(13.15) Remarks. (13.15.1) The inequalities of the theorem are fairly restrictive. It is not clear to us for which values of n and n^{\prime} one can find solutions. It is easy to see that no solutions exist if $n+2<n^{\prime}<2 n$. On the other hand, if $n^{\prime} \gg n^{2}$ then there are many different possibilities for $a, a^{\prime}, d, d^{\prime}$.
(13.15.2) Assume that the nbd is divisorial. Then (13.6.1) gives that for some integer a_{1} we have

$$
a_{1}\left(1-\frac{a}{n}-\frac{a^{\prime}}{n^{\prime}}\right)=-1 .
$$

This gives that $n n^{\prime}-a n^{\prime}-a^{\prime} n$ divides $n n^{\prime}$. Assume first that $\left(n, n^{\prime}\right)=1$. Let q be a prime dividing $n n^{\prime}-a n^{\prime}-a^{\prime} n$. Then q also divides say n. Thus q divides $a n^{\prime}$, hence a. This contradicts $(n, a)=1$. Therefore $n n^{\prime}-a n^{\prime}-a^{\prime} n=1$. If (n, n^{\prime}) >1 then we can take the primitive cover and conclude that in general for a divisorial nbd we have $n n^{\prime}-a n^{\prime}-a^{\prime} n=\left(n, n^{\prime}\right)$.

Consider the condition (13.6.2). It reads as follows:

$$
a_{1}\left(1-\frac{a}{n}-\frac{a^{\prime}}{n^{\prime}}\right)=-k
$$

and

$$
a_{1}^{2}\left(\frac{a}{n}+\frac{a^{\prime}}{n^{\prime}}-1-\frac{1}{d n^{2}}-\frac{1}{d^{\prime} n^{\prime 2}}\right)=-k
$$

has a solution in a and k. Using the formula obtained before and the notation of (13.14), this is equivalent to

$$
\frac{d d^{\prime}}{d n^{2}+d^{\prime} n^{\prime 2}-p d d^{\prime} n n^{\prime}} \text { is an integer. }
$$

This is rarely satisfied.
(13.16) $k 1 A$ type extremal nbds. In this case we have considerable freedom in constructing the extremal nbd. Let us consider any singularity

$$
\left(x y-z^{d n}+t f(x, y, z, t)=0\right) / \mathbb{Z}_{n}(1,-1, a, 0), \quad \text { where }(a, n)=1
$$

We resolve the surface singularity H_{1} defined by $t=0$. We get a dual graph of the form

Pick any curve B_{i} and patch the unit ball in \mathbb{C}^{2} in such a way that the resulting surface H contains a unique compact curve C whose proper transform intersects B_{i} transversally. If $b_{i}>2$ then C in H can be contracted to a singular point. The dual graph of its resolution is

$$
\stackrel{b_{1}}{\circ}-\cdots-\stackrel{b_{i-1}}{\circ}-\stackrel{b_{i}-1}{\mathrm{o}}-\stackrel{b_{i+1}}{\mathrm{o}}-\cdots-\stackrel{b_{5}}{b_{0}}
$$

Thus we obtain an extremal nbd $C \subset X$. Several of the conditions of (13.6) can be used to get many examples of isolated extremal nbds. These also give examples of extremal nbds where the multiplicity of C^{\sharp} is arbitrarily large.

One can get examples having a $c A$ type point and a type $I I I$ point. There are some conditions on the index of the $c A$ point and on the axial multiplicity of the type $I I I$ point.
(3.3) left open the possibility that the general member of \mathscr{O}_{X} containing C is not normal but has normal crossing singularity generically along C. We do not have any explicit examples, but this is quite likely to happen.

Next we will determine the flip in the exceptional cases. We start with the exceptional index three and four cases, these are easier. The main idea is to deform the nbd until we get a simpler one where the flip is easy to determine. This process will also give examples of "splitting-up" of the exceptional curve. Let $X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd. We will decide which P-modification of the general hyperplane section H^{\prime} of Y corresponds to the flip. Thus, for instance, we determine the indices of the singularities after flip.
(13.17) Theorem. Let $X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd of type $c D / 3$ or of type IIA. In each of the seven cases the following diagrams describe the P-modification that corresponds to the flip. The curve denoted by \oplus becomes C^{+}, the rest are contracted.

$$
c D / 3 \text {, case (6.2.3.1): }
$$

$c D / 3$, case (6.2.3.2):

cD/3, case (6.3):

$$
\underset{3}{\oplus}-\underset{2}{\circ}-\stackrel{1}{2}_{\substack{2 \\ 2}}^{\circ} \quad \text { (The flip has index one.) }
$$

IIA, case (7.2):

IIA, case (7.3):

IIA, case (7.4):

(The flip has one index two point.)

Proof. Let $H \subset X$ be the given member of $\mathscr{O}_{X} . H$ has one index >1 singular point. We will deform these points to simplify the singularities.
(13.17.1.1) In case $c D / 3$ the singularity of $X \supset H$ is given as

$$
\left(y_{4}^{2}+f\left(y_{1}, y_{2}, y_{3}\right)=0\right) / \mathbb{Z}_{3}(1,1,2,0)
$$

where f is some polynomial. H is defined by $y_{4}=0$ and C^{\sharp} is the y_{1}-axis. We deform this via

$$
\left(y_{4}^{2}+f\left(y_{1}, y_{2}, y_{3}\right)+t\left(y_{1} y_{3}-y_{2}^{3}\right)=0\right) / \mathbb{Z}_{3}(1,1,2,0)
$$

The defining equation of H_{t} stays $y_{4}=0$ and C_{t}^{\sharp} is the y_{1}-axis.
(13.17.1.2) In case $I I A$ the singularity of $X \supset H$ is given as

$$
\left(g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0\right) / \mathbb{Z}_{4}(1,1,3,2)
$$

where $g_{\text {deg }=2}\left(y_{1}, y_{2}, y_{3}, 0\right)$ has rank at least two, H is locally defined by $f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=t=0$ where $f_{\operatorname{deg}=2}\left(0,0,0, y_{4}\right)$ is nonzero, and C^{\sharp} is $y_{1}-y_{2}=y_{3}=y_{4}=0$. We deform this via

$$
\left.g\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+t\left(y_{4}-\left(y_{1}-y_{2}\right)^{2}\right)=0\right) / \mathbb{Z}_{4}(1,1,3,2),
$$

and the defining equation of H by $f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+t\left(y_{1} y_{3}-\left(y_{1}-y_{2}\right)^{4}\right)=0$. The equations for C_{t}^{\sharp} remain $y_{1}-y_{2}=y_{3}=y_{4}=0$.

