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1 Introduction

The gapped liquid phases of matter is the simplest kind of the quantum matter in physics,

and yet they contain very rich patterns of many-body quantum entanglement which require

modern mathematics to describe. The notion of a gapped liquid phase is defined microscop-

ically as an equivalence class of many-body states that are equivalent under local unitary

transformations [12] and the stacking of product states [66, 81]. Gapped liquid phases

without symmetries are called topological orders [49, 76, 77]. Gapped liquid phases with

symmetries (i.e. 0-symmetries) include gapped spontaneous symmetry breaking orders,

symmetry enriched topological (SET) orders [12] and symmetry protected trivial (SPT)

orders [9, 13, 38]. After a 30-year effort, we start to gain a rather complete understanding

of them for bosonic/fermionic systems with/without symmetries. Throughout this work,

we use nd to denote the spatial dimension and n+1D to denote the spacetime dimension.

In 1+1D, all gapped phases are liquid phases. For bosonic systems, they are classified

by triples (GH , GΨ, ω2) [10, 67], where GH is the symmetry group of the Hamiltonian,

GΨ is that of the ground state (GΨ ⊂ GH), and ω2 ∈ H2(GΨ,U(1)) is a 2-cocycle. For

fermionic systems, the classification can be obtained from that for bosonic systems via the

Jordan-Wigner transformation (i.e. bosonization) [11].

In 2+1D, we believe that all gapped phases are liquid phases. There are two approaches

towards the classification of SPT/SET orders. One approach, based on G-crossed braided
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fusion categories, works for bosonic systems [2], and important steps were made in [32]

for fermionic SET orders. The other one, which works for both bosonic and fermionic

SPT/SET orders, is based on the modular extensions of unitary braided fusion cate-

gories [59, 60]. More precisely, gapped liquid phases with a finite anomaly-free symmetry

GH are classified by (GH ,E ⊂ C ⊂M), where E is the symmetric fusion category Rep(GΨ)

(resp. Rep(GΨ, z)) for a bosonic (resp. fermionic) system. Here, GΨ ⊂ GH is the unbroken

subgroup, z generates the fermion parity symmetry and Rep(GΨ, z) is the category of GΨ-

representations with braidings respecting the fermion parity; and C is a unitary braided fu-

sion category with Müger center being E and M is a minimal modular extension of C [59, 60].

In 3+1D, there are gapped non-liquid phases [7, 40]. Gapped liquid phases for bosonic

systems without symmetry, i.e. bosonic topological orders, are classified by Dijkgraaf-

Witten theories if all point-like excitations are bosons; and by twisted 2-gauge theories

with gauge 2-group B(G,Z2) if some point-like excitations are fermions and there is no

Majorana zero mode; and by a special class of fusion 2-categories if some point-like ex-

citations are fermions and there are Majorana zero modes at some triple-string intersec-

tions [61, 62, 82]. These results match well with the classification of 3+1D SPT orders

for bosonic [9, 44] and fermionic systems [29, 36, 39, 45, 46, 74], and with recent math-

ematical results [42]. This suggests that all gapped liquid phases for bosonic/fermionic

systems with finite 0-symmetries can be obtained by partially gauging the symmetries of

bosonic/fermionic SPT orders [62].

What is unsatisfying is that the methods that lead to above results are different for

different dimensions, and the symmetries are restricted to only 0-symmetries. In this work,

we provide two systematic approaches toward SPT/SET orders with all finite internal

symmetries (see Remark 1.4), including n-groups (see for example [35, 43, 68, 73, 79]) and

algebraic higher symmetries beyond n-groups (see Example 2.24).

The first approach is an immediate generalization of the theory of minimal modular

extensions in 2+1D to all higher dimensions (summarized in Theoremph 2.27) except in

1+1D, which is treated with special care. But this approach has many unsatisfying aspects.

Most importantly, the modular-extension description, which is based on the idea of gauging

the symmetry, is not intrinsic with respect to the category C of 2-or-higher codimensional

topological excitations. One obtains a gauging of the symmetry in C by introducing external

topological excitations until the whole set of topological excitations form an anomaly-

free topological order without symmetry. This is not an intrinsic approach because the

SPT/SET order exists before we gauge the symmetry. An intrinsic description should not

depend on the gauging. It means that some data intrinsically associated to C is missing.

As a consequence, we do not know when a minimal modular extension of C exists even in

2+1D except a single counterexample discovered by Drinfeld [24].

We find this missing data in our second approach, which is based on the idea of

boundary-bulk relation [51, 52]. The idea is rather simple. When C admits a minimal

modular extension, it means that the SET order is anomaly-free. In other words, its

unique bulk must be the trivial 1-higher-dimensional SPT order, the categorical description

of which is actually non-trivial. By the boundary-bulk relation, the bulk of C is given by the

“center of C” , which should be identified via a braided equivalence φ with the non-trivial
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categorical description of the trivial 1-higher-dimensional SPT order obtained in the first

approach. The identification φ is potentially not unique, and is precisely the missing data

we are looking for. Namely, the pair (C, φ) gives a complete mathematical description of an

anomaly-free SET order. As a consequence, different identifications φ should correspond

to different minimal modular extensions of C. It is not known how to check the existence

of a minimal modular extension directly. The existence of φ, however, can be checked by

computing the “center of C” explicitly and comparing it with the categorical description

of the trivial 1-higher-dimensional SPT order.

Although the idea is simple, the difficulty lies in how to make sense of the “center of C”

precisely. One of the lessons we have learned from [51] is that the categorical description of

an SET order P depends on its codimension relative to a higher dimensional anomaly-free

topological order, in which P is realized as a gapped defect. The categorical description of

an anomaly-free SET order in the modular-extension approach is 0-codimensional and con-

tains only 2-or-higher codimensional topological excitations. When we regard the SET or-

der as a boundary of the trivial 1-higher-dimensional SPT order, we need a 1-codimensional

description, which should include not only the topological excitations in C but also those

can be obtained from C via condensations, called the condensation descendants of C. In

section 3.3, we explain in details that this completion of C by adding condensation descen-

dants, called the condensation completion of C, precisely amounts to the so-called “Karoubi

completion” or “the delooping” ΣC of C in mathematics [23, 33, 42]. Mathematically, C

is a unitary braided fusion n-category and the delooping ΣC is a unitary fusion (n+1)-

category [42], and the precise meaning of the “center of C” is the monoidal center Z1(ΣC)

of ΣC. As a consequence, we obtain a precise mathematical description and a classification

of SPT/SET orders modulo invertible topological orders without symmetries.

Throughout this work, we assume that the notion of a SPT/SET order is modulo

invertible topological orders (without symmetries) (see section 2.2.2). We summarize our

main results as a physical theorem below.

Theoremph 1.1. For n ≥ 1, let R be a unitary symmetric fusion n-category viewed as a

higher symmetry (see Example 2.24). We call an nd (spatial dimension) SPT/SET order

with the higher symmetry R (modulo invertible topological orders) an nd SPT/SET/R

order.

1. An anomaly-free nd SET/R order is uniquely characterized by a pair (A, φ), where A

is a unitary fusion n-category over R (see Definition 3.49) describing all topological

excitations (including all condensation descendants) and φ : Z1(R) → Z1(A) is a

braided equivalence rendering the following diagram commutative (up to a natural

isomorphism):

RjJι0
ww

� t
ιA

''
Z1(R) '

φ // Z1(A).

(1.1)

We denote the set of equivalence classes of all such φ by BrEq((Z1(R), ι0), (Z1(A), ιA))

(see Definition 3.50).
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2. When A = R, the pair (R, φ) describes an SPT/R order and (R, idZ1(R)) describes

the trivial SPT/R order. Moreover, the group of all SPT/R orders (with the multi-

plication defined by the stacking and the identity element by the trivial SPT order)

is isomorphic to the group Autbr(Z1(R), ι0), which denotes the underlying group of

braided autoequivalences of Z1(R) preserving ι0, i.e. φ ◦ ι0 ' ι0. For a given category

A of topological excitations (including condensation descendants), we have

{nd anomaly-free SET/R orders with topological excitations A}

=
BrEq((Z1(R), ι0), (Z1(A), ιA))

Aut⊗(A, ιA)
.

When n = 1, 2, we obtain explicit classifications.

1. All 1d anomaly-free SET/R orders are SPT/R orders. The group of 1d SPT/R orders

is isomorphic to the group Autbr(Z1(R), ι0) and to the Picard group Pic(R) of R.

More explicitly, in this case, we have R = Rep(G) or Rep(G, z), and we have the

following natural group isomorphisms [6]:

Pic(Rep(G)) ' H2(G,U(1)) (1.2)

Pic(Rep(G, z)) '

{
H2(G,U(1))× Z2 if G = Gb × 〈z〉;
H2(G,U(1)) if otherwise.

(1.3)

2. The group of all 2d SPT/R orders is isomorphic to Autbr(Z1(R), ι0). We denote the

set of minimal modular extensions of a braided fusion 1-category C by Mex(C). The

consistency of our physical theory demands the equivalence of two approaches. This

equivalence leads to the following results.

(a) when R ' ΣRep(G), Autbr(Z1(R), ι0) ' Mex(ΣRep(G)) ' H3(G,U(1)) [60];

(b) when R ' ΣRep(G, z), Autbr(Z1(R), ι0) ' Mex(ΣRep(G, z)), which is Z16 for

G = Z2, and how to compute it for G 6= Z2 is shown in [37];

(c) when R = ΣE, A = ΣC and E is the Müger center of C, we have

BrEq((Z1(R), ι0), (Z1(A), ιA)) ' Mex(C);

(d) when R/'ΣRep(G),ΣRep(G, z), i.e. a higher symmetry such as 2HilbH for an

abelian group H, our results go beyond the usual classifications.

We also classify SET orders with only symmetry anomalies (see Definition 3.9) in

Theoremph 3.60 and mixed gravitational and symmetry anomalies in Remark 3.63.

Remark 1.2. A mathematical definition of a (multi-)fusion n-category was recently in-

troduced by Theo Johnson-Freyd [42]. We recall his definition in Definition A.1. When

the higher symmetry R is trivial, i.e. R = nHilb, we expect that ι0 is a braided equiva-

lence and φ is necessarily isomorphic to the identity functor. As a consequence, in this

case, Theoremph 3.51 reduces to the classification of topological orders modulo invertible

topological orders without symmetries (see [42] and Remark 3.52 and 3.53).
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Theoremph 1.1 does not include the classification of 0d SPT/SET orders because 0d

cases is slightly different from higher dimensional cases. We present the 0d cases separately

below.

Theoremph 1.3. All 0d anomaly-free SET orders with a finite symmetry G are SPT orders.

A 0d SPT order is uniquely characterized by a pair (Rep(G), φ), where φ is a monoidal

auto-equivalence of Z0(Rep(G)) := FunHilb(Rep(G),Rep(G)) such that φ ◦ ι0 ' ι0, where

ι0 : Rep(G) → Z0(Rep(G)) defined by a 7→ a ⊗ − for a ∈ Rep(G). We denote the set of

equivalence classes of such φ by Aut⊗(Z0(Rep(G)), ι0). The group of all 0d SPT orders is

isomorphic to the group Aut⊗(Z0(Rep(G)), ι0), which is further isomorphic to the group

H1(G,U(1)).

Remark 1.4. There are different kinds of symmetries in physics, such as global symmetries

(i.e. 0-symmetries), higher symmetries (e.g. higher groups, symmetric fusion n-categories,

etc.), spatial symmetries (e.g. translation, rotation, etc). Gapped liquid phases are defined

on any lattices, including random lattices, on which there is no spatial symmetry. In this

paper, we exclude spatial symmetries and consider only finite internal symmetries, such

as 0-symmetries and higher symmetries. The “finiteness” is due to the energy gap of the

liquid phases. If the symmetry is not finite, the spontaneously symmetry-breaking states

and the symmetry-gauged states can be gapless. We mainly focus on unitary symmetries.

Time-reversal symmetry is discussed briefly only in section 2.2.2. The general study will

be left for the future.

Remark 1.5. We use the term “SPT orders” in the sense of Definitions 2.17 and 2.21.

For bosonic systems, it is the same as the usual definition in most literature. For fermionic

systems, it contains some fermionic invertible topological order. Thus it is different and

includes those SPT orders in the usual sense as a proper subgroup. This change in ter-

minology makes it convenient and natural to treat bosonic and fermionic systems on the

same footing.