As in (13.2) we can globalize these deformations. Thus we have global deformations $X_{t} \supset H_{t} \supset C_{t}: t \in \Delta$ of the original extremal nbds. Locally these behave as described above.
(13.17.2) Lemma. Consider the above deformations. Then the family $H_{t}: t \in$ Δ can be resolved simultaneously, at least after a base change.
Proof. We consider the family $H_{t}: t \in \Delta$. The index 3 (resp. 4) point of H_{0} is described in (6.2-6.3,7.2-7.4). Explicit computation gives that these are always rational of multiplicity 5 (resp. 6). The general fibers have a quotient singularity at the origin. These have minimal resolutions

$$
\stackrel{\circ}{5}-\underset{2}{\circ} \text { for index } 3 \text { and }{\underset{6}{\circ}-\underset{2}{\circ}-\underset{2}{\circ} \text { for index } 4 .}^{\circ} \text {. }
$$

The multiplicity of these is again 5 (resp. 6). Thus $H_{t}: t \in \Delta$ is an equimultiple family of rational singularities. By [Artin66] this is also a normally flat family, hence the family of blow-ups is also flat. Again explicit computation gives that after one blow-up we have only DuVal singularities left. They can be resolved simultaneously, at least after a base change.
(13.17.3) Lemma. Consider the above deformation of an extremal nbd of type $c D / 3$. Assume that we have cases (6.2.3.1-6.2.3.2). Then $H_{t}: t \in \Delta-\{0\}$ has only one singular point along C_{t}. This is a quotient singularity of the form $\left(y_{1} y_{3}-y_{2}^{3}=0\right) / \mathbb{Z}_{3}(1,1,2)$
Proof. At the origin we get the required singularity. We have to show that there are no others. Since H_{0} has only one singular point, every singularity on H_{t} must arise from the deformation of this singular point. This deformation is given by $f\left(y_{1}, y_{2}, y_{3}\right)+t\left(y_{1} y_{3}-y_{2}^{3}\right)$. We have to decide if for general t this can have another singular point along C_{t}, which is the y_{1}-axis. The other singularity is a moving singularity, thus it can arise only if $\left(f\left(y_{1}, y_{2}, y_{3}\right)=y_{1} y_{3}-y_{2}^{3}=0\right)$ is nonreduced along the y_{1}-axis. The tangent cone of this curve singularity is given by (6.7) as

$$
y_{2} Q\left(y_{1}, y_{2}\right)+y_{3}^{3}=y_{1} y_{3}=0
$$

where Q is a quadratic form not divisible by y_{2}. In particular, the y_{1}-axis is reduced.

We remark that in case (6.3) we may get a moving singularity along the y_{1} axis.
(13.17.4) Lemma. Consider the above deformation of an extremal nbd of type cD. Assume that we have cases (6.2.3.1-6.2.3.2). Then $C_{t} \subset H_{t}: t \in \Delta-\{0\}$ is the only exceptional curve .
Proof. By (13.17.2) the family $H_{t}: t \in \Delta$ admits a simultaneous minimal resolution. The proper transform of C_{0} is a (-1)-curve. This lifts to the general fiber as a (-1)-curve. After we contract this (-1)-curve, the central fiber will have no more (-1)-curves, hence the same holds for the general fiber.
(13.17.5) Proof in $c D / 3$ case. In case (6.3), H^{\prime} has a rational triple point. This has only one P-modification, the minimal DuVal resolution. This is the one described in (13.17).

In cases (6.2.3.1-6.2.3.2) H^{\prime} has a rational quadruple point. There are two P-modifications: the minimal DuVal resolution and the one described in (13.17). The latter has an index two point. Therefore we only have to show
that after flip we do have an index two point. To see this we apply deformation as above. By the previous lemmas C_{t} is the only exceptional curve in X_{t}, H_{t} has only one quotient singularity along C_{t} and $C_{t} \cdot K_{H_{t}}=-\frac{1}{3}$. Therefore the minimal resolution of H_{t} is given by the diagram

$$
i-{ }_{5}^{\circ}-\frac{0}{2}
$$

This contracts to the quadruple point

$$
\begin{aligned}
& 0 \\
& 4
\end{aligned}-\quad \underset{2}{\circ}
$$

By (11.9.3.1) the flip of the above extremal nbd has an index two point.
This shows that X_{t}^{+}has an index two singularity for $t \neq 0$. This singularity will specialize to give an index two singularity on X_{0}^{+}.
(13.17.6) Proof in IIA case. In case (7.2) the singularity of H^{\prime} is an icosahedral quotient. By (11.8.2) there is only one possibility for the flip.

In cases (7.3-7.4) H^{\prime} has a rational quadruple point and two P-modifications. We must show that the minimal DuVal resolution is not the right one. To this end we try to analyze the surface H_{t}. Let \bar{H}_{t} be the minimal resolution of H_{t}. From the explicit description of \bar{H}_{0} we see that it contains only one (-1)curve. This lifts to a (-1)-curve on $\bar{H}_{t}: t \neq 0$. This is the proper transform of the curve C_{t}. In particular, we see that $C_{t} \cdot K_{H_{t}}=-\frac{1}{4}$. The minimal resolution of the index four point of H_{t} is described in (13.17.2). The relative canonical class is easy to compute and we get that C_{t} intersects the exceptional curves as follows

$$
i-\underset{6}{\circ}-\underset{2}{\circ}-\underset{2}{\circ}
$$

If we contract the proper transform of C_{0}, there is another (-1)-curve. If we contract that too, there are no more (-1)-curves. Thus $\bar{H}_{t}: t \neq 0$ contains either another (-1)-curve, or there is a (-2)-curve intersecting C_{t}. In the second case we get the configuration

$$
\begin{array}{r}
0 \\
2
\end{array}-0-0-0-0
$$

If there are two (-1)-curves the second one must specialize to the configuration

$$
1-0
$$

inside \bar{H}_{0}. In particular, both exceptional curves in H_{t} have intersection product $-\frac{1}{4}$ with $K_{H_{t}}$. This gives the configuration

These are the two possible configurations of compact curves in $\Delta\left(H_{t}\right): t \neq 0$. Both contract to

$$
\begin{array}{r}
0 \\
4
\end{array}-0-0
$$

By (11.9.3.2) the flip of the extremal nbd containing C_{t} will have an index two point. This index two point will specialize to an index two point on the flip of X_{0}.
(13.18) Theorem. Let $X \supset C \rightarrow Y \ni Q$ be an isolated extremal nbd of type $I C$ or of type $k A D$. The following diagrams describe the P-modifications that correspond to the flip. The curve denoted by \oplus becomes C^{+}, the rest are contracted.
$I C, \lambda_{1}(P)=0:$

```
                2
                \circ
```

$I C, \lambda_{1}(P) \neq 0$, and $k A D$:

$$
\begin{gathered}
\stackrel{2}{2} \\
\stackrel{\circ}{1}-\underset{2}{\oplus}-\underset{4}{\circ} \quad \text { (The flip has one index two point.) }
\end{gathered}
$$

Proof. In the $\lambda_{1}(P)=0$ case H^{\prime} has a triple point. This has only one P modification.

In the other cases H^{\prime} has a quadruple point with two P-modifications. Therefore we only have to show that X^{+}contains an index two point. Then it must be the P-modification described above.

Let H be a general member of \mathscr{O}_{X}. This has one point of index >2. In both cases X has a cyclic quotient singularity of the form

$$
(x, y, z) / \mathbb{Z}_{m}(2, m-2,1)
$$

H is defined locally by some equation $f(x, y, z)=0$. We deform H locally by

$$
f(x, y, z)+t\left(x y-z^{m}\right) / \mathbb{Z}_{m}(2, m-2,1) .
$$

In the $k A D$ case there is another singular point, there we choose the trivial deformation. These local deformations can be globalized to get a deformation $H_{t} \subset X_{t}: t \in \Delta$. We would like to understand H_{t}.

Let \bar{H}_{t} be the minimal resolution of H_{t}. By (8.3.2.1) and (9.2) the index m point of H_{0} has the resolution

The fundamental cycle is reduced and the multiplicity of the singularity is $\frac{m+7}{2}$.
In the general fiber we have a cyclic quotient singularity. It has the resolution

$$
\begin{equation*}
\stackrel{0}{2}-\underset{\frac{m+5}{2}}{0}-\underbrace{0_{2}-\ldots-0_{2}^{0}}_{(m-5) / 2 \text {-times }}-\stackrel{0}{3} \tag{13.18.1.2}
\end{equation*}
$$

The fundamental cycle is again reduced and the multiplicity of the singularity is also $\frac{m+7}{2}$. Therefore we again have a normally flat deformation and the blowup is flat. We want to modify the blow-up slightly. In the central fiber we have one singular point after blow-up. Its resolution is

This is a quadruple point Z with two P-modifications. Consider the partial resolution $Z^{\prime} \rightarrow Z$, which is obtained from the minimal resolution by contracting everything except the curve marked $* . Z^{\prime}$ has only one singularity, which is again a quadruple point with two P-modifications. At least after a base change, every deformation of Z is obtained as the contraction of a deformation of Z^{\prime}. Thus we can make this modification $Z^{\prime} \rightarrow Z$ in the central fiber and obtain a flat family \tilde{H}_{t}. The following diagrams describe the central and generic fibers above the index m point of H_{t}. Here o denotes a curve of the minimal resolution that is contracted, the rest are not contracted. Above the noncontracted curves is their intersection number with the fundamental cycle.

The special fiber is

The general fiber is

$$
\begin{equation*}
\stackrel{1}{*}-\stackrel{(m+1) / 2}{\diamond}-\underbrace{0-\ldots-0}_{(m-5) / 2 \text {-times }}-\stackrel{2}{\star} \tag{13.18.2.2}
\end{equation*}
$$

From this and (10.7.4) it is clear how these curves specialize. The $*$ on the left side of (13.18.2.2) specializes to the $*$ on the left side of (13.18.2.1). The \star on the right side of (13.18.2.2) specializes to the two curves marked \star in (13.18.2.1). The \diamond of (13.18.2.2) specializes to the two curves marked \diamond in (13.18.2.1).

Now the two cases become slightly different.
(13.18.3) IC case. There is a (-1)-curve in \bar{H}_{0} and we get the following diagram describing all compact curves in \bar{H}_{0} :

Note that the image of the (-1)-curve in \tilde{H}_{0} does not pass through any singular points, so it is still a (-1)-curve. Considering what we said about the
specialization map, this (-1)-curve lifts to the general fiber \tilde{H}_{t} and we get the following configuration of compact curves on \bar{H}_{t} (there may be other curves, and in fact we will see that there is one more):

We can contract these (-1)-curves and get a flat family of surfaces \hat{H}_{t}. Looking at (13.18.3.1) we see that in \tilde{H}_{0} the (-1)-curve intersects the curve denoted \diamond. From (13.18.2.1) we see that this has $1 / 2$ intersection with the canonical class. Thus after contraction the curve \diamond will have $-1 / 2$ intersection with the canonical class of \hat{H}_{0}. If we contract it, then we get a singularity whose minimal resolution

is obtained from

by contracting the curve \odot. (13.18.3.3) is a triple point hence every deformation is obtained from a deformation of the minimal DuVal resolution. The minimal DuVal resolution has an $A_{(m-5) / 2}$-singularity in the central fiber. The same singularity occurs in the general fiber, hence we can resolve these simultaneously. We obtain a flat family of surfaces $\overline{\bar{H}}_{t}$ where the minimal resolutions are the following.

For the special fiber:

For the general fiber:

$$
\begin{equation*}
\stackrel{\circ}{\circ}-\underset{\frac{m+3}{2}}{\circ}-\underbrace{\stackrel{0}{2}-\ldots-\stackrel{\circ}{2}_{\circ}^{\circ}-\stackrel{\circ}{3}}_{(m-5) / 2 \text { times }} \tag{13.18.4.2}
\end{equation*}
$$

The specialisation map described after (13.18.2.1-13.18.2.2) seems to indicate that the - 2 -curve on the left side of (13.18.4.2) specializes to the -1 -curve on the left side of (13.18.4.1), which is impossible. However in the meantime we performed a flip which changes the specialization of curves, thus there is no contradiction.
(13.18.4.1-13.18.4.2) both have the configuration of curves

$$
\underbrace{\stackrel{\diamond}{2}-\ldots-0_{2}}_{(m-5) / 2 \text {-times }}
$$

obtained from the simultaneous resolution of the $A_{(m-5) / 2}$-singularities. Therefore the (-1)-curve in the central fiber (denoted $\bullet)$ lifts to the general fiber and intersects the (-2)-curve denoted \diamond.

Putting everything together we see that $H_{t}: t \neq 0$ contains at least two exceptional curves and the configuration of compact curves on the minimal resolution $\bar{H}_{t}: t \neq 0$ is the following (a priori there may be other compact curves, but we will see that in fact these are all)

One can contract these (-1)-curves and then the new (-1)-curves until finally we obtain the configuration

$$
\begin{array}{rrr}
0 & -0 & - \tag{13.18.6.1}\\
2 & 4 & 2
\end{array}
$$

If we do the corresponding contractions in the central fiber then we obtain the configuration

$$
\begin{array}{lll}
& 2 & \\
& & \\
& & \tag{13.18.6.2}\\
& & \\
0 & - & 0 \\
2 & & -0 \\
2 & & 0
\end{array}
$$

and these two are in a flat family. Since in the special fiber there are no more (-1)-curves, the same holds for the general fiber. Hence (13.18.5) describes the complete configuration of compact curves in $\bar{H}_{t}: t \neq 0$. By (11.9.3.3) the flip of the general nbd $X_{t}^{+}: t \neq 0$ has an index two point.

Now we can prove (13.18) in the $I C$ case. We just saw that $X_{t}^{+}: t \neq 0$ has an index two point which specializes to an index two point of X_{0}^{+}.
(13.18.7) $k A D$ case. There is a (-1)-curve in \bar{H}_{0} and we get the following diagram describing all compact curves in \bar{H}_{0} :

Note that the image of the (-1)-curve in \tilde{H}_{0} does not pass through any singular points, so it is still a (-1)-curve. Considering what we said about the
specialization map this (-1)-curve lifts to the general fiber \tilde{H}_{t} and we get the following configuration of curves on \bar{H}_{t} :
(there might be other curves too).
We can contract the (-1)-curve in the family \tilde{H}_{t} and then we get a new (-1)-curve for every t that we can contract. The resulting family of surfaces is exactly the same as the one obtained in the IC case. Thus from now on further modifications give the same result.

This way we get that the configuration of compact curves in $\bar{H}_{t}: t \neq 0$ is the following:

This finishes the proof of (13.18).
(13.18.9) Remark. The similarity between the general IC case and the $k A D$ case is striking. It is not clear to us whether there is some deeper underlying reason.

The existence of flips implies that the exceptional curve C can be written as the set theoretic intersection of some divisors $D_{1} \in\left|m_{1} K_{X}\right|$ and $D_{2} \in\left|m_{2} K_{X}\right|$. We will be able to find the smallest m_{1} and m_{2} in all exceptional cases.
(13.19) Theorem. With the above notation, the smallest values of (m_{1}, m_{2}) are the following:

Type of $n b d$	smallest $\left(m_{1}, m_{2}\right)$
case $(6.2 .3 .1)$	$(1,2)$
case $(6.2 .3 .2)$	$(1,2)$
case (6.3)	$(1,1)$
case (7.2)	$(2,3)$
case (7.3)	$(1,2)$
case (7.4)	$(1,2)$
case $I C, \lambda_{1}(P)=0$	$(1,1)$
case $I C, \lambda_{1}(P) \neq 0$	$(1,2)$
case $k A D$	$(1,2)$

Proof. In practice it is very difficult to find members of $\left|m K_{X}\right|$ on X. However it is very easy to find members of $\left|m K_{X^{+}}\right|$. The following result allows us to pass between X and X^{+}.
(13.19.1) Lemma. For $m_{1}, m_{2}>0$ let $D_{1} \in\left|m_{1} K_{X}\right|$ and $D_{2} \in\left|m_{2} K_{X}\right|$ be divisors. Let $D_{1}^{+} \in\left|m_{1} K_{X^{+}}\right|$and $D_{2}^{+} \in\left|m_{2} K_{X^{+}}\right|$be their proper transforms. Then $D_{1} \cap D_{2}=C$ (set theoretically) iff D_{1}^{+}and D_{2}^{+}are disjoint.