This paper contains a few mathematically rigorous results in 0d,1d,2d cases, but it

is physical and unrigorous in general. We avoid to discuss many mathematical details in

our formulation, which should be important eventually. For example, the mathematical

definition of a unitary symmetric fusion n-category is not known (see Remark A.2). More-

over, shall we include the natural isomorphism making diagram (1.1) commutative and

many hidden higher isomorphisms in our characterization of SPT/SET orders? We do

not include them here because we do not see their physical meanings and because current

setup works very well in lower dimensional cases. On the other hand, we feel that they

should be part of a complete-yet-unknown theory, in which, from a mathematical point

of view, the right question is not to ask for the set of SPT/SET orders, but to study the

category of all SPT/SET orders instead (see [51]). For example, from our description of

an nd SPT order X, it is easy to see that all lower dimensional SPT orders are encoded in

the higher automorphisms of X (see Remark 3.45). This is beyond the scope of this work,

which should be regarded as a blueprint for future studies.
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The layout of this work: we study the first approach in section 2 and the second ap-

proach in section 3, and review some higher categorical notions in appendix A. We want to

emphasize that these two approaches are not independent. In particular, the mathemati-

cal description of the 1-dimensional-higher bulk needed for the boundary-bulk relation in

the second approach is given by a minimal modular extension in the first approach (see

Remark 3.64).

Throughout this work, we use “Theoremph” to highlight a physical result, and use

“Theorem” to highlight a mathematically rigorous result.

Remark 1.6. During the final editing of the first draft, we received from Theo Johnson-

Freyd the draft of his new paper [42]. In this marvelous paper, Theo obtained a mathemat-

ical classification of topological orders in all dimensions and that of the SPT/SET orders

in lower dimensions. Our classification of SET orders reduces to that of topological orders

obtained in [42] when the symmetry is trivial (see Remark 3.52). For lower dimensional

SPT/SET orders, our results have a lot of overlaps with those in [42]. Although our un-

derstanding of [42] is still very limited, we try our best to add remarks in various places to

either explain the relation or remind readers of a different approach.

2 SPT/SET orders via gauging the symmetry

In this section, we generalize the idea of gauging the symmetry to all dimensions to obtain

a classification theory of nd anomaly-free SPT/SET orders for n ≥ 1. In section 2.1, we

review the idea of gauging the symmetry in 2d and the associated classification theory of 2d

SPT/SET orders from [60]. In section 2.2, we generalize the idea of gauging the symmetry

to 1d cases. As a consequence, we obtain a complete classification of 1d SPT/SET orders,

then we show (quite nontrivially) that it is compatible with the existing results in physical

literature. In section 2.3, we propose a classification theory of SPT/SET orders in higher

dimensions. This idea does not work for the 0d case, which is studied in section 3.1 based

on the idea of boundary-bulk relation.

2.1 2d SPT/SET orders

A 2d SPT order with a finite onsite symmetry has no non-trivial particle-like topological

excitations. In other words, the only excitations are local excitations or symmetry charges.

They form a symmetric fusion 1-category E. In a bosonic system E = Rep(G), where

Rep(G) denotes the category of representations of a finite group G. In a fermionic system

E = Rep(G, z) , where z is the fermion parity symmetry and z is in the center of G. This

data does not fully characterize a SPT order. We need additional data.

Definition 2.1. For a braided fusion 1-category C, its Müger center (or E2-center), denoted

by Z2(C), is defined by the full subcategory of C consisting of those objects x ∈ C that are

symmetric to all objects, i.e. (x ⊗ y cx,y−−→ y ⊗ x cy,x−−→ x ⊗ y) = idx⊗y for all y ∈ C. For a

given full subcategory D of C, the centralizer of D in C, denoted by Z2(D;C), is the full

subcategory of C consisting of those objects that are symmetric to all objects in D.

Throughout this work, by “an embedding” we mean a fully faithful functor.

– 6 –
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Definition 2.2. A unitary braided fusion 1-category over E is a unitary braided fusion

1-category equipped with a braided embedding ηC : E ↪→ Z2(C), i.e. a pair (C, ηC) or just

C for simplicity. It is called a unitary modular 1-category over E, i.e. a UMTC/E, if ηC is

an equivalence. An equivalence between two UMTC/E’s (C, ηC) and (D, ηD) is a braided

equivalence φ : C → D such that φ ◦ ηC ' ηD. We denote the set of equivalence classes of

autoequivalences of (C, ηC) by Autbr(C, ηC).

An anomaly-free 2d SET order with an onsite symmetry E, or a 2d SET/E order, has

particle-like topological excitations described by a unitary modular 1-category C over E.

This data does not fully characterize the SET order. One way to complete the data is

to categorically gauge the symmetry by adding external particles, each of which is not

symmetric to at least one particle in E, until the whole set of particles form a UMTC.

In this way, we break the symmetry E. This categorical gauging process can be precisely

formulated by the so-called minimal modular extensions of C [60].

Definition 2.3. A minimal modular extension of a UMTC/E C is a pair (M, ιM), where M

is a UMTC and ιM : C ↪→M is a braided embedding factoring through Z2(E;M) as follows:

C Z2(E;M)

M .

'

ιM

An equivalence between two minimal modular extensions (M, ιM) and (N, ιN) is a braided

equivalence φ : M→ N such that φ ◦ ιM ' ιN.

As a consequence, an anomaly-free 2d SET order can be fully characterized by a

quadruple (C, ηC;M, ιM). When C = E, the pair (M, ιM) fully characterizes a 2d SPT

order. Moreover, the trivial SPT order is fully characterized by the pair (Z1(E), ι0), where

Z1(E) denotes the Drinfeld center of E and ι0 : E ↪→ Z1(E) is the canonical embedding. In

order to know when such two quadruples defines the same SPT orders, we introduce the

notion of an equivalence between two such quadruples.

Definition 2.4. An equivalence between two such quadruples (C, ηC;M, ιM) and

(C′, ηC′ ;M′, ιM′) is a pair (g, f) of braided equivalences rendering the following diagram

commutative (up to natural isomorphisms):

E C M

E C′ M′

ιM

g' f'
ιM′

. (2.1)

Remark 2.5. Note that (f ◦ιM)|E ' ιM′ |E. We have f(C) ' f(Z2(E;M)) ' Z2(f(E);M′) '
Z2(E;M′) ' C′. Therefore, f naturally induces a functor f ′ : C

'−→ f(C) ' C′ such that the

following diagram

E C M

E C′ M′

ιM

f ′' f'
ιM′

(2.2)
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is commutative (up to natural isomorphisms). One can show that f ′ ' g. Namely, g is

uniquely determined by f up to natural isomorphisms.

We recall the mathematical definition of the stacking of 2d SPT/E orders introduced

in [60]. Naive stacking of two 2d SPT/E orders by Deligne tensor product is not correct

because it enhances the symmetry from E to E�E. The correct definition of the stacking of

two 2d SPT/E orders should properly break E�E to E. This is achieved by the condensable

algebra LE = ⊕i∈Irr(E)i� i∨ in E� E, where Irr(E) denotes the set of equivalence classes of

simple objects in E. Its algebra structure is defined by that of ⊗R(1E), where ⊗R is the right

adjoint functor of the tensor product functor ⊗ : E� E→ E, i.e. LE ' ⊗R(1E) as algebras.

We denote the set of equivalence classes of the minimal modular extensions of two

UMTC/E’s (C, ηC) and (D, ηD) by Mex(C, ηC) and Mex(D, ηD), respectively. When C = E,

we set Mex(E) := Mex(E, idE). We denote the canonical braided embedding E ' E�E E ↪→
C�E D by ηC �E ηD.

Lemma 2.6 ([60]). If Mex(C, ηC) and Mex(D, ηD) are not empty, then

Mex(C, ηC)×Mex(D, ηD)
?−→ Mex(C�E D, ηC �E ηD),

((M, ιM), (N, ιN)) 7→
(
(M�N)0

LE
, ιM ? ιN : (C�D)0

LE
↪→ (M�N)0

LE

)
(2.3)

is a well-defined map. Here, the notation (−)0
LE

denotes the category of local LE-modules

in the braided category −, and the functor ιM?ιN is the one induced from ιM�ιN : C�D→
M�N, i.e. (ιM ? ιN)(x) := (ιM � ιN)(x), ∀x ∈ (C�D)LE

.

Theorem 2.7 ([60]). The set Mex(E), together with the multiplication ? and the identity

element (Z1(E), ι0), defines a finite abelian group. The set Mex(C, ηC), if not empty, is an

Mex(E)-torsor.

Remark 2.8. Let M be the time-reversal of M, i.e. the same fusion category as M but

with the braidings defined by the anti-braidings of M, and ιM := ιM : E = E → M. Then

(M, ιM) defines the inverse of (M, ιM) in Mex(E).

Theoremph 2.9 ([60]). The group of 2d SPT/E orders (with the multiplication defined by

stacking and the identity element defined by the trivial SPT/E order) is isomorphic to the

group Mex(E). More explicitly, we have

E = Rep(G), Mex(Rep(G)) ' H3(G,U(1));

E = Rep(Z2, z), Mex(Rep(Z2, z)) ' Z16;

The mathematics that is needed to compute the group Mex(Rep(G, z)) was developed

in [37]. It is possible that Mex(C, ηC) is empty [24]. In this case, (C, ηC) describes particle-like

excitations of an anomalous 2d SET order. When Mex(C, ηC) is not empty, (C, ηC) describes

particle-like excitations of an anomaly-free 2d SET order. In this case, Mex(C, ηC) admits

an action of Autbr(C, ηC) defined by (M, ιM) 7→ (M, ιM ◦ α) for α ∈ Autbr(C, ηC).

Theoremph 2.10. The set of anomaly-free 2d SET/E orders with particle-like excitations

given by the pair (C, ηC) can be identified with the set Mex(C, ηC)/Autbr(C, ηC).

– 8 –
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2.2 1d SPT/SET orders

Applying the idea of gauging the symmetry to the 1d case is nontrivial because there is no

braiding in 1d. We treat this case with special care in section 2.2.1.

2.2.1 Mathematical classification

In this subsection, we give a classification of 1d anomaly-free SET orders with a finite

onsite symmetry G using the idea of gauging the symmetry. Local excitations or symmetry

charges form a symmetric fusion 1-category E. For a bosonic system, E = Rep(G); for a

fermionic system, E = Rep(G, z). We refer to such an SPT/SET order by an SPT/SET/E

order. When G is trivial, we have E = Hilb, where Hilb denotes the 1-category of finite-

dimensional Hilbert spaces.

Since there is no non-trivial anomaly-free 1d topological order [11], we expect that all

anomaly-free 1d SET orders are SPT orders. This fact follows automatically as we proceed

our analysis. Since topological excitations in a 1d anomaly-free SET order can be fused in

1d, they must form a unitary fusion 1-category (without braidings), denoted by A. It must

contain all local excitations E as a full subcategory, i.e. a monoidal embedding ηA : E ↪→ A.

Since local excitations in E can be created and annihilated by local operators, they

can also be freely moved into the symmetric 2d bulk, which must be the trivial 2d SPT

order. The ability of moving into the bulk is characterized by the existence of a natural

isomorphism γe,x : e⊗x ' x⊗e for e ∈ E, x ∈ A, called the half-braiding. The half-braiding

equips A with a braided embedding ιA : E ↪→ Z1(A) given by e 7→ (ηA(e), γe,−), and this

embedding is part of the data of the 1d SET order. Clearly ηA is equal to the composition

of ιA with the forgetful functor Z1(A)→ A. A fusion category A equipped with a braided

embedding ιA : E ↪→ Z1(A) such that the composition E ↪→ Z1(A) → A is fully faithful is

called a fusion category over E [19]. Hence the topological excitations of a 1d SET order

form a unitary fusion category over E.

Recall that, in 2d case, symmetry charges cannot be detected by braidings among topo-

logical excitations, but can be detected by braidings if the symmetry is gauged. Therefore,

in 1d, we also need to introduce a categorical way to gauge the symmetry E. Similar

to 2d case, we try to add more particles to A such that resulting set of particles form a

monoidal category M which describes an anomaly-free 1d topological order. As we know,

however, the only anomaly-free 1d topological order is the trivial one. If M = Hilb, then

it contradicts to the fact E ↪→ A for a non-trivial group G. What is wrong?

Fortunately, the monoidal category M does not have to be Hilb. The requirement for M

being anomaly-free is equivalent to the condition that it has a trivial 2d bulk, i.e. Z1(M) '
Hilb. This equation has non-trivial solutions in unitary multi-fusion 1-categories, which are

physically relevant and describe unstable 1d phases [1, 51]. A unitary multi-fusion category

differs from a unitary fusion category in that its tensor unit 1 is potentially not simple, i.e.