Proof. If D_{1}^{+}and D_{2}^{+}are disjoint then clearly $D_{1} \cap D_{2}=C$. Conversely assume that $D_{1} \cap D_{2}=C$. Then $m_{2} D_{1}, m_{1} D_{2} \in\left|m_{1} m_{2} K_{X}\right|$. The pencil $\left\langle m_{2} D_{1}, m_{1} D_{2}\right\rangle$ is free outside C and gives a map $\phi: X \longrightarrow \mathbb{P}^{1}$. Then X^{+}is the normalisation of the image of (f, ϕ). In particular $m_{1} m_{2} K_{X^{+}}$is Cartier and $m_{2} D_{1}^{+}$and $m_{1} D_{2}^{+}$are disjoint.

Let $H^{+} \subset X^{+}$be the member of $\left|\mathscr{O}_{X^{+}}\right|$exhibited in (13.17-13.18) with equation $t=0$. Then

$$
0 \rightarrow \omega_{X^{+}}^{[m]} \xrightarrow{t} \omega_{X^{+}}^{[m]} \rightarrow \omega_{H^{+}}^{[m]} \rightarrow 0
$$

is exact for every m since X^{+}has terminal singularities. Furthermore, if $m \geq 1$ then

$$
R^{1} f_{*}^{+} \omega_{X^{+}}^{[m]}=0 \quad \text { since } K_{X^{+}} \cdot C^{+}>0
$$

Thus

$$
H^{0}\left(X^{+}, \omega_{X^{+}}^{[m]}\right) \rightarrow H^{0}\left(H^{+}, \omega_{H^{+}}^{[m]}\right)
$$

is surjective. Therefore it is sufficient to find members of $\left|m K_{H^{+}}\right|$. Since H^{+} is explicitly known, this is rather straightforward. The following observations help with the computations:
(13.19.2). On a quotient singularity of the form $\mathbb{C}^{2} / \mathbb{Z}_{n_{d}}(1$, and -1$)$ the divisor $(x y=0)$ descends to a section of $|(n-1) K|$. This is clear since $x y(d x \wedge d y)^{\otimes(n-1)}$ is $\mathbb{Z}_{n^{2} d}$-invariant.
(13.19.3). On the singularity $\left(x^{2}+y^{4}+z^{4}=0\right) / \mathbb{Z}_{2}(1,1,1)$ the divisor $(y=0)$ descends to a section of $|K|$. This is clear since $y(d x \wedge d y) / 4 z^{3}$ is \mathbb{Z}_{2}-invariant.
(13.19.4). Let $D \subset H^{+}$be a divisor. Assume that for every $q \in H^{+}$locally at q, D is a member of $\left|m K_{H^{+}}\right|$. Assume furthermore that $C^{+} \cdot D=m C^{+} \cdot K_{H^{+}}$. Then $D \in\left|m K_{H^{+}}\right|$.

Now consider the cases separately.
(6.2.3.1) Here $C^{+} \cdot K_{H^{+}}=1 / 2$. (13.19.1) gives a local member of $|K|$ at the index two point which is also a global member. Any disc transversal to C^{+}at a smooth point gives a member of $|2 K|$.
(6.2.3.2) and (7.4). Here $C^{+} \cdot K_{H^{+}}=1 / 2$. (13.19.2) gives a local member of $|K|$ at the index two point which is also a global member. Any disc transversal to C^{+}at a smooth point gives a member of $|2 K|$.
(6.3) and (IC, $\left.\lambda_{1}(P)=0\right)$. Here $C^{+} \cdot K_{H^{+}}=1$. Any disc transversal to C^{+} at a smooth point gives a member of $|K|$. Take two such discs.
(7.2) Here $C^{+} \cdot K_{H^{+}}=1 / 6$. (13.19.1) gives a local member of $|3 K|$ at the index two point and a local member of $|2 K|$ at the index three point, both are also global members.
(7.3) $\left(I C, \lambda_{1}(P) \neq 0\right)$ and (kAD). Here $C^{+} \cdot K_{H^{+}}=1 / 2$. (13.19.1) gives a local member of $|K|$ at the index two point which is also a global member. Any disc transversal to C^{+}at a smooth point gives a member of $|2 K|$.

We need to make precise what it means that these values are the smallest. This is clear in case (1,1). If X^{+}has a unique index two point then every
member of $\left|K_{X^{+}}\right|$passes through that point, so two members of $\left|K_{X^{+}}\right|$are never disjoint.

The only remaining case is (7.2) where we found $(2,3)$. Here every member of $\left|K_{X^{+}}\right|$contains C^{+}, thus we cannot have $(1, m)$ for any m. Also $(2,2)$ is impossible, thus $(2,3)$ is the smallest solution.
(13.19.5) Remark. The cases $c D / 3$ and $I I A$ of the above result were obtained earlier in Chapters 6 and 7. Moreover, those results also determine the multiplicity of C in $D_{1} \cap D_{2}$. The multiplicity is important to know since it determines how the Chow ring changes under a flip.

Appendix. Nonsemistable isolated extremal nbds (summary)

In this appendix, $X \supset C \simeq \mathbb{P}^{1}$ is a nonsemistable isolated extremal nbd unless otherwise mentioned explicitly, and let $f: X \supset C \rightarrow Y \ni Q$ be the contraction and $f^{+}: X^{+} \supset C^{+} \rightarrow Y \ni Q$ the flip of f. We refer the reader to [Mori88, 8.8] about ℓ-structures.

The classification of nonsemistable isolated extremal nbds is as follows depending on the type of $X \supset C$ (2.3). (We recall that $X \supset C$ is semistable iff it is of type $k 1 A$ or $k 2 A$.)
(A.1). $X \supset C$ with a $c D / 3$ point P (Chapter 6). This means that the terminal singularity (X, P) and the curve (C, P) are as follows.
(A.1.1) Local coordinates of (X, P). Let

$$
\begin{gathered}
(X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{3}(1,1,2,0 ; 0) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{3}, \\
\alpha=0 \cdot y_{4}+0 \cdot y_{1} y_{3}+0 \cdot y_{2} y_{3}+y_{4}^{2}+y_{3}^{3}+g\left(y_{1}, y_{2}\right)+\cdots \in\left(y_{2}, y_{3}, y_{4}\right),
\end{gathered}
$$

where g is a nonzero homogeneous cubic form in y_{1}, y_{2}. This only means that the coefficient of y_{4} (resp. $y_{1} y_{3}, \ldots$) in the Tayior expansion of α in y is 0 (resp. $0, \ldots$), hence y_{4} may appear in α in a form other than y_{4}^{2}.