1 = ⊕i1i. The associated ground state degeneracy (GSD) on S1, given by dim HomM(1,1),

is non-trivial thus unstable. They often occur in dimensional reduction processes. For

example, when we squeeze a 2d topological order with two gapped boundaries [1, 51] to

a narrow strip, i.e. a quasi-1d system, we often obtain a unitary multi-fusion category.
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Mathematically, such a unitary multi-fusion category can be rewritten as the category

FunHilb(X,X) of unitary endofunctors for a finite unitary category X, or equivalently, a

finite unitary Hilb-module.

Similar to the 2d case, we propose our gauging process as follows.

To gauge the symmetry E, we add more particles to A by requiring that each

additional particle y ∈M must make at least one of particle e ∈ E non-local. By

“non-local” we mean that e can not move into the bulk anymore, or equivalently,

there is no half-braiding isomorphism from e⊗ y to y ⊗ e.

Adding more particles to A breaks the symmetry E in both 1d and the 2d bulk because

Z1(M) ' Hilb. It is equivalent to say that adding y makes a particle e ∈ E non-local.

Recall that the relative center of E in M, denoted by ZE(M), is a category consisting of

pairs (x, β−,x), where β−,x is the half-braiding, i.e. a family of isomorphisms βe,x : e⊗x '−→
x⊗e for all e ∈ E natural in variable e. Since E is symmetric, the monoidal embedding E ↪→
M induces a central functor ηM : E → ZE(M), thus ZE(M) is naturally a fusion category

over E. Also the embedding A ↪→M induces an obvious functor ιM : A→ ZE(M) defined by

a 7→ (a, γ−,a), where γ−,a : −⊗a→ a⊗− is given by the half-braiding of E in Z1(A). Now we

are ready to state the precise mathematical formulation of gauging the symmetry E in 1d.

Theoremph 2.11. Gauging the symmetry E in 1d amounts to adding more particles to A

to form a unitary multi-fusion category M such that the monoidal functor ιM : A
'−→ ZE(M)

induced by the embedding A ↪→ M is an equivalence of unitary fusion categories over E

(recall [19, Definition 2.7]).

Remark 2.12. If such M does not exist, then the pair (A, ηA) describes an anomalous 1d

SET order. We study this type of anomalous 1d SET orders in section 3.2.

Since M = FunHilb(X,X) for a certain finite unitary category X, it implies that ηA :

E ↪→ A is a monoidal equivalence. The proof of this statement is given below.

• The functor E → M = Fun(X,X) equips the category X with a (left) E-module

structure. Hence we obtain A ' ZE(M) = ZE(Fun(X,X)) = FunE(X,X). Since

E and FunE(X,X)rev are Morita equivalent, they share the same Frobenius-Perron

dimension. By [28], ηA is a monoidal equivalence.

In other words, all anomaly-free 1d SET orders are SPT orders.

The monoidal equivalences Erev ' E
ηA−→ FunE(X,X) equip X with a structure of an

invertible E-E-bimodule such that the right E-action is induced by the left E-action via

the symmetric braidings of E. Such invertible E-E-bimodules form a group Pic(E), which

is called the Picard group of E. It is a subgroup of the group BrPic(E) of all invertible

E-E-bimodules. The multiplication in BrPic(E) is defined by the relative tensor product

�E, and the identity element is defined by the trivial bimodule E.

Since X determines M completely, we conclude that 1d SPT orders are classified by

invertible E-E-bimodules in Pic(E). Moreover, since the stacking of two E’s is given by �E,

we have E �E E ' E. It is only reasonable that the stacking of two 1d SPT orders can be
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described by the relative tensor product �E of two invertible E-E-bimodules. This fact can

be seen more explicitly in figure 1 discussed in section 3.2. Therefore, we obtain a complete

classification of 1d SPT/SET orders.

Theoremph 2.13. All anomaly-free 1d SET/E orders are 1d SPT/E orders. A 1d SPT/E

order can be uniquely characterized by a pair (M, ιM), where M = FunHilb(X,X) for an

invertible E-module X with the module structure defined by a faithful monoidal functor

ιM : E → M, or equivalently, by an invertible E-module X. All 1d SPT/E orders form a

group with multiplication defined by the stacking and the identity element being the trivial

1d SPT/E order.

1. The trivial 1d SPT/E order is given by the pair (FunHilb(E,E), ι0), where ι0 : E →
FunHilb(E,E) is the canonical functor defined by e 7→ e ⊗ −, or equivalently, by the

trivial E-module E.

2. The stacking of two SPT/E orders corresponds to the relative tensor product �E of

E-modules.

In other words, the group of 1d SPT orders is isomorphic to the Picard group Pic(E) of E.

More explicitly, we have the following natural group isomorphisms [6]:

Pic(Rep(G)) ' H2(G,U(1)) (2.4)

Pic(Rep(G, z)) '

{
H2(G,U(1))× Z2 if G = Gb × 〈z〉;
H2(G,U(1)) if otherwise.

(2.5)

Remark 2.14. In [42, section V.B], a different approach toward the classification of 1d

SPT orders (including the time reversal symmetry) was developed. Unfortunately, the

difference of these two approaches is not clear to us (see [42, Theorem 6]). Instead, we

compare our results with known results in physical literature in section 2.2.2.

2.2.2 Physical classification

In this subsubsection we recall physical results on 1+1D SPT orders and compare them

with the mathematical results in the previous section. Before proceeding, we would like

to first fix notations and clarify some terminologies that have been confusingly used in the

literature.

Remark 2.15. In this Remark, a symmetry G can be bosonic or fermionic. For simplicity

we omit z, but in the notations one may replace G with (G, z) to emphasize that G is

fermionic.

• Stacking: given two topological phases A and B, we denote their (decoupled) stacking

by A�B, where no interlayer interaction is introduced. If A has symmetry GA and B

has symmetry GB, A�B has symmetry GA×GB. When consider topological phases

A,B with the same symmetry G = GA = GB, there is also a natural (symmetry-

preserving) stacking denoted by A�GB. A�GB is constructed by first taking A�B,
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then introducing interlayer interactions that breaks the symmetry from G×G to G

(preserving the diagonal subgroup determined by the embedding g 7→ (g, g)). When

there is no symmetry G = {1}, two stacking operations coincide �{1} = �. The

stacking operation is commutative and all topological phases with symmetry G form

a commutative monoid under the stacking.

• Trivial phases: the trivial phase IG with symmetry G is the unit under the stacking,

i.e. IG �G A = A for any A with symmetry G. Physically, the trivial phase is

represented by a tensor product state.

• Invertible phases: a phase A with symmetry G is invertible if there exists a phase B

with symmetry G such that A �G B = IG. Invertible phases are also referred to as

invertible topological orders, or short-range entangled states. All invertible phases

with symmetry G form an abelian group, denoted by InvG.

Now we fix a bosonic symmetry G. The most common definition of a G-SPT order in

the literature is

Definition 2.16. A bosonic G-SPT order is an invertible phase with G symmetry such

that when G is completely broken, the phase becomes the trivial phase I{1} with no sym-

metry. More precisely, completely breaking the bosonic G symmetry leads to a group

homomorphism bG : InvG → Inv{1} and G-SPT orders are ker bG.

However, there is an alternative definition. Assuming that A is an invertible phase

with no symmetry, we can equip A with a G symmetry by stacking onto A a decoupled

layer of a trivial phase with G symmetry, A� IG. Thus we have a group homomorphism

iG : Inv{1} → InvG,

A 7→ A� IG. (2.6)

Clearly bGiG = idInv{1} since bG just totally breaks the symmetry of IG. Thus, iG is an

embedding and we can view Inv{1} as a subgroup of InvG. Also, the short exact sequence

0→ ker bG → InvG → Inv{1} → 0 (2.7)

splits and since InvG is abelian we must have

InvG = ker bG × Inv{1}. (2.8)

Definition 2.17. Bosonic G-SPT orders are invertible phases with symmetry G up to

invertible phases with no symmetry, namely InvG/Inv{1}.

Since Inv{1} are phases with no nontrivial excitations, they are invisible to the higher

category of excitations. This alternative definition of SPT orders is more convenient and

natural in our setting.

However, there is a discrepancy between two flavours of the definitions of fermionic

(G, z)-SPT orders. Still, the traditional definition in the literature of a fermionic SPT order

is obtained by considering complete symmetry breaking. In contrast to bosonic symmetries,

the fermion number parity (〈z〉, z) can not be broken.
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Definition 2.18. A (G, z)-trSPT order is an invertible phase with symmetry (G, z) such

that when G/〈z〉 is completely broken, the phase becomes the trivial phase I(〈z〉,z) with

symmetry (〈z〉, z). More precisely, completely breaking G/〈z〉 leads to a group homomor-

phism b(G,z) : Inv(G,z) → Inv(〈z〉,z) and (G, z)-trSPT orders are ker b(G,z). To distinguish,

we use superscript to indicate “traditional definition”.

Remark 2.19. Since (〈z〉, z) can not be broken, in the literature people often write

“fermionic . . . with no symmetry” which in fact means “. . . with (〈z〉, z) symmetry.” For

example, a fermionic topological order means a topological order with (〈z〉, z) symmetry;

fermionic invertible phases means Inv(〈z〉,z).

Remark 2.20. When G = Gb × 〈z〉, similar to the bosonic case we have b(Gb×〈z〉,z)(− �
IGb) = idInv(〈z〉,z) and then

Inv(Gb×〈z〉,z) = ker b(Gb×〈z〉,z) × Inv(〈z〉,z). (2.9)

In this paper, we adopt an alternative definition which is more convenient and natural.

Definition 2.21. (G, z)-SPT orders are invertible phases with (G, z) symmetry up to

invertible phases with no symmetry. More precisely, we denote the image of

i(G,z) : Inv{1} → Inv(G,z),

A 7→ A� I(G,z) (2.10)

by i(G,z)(Inv{1}), then (G, z)-SPT orders are Inv(G,z)/i(G,z)(Inv{1}).

Remark 2.22. This paper classifies (G, z)-SPT orders but not directly (G, z)-trSPT or-

ders. Clearly b(G,z)i(G,z) = i(〈z〉,z), thus ker b(G,z) ∩ i(G,z)(Inv{1}) = i(G,z)(ker i(〈z〉,z)).

The quotient map Inv(G,z) → Inv(G,z)/i(G,z)(Inv{1}) restricts to ker b(G,z) →
ker b(G,z)/i(G,z)(ker i(〈z〉,z)) which relates (G, z)-trSPT orders to (G, z)-SPT orders. It is

known that in 1d and 3d, Inv{1} is trivial thus ker i(〈z〉,z) is trivial; in 2d both Inv{1} and

Inv(〈z〉,z) are Z while i(〈z〉,z) maps 1 in Inv{1} to 16 in Inv(〈z〉,z), thus ker i(〈z〉,z) is also

trivial. In these cases (G, z)-trSPT orders form a subgroup of (G, z)-SPT orders. However,

a priori, i(〈z〉,z) may not be an embedding in higher dimensions. In this case, the quotient

of (G, z)-trSPT orders by invertible ones with no symmetry, ker b(G,z)/i(G,z)(ker i(〈z〉,z)), is

a subgroup of (G, z)-SPT orders.

Problem 2.23. It is an interesting problem to investigate if i(〈z〉,z) is always an embedding.

We are now ready to list the physical results in 1+1D. Since Inv{1} is trivial in 1+1D,

bosonic G- and fermionic (G, z)-SPT orders are just InvG and Inv(G,z) respectively. (G, z)-
trSPT orders ker b(G,z) is a subgroup of Inv(G,z).

• 1+1D bosonic G-SPT orders are InvG = H2(G,U(1)).

• 1+1D fermionic (G, z)-trSPT orders can be mapped to bosonic G-SPT orders via

the Jordan-Wigner transformation which converts (i.e. bosonizes) a 1+1D fermionic
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system to a 1+1D bosonic system [11]. Such a map is a bijection between ker b(G,z)
and InvG as sets, but whether it preserves the stacking operation has not been

seriously studied. In other words ker b(G,z) has the same underlying set as InvG but

the group structures may be different.

• However, when G is a unitary symmetry, all known examples suggest that ker b(G,z)
and InvG have the same group structure (but it is not clear whether bosonization

is a group isomorphism). For anti-unitary symmetries, there is an example where

ker b(G,z) and InvG are indeed different groups. This example has symmetry G =

ZT2 × 〈z〉, where ZT2 = {1, T} and T is the time reversal symmetry. We discuss this

example later.