We say that P is a simple (resp. double, triple) $c D / 3$ point if g is squarefree (resp. has a square factor but is cubefree, is a cube) (6.1). We note

$$
\ell(P)=\text { length } \operatorname{Torsion}\left(\left(y_{2}, y_{3}, y_{4}\right) /\left(y_{2}, y_{3}, y_{4}\right)^{2}+(\alpha)\right),
$$

hence we may further assume

$$
\alpha \equiv y_{1}^{\ell(P)} y_{i} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}
$$

with $i=2($ resp. 3,4$)$ if $\ell(P) \equiv 2($ resp. 1,0$) \bmod 3$ after a change of coordinates (6.5).
(A.1.2) Infinitesimal structure. The nbd X is smooth outside of P, and $X \supset C \ni P$ satisfies exactly one of the following four conditions (see (6.2.1), (6.3.1)).
(A.1.2.1) $i_{P}(1)=1, \ell(P)=2, P$ is a simple $c D / 3$ point, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=(0) \tilde{\oplus}\left(P^{\sharp}\right) .
$$

(A.1.2.2) $i_{P}(1)=1, \ell(P)=2, P$ is a double $c D / 3$ point, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=(0) \tilde{\oplus}\left(P^{\sharp}\right) .
$$

(A.1.2.3) $i_{P}(1)=2, \ell(P)=3, P$ is a double $c D / 3$ point, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right) .
$$

(A.1.2.4) $i_{P}(1)=2, \ell(P)=4, P$ is a double $c D / 3$ point, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=(0) \tilde{\oplus}\left(-1+2 P^{\sharp}\right) .
$$

On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that (X, P) is a terminal singularity as described in (A.1.1). If $X \supset C \ni P$ satisfies one of the conditions (A.1.2.1A.1.2.4), then $X \supset C$ is an isolated extremal nbd of $c D / 3$ type as described (see (6.2.4), (6.3.4)).
(A.1.3) Hyperplane sections. For a normal surface S with only rational singularities and a smooth curve D on it, let $\Delta(S \supset D)$ be the dual configuration of the proper transform of D (marked \bullet) and the exceptional curves over S (marked o) on the minimal resolution of S. To each vertex, we attach minus the self-intersection number.
(A.1.3.1) $\left|-K_{X}\right|$. Let $E \subset X$ be a general member of $\left|-K_{X}\right|$. Then E intersects C at P properly and $(E, P) \simeq(f(E), Q)$ is the DuVal singularity of type E_{6} (2.2.1.2). (See (3.1) for the converse.)
(A.1.3.2) $\left|\mathscr{O}_{X}\right|_{C}$. Let $H \subset X$ be a general member of $\left|\mathscr{O}_{X}\right|$ containing C and $H^{+} \subset X^{+}$the proper transform of H. Then H, H^{+}, and $f(H)=f^{+}\left(H^{+}\right)$ are all normal and have only rational singularities. We define $\Delta_{X}=\Delta(H \supset C)$, $\Delta_{Y}=\Delta(f(H) \supset \varnothing)$, and $\Delta_{X^{+}}=\Delta\left(H^{+} \supset C^{+}\right)$. Then we have three cases (see (6.2.3) and (6.3.3) for Δ_{X} and Δ_{Y} and see (13.17) for $\Delta_{X^{+}}$).

Case (A.1.2.1).

and X^{+}has one singular point of index 2 on C^{+}.
Case (A.1.2.2).

and X^{+}has one singular point of index 2 on C^{+}.

Cases (A.1.2.3) and (A.1.2.4).

and X^{+}is Gorenstein.
On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ need not be an extremal nbd. Assume also that X has only terminal singularities. If $\left|\mathscr{O}_{X}\right|$ has a member H_{0} containing C such that $\Delta\left(H_{0} \supset C\right)$ is equal to one of Δ_{X} 's in (A.1.3), then $X \supset C$ is an isolated extremal nbd and it is either of type k1A or of type $c D / 3$ with $\Delta\left(H_{0} \supset C\right)=\Delta_{X}($ see (13.11)).
(A.1.4) Equation of (H, P) and existence of $X \supset C .(H, P)$ is locally defined by $y_{4}=\gamma\left(y_{1}, y_{2}, y_{3}\right)$ in (X, P) for some γ and the global equation of H induces a generator of the first factor \mathscr{O}_{C} of $g r_{C}^{1} \mathscr{O}$ in (A.1.2.1-A.1.2.4). Thus

$$
(H, P)=\left(y_{1}, y_{2}, y_{3} ; \beta\right) / \mathbb{Z}_{3}(1,1,2 ; 0) \supset C
$$

where $\beta\left(y_{1}, y_{2}, y_{3}\right)=\alpha\left(y_{1}, y_{2}, y_{3}, \gamma\right)$.
Furthermore we have the following after a change of coordinates if necessary (see (6.10), (6.20)).

Case (A.1.2.1). (H, P) satisfies the condition (6.7.1).
Case (A.1.2.2). (H, P) satisfies the condition (6.7.2).
Cases (A.1.2.3) and (A.1.2.4). (H, P) satisfies the condition (6.7.3).
As a result, Δ_{X} in (A.1.3) are computed from (6.7).
For each of (A.1.2.1-A.1.2.4), we can therefore construct $H \supset C$ so that $\Delta(H \supset C)$ is the corresponding Δ_{X} in (A.1.3) and $(X, P) \supset(H, P)$ as in (A.1.1). By (13.1) we get $X \supset H \supset C$, which is an isolated nbd in the given case.
(A.1.5) C as a set-theoretic $C . I$ We have two cases.

Cases (A.1.2.1) and (A.1.2.2). For general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$, we have $D \cdot D^{\prime \prime}=2 C$ (see (6.2.2) and also (13.19)). In particular, $\mathscr{O}_{D}\left(6 K_{X}\right) \simeq$ $\mathscr{O}_{D}(6 C)$.
Cases (A.1.2.3) and (A.1.2.4). For general members $D, D^{\prime} \in\left|K_{X}\right|$, we have $D \cdot D^{\prime}=4 C$ (see (6.3.2) and also (13.19)). In particular, $\mathscr{O}_{D}\left(3 K_{X}\right) \simeq \mathscr{O}_{D}(12 C)$.
(A.1.6) Remark. In general if a curve C in a 3 -fold X is contained in two Cartier divisors D and E such that $(D \cdot C),(E \cdot C)<0$ and $\operatorname{dim} D \cap E=$ 1, then C is contractible [Kollár89, (4.10)], i.e., there is a bimeromorphic morphism $f: X \rightarrow Y$ which contracts C and is isomorphic elsewhere.

Therefore, assuming that X is terminal, (A.1.5) implies that $X \supset C$ is an isolated extremal nbd. Furthermore since the divisors in (A.1.5) cut out C set-theoretically, they even allow us to construct the flip X^{+}directly (13.19.1). This observation applies to other cases (A.*.5) as well.
(A.2) $\quad X \supset C$ with a $I I A$ point P (Chapter 7). This means that the terminal singularity (X, P) and the curve (C, P) are as follows.
(A.2.1) Local coordinates of (X, P). Let

$$
\begin{gathered}
(X, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha\right) / \mathbb{Z}_{4}(1,1,3,2 ; 2) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{4}, \\
\alpha=0 \cdot y_{4}+y_{3}^{2}+g\left(y_{1}, y_{2}\right) y_{2}+\cdots \in\left(y_{2}, y_{3}, y_{4}\right)
\end{gathered}
$$

where g is a nonzero linear form in y_{1}, y_{2}. We may further assume

$$
\alpha \equiv y_{1}^{\ell(P)} y_{i} \bmod \left(y_{2}, y_{3}, y_{4}\right)^{2}
$$

with $i=2$ (resp. 3,4) if $\ell(P) \equiv 1($ resp. 3,0$) \bmod 4$ after a change of coordinates (7.5). (See (A.1.1) for details.)
(A.2.2) Infinitesimal structure. The nbd $X \supset C \ni P$ satisfies exactly one of the following five conditions (see (7.2.1), (7.3.1), (7.4.1)).
(A.2.2.1) $i_{P}(1)=\ell(P)=1, X-\{P\}$ is smooth, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(P^{\sharp}\right) \tilde{\oplus}\left(2 P^{\sharp}\right) .
$$