• There are physical proposals, such as in group super-cohomology theory [39, 63], on

how to compute the group structure of (G, z)-trSPT orders ker b(G,z). Such proposals

agree with known examples but have not been fully justified in general cases.

• In particular, Inv(〈z〉,z) = Z2 where the nontrivial phase is represented by Kitaev’s

Majorana chain.

• It is believed that for G 6= Gb×〈z〉, the Majorana chain can not have a G symmetry,

thus Inv(G,z) = ker b(G,z). The physical reason is that the Majorana chain can be

viewed as a state that spotaneously breaks the fermion parity; when G 6= Gb × 〈z〉,
the fermion parity can not be broken alone which forbids a Majorana chain with

symmetry G.

Comparing to the physical results, our mathematical result (2.5) in the previous section

• has taken into account the stacking operation, thus automatically gives the correct

group structure;

• classifies (G, z)-SPT orders which include (G, z)-trSPT orders as a subgroup;

• only applies to unitary symmetry G.

In conclusion, our mathematical classification results agree with the physical classification

results on their overlapping parts. In particular, we can confirm that 1+1D fermionic trSPT

orders with unitary symmetry (G, z) are classified by ker b(G,z) = H2(G,U(1)), where the

group structure is indeed correct.

In the rest of this subsection, we investigate how our mathematical formulation can be

extended to include anti-unitary symmetries. When considering the example mentioned

above, 1+1D fermionic systems with anti-unitary symmetry (G, z) = (ZT2 ×〈z〉, z), we have

• The bosonization, namely bosonic ZT2 × Z2 SPT orders are InvZT2 ×Z2
= H2(ZT2 ×

Z2,U(1)) = Z2 × Z2 (see [9], note that ZT2 acts nontrivially on U(1) by complex

conjugation).

• The SPT orders are Inv(ZT2 ×〈z〉,z)
= Z8 [30, 31].
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• The trSPT orders are ker b(ZT2 ×〈z〉,z)
= Z4. This can be seen from the fact that

ker b(ZT2 ×〈z〉,z)
has the same underlying set as H2(ZT2 ×Z2,U(1)) thus has 4 elements,

and the fact that ker b(ZT2 ×〈z〉,z)
is a subgroup of Inv(ZT2 ×〈z〉,z)

.

For anti-unitary symmetry of the form ZT2 × G, since the real numbers R are invari-

ant under ZT2 , we attempt to compute the Picard groups over base field R. Denote by

RepR(G) the category of representations of G and by RepR(G, z) the category of super-

representations of (G, z), in the category of real vector spaces. By the results of [6],

Pic(RepR({1})) = Z2 = H2(ZT2 ,U(1)) = InvZT2
,

Pic(RepR(〈z〉, z)) = Z8 = Inv(ZT2 ×〈z〉,z)
,

Pic(RepR(Z2 × 〈z〉, z)) = Z4 × Z8, (2.11)

where the Z8 classification of (ZT2 ×〈z〉, z)-SPT orders can be seen. These results motivate

us to conjecture that for anti-unitary symmetry of the form ZT2 × G, the bosonic and

fermionic 1+1D SPT orders are

InvZT2 ×G
= Pic(RepR(G)), (2.12)

Inv(ZT2 ×G,z)
= Pic(RepR(G, z)). (2.13)

In particular, we predict that for 1+1D fermionic systems with (ZT2 ×Z2×〈z〉, z) symmetry,

the SPT orders are Z4×Z8 and the trSPT orders are Z4×Z4. An independent calculation

in [69, section IV.C, figure 4] agrees with us on this example.

2.3 SPT/SET orders in higher dimensions

In this subsection, we sketch the idea of gauging the symmetry to higher dimensions with-

out worrying about how to define various higher categorical notions. The mathematical

definitions of some of these notions are briefly reviewed in appendix A [33, 42]. Others are

not yet available.

The fusion properties of a set of particle-like (i.e. 0d) topological excitations living

in a (spatial) k-dimensional disk (i.e. a k-disk) are mathematically described by an Ek-

monoidal 1-category, where the term “Ek-monoidal” refers to the fact that two particles

can be fused along k different spatial directions. More generally, the fusion properties of a

set of nd topological excitations living in an (n+k)-disk are mathematically described by an

Ek-monoidal (n+1)-category. See [58] for precise mathematical definitions of these notions.

For an Ek-monoidal n-category X, the looping ΩX of X is defined by ΩX := EndX(1X),

where 1X is the tensor unit of X. The assignment X 7→ ΩX defines a functor from the

category of Ek-monoidal n-categories to that of Ek+1-monoidal (n-1)-categories. When

we restrict objects in both domain and codomain to C-linear additive Karoubi-complete

higher categories, this looping functor has an adjoint Y 7→ ΣY called “delooping” [42].

More explicitly, ΣY = Kar(BY), where BY is the one-point delooping and Kar(−) denotes

the Karoubi completion [33]. For a multi-fusion n-category X [42], by [33, Corollary 4.2.3

& 4.2.4], its delooping ΣX is equivalent to the (n+1)-category RModfd
X of fully dualizable

right X-module n-categories (with a subtle difference, see Remark 3.32).
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The theory of unitary multi-fusion higher categories is not yet available. We assume

the compatibility of the Karoubi completion and the unitarity. We set ΣnX := ΣΣn−1X,

Σ0X := X, ΣC := Hilb, and, for a finite group G,

nHilb := ΣnC, nRep(G) := Σn−1Rep(G) nRep(G, z) := Σn−1(Rep(G, z)). (2.14)

Objects in nHilb are called n-Hilbert spaces. Let nHilbG be the n-category of G-graded

n-Hilbert spaces. A cocycle ω ∈ Hn+2(G,U(1)) determines on nHilbG a monoidal struc-

ture, which is denoted by nHilbωG. For a unitary braided fusion n-category X, we have

ΣX ' RModfd
X ((n+1)Hilb) as monoidal (n+1)-categories, where RModfd

X ((n+1)Hilb) is the

category of fully dualizable right X-modules in (n+1)Hilb.

Let E be a unitary symmetric fusion n-category for n ≥ 1. Since Rep(G),Rep(G, z)

are E∞-algebras [58], so are 2Rep(G), 2Rep(G, z). By induction, we obtain that nRep(G)

and nRep(G, z) are symmetric fusion n-categories (assumed to be unitary). We illustrate

an example 2Rep(Z2) by the following quiver:

1

Rep(Z2)

�� Hilb
++ T

HilbZ2

��

Hilb

jj ,

where 1 and T are the only simple objects in 2Rep(Z2), 1 is the tensor unit and the only

non-trivial fusion product is T ⊗ T ' T ⊕ T [23, 56].

If E describes some topological excitations in an nd SET order, these excitations cannot

be detected by double braidings at all. They must be local excitations, and should be

viewed as symmetry charges of a certain higher symmetry. Therefore, we regard a unitary

symmetric fusion n-category as a physical higher symmetry.

Example 2.24. There are more symmetric fusion n-categories than nRep(G), nRep(G, z).

We give some examples below.

1. For a finite abelian group H, nHilbH has an obvious structure of a symmetric fusion

n-category. Note that 2HilbH /'2Rep(G) as 2-categories if H is non-trivial because

2Rep(G) is connected in the sense that hom2Rep(G)(i, j) 6= 0 for any pair of simple

objects i, j ∈ 2Rep(G), but 2HilbH is completely disconnected.

2. Let G(n) be a finite n-group. Then Rep(G(n)) := Fun(G(n), nHilb) has a canonical

symmetric monoidal n-category structure inherited from that of nHilb. We believe

that it is also unitary fusion. In general, Rep(G(n)) has more symmetric fusion n-

category structures even for n = 2 [70]. This means that there are more symmetric

fusion n-categories than those obtained from n-groups.

Definition 2.25. For n ≥ 1, a unitary braided fusion n-category over E is a pair (C, ηC),

where C is a unitary braided fusion n-category and ηC : E ↪→ Z2(C) a braided embedding,

where Z2(C) := ΩZ1(ΣC) is the E2-center (see [42, section IV.B] and Remark 2.30). It is

called a unitary modular n-category over E if ηC is an equivalence. If Z2(C) ' nHilb, it is

called a unitary modular n-category. A pair (M, ιM) is called a minimal modular extension
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of (C, ηC) if M is a unitary modular n-category and ιM : C ↪→ M is a braided embedding

such that the canonical functor Z2(C) → Z2(ιM), where Z2(ιM) is the E2-centralizer of ιM
(see Remark 2.30), is a braided equivalence. An equivalence φ : (M, ιM) → (N, ιN) is a

braided equivalence φ : M→ N such that φ ◦ ιM ' ιN.

Remark 2.26. Perhaps a better definition of a unitary modular n-category is a uni-

tary braided fusion n-category M such that the canonical functor M � M → Z1(M) is a

braided equivalence. Here M is the time reversal of M (defined by flipping all highest mor-

phisms), because this definition has a clear physical meaning. Similarly, a unitary modular

n-category over E is a unitary braided fusion n-category C equipped with a braided equiv-

alence from C �E C to the E2-centralizer of E ↪→ Z1(C) (see Remark 2.30). Both tensor

product � and �E have clear physical meanings and can be defined in certain Karoubi com-

plete world [42]. We believe that the mathematical foundation of multi-fusion n-categories

provided in [42] should lead to a proof of the equivalence of these two definitions.

Theoremph 2.27. For n ≥ 1, we propose the following classification:

1. An anomaly-free n+1d (spatial dimension) SET order with a higher symmetry E is

described and classified by the equivalence classes (defined similarly as Definition 2.4)

of a quadruple (C, ηC,M, ιM), where (C, ηC) is a unitary modular n-category over E,

and (M, ιM) is a minimal modular extension of (C, ηC).

2. When C = E, the set of equivalence classes of the pairs (M, ιM), denoted by Mex(E),

classify all n+1d (spatial dimension) SPT/E orders with the symmetry E. The trivial

n+1d SPT/E order is described by (Z1(E), ι0), where ι0 : E→ Z1(E) is the canonical

embedding. When E = nRep(G), the pair (Z1(nHilbωG), ιω) for ω ∈ Hn+2(G,U(1))

and a braided embedding ιω : E ↪→ Z1(nHilbωG), are examples (not all) of n+1d

SPT/E orders (see Remark 3.55), the pair (Z1(nHilb0
G) = Z1(nRep(G)), ι0) describes

the trivial n+1d SPT order.

Remark 2.28. After gauging the symmetry nRep(G), we obtain a family of (n+1)d topo-

logical orders Z1(nHilbωG) also known as Dijkgraaf-Witten theories. It was conjectured

in [56] that there is an equivalence of n-categories:

Z1(nHilbωG) '
⊕

[h]∈Cl

nRep(CG(h), τh(ω)), (2.15)

where Cl denotes the set of conjugacy classes of G, and CG(h) is the centralizer of h ∈ G,

and τh : Cn+2(G,C×) → Cn+1(CG(h),C×) is the transgression map (see [80]). In this

context, ιω is the embedding of nRep(G) onto the [1]-component in Z1(nHilbωG). The

n = 1 case of the conjecture (2.15) was proved in [80], and n = 2 case was proved in [56].

Example 2.29. For ω ∈ H4(G,U(1)), the braided fusion 2-category Z1(2HilbωG) was explic-

itly computed in [56]. We illustrate 4 simple objects in Z1(2Hilb0
Z2

) by the following quiver:

1

Rep(Z2)

�� 1Hilb
++ T

1HilbZ2

��

1Hilb

jj 1s

Rep(Z2)

�� 1Hilb
++ Ts

1HilbZ2

��

1Hilb

kk , (2.16)
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where 1 is the tensor unit. The fusion rules are given by:

1s�1s ' 1, 1s�T ' T�1s ' Ts, T�T ' Ts�Ts ' T⊕T, T�Ts ' Ts�T ' Ts⊕Ts.

See [56, Example 3.8] for the braiding structure.

Remark 2.30. By [58, section 5.3], the centralizer of a braided n-functor f : A → B is

defined by the braided n-category Z2(f) (together with a braided n-functor m) that is

universal among all commutative triangles:

Z2(f) �A
m

((
A

f //

1�idA 66

B .

The E2-center of A is Z2(idA) which is automatically equipped with an E3-monoidal struc-

ture. Importantly, Z2(ιM) is not a subcategory of M because, even for n = 2, an object in

Z2(ιM) is an object in M together with a family of 2-isomorphisms between double braid-

ings and identity morphisms (see for example [56, Def. 3.10]). Although we have nearly no

concrete example of Theoremph 2.27 beyond the Dijkgraaf-Witten theories, the gauging-

the-symmetry description of the trivial n+1d SPT/E, i.e. the pair (Z1(E), ι0), is enough to

guarantee our second approach in section 3 to work. We need the gauging-the-symmetry

descriptions of non-trivial n+1d SPT/E orders only for SET orders with ’t Hooft anomalies

(see Def. 3.9).

3 SPT/SET orders via boundary-bulk relation

As we mentioned in the introduction, the idea of gauging the symmetry is not an intrinsic

approach, and perhaps is rather strange from a mathematical point of view because an

anomaly-free SPT/SET is well-defined before we gauging the symmetry. This means that

some data intrinsically associated to the category of topological excitations is missing. It

turns out that the missing data is living in the one-dimensional-higher bulk of the anomaly-

free SPT/SET.

Theoremph 3.1. The unique bulk of an anomaly-free nd SET order is the trivial n+1d

SPT order.

By the boundary-bulk relation, the categorical description of the n+1d bulk is given

by the center of the category of topological excitations in the nd SPT/SET order, and

should be identified with the non-trivial categorical description of the trivial n+1d SPT

order obtained by gauging the symmetry in section 2. This identification is not unique in

general, and is precisely the missing data we are looking for.

In this section, we use this idea of boundary-bulk relation to obtain a classification of

nd anomaly-free SPT/SET orders for n ≥ 0. In section 3.1, we study the 0d case, which

is quite different from other cases. In section 3.2, we study the 1d case and show that the

new classification results are compatible with the results in section 2.2. In section 3.3, we

introduce the physical notion of a condensation completion, which plays a crucial role in
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all nd cases for n ≥ 2, and prove rigorously that it coincides with the mathematical notion

of an “idempotent completion” introduced in [23] in the 2d case. In section 3.4 and 3.5,

we discuss the 2d and higher dimensional cases, respectively.

3.1 0d SPT/SET orders

If a 0d SET order is anomaly-free, it can be realized by a 0d lattice model. In this case, it

makes no sense to talk about long range entanglement. All states are automatically short

range entangled. Therefore, all anomaly-free 0d SET orders are SPT orders.

Let G be a finite onsite symmetry. The space of ground states of a gapped liquid

state necessarily carries a symmetry charge, i.e. a representation of G. Let E = Rep(G)

for a bosonic system or E = Rep(G, z) for a fermionic system. We argue in two different

ways that the categorical description of a 0d SPT/E order is given by E, which is regarded

as a category by forgetting its braiding and monoidal structure. As categories, we have

E = Rep(G) = Rep(G, z).

1. On the 0+1D world line, one can change the space of ground states from one repre-

sentation of G to another. This change can be achieved by inserting a 0D topological

defect on the world line. As a consequence, all objects in Rep(G) can appear. There-

fore, the categorical description of a 0d SPT/E order is E = Rep(G).

2. According the boundary-bulk relation, the bulk of an anomaly-free 0d topological

order must be the trivial 1d SPT order. By Theoremph 2.13, the trivial 1d SPT

order is described by the pair (FunHilb(E,E), ι0). Note that FunHilb(E,E) is precisely

the E0-center of E, i.e.

Z0(E) = FunHilb(E,E).

By the boundary-bulk relation [51, 52], we see immediately that the categorical de-

scription of an anomaly-free 0d SPT order must be E.

Using the idea of boundary-bulk relation, we obtain the following classification result.

Theoremph 3.2. A 0d SPT/E order is uniquely characterized by a pair (E, φ), where

E = Rep(G) and φ : Z0(E) → Z0(E) is a monoidal equivalence rendering the following

diagram commutative.

ElLι0

zz

� r

ι0

%%
Z0(E) '

φ // Z0(E) .
(3.1)

We denote the group of equivalence classes of such monoidal autoequivalences of Z0(E) by

Aut⊗(Z0(E), ι0). The trivial 0d SPT order is described by (E, idZ0(E)). The group of 0d

SPT orders is isomorphic to Aut⊗(Z0(E), ι0).

Theorem 3.3. We have a canonical group isomorphism Aut⊗(Z0(Rep(G)), ι0) '
H1(G,U(1)).
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Proof. Given φ ∈ Aut⊗(Z0(E), ι0), it endows E = Rep(G) with another left Z0(E)-module

structure � : Z0(E)×E→ E defined by a�x := φ(a)(x) for a ∈ Z0(E) and x ∈ E. We denote

this module structure by φE. Since E is the unique left Z0(E)-module up to equivalences,

there is a module equivalence f : E → φE. We have φ(a)(f(x)) ' f(a(x)). This implies

that φ ∼= f ◦a◦f−1 (not canonically). For e ∈ E, we have ι0(e) = e⊗−. The condition (3.1)

implies that

e⊗ f(x) ' ι0(e)(f(x)) ' φ(ι0(e))(f(x)) ' f(e⊗ x),

which further implies that f ∈ FunE(E,E). Using FunE(E,E) ' E, we can identify f with

f(1E) ∈ E. Since f is an equivalence, f(1E) is invertible, and is precisely a 1-dimensional

representation of G, or equivalently, an element in H1(G,U(1)). The composition of φ

is compatible with that of f , which is further compatible with the tensor product of 1-

dimensional representations of G and with the multiplication in H1(G,U(1)).

This result is expected in physics. The 0d invertible phases with symmetry G are

classified by 1-dimensional representations of G, which happen to be given by H1(G,U(1)).

Remark 3.4. There is an interesting discussion of 0d SPT orders, including the time

reversal symmetry in [42, section V.A].

3.2 1d SPT/SET orders revisit

In this subsection, we give a new classification of all 1d anomaly-free SET/E orders based

on the idea of boundary-bulk relation.

Let E be a symmetric fusion 1-category of symmetry charges. We denote the category

of topological excitations in a 1d anomaly-free SET/E order by A, which is a unitary fusion

1-category over E, i.e. A is a unitary fusion category equipped with a braided embedding

ι : E ↪→ Z1(A) such that the composed functor ηA : E
ι
↪→ Z1(A) → A is fully faithful.

According to the results in section 2.1, the trivial 2d SPT order is described by the pair

(Z1(E), ι0). By Theoremph 3.1, A must be equipped with a braided equivalence φ : Z1(E)→
Z1(A). Moreover, φ must preserve the symmetry charges in E, i.e. φ is a braided equivalence

rendering the following diagram commutative (up to natural isomorphisms):

EkKι0
xx

� t

ι
''

Z1(E) '
φ // Z1(A) .

(3.2)

The main result in [26] says that Z1(E) ' Z1(A) if and only if E and A are Morita equivalent.

This further implies that ηA : E→ A is a monoidal equivalence, and thus A can be identified

with E via ηA. We prove again the fact that all anomaly-free 1d SET orders are SPT orders.

Now we show that the pair (E, φ) fully characterizes a 1d SPT order. No further data is

needed. We achieve this by constructing a canonical isomorphism (recall Theoremph 2.13):

Pic(E) ' Autbr(Z1(E), ι0). (3.3)

This fact was first proved in [18]. Our proof has a clear physical meaning.
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(Z1(E), ι0)(Z1(E), ι0)

E EX

Z
(1)
1 (X) := FunE|E(X,X)

X1 X2E E E

Yφ1
Yφ2

(a) (b)

Figure 1. Picture (a) illustrates the relation among E,A,X,M in a physical way and provides a

proof of the canonical isomorphism in (3.6); picture (b) illustrates the compatibility between the

multiplications in Pic(E) and Autbr(Z1(E), ι0), where Yφi
denotes the invertible 1d domain wall

associated to φi for i = 1, 2 and is itself a 1d SPT order.

In figure 1 (a), we depict a physical configuration. Two 1d SPT orders are depicted as

two 1d boundaries in figure 1 (a). The excitations in these two 1d SPT orders are both given

by E. Their 2d bulks are both the trivial 2d SPT order described by the pair (Z1(E), ι0). The

invertible E-E-bimodule X clearly describes a 0d domain wall between two 1d SPT orders.

A 0d domain wall is defined by an invertible E-E-bimodule X. It uniquely determines a

relative 1d bulk, i.e. a 1d domain wall between two trivial 2d SPT orders, defined by the

unitary fusion category Z
(1)
1 (X) := FunE|E(X,X) [53]. Since X is invertible, Z

(1)
1 (X) is also

an invertible domain wall [53]. Hence, this 1d wall Z
(1)
1 (X) must be a 1d SPT order.

According to [53, Theorem 3.3.7], the assignment

E 7→ Z1(E), X 7→ Z
(1)
1 (X) := FunE|E(X,X) (3.4)

defines a fully faithful functor. As a consequence, there is a one-to-one correspondence

between the equivalence classes of invertible E-E-bimodules and those of invertible domain

walls between two 2d topological orders defined by Z1(E). It is also known that there is a

natural group isomorphism from the set of equivalence classes of braided autoequivalences

of Z1(E) to the set of equivalence classes of invertible domain walls between two Z1(E)’s [53,

Example 2.6.7,Corollary 3.3.10]. We denote it by φ 7→ Yφ. This leads to the well-known

group isomorphism (first proved in [27]):

Z
(1)
1 |BrPic(E) : BrPic(E)

'−→ Autbr(Z1(E)). (3.5)

Moreover, we can see directly from figure 1 that the condition for X ∈ Pic(E) is equivalent

to the condition for φ ∈ Autbr(Z1(E), ι0), where φ is determined by the 1d SPT order

Yφ ' Z
(1)
1 (X). Therefore, we obtain a group isomorphism

Z
(1)
1 |Pic(E) : Pic(E)

'−→ Autbr(Z1(E), ι0). (3.6)

Notice that the stacking of two 1d SPT orders amounts to stacking two layers of

figure 1. Recall that the stacking of the 2d bulks is defined by (2.3). All 1d and 0d defects

should stack compatibly. We know two 1d SPT orders stack according to E �E E ' E.
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This is compatible with (2.3). As a consequence, X1 and X2 must stack according to

X1 �E X2, which is compatible with the composition in Autbr(Z1(E), ι0) as illustrated in

figure 1 (b), which shows nothing but the functoriality of (3.4). Therefore, we obtain a

complete classification of 1d SPT/SET orders.

Theoremph 3.5. All anomaly-free 1d SET/E orders are 1d SPT/E orders. A 1d SPT/E order

can be characterized either by φ ∈ Autbr(Z1(E), ι0), or by Yφ, or by (Z
(1)
1 )−1(Yφ) ∈ Pic(E).

Moreover, the group of 1d SPT/E orders is isomorphic to both Autbr(Z1(E), ι0) and Pic(E).

Although A and M are not explicitly in figure 1 (a), they can be recovered by fusing

1d phases along 2d phases.

1. A can be recovered by fusing Z
(1)
1 (X) with the right 1d boundary SPT order E along

the 2d bulk (Z1(E), ι0), i.e.

FunE|E(X,X) �Z1(E) E ' FunE(X,X) ' A, (3.7)

where the first monoidal equivalence is due to [53, Theorem 3.1.7].

2. M can be recovered by closing the fan to give an anomaly-free 1d phase defined by

E�Z1(E) Z
(1)
1 (X) �Z1(E) E ' E�Z1(E) FunE(X,X) ' FunHilb(X,X) = M. (3.8)

where the second monoidal equivalence is again due to [53, Theorem 3.1.7].

Remark 3.6. It is easy to see why the group Pic(E) or Autbr(Z1(E), ι0) is abelian. This

follows from the following natural equivalences:

Yφ1◦φ2 ' Yφ1 �(Z1(E),ι0) Yφ2 ' Yφ2 �(Z1(E),ι0)
Yφ1' ' Yφ2 �(Z1(E),ι0) Yφ1 ' Yφ2◦φ1 ,

where the second ' is obtained by doing a left-right mirror reflection of figure 1 (b), and the

third ' is due to the fact that (Z1(E), ι0) ' (Z1(E), ι0)−1 ' (Z1(E), ι0) [60], or equivalently,

the trivial SPT order preserves the time-reversal symmetry.

Actually, the physical stacking of two trivial 2d SPT orders induces an independent

mathematical definition of a new multiplication on Autbr(Z1(E), ι0). Physically, this multi-

plication must coincide with the composition of functors in Autbr(Z1(E), ι0). This leads to

a non-trivial mathematical result, which should be proved independently and rigorously.

We spell out this result explicitly in Theoremph 3.7.

There is a well-defined map

Autbr(M, ιM)×Autbr(N, ιN)
?−→ Autbr((M�N)0

LE
, ιM ? ιN)

(φ1, φ2) 7→ φ1 ? φ2 := (x 7→ (φ1 � φ2)(x)).