(A.2.2.2) $i_{P}(1)=\ell(P)=1, X-\{P\}$ is smooth, and there are ℓ-splittings

$$
\begin{aligned}
g r_{C}^{1} \Theta & =\left(1+P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right), \\
g r^{2}(\Theta, J) & =\left(P^{\sharp}\right) \tilde{\oplus}(0),
\end{aligned}
$$

where J is the C-laminal ideal [Mori88, 8.2] of width 2 such that $J / F_{C}^{2} \mathscr{O}=$ $\left(1+P^{\sharp}\right)$.
(A.2.2.3) $i_{P}(1)=\ell(P)=1, X$ has a $c D V$ point R on $C, X-\{P, R\}$ is smooth, and there are ℓ-splittings

$$
\begin{aligned}
g r_{C}^{1} \mathscr{O} & =\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+2 P^{\sharp}\right), \\
g r^{2}(\mathscr{O}, J) & =\left(P^{\sharp}\right) \tilde{\oplus}(0),
\end{aligned}
$$

where J is the C-laminal ideal of width 2 such that $J / F_{C}^{2} \mathscr{Q}=\left(P^{\sharp}\right)$.
(A.2.2.4) $i_{P}(1)=2, \ell(P)=3, X-\{P\}$ is smooth, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) .
$$

(A.2.2.5) $i_{P}(1)=2, \ell(P)=4, X-\{P\}$ is smooth, and there is an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(P^{\sharp}\right) \tilde{\oplus}\left(-1+3 P^{\sharp}\right) .
$$

On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that (X, P) is a terminal singularity as described in (A.2.1). If $X \supset C \ni P$ satisfies one of the conditions (A.2.2.1A.2.2.5), then $X \supset C$ is an isolated extremal nbd of IIA type as described (see (7.2.4), (7.3.4), (7.4.4)).
(A.2.3) Hyperplane sections.
(A.2.3.1) $\left|-K_{X}\right|$. Let $E \subset X$ be a general member of $\left|-K_{X}\right|$. Then E intersects C at P properly and $(E, P) \simeq(f(E), Q)$ is the DuVal singularity of type D_{k+2}, where k is the axial multiplicity [Mori88, 1a.5] of (X, P) (2.2.1.3). (See (3.1) for the converse.)
(A.2.3.2) $\left|\bigodot_{X}\right|_{C}$. Let $H, H^{+}, \Delta_{X}, \Delta_{Y}, \Delta_{X^{+}}$, etc., be as in (A.1.3). Then H, H^{+}, and $f(H)=f^{+}\left(H^{+}\right)$are all normal and have only rational singularities, and we have three cases ($\operatorname{see}(7.2 .3),(7.3 .3)$, and (7.4.3) for Δ_{X} and Δ_{Y}, and see (13.17) for $\Delta_{X^{+}}$).
Case (A.2.2.1).

and X^{+}has two singular points of indices 2 and 3 on C^{+}.
Cases (A.2.2.2) and (A.2.2.3).

and X^{+}has one non-Gorenstein point of index 2 on C^{+}.
Cases (A.2.2.4) and (A.2.2.5).

and X^{+}has one singular point of index 2 on C^{+}.
On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that X has only terminal singularities. If $\left|\mathscr{O}_{X}\right|$ has a member H_{0} containing C such that $\Delta\left(H_{0} \supset C\right)$ is equal to one of Δ_{X} 's in (A.2.3), then $X \supset C$ is an isolated extremal nbd of type $I I A$ and $\Delta\left(H_{0} \supset C\right)=\Delta_{X}($ see (13.12) $)$.
(A.2.4) Equation of (H, P) and existence of $X \supset C$.

$$
(H, P)=\left(y_{1}, y_{2}, y_{3}, y_{4} ; \alpha, \beta\right) / \mathbb{Z}_{4}(1,1,3,2 ; 2,0) \supset C
$$

for some β. By choosing the coordinates in (A.2.1) properly, we have one of the following:

Cases (A.2.2.1) and (A.2.2.2) and (A.2.2.3). α and β satisfy condition (7.7.1) ($\operatorname{see}(7.6),(7,9.3 .1))$.
Cases (A.2.2.4) and (A.2.2.5). α and β satisfy condition (7.11.1) (see (7.12.4)).
As a result, Δ_{X} in (A.2.3) are computed from (7.7) and (7.11).
Thus each case of (A.2.2.1-A.2.2.5) occurs as in (A.1.4).
(A.2.5) C as a set-theoretic C. I. We have three cases.

Case (A.2.2.1). For general members $D^{\prime \prime} \in\left|2 K_{X}\right|$ and $D^{\prime \prime \prime} \in\left|3 K_{X}\right|$, we have $D^{\prime \prime} \cdot D^{\prime \prime \prime}=2 C$ (see (7.2.2) and also (13.19)). In particular, $\mathscr{O}_{D^{\prime \prime}}\left(12 K_{X}\right) \simeq$ $\mathscr{O}_{D^{\prime \prime}}(8 C)$.
Cases (A.2.2.2) and (A.2.2.3). For general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in$ $\left|2 K_{X}\right|$, we have $D \cdot D^{\prime \prime}=2 k \cdot C$, where k is the axial multiplicity [Mori88, 1a.5] of (X, P) (see (7.3.2) and also (13.19)). In particular, $\mathscr{O}_{D^{\prime \prime}}\left(4 K_{X}\right) \simeq$ $\mathscr{O}_{D^{\prime \prime}}(8 k \cdot C)$.
Cases (A.2.2.4) and (A.2.2.5). For general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$, we have $D \cdot D^{\prime \prime}=2 C$ (see (7.4.2) and also (13.19)). In particular, $\mathscr{O}_{D^{\prime \prime}}\left(4 K_{X}\right) \simeq$ $\mathscr{O}_{D^{\prime \prime}}(8 C)$.
(See also (A.1.6).)
(A.3) $\quad X \supset C$ with a $I C$ point P (Chapter 8). This means that the singularity (X, P) and the curve (C, P) are as follows.
(A.3.1) Local coordinates of (X, P). Let

$$
(X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(2, m-2,1) \supset C=\left(\text { locus of }\left(t^{2}, t^{m-2}, 0\right)\right) / \mathbb{Z}_{m}
$$

with odd index $m \geq 5$ (8.2).
(A.3.2) Infinitesimal structure. $X-\{P\}$ is smooth and we have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(4 P^{\sharp}\right) \tilde{\oplus}\left(-1+(m-1) P^{\sharp}\right)
$$

by (2.10.2), in which the factor ($4 P^{\sharp}$) is unique. The ℓ-invertible sheaf ($4 P^{\sharp}$) has an ℓ-free ℓ-basis [Mori88, 8.8.3]

$$
\lambda_{1} y_{1}^{(m-5) / 2} y_{4}+\mu_{1}\left(y_{1}^{m-2}-y_{2}^{2}\right)
$$

for some λ_{1} and $\mu_{1} \in \mathscr{O}_{C, P}$. Whether $\lambda_{1}(P)=0$ or not does not depend on the choice of coordinates (see (8.2)). We have two cases.
(A.3.2.1) $\lambda_{1}(P) \neq 0$.
(A.3.2.2) $\lambda_{1}(P)=0$.