Indeed, it is clear that φ1 ? φ2 ∈ Autbr((M�N)0
LE

), and we have, for x ∈ (E� E)0
LE

,

(φ1 ? φ2) ◦ (ιM ? ιN)(x) := (φ1 � φ2)((ιM � ιN)(x))

= ((φ1 ◦ ιM) � (φ2 ◦ ιN)) (x) ' (ιM � ιN)(x).
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Since the trivial 2d SPT order (Z1(E), ι0) gives the identity element under ?, for a minimal

modular extension (M, ιM), there is a canonical braided equivalence g : M→ (M�Z1(E))0
LE

explicitly constructed in [60, Proof of Lemma 4.18]. Using g, we obtain a map

Autbr(M, ιM)×Autbr(Z1(E), ι0)
?g−→ Autbr(M, ιM)

(φ1, φ2) 7→ φ1 ?
g φ2 := g−1 ◦ (φ1 ? φ2) ◦ g

Theoremph 3.7. When (M, ιM) = (Z1(E), ι0), we have φ1 ?
g φ2 ' φ1 ◦ φ2.

In the rest of this subsection, we discuss 1d SET/E orders with anomalies. In general,

the anomaly of a SET order is a mixture of that associated to symmetries and the grav-

itational anomaly. It is difficult to distinguish them by a clean definition except in some

special cases, such as an SET order obtained by stacking an SET order with only grav-

itational anomaly with another SET order with only anomaly associated to symmetries.

However, it is possible to define them separately in certain limits.

Definition 3.8. The gravitational anomaly of an SET order X is defined by that of the

bosonic or fermionic topological order obtained by fully breaking the symmetry in X.

Definition 3.9. An SET order without gravitational anomaly is said to have a non-trivial

(resp. trivial) symmetry anomaly if its bulk is a 1-dimensional-higher non-trivial (resp.

trivial) SPT order (without any intrinsic topological order). If its bulk SPT order is a

non-trivial twisted gauge theory, this symmetry anomaly is called ’t Hooft anomaly.

Theoremph 3.10. If a 1d SET order (modulo invertible topological orders) does not have

any gravitational anomaly, then it does not have any non-trivial symmetry anomaly.

Proof. The category of topological excitations of a 1d SET/E order with a symmetry

anomaly still form a unitary fusion 1-category A over E, i.e. a fusion category A equipped

with a braided embedding ι : E ↪→ Z1(A) such that the composed functor ηA : E
ι
↪→

Z1(A)→ A is fully faithful. By Definition 3.9, we obtain a commutative diagram:

ElLιM

zz

� t

ι
''

M '
φ // Z1(A) ,

(3.9)

where (M, ιM) is a minimal modular extension of E describing the symmetry anomaly and

φ is a braided equivalence. Since the quantum dimension of M is the same as that of Z(E)

by the definition of minimal modular extensions, we obtain FPdim(A) = FPdim(E), which

further implies that ηA : E ↪→ A is a monoidal equivalence. Therefore, (M, ιM) ' (Z(E), ι0)

is the trivial SPT.

Remark 3.11. The proof of Theoremph 3.10 can be viewed as a mathematical proof of an

earlier result which says that the boundary of a 2d non-trivial SPT order must be gapless

or symmetry breaking [13].

Remark 3.12. It turns out that nd SET orders with the mixture of gravitational anomalies

and symmetry anomalies can be characterized in a similar manner. See Remark 3.63 for

details.
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3.3 Condensation completion

We would like to find a categorical description of 2d SPT/SET orders using the idea of

boundary-bulk relation. For this purpose, we need to find a categorical description of an

anomaly-free 2d SET order regarded as a 2d boundary of the trivial 3d SPT order.

Could this yet-to-be-found categorical description be the same as we have seen? One

of the important lessons we have learned in [50, 51] is the following.

The categorical description of a potentially anomalous nd topological order Pn

depends on its codimension with respect to an (n+k)d anomaly-free topological

order Qn+k, in which Pn is realized as a k-codimensional gapped defect.

A 0-codimensional description is only possible when the topological order (e.g. Qn+k) is

anomaly-free. In this work, the 0-codimensional description of an anomaly-free topological

order Qn+k is always chosen to be a unitary modular (n+k-1)-category, i.e. an E2-algebra.

Remark 3.13. The trivial 1-codimensional domain wall in the topological order Qn+k nat-

urally inherits a 1-codimensional description as an E1-algebra (by forgetting the braidings),

its k-codimensional defects living on the trivial 1-codimensional domain wall naturally in-

herit a k-codimensional description as E2−k-algebras (see [51, Remark 2.24] for the meaning

of an E−1-algebra, an E−2-algebra, etc).

Using dimensional reduction, a potentially anomalous nd topological order Pn can

always be realized as a gapped boundary of an anomaly-free n+1d topological order [51].

Therefore, a 1-codimensional description of Pn is always possible. In this work, we only

care about 0-codimensional and 1-codimensional descriptions, which are often different.

Definition 3.14 ([50, 51]). For a potentially anomalous nd topological order Pn, a 1-

codimensional description of Pn is a unitary fusion n-category, i.e. an E1-algebra, such

that its monoidal center (or E1-center) coincides with the 0-codimensional description of

the anomaly-free n+1d bulk of Pn.

It is well-known that an anomaly-free 2d topological order (modulo invertible topolog-

ical orders, which are E8-states in this case) can be described by a UMTC M. Note that M

only describes particle-like excitations. This is possible not because there is no other topo-

logical excitations. Actually, in general, there are many gapped 1d domain walls and 0d

walls between 1d walls in an anomaly-free 2d topological order. The reason we can ignore

them is because they can all be obtained from particle-like excitations via condensations as

shown in [48, 50]. Therefore, in this case, we can regard particle-like excitations as more ele-

mentary, and view all the rest topological excitations as descendants of the elementary ones.

In this sense, the UMTC M gives a 0-codimensional description of this 2d topological order.

However, if we want to regard the same anomaly-free 2d topological order M as a 1-

codimensional gapped boundary of the trivial 3d topological order and check the boundary-

bulk relation [51, 52], the UMTC M is not enough. We need to find a 1-codimensional

description of the same anomaly-free 2d topological order. One of the lessons we have

learned in [54, 55] is that a mathematical description of 1-codimensional (gapped or gapless)

boundary should include all possible topological defects and all condensation descendants.
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1. For example, the 0-codimensional description of an anomaly-free 1+1D rational CFT

can simply be a non-chiral CFT with modular invariant partition functions.1 On

the other hand, its 1-codimensional description, when viewed as a gappable gapless

boundary of the trivial 2d topological order, must includes all possible 0+1D domain

walls and 0D walls between two 0+1D walls allowed by a given non-chiral symme-

try [55, section 5.2]. As a consequence, the complete set of defects of all dimensions

forms an enriched fusion category X], whose monoidal center gives precisely the 0-

codimensional description of the trivial 2d topological order, i.e. Z1(X]) ' 1Hilb.

2. Similarly, the mathematical description of a chiral gapless boundary of an anomaly-

free 2d chiral topological order M, i.e. a 1-codimensional description, should not only

include those chiral fields living on the entire 1+1D world sheet of the 1d boundary

but also all 0+1D domain walls and 0D walls between 0+1D walls on the same 1+1D

world sheet [54]. The complete set of defects of all dimensions forms again an enriched

(multi-)fusion category Y] such that Z1(Y]) 'M.

In our 2d case, all possible topological defects include not only particle-like topological exci-

tations but also 1d gapped domain walls and 0d walls between 1d walls. Since all topological

excitations beyond those in M can all be obtained from those in M via condensations, the

process of including these condensation descendants can be called the condensation com-

pletion of M (see also the discussion in [50, section XI.B.]). We summarize and conclude

as follows.

Theoremph 3.15. The 1-codimensional (categorical) description of an anomaly-free 2d

topological order M is given by the condensation completion of M.

We should view this as a special case of a general principle.

Condensation-completion principle: all possible defects (including con-

densation descendants) should be included in the 1-codimensional (categorical)

description of a potentially anomalous nd gapped liquid phases when it is viewed

as a boundary of its 1-higher-dimensional bulk. Moreover, the 1-codimensional

description of the boundary and the 0-codimensional description of the bulk

satisfies the boundary-bulk relation (i.e. bulk is the center of the boundary).

Remark 3.16. We believe that the not-yet-constructed higher dimensional generalization

of Levin-Wen models [64] with gapped boundaries can provide concrete realizations of

about Condensation-Completion Principle. The 2d cases were done in [47]. A special

family of cases in 3d were realized in [72].

The following Theoremph generalizes a similar result for non-chiral UMTC’s obtained

in [50, section XI.B, Remark 16] to all UMTC’s.

Theoremph 3.17. The condensation completion of M is given by the delooping ΣM of M,

which is equivalent to the fusion 2-category RModM(2Hilb) of right M-modules in 2Hilb.
1Strictly speaking, this is not correct. The correct one is a non-chiral CFT with structure constants

satisfying genus-0 factorization properties and with modular invariant 1-point correlation function on torus.
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M
M

M

FunM(M,X) ' X
Y

FunM(X3,X3)

FunM(X2,X3)

FunM(X2,X2)

FunM(X1,X2)

FunM(X1,X1)

FunM(X,X) FunM(Y,Y)

Figure 2. This picture illustrates some 1d, 0d domain walls in an anomaly-free 2d topological

order M.

Proof. Since M is a UMTC, we have M 'Mrev as fusion categories via its braidings. It is

easy to see that RModM(2Hilb) ' LModM(2Hilb).

When M is viewed as a unitary fusion 1-category by forgetting its braidings, it de-

fines the trivial 1d domain wall as illustrated in figure 2 along with some other 1d,

0d domain walls. All the other gapped 1d domain walls in the same topological or-

der can be described by unitary multi-fusion 1-categories FunM(X,X) of M-module func-

tors for a finite unitary right M-module X (see [17, 25, 48]). The 0d domain wall be-

tween two such 1d walls FunM(X,X) and FunM(Y,Y) is precisely given by FunM(X,Y) or

FunM(Y,X) ' FunM(X,Y)op depending on the orientation of 1d walls (see [1]).

We illustrate 0-,1-morphisms in the 2-category ΣM in the following diagram:

X

FunM(X,X)

�� FunM(X,Y)
** Y

FunM(Y,Y)

��

FunM(Y,X)

jj . (3.10)

1. Each 0-morphism X ∈ ΣM labels a 1d domain wall FunM(X,X).

2. 1-morphisms in ΣM are precisely 0d walls or 0d topological excitations in 1d walls.

3. 2-morphisms in ΣM are instantons.

4. The composite ◦ of 1-morphisms in ΣM is precisely the fusion of 0d walls along 1d

walls (e.g. the vertical fusion �FunM(X2,X2) in figure 2) as shown by the following

commutative diagram:

FunM(X2,X3) � FunM(X1,X2)
◦ //

�FunM(X2,X2)

��

FunM(X1,X3)

FunM(X2,X3) �FunM(X2,X2) FunM(X1,X2)

'

33
. (3.11)

We conclude that the 2-category ΣM precisely encodes the information of all 0d,1d domain

walls in M and the vertical fusion among them.

Notice that 0d,1d domain walls can also be fused horizontally in figure 2, e.g.

FunM(X,X) �M FunM(Y,Y), FunM(X,X′) �M FunM(Y,Y′). (3.12)

– 26 –



J
H
E
P
0
9
(
2
0
2
0
)
0
9
3

What structure in ΣM encodes these horizontal fusions? It turns out that since M is

braided (i.e. an E2-algebra), ΣM has an additional monoidal structure (i.e. an E1-algebra).

Moreover, according to [23], ΣM is a fusion 2-category. We show that this monoidal

structure encodes the information of the horizontal fusion of 1d,0d domain walls in M.

1. The monoidal structure ⊗ on ΣM is defined by X�M Y on 0-morphisms. Notice that

this is compatible with the horizontal fusion of two 0d walls in figure 2.

2. The monoidal structure on higher morphisms is defined by the functor

FunM(X,X′) � FunM(Y,Y′)
⊗−→ FunM(X�M Y,X′ �M Y′),

f � g 7→ (f �M g : x�M y 7→ f(x) �M g(y)). (3.13)

which is monoidal when X = X′ and Y = Y′. It coincides with the horizontal fu-

sion (3.12) as shown by the following commutative diagram:

FunM(X,X′) � FunM(Y,Y′)

�M

��

⊗ // FunM(X�M Y,X′ �M Y′)

FunM(X,X′) �M FunM(Y,Y′),

'

33
(3.14)

where the equivalence “'” is monoidal if X = X′ and Y = Y′. The commutativity of the

diagram and the equivalence ' follow from [53, Theorem 3.3.6] (using the canonical faithful

functor FunM(X,X′)→ FunM|M(X,X′)).

Remark 3.18. The idea of condensation completion was first discussed in a physical

context in [50, section XI], where condensation descendants are called condensed excita-

tions, and the terminology of “condensation completion” was not used. Theoremph 3.17

for non-chiral UMTC’s was obtained in [50, Remark 16], but was stated in a different but

equivalent way according to [53, 57]. Theoremph 3.17 explains the physical meaning of the

mathematical notion of “idempotent completion” introduced in mathematics by Douglas

and Reutter in [23] with the motivation of making a 2-category semisimple. The physical

necessity of the idempotent completion was further convinced in 3d G-gauge theory [56].

This notion was further generalized to higher categories by Gaiotto and Johnson-Freyd [33,

Definition 1.3.1, 2.1.1] (see also [42]) under the name of “Karoubi completion”, which is

briefly reviewed in appendix.

Remark 3.19. There is a subtle difference between ΣM and RModM(2Hilb) because there

is no canonical functor from RModM(2Hilb) to ΣM. The more careful treatment of con-

densation completion requires us to select a distinguished object x ∈ X. This replaces X by

the pair (X, x) as an object. In this way, we recover the Karoubi completion ΣM in [23, 33].

Remark 3.20. That the condensation completion is given by ΣM remains to be true if M

is pre-modular. In this case, one can view M as the mathematical description of particle-

like topological excitations in an anomalous 2d topological order. Note that M viewed as a

unitary fusion 1-category describes again the trivial 1d domain wall in this anomalous 2d
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topological order. All other 1d domain walls are again given by FunM(X,X). In particular,

figure 2 continues to make sense by regarding the picture as a 2d boundary of a hidden

non-trivial 3d bulk.

We assume that the condensation completion for higher dimensional topological orders

is given by the mathematical theory of Karoubi completion developed in [33]. Then we can

use the same notation of the delooping to be that of condensation completion. Moreover,

we assume that ΣD is unitary for a unitary (braided) multi-fusion n-category.

Example 3.21. We give a few examples. First, ΣHilb = 2Hilb, ΣnRep(G) =

(n+1)Rep(G), ΣnRep(G, z) = (n+1)Rep(G, z) by definitions. In particular,

Ωn−1(nRep(G)) = Rep(G) and Ωn−1(nRep(G, z)) = Rep(G, z). This simply says that the

physical meaning of (n-1)-morphisms in nRep(G) or nRep(G, z) are symmetry charges, and

all the rest morphisms in nRep(G) or nRep(G, z) are the condensation descendants of the

symmetry charges. Each time we increase the dimension by one, all 1-higher-dimensional

condensation descendants must be included in the condensation completion.

Since ΣM contains all possible topological defects in the 2d boundary of the trivial 3d

topological order, and by [51, 52], we obtain the following result.

Theoremph 3.22. Z1(ΣM) ' 2Hilb as braided 2-categories.

Remark 3.23. We briefly sketch the idea of the proof of Theoremph 3.22 here. Using

the proof of Theoremph 3.28 and Remark 3.29, one can show that an object in Z1(ΣM) is

necessarily a direct sum of the identity functor idΣM. Then the theorem follows from the

fact that ΩZ1(ΣM) ' 1Hilb. We will provide details elsewhere. See Remark 3.25. During

the second revision request by JHEP, Davydov and Nikshych posted a rigorous proof of

this result in [20, Thm. 4.10,Prop. 4.16].

If a unitary fusion 2-category T has a trivial monoidal center, i.e. Z1(T) ' 2Hilb, it

means that T describes an anomaly-free 2d topological order. Since 1-codimensional defects

cannot be detected by braidings, they must be condensation descendants of particle-like

excitations, which can be braided. Therefore, we obtain the following result.

Theoremph 3.24. A unitary fusion 2-category T has the trivial monoidal center if and

only if there is a UMTC M such that T ' ΣM as fusion 2-categories.

Remark 3.25. The non-unitary version of Theoremph 3.22 and 3.24 is proved as the 2d case

of a general result for all higher dimensions in [42, Corollary IV.2] (see also Remark 3.57).

If M is non-chiral, then (M, 0) describes a non-chiral 2d topological order that admits

gapped 1d boundaries. Each gapped 1d boundary can be described by a closed multi-fusion

left M-module P [53, Definition 2.6.1], i.e. a unitary multi-fusion 1-category P equipped

with a braided equivalence ψP : M
'−→ Z1(P). Any two such closed multi-fusion left M-

modules P and Q are necessarily Morita equivalent [26].

If we complete ΣM by its condensation descendants, then we should also complete its

boundary P by including all condensation descendants and to form a ΣM-module. What
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M

M

X YW

PP P P P

Q Q′

M M

Figure 3. These pictures illustrate the physical meaning of the proof of Theoremph 3.26.

is the condensation completion of P? It is clear that in order to include all possible defects

on the boundary, we should not only include all possible 0d walls in P but also those

condensation descendants of M fused into the boundary as illustrated in the first picture

in figure 3 (a).

Theoremph 3.26. The condensation completion of P is given by ΣP = RModP(2Hilb),

i.e. the 2-category of right P-modules in 2Hilb.

Proof. Let Q and Q′ be two gapped boundaries of the 2d topological order (M, 0) as illus-

trated in figure 3 (b). They are unitary multi-fusion categories. Notice that (Q′)rev �M P

is an anomaly-free 1d topological order, i.e. a unitary multi-fusion category with trivial

Drinfeld center [53, Theorem 3.3.6]. Therefore, it evaporates into the trivial 2d topological

order 2Hilb. In this way, we obtain a new gapped boundary Q of M by fusing condensation

descendants in M to the boundary P. As a consequence, the condensation completion of

P realizes all possible gapped boundaries of M, each of which can be labeled by a right

P-module X (in 2Hilb) and realized as FunPrev(X,X). The unique 0d domain wall be-

tween two such boundaries FunPrev(X,X) and FunPrev(Y,Y) is given by FunPrev(X,Y) (or

FunPrev(Y,X) depending on the orientation). We illustrate 0-,1-morphisms in the 2-category

RModP(2Hilb) in the following diagram:

X

FunPrev (X,X)

�� FunPrev (X,Y)
** Y

FunPrev (X,X)

��

FunPrev (Y,X)

jj . (3.15)

We see immediately that the 0d,1d domain walls in the condensation completion of P

are precisely encoded by 1-,0-morphisms in RModP(2Hilb). Moreover, similar to (3.11),

we see the fusion of 0d walls in ΣP coincides with the composition of 1-morphisms in

RModP(2Hilb).

We denote the E0-center of a unitary 2-category S by Z0(S) := Fun2Hilb(S, S).

Proposition 3.27. For a unitary multi-fusion 1-category P, there is a braided equivalence

Z1(P)
'−→ Ω(Z0(ΣP)) defined by (z, βz,−) 7→ {X z�−−−−→ X}X∈ΣP. (3.16)

Proof. Notice that X
z�−−−−→ X is a well-defined P-module functor, which intertwines the

P-action via the half-braiding βz,−. This implies that (3.16) gives a well-defined functor.

– 29 –



J
H
E
P
0
9
(
2
0
2
0
)
0
9
3

X

Z1(P) Z1(P)

P P P

FunP|P(X �Z1(P) P, X �Z1(P) P)

X �Z1(P) P

Y

Z1(P) Z1(P)

P

P

FunZ1(P)rev (Y �Prev�P P, Y �Prev�P P)

P

Y �Prev�P P

Figure 4. Based on the boundary-bulk relation [51][53, Theorem 3.3.7], these pictures illustrate

the physical meanings of the functor Φ and its inverse in the proof of Theoremph 3.28.

Conversely, there is a functor Ω(Z0(ΣP))→ Z1(P) defined by φ 7→ φP(1P). It is routine to

check that it is well-defined and gives the quasi-inverse of (3.16).

Theoremph 3.28. For a unitary multi-fusion 1-category P, there exists a natural monoidal

equivalence:

ΣZ1(P) ' Z0(ΣP) := Fun2Hilb(ΣP,ΣP). (3.17)

Proof. We have an evident equivalence Z0(ΣP) ' BModP|P(2Hilb) and a monoidal functor

Φ : ΣZ1(P)→ BModP|P(2Hilb) defined by X 7→ X�Z1(P)P for objects and f 7→ f�Z1(P) idP

for 1-morphisms. It is routine to check that the assignment Y 7→ Y �Prev�P P for objects

and g 7→ idP�Prev�Pg for 1-morphisms defines an inverse of Φ. The physical meanings of

the construction of Φ and its quasi-inverse are illustrated in figure 4.

Remark 3.29. Although the proof of Theoremph 3.28 does have some physical meanings,

it is not directly related to the condensation completion. We would like to sketch the

physical meaning of Theoremph 3.28 in terms of condensation completion. We denote the

indecomposable P-modules in 2Hilb by Xi for i = 1, · · · , N , and set P∨Xi := FunPrev(Xi,Xi).

To define a non-zero functor F : ΣP→ ΣP, we need to construct a non-zero monoidal func-

tor Fi : P∨Xi → P∨F (Xi)
for i = 1, · · · , N . By [53, Theorem 3.2.3], defining each Fi amounts

to choosing a closed multi-fusion Z1(P)-Z1(P)-bimodule Z1(P)∨Yi := FunZ1(P)rev(Yi,Yi) for

Yi ∈ ΣZ1(P) equipped with a monoidal equivalence Z1(P)∨Yi �Z1(P) P
∨
Xi
' P∨F (Xi)

. Then Fi
can be constructed explicitly as the composed functor:

Fi : P∨Xi → Z1(P)∨Yi �Z1(P) P
∨
Xi

'−→ P∨F (Xi)
.

We illustrate the physical meaning of this construction in the following picture,

M∨
YN−1

M∨
YN

M∨
Y1

M∨
Y2

P∨
X1

P∨
X2

P∨
XN−1

P∨
XN

M = Z1(P)

(Q, q)

where the 0d wall between M∨Y1
and M∨Y2

is given by a pair (Q, q), where Q = FunZ1(P)(Y1,Y2)

and q ∈ Q. Filling the 0d walls between M∨Yi ’s to give a construction of a functor F is
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physically natural but not yet mathematically necessary at this stage (unless we apply

Theoremph 3.28). Let us restrict the construction of F to this type. Note that the data q

is needed to determine the functor F on morphisms:

FunPrev(Xi,Xj)
F−→ Q�Z1(P) FunPrev(Xi,Xj) ' FunPrev(F (Xi), F (Xj))

f 7→ q �Z1(P) f.

When Y2 = Y1, it is necessary that q = 1M∨
Y1

. Moreover, (Q, q) is required to be invertible.

We spell out its precise meaning below. Let (Q′, q′) be the 0d domain wall between M∨Y2

and M∨Y1
. We must have

(Q, q) �M∨
Y2

(Q′, q′) = (Q�M∨
Y2

Q′, q �M∨
Y2
q′) ' (M∨Y1

,1M∨
Y1

),

(Q′, q′) �M∨
Y1

(Q, q) = (Q′ �M∨
Y1

Q, q′ �M∨
Y1
q) ' (M∨Y2

,1M∨
Y2

).

As a consequence, the functor M∨Y1
→M∨Y2

defined by f 7→ q�M∨
Y2
f �M∨

Y2
q′ is a monoidal

equivalence. In other words, we have M∨Yi '
⊗ M∨Yj and Yi ' Yj . Then we can see that to

define such a functor F ∈ Fun2Hilb(ΣP,ΣP) is equivalent to give an object Y in ΣZ1(P).