We do not have an infinitesimal characterization of $X \supset C$ like (A.1) and (A.2).
(A.3.3) Hyperplane sections.
(A.3.3.1) $\left|-K_{X}\right|$. Let $E \subset X$ be a general member of $\left|-K_{X}\right|$. Then $(f(E), Q)$ is the DuVal singularity of type D_{m}, E is a normal surface
dominated by the minimal resolution of $f(E)$, and $\Delta(E \supset C)$ is

where the number 2 is attached to each vertex (2.2.2). (See (3.1) for the converse.)
(A.3.3.2) $\left|\mathscr{O}_{X}\right|_{C}$. Let $H, H^{+}, \Delta_{X}, \Delta_{Y}, \Delta_{X^{+}}$, etc., be as in (A.1.3). Then H, H^{+}, and $f(H)=f^{+}\left(H^{+}\right)$are all normal and have only rational singularities and we have two cases (see (8.3.2) for Δ_{X} and Δ_{Y}, and see (13.18) for $\Delta_{X^{+}}$). Case (A.3.2.1).
and X^{+}has one non-Gorenstein point of index 2 on C^{+}, where

$$
\underset{3}{0}-\overbrace{o_{2}-\cdots-\frac{0}{2}}^{-1}-0_{3}
$$

denotes ${ }_{4}^{0}$.
Case (A.3.2.2).

and X^{+}is Gorenstein.
On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that X has only terminal singularities. If $\left|\mathscr{O}_{X}\right|$ has a member H_{0} containing C such that $\Delta\left(H_{0} \supset C\right)$ is equal to one of Δ_{X} 's in (A.3.3), then $X \supset C$ is an isolated extremal nbd of type $I C$ and $\Delta\left(H_{0} \supset C\right)=\Delta_{X}($ see $(13.10))$.
(A.3.4) Equation of (H, P) and existence of $X \supset C$.

$$
(H, P)=\left(y_{1}, y_{2}, y_{3} ; h\right) / \mathbb{Z}_{m}(2, m-2,1 ; 0) \supset C
$$

for some h. If we choose the coordinates in (A.3.1) properly, then $h\left(x_{1}, x_{2}, x_{3}\right)$ satisfies the conditions in (10.7). (See (8.10), (8.11).) We note that a_{0} of (10.7) is our $\lambda_{1}(P)$.

As a result, Δ_{X} in (A.3.3) are computed from (10.7).
Thus each case of (A.3.2.1-A.3.2.2) occurs as in (A.1.4).
(A.3.5) C as a set-theoretic C. I. We have two cases.

Case (A.3.2.1). For general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$, we have $D \cap D^{\prime \prime}=C$ as sets.
Case (A.3.2.2). For general members $D, D^{\prime} \in\left|K_{X}\right|$, we have $D \cap D^{\prime}=C$ as sets.
(See (13.19) and (A.1.6).)
(A.4) $\quad X \supset C$ of type $k A D$ (Chapter 9).

Let P and R be the singular points of X on C of indices m and 2 , where m is an odd number ≥ 3 (2.2.3).
(A.4.1) Local coordinates of (X, P) and (X, R). Let

$$
\begin{aligned}
& (X, P)=\left(y_{1}, y_{2}, y_{3}\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1) \supset C=y_{1} \text {-axis } / \mathbb{Z}_{m} \\
& (X, R)=\left(z_{1}, z_{2}, z_{3}, z_{4} ; \gamma\right) / \mathbb{Z}_{2}(1,1,1,0 ; 0) \supset C=z_{1} \text {-axis } / \mathbb{Z}_{2}
\end{aligned}
$$

where $\gamma \equiv z_{1} z_{3}-z_{2}^{2} \bmod \left(z_{4}\right)($ see (9.4)). Such (X, R) is analytically \mathbb{Q} factorial (13.10).
(A.4.2) Infinitesimal structure. $X-\{P, R\}$ is smooth and we have two cases (see (9.4.2)).
(A.4.2.1) $\{\gamma=0\}$ is smooth at 0 , and we have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right) .
$$

(A.4.2.2) $\{\gamma=0\}$ is singular at 0 , and we have an ℓ-splitting

$$
g r_{C}^{1} \mathscr{O}=\left(\frac{m-1}{2} P^{\sharp}\right) \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right) .
$$

In either case, there is a C-laminal ideal J of width 2 such that $g r_{C}^{1}=$ $J / F_{C}^{2} \mathscr{O} \tilde{\oplus}\left(-1+P^{\sharp}+R^{\sharp}\right)$. Such a J is unique and we have an ℓ-splitting.

$$
g r^{2}(\mathscr{O}, J)=\left(2 P^{\sharp}\right) \tilde{\oplus}\left(-1+\frac{m-1}{2} P^{\sharp}+R^{\sharp}\right) .
$$

We do not have an infinitesimal characterization of $X \supset C$ like (A.1) and (A.2).
(A.4.3) Hyperplane sections.
(A.4.3.1) $\left|-K_{X}\right|$. Let $E \subset X$ be a general member of $\left|-K_{X}\right|$. Then $(f(E), Q)$ is the DuVal singularity of type $D_{2 k+m}(k$ is the axial multiplicity of (X, P) [Mori88, 1a.5]), E is a normal surface dominated by the minimal resolution of $f(E)$ and $\Delta(E \supset C)$ is

where the number 2 is attached to each vertex (2.2.3). (See (3.1) for the converse.)
(A.4.3.2) $\left|\mathscr{O}_{X}\right|_{C}$. Let $H, H^{+}, \Delta_{X}, \Delta_{Y}, \Delta_{X^{+}}$, etc., be as in (A.1.3). Then H, H^{+}, and $f(H)=f^{+}\left(H^{+}\right)$are all normal and have only rational singularities and we have the following case (see (9.2.2) for Δ_{X} and Δ_{Y}, and see (13.18) for $\Delta_{X^{+}}$):

and X^{+}has one non-Gorenstein point of index 2 on C^{+}, where

$$
0-\overbrace{3}^{0-\cdots-0_{2}^{0}}-0
$$

denotes ${ }_{4}$.
On the other hand, let $X \supset C$ be a germ of a 3-fold along $C \simeq \mathbb{P}^{1}$ which need not be an extremal nbd. Assume also that X has only terminal singularities. If $\left|\mathscr{O}_{X}\right|$ has a member H_{0} containing C such that $\Delta\left(H_{0} \supset C\right)$ is equal to one of Δ_{X} in (A.4.3), then $X \supset C$ is an isolated extremal nbd of type $k A D$ (see (13.10)).
(A.4.4) Equation of (H, P) and (H, R) and existence of $X \supset C$.

$$
(H, P)=\left(y_{1}, y_{2}, y_{3} ; \beta\right) / \mathbb{Z}_{m}(1,(m+1) / 2,-1 ; 0) \supset C
$$

and (H, R) is defined in (X, R) by $z_{4}=\delta\left(z_{1}, z_{2}, z_{3}\right)$ for some β and δ. As for (H, R), we have $\gamma\left(z_{1}, z_{2}, z_{3}, \delta\left(z_{1}, z_{2}, z_{3}\right)\right)=0$ is an ordinary double point (9.11.1). If we choose the coordinates of (H,P) in (A.4.1) properly, then $h\left(x_{1}, x_{2}, x_{3}\right)=\beta\left(x_{1}, x_{3}, x_{2}\right)$ satisfies the conditions in (10.7). (See (9.15).) We note that a_{0} of (10.7) is nonzero in our case.

As a result, Δ_{X} in (A.4.3) are computed from (10.7).
Thus each case of (A.4.2.1-A.4.2.2) occurs as in (A.1.4).
(A.4.5) C as a set-theoretic $C . I$. We have the following.

For general members $D \in\left|K_{X}\right|$ and $D^{\prime \prime} \in\left|2 K_{X}\right|$, we have $D \cap D^{\prime \prime}=C$ as sets.
(See (13.19) and (A.1.6).)

Acknowledgment

We would like to thank Professors N. Nakayama, Y. Kawamata, M. Reid, H. Rossi, and J. Stevens for useful comments.

References

[AGV85] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differentiable maps, Birkhäuser, Basel and Boston, MA, 1985.
[Artin66] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[Artin68] __ On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291.
[Artin69] , Algebraisation of formal moduli. I, Global Analysis (D. C. Spenser and S. Iyanaga, eds.), Univ. Tokyo Press, Tokyo, and Princeton Univ. Press, Princeton, NJ, 1969, pp. 21-72.
[Bingener87] J. Bingener, Lokale Modulräume in den analytischen Geometrie. I-II, Friedr. Vieweg, Braunschweig, 1987.
[Brieskorn71] E. Brieskorn, Singular elements of semisimple algebraic groups, Proc. Internat. Congr. Math. Nice, Gauthier-Villars, Paris, 1971, pp. 279-284.
[Christophersen91] J. Christophersen, On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity Theory and its Applications, Lecture Notes in Math., vol. 1462, Springer, Berlin-Heidelberg-New York, 1991, pp. 81-92.
[CKM88] H. Clemens, J. Kollár, and S. Mori, Higher dimensional complex geometry, Asterisque 166 (1988).
[Fujiki81] A. Fujiki, Deformation of uni-ruled manifolds, Publ. Res. Inst. Math. Sci. 17 (1981), 687-702.
[Grauert72] H. Grauert, Über die Deformationen isolierter Singularitäten analytischer Mengen, Invent. Math. 15 (1972), 171-198.
[Grauert74] , Der Satz von Kuranishi für kompakte komplexe Räume, Invent. Math. 25 (1974), 107-142.
[Griffiths-Schmid73] P. Griffiths and W. Schmid, Recent developments in Hodge theory, Discrete Subrgoups of Lie Groups, Oxford Univ. Press, London and New York, 1973, pp. 31-127.
[Grothendieck62] A. Grothendieck, Fondéments de la géométrie algébrique, Sec. Math. Paris, 1962.
[Grothendieck68] __, Cohomologie local des faisceaux cohérant et théorème de Lefschetz locaux et globaux - SGA 2, North Holland, Amsterdam, 1968.
[Hayakawa-Takeuchi87] T. Hayakawa and K. Takeuchi, On canonical singularities of dimension three, Japanese J. Math. 13 (1987), 1-46.
[Hirzebruch53] F. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1-22.
[deJong-vanStraten90] T. de Jong and D. van Straten, On the base space of the semiuniversal deformation of a rational quadruple point, Ann. of Math. (2) 134 (1991), 653-678.
[Kawamata79] Y. Kawamata, On the classification of open algebraic surfaces, Algebraic Geometry, Copenhagen, Lecture Notes in Math., vol. 732, Springer, Berlin-Heidelberg-New York, 1979, pp. 215-233.
[Kawamata85] ___ Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567-588.
[Kawamata88] __, The crepant blowing-up of 3-dimensional canonical singularities and its. application to the degeneration of surfaces, Ann. of Math. (2) 127 (1988), 93-163.
[Kawamata91] __, Abundance theorem for minimal threefolds, (preprint).
[KKMSD73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., vol. 339, Springer, Berlin-Heidelberg-New York, 1973.
[Kollár83] J. Kollár, Toward moduli of singular varieties, Thesis, Brandeis Univ., 1983.
[Kollár85] __ Toward moduli of singular varieties, Comp. Math. 56 (1985), 369-398.
[Kollár89] _ Flops, Nagoya Math. J. 113 (1989), 14-36.
[Kollár90] ___ Minimal models of algebraic threefolds: Mori's Program, Asterisque 177-178 (1990), 303-326.
[Kollár91] _, Flips, flops, minimal models, etc., Surveys in Differential Geom., vol. 1, 1991, pp. 113-199.
[KSB88] J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299-338.
[Laufer73] H. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131-164.
[Levine81] M. Levine, Deformations of uni-ruled varieties, Duke Math. J. 48 (1981), 467-473.
[Levine83] __, Pluri-canonical divisors on Kähler manifolds, Invent. Math. 74 (1983), 293-303.
[Levine85] __, Pluri-canonical divisors on Kähler manifolds. II, Duke Math. J. 52 (1985), 61-65.
[Markoe-Rossi71] A. Markoe and H. Rossi, Families of strongly pseudo convex manifolds, Symposium in Several Complex Variables, Lecture Notes in Math., vol. 184, Springer, Berlin-Heidelberg-New York, 1971, pp. 182-208.
[Matsusaka-Mumford64] T. Matsusaka and D. Mumford, Two fundamental theorems on deformations of polarised varieties, Amer. J. Math. 86 (1964), 668-684.
[Miyaoka88] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann. 281 (1988), 325-332.
[Mori82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), 133-176.
[Mori85] _, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66.
[Mori88] , Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), 117-253.
[Mori89] __, Birational classification of algebraic 3-folds, Algebraic Analysis, Geometry, and Number Theory, Proc. of JAMI Inaugural Conf., Johns Hopkins Press, Baltimore, MD, 1989, pp. 307-311.
[Mori90] , Birational classification of algebraic threefolds, Proc. ICM Kyoto, Springer, Berlin-Heidelberg-New York, 1990.
[Nakayama86] N. Nakayama, Invariance of the plurigenera of algebraic varieties under minimal model conjectures, Topology 25 (1986), 237-251.
[Nakayama87] __ The lower semi-continuity of the plurigenera of complex varieties, Algebraic Geometry Sendai (T. Oda, ed.), Adv. Stud. Pure Math., vol. 10, Kinokuniya and North-Holland, 1987, pp. 551-590.
[Ran89] Z. Ran, Deformation of maps, Algebraic Curves and Projective Geometry, Trento, Lecture Notes in Math., vol. 1389, Springer, Berlin-Heidelberg-New York, 1989, pp. 246-253.
[Reid80] M. Reid, Canonical threefolds, Géométrie Algébrique Angers (A. Beauville, ed.), Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980, pp. 273-310.
[Reid83] ___, Minimal models of canonical threefolds, Algebraic Varieties and Analytic Varieties (S. Itaka, ed.), Adv. Stud. Pure Math., vol. 1, Kinokuniya, Tokyo and North-Holland, Amsterdam, 1983, pp. 131-180.
[Reid87] \qquad , Young person's guide to canonical singularities, Algebraic Geometry Bowdoin 1985, Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345416.
[Shokurov91] V. V. Shokurov, 3-fold \log flips, Izv. Akad. Nauk SSSR Ser. Mat. (to appear).
[Siu71] Y.-T. Siu, The 1-convex case of Grauert's direct image theorem, Math. Ann. 190 (1971), 203-214.
[Steenbrink83] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Singularities - Part 2, Amer. Math. Soc., Providence, RI, 1983, pp. 513-536.
[Stevens88] J. Stevens, On canonical singularities as total spaces of deformations, Abh. Math. Sem. Univ. Hamburg 58 (1988), 275-283.
[Stevens91a] __, On the versal deformations of cyclic quotient singularities, Singularity Theory and its Applications, Lecture Notes in Math., vol. 1462, Springer, Berlin-Heidelberg-New York, 1991, pp. 302-319.
[Stevens91b] __, On rational quadruple points, Internat. J. Math. 2 (1991), 205-211.
[Teissier80] B. Teissier, Résolution simultanée, Séminaire sur les singularités des surfaces, Lecture Notes in Math., vol. 777, Springer, Berlin-Heidelberg-New York, 1980, pp. 71-146.
[Wahl76] J. Wahl, Equisingular deformations of normal surface singularities, Ann. of Math. (2) 104 (1976), 325-356.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
E-mail address: kollar@math.utah.edu
Department of Mathematics, RIMS, Kyoto University, Kitashirakawa, Sakyo-ku, 606
Kyoto, Japan and Department of Mathematics, University of Utah, Salt Lake City,
Utah 84112
E-mail address: mori@math.utah.edu, mori@kurims.kyoto-u.ac.jp