Remark 3.30. By Theoremph 3.22, we obtain Z1(Z0(ΣP)) ' 2Hilb, i.e. a typical example

of the center of a center being trivial (recall the fact Z2(Z1(P)) ' 1Hilb). This also means

that ΣP is a reasonable 2-codimensional description of an anomalous 1d topological order

P. We expect this result and (3.17) to hold for unitary multi-fusion n-categories.

Remark 3.31. Conversely, if S is a finite unitary 2-category such that Z1(Z0(S)) ' 2Hilb,

however, it is not true that S ' ΣP for a unitary multi-fusion category P. Indeed, by

By Theoremph 3.24, Z0(S) ' ΣM for a UMTC M. As a consequence, S describes a 1d

boundary of the condensation completion of M. However, in general, M is chiral, then

this 1d boundary S is necessarily gapless. By [54], S should be given by the condensation

completion of a B-enriched unitary multi-fusion category BX for a UMTC B and a unitary

multi-fusion category X such that Z1(BX) ' M. Similar to figure 3(b), we see that the

condensation completion of BX produces all possible chiral gapless boundaries of M and 0d

walls between them. The precise mathematical description of this condensation completion

of BX should be the delooping of BX in a proper sense. This involves some technical issues

in the mathematical theory of enriched fusion categories that are beyond this work. We

assume that this can be done, and denote this condensation completion by Σ(BX). Then we

obtain Z1(Z0(Σ(BX))) ' 2Hilb. Since this description of chiral gapless boundaries includes

that of gapped boundaries as special cases, we obtain that S ' Σ(BX) for a B-enriched

unitary multi-fusion category BX such that Z1(BX) 'M.

3.4 2d SPT/SET orders

The fact that the precise categorical description depends on the codimensions also applies

to SET orders. Recall that an anomaly-free 2d SET order is described by two braided

embeddings: E ↪→ C ↪→ M, where all three unitary braided fusion 1-categories E,C,M

describe only particle-like excitations. They are clearly 0-codimensional descriptions. If
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we want to find a 1-codimensional description of an anomaly-free 2d SET order viewed as

a boundary of the trivial 3d SPT order, then we need to do condensation completion. In

particular, the condensation completions of E, C and M are given by fusion 2-categories

ΣE, ΣC and ΣM, respectively, as we explained in Remark 3.20, and ΣB ' RModB(2Hilb)

for any braided fusion category B.

Since E describes the bulk excitations of the trivial 2d SPT order, its condensation

completion ΣE describes all condensation descendants of symmetry charges in the trivial 2d

SPT order. Its 3d bulk must be the trivial 3d SPT order, which is mathematically described

by Z1(ΣE) [51, 52]. Since ΣE is a symmetric fusion 2-category, we obtain a canonical

braided embedding ι0 : ΣE ↪→ Z1(ΣE), which is necessarily full because ΣE = 2Rep(G) or

2Rep(G, z). Therefore, we obtain a pair (Z1(ΣE), ι0), which is precisely the 0-codimensional

description of the trivial 3d SPT order (recall Theoremph 2.27).

Since C describes the particle-like excitations of an anomaly-free 2d SET/E order,

we should expect that the monoidal center of its condensation completion ΣC should give

again the trivial 3d SPT order. Mathematically, it means that there is a braided embedding

ι : ΣE ↪→ Z1(ΣC) and a braided equivalence φ : Z1(ΣE) ' Z1(ΣC) rendering the following

diagram commutative:

ΣE
kKι0

xx

� s

ι

&&
Z1(ΣE) '

φ // Z1(ΣC) .
(3.18)

We illustrate relations between ΣE and ΣC and their 3d bulks in figure 5. The braided

equivalence φ is physically achieved by tunneling through the 2d invertible domain wall

labeled by Yφ, which is canonically associated to φ. When C = E, Yφ is simply a 2d

SPT order. Notice that this mathematical description is completely parallel to that of

anomaly-free 1d SET orders (recall (3.2)). Therefore, we obtain that an anomaly-free 2d

SET/E order is mathematically characterized by a pair (C, φ), where C is a UMTC/E and

φ : Z1(ΣE)→ Z1(ΣC) is a braided equivalence.

Remark 3.32. Since ΣE includes symmetry charges and their condensation descendants,

they can be moved in and out of the 2d boundary freely. Therefore, we expect that the

composed functor ΣE
ι
↪→ Z1(ΣC) → ΣC is monoidal and faithful. Mathematically, using

ΣE = Kar(BE) (instead of RModE(2Hilb)), one can show that there is a canonical faithful

functor ΣE→ ΣC, which necessarily factors through Z1(ΣC)→ ΣC.

Remark 3.33. It is not clear to us if the natural isomorphisms φ ◦ ι0 ' ι rendering

the diagram (3.18) commutative and the higher isomorphisms of them have any physical

meanings. So we ignore them. See Remark 3.45 for the physical meanings of other higher

isomorphisms.

When C = E, the pair (E, φ) gives a mathematical description of a 2d SPT order.

Moreover, the stacking of SPT orders is described by the composition of autoequivalences.

We summarize the classification result below.

We denote the underlying group of the category of braided autoequivalences of Z1(ΣE)

preserving ι0 by Autbr(Z1(ΣE), ι0), and the underlying set of the category of braided equiv-
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(Z1(ΣE), ι0)(Z1(ΣC), ι)

ΣC ΣEX

Yφ

X

ΣMφ

(a) (b)

Figure 5. Picture (a) depicts a physical configuration that illustrates the relation among ΣE,ΣC.

Yφ denotes the 2d invertible domain wall between two 3d bulks associated to the braiding equivalence

φ : Z1(ΣE) → Z1(ΣC) and ι ' φ ◦ ι0. Picture (b) depicts the result of the closing-fan process

indicated by the dotted lines in Picture (a) (see (3.20)).

alences from (Z1(ΣE), ι0) to (Z1(ΣC), ι) by BrEq((Z1(ΣE), ι0), (Z1(ΣC), ι)), which is clearly

an Autbr(Z1(ΣE), ι0)-torsor. Moreover, an equivalence φ ∈ Autbr(C, ηC) of the 2d boundary

theory should automatically induces an autoequivalence in Autbr(Z1(ΣC), ι) of the 3d bulk.

Hence, there is a natural Autbr(C, ηC)-action on BrEq((Z1(ΣE), ι0), (Z1(ΣC), ι)).

Theoremph 3.34. The group of 2d SPT/E orders (with the multiplication defined by the

stacking and the identity element defined by the trivial SPT/E order) is isomorphic to the

group Autbr(Z1(ΣE), ι0). An anomaly-free 2d SET/E orders with particle-like excitations

given by (C, ηC) is characterized by φ ∈ BrEq(Z1(ΣE),Z1(ΣC)). Moreover, we have

{2d anomaly-free SET/E orders with topological excitations C}

=
BrEq((Z1(ΣE), ι0), (Z1(ΣC), ι))

Autbr(C, ηC)
.

Theoremph 3.34 and its compatibility with the classification result in Theoremph 2.9

have many immediate mathematical consequences. In the rest of this subsection, we explain

them in details and summarize the corresponding mathematical consequences as physical

theorems. For mathematicians, these physical theorems should be viewed as mathematical

conjectures.

If a UMTC/E C is anomalous, on the one hand, its 3d bulk cannot be the trivial 3d SPT

order, hence, Z1(ΣE)/'Z1(ΣC) as braided fusion 2-categories; on the other hand, by [60],

C should not admit any minimal modular extension. These facts provide a mathematical

characterization of the existence of a minimal modular extension.

Theoremph 3.35. A UMTC/E C admits a minimal modular extension if and only if

Z1(ΣE) ' Z1(ΣC) as braided fusion 2-categories.

Remark 3.36. It is important and interesting to provide a mathematical proof of

Theoremph 3.35. In [42, section V.C], one can find a more detailed discussion of the exis-

tence of minimal modular extensions.
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If we close the fan depicted in figure 5 to obtain an anomaly-free 2d topological order,

the categorical description of such obtained anomaly-free 2d topological order is given by

ΣC�Z1(ΣC) Yφ �Z1(ΣE) (ΣE)rev. (3.19)

This anomaly-free 2d topological order provides a way of gauging ΣC in the same dimension.

Therefore, it should come from a unique minimal modular extension of the UMTC/E C.

We denote this minimal modular extension by Mφ.

Theoremph 3.37. We expect to have the following mathematical results.

1. There is a natural monoidal equivalence:

ΣC�Z1(ΣC) Yφ �Z1(ΣE) (ΣE)rev ' ΣMφ. (3.20)

In particular, it implies that there is a braided equivalence

Ω(ΣC�Z1(ΣC) Yφ �Z1(ΣE) (ΣE)rev) 'Mφ.

2. There is a bijection h : BrEq(Z1(ΣE),Z1(ΣC))→ Mex(C) defined by

φ 7→ Ω(ΣC�Z1(ΣC) Yφ �Z1(ΣE) (ΣE)rev),

intertwining the Autbr(C, ηC)-actions. When C = E, the map h : Autbr(Z1(ΣE), ι0)→
Mex(E) is a group isomorphism. In particular, we should have the following explicit

group isomorphisms.

Autbr(Z1(2Rep(G)), ι0) ' H3(G,U(1)); Autbr(Z1(2Rep(Z2, z)), ι0) ' Z16;

For a 2d SPT order, C = E = Rep(G), and for each φ ∈ Autbr(Z1(2Rep(G)), ι0), we

have Mφ ' Z1(1HilbωG) for an ω ∈ H3(G,U(1)). It implies that the 1d defect junction X

in figure 5, as a 1d boundary of ΣMφ, is gapped. According to Theoremph 3.26, X = ΣP

for a unitary fusion 1-category P equipped with a braided equivalence M→ Z1(P). By the

boundary-bulk relation, we obtain a monoidal equivalence (3.19) ' Fun2Hilb(X,X). Hence,

Yφ determines X uniquely as the unique closed module over the unitary multi-fusion 2-

category (3.19). Therefore, we obtain a 2d generalization of (3.6) for E = Rep(G).

Theoremph 3.38. There are natural group isomorphisms:

Pic(2Rep(G)) ' Autbr(Z1(2Rep(G)), ι0) ' H3(G,U(1)).

Remark 3.39. Interestingly, Theoremph 3.38 does not hold for E = Rep(G, z). For ex-

ample, when G = Z2, for φ ∈ Autbr(Z1(2Rep(Z2, z)), ι0) and cφ ∈ {0, 1
2 , · · · ,

15
2 }, the

pairs (Mφ, cφ) reproduce the Kitaev’s 16-fold ways, which, viewed as 2d topological or-

ders, all have chiral gapless edges except for the trivial one φ = idZ1(2Rep(Z2,z)). According

to Remark 3.31, the condensation completion of a single chiral gapless edge automati-

cally includes all gapless edges of (Mφ, cφ). All of these gapless edges can be categorically
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described by a B-enriched multi-fusion category BX, where B is a UMTC that is Witt

equivalent to Mφ. In this case, we believe that it is possible to generalize the notion of

invertible 2Rep(Z2, z)-bimodules in an enriched setting. We denote the group of all such

invertible bimodules by Picen(2Rep(Z2, z)). Since 16 UMTC’s Mφ all have different Witt

classes, we should expect that Picen(2Rep(Z2, z)) ' Z16 as groups.

Recall Example 2.24, there are more unitary symmetric fusion 2-categories than

2Rep(G) and 2Rep(G, z). For example, 2HilbH for a finite abelian group H. All unitary

symmetric fusion 2-categories should be viewed as certain higher symmetries. We would

like to generalize Theoremph 3.34 to a higher symmetry defined by a unitary symmetric

fusion 2-category R.

Definition 3.40. A unitary fusion 2-category over R is a unitary fusion 2-category A

equipped with a braided faithful functor ιA : R ↪→ Z1(A) such that the composed functor

R ↪→ Z1(A)→ A is faithful (recall Remark 3.32).

The simplest example of a unitary fusion 2-category over R is R. It is equipped with

a canonical braided faithful functor ι0 : R ↪→ Z1(R).

Remark 3.41. Notice that we do not require ιA : R ↪→ Z1(A) to be full. This is because

ι0 : R ↪→ Z1(R) is not full in general. For example, consider the fusion 2-category 2HilbH
for a non-trivial finite abelian group H. It has a canonical symmetric fusion 2-category

structure by choosing the trivial braidings and the trivial sylleptic structure [14]. We

have Z1(2HilbH) ' ⊕h∈H2Rep(H) as 2-categories [56]. The canonical functor 2HilbH →
Z1(2HilbH) is faithful but not full.

The following definition first appeared in [19, Definition 2.7] for 1-categories.

Definition 3.42. An equivalence between two unitary fusion 2-categories A and A′ over

R is a monoidal equivalence f : A→ A′ rendering the following diagram commutative:

R Z1(A)

Z1(A′) Z1(f),

'

'

where Z1(f) = FunA|A′(fA
′, fA

′) and fA
′ is an A-A′-bimodule with the left A-module

structure induced from the monoidal functor f .

All such equivalences, together with higher isomorphisms, form a 2-groupoid. When

A′ = A, we denote the underlying group by Aut⊗(A, ιA). We denote the set of equivalence

classes of braided equivalences φ : Z1(R)→ Z1(A) preserving the symmetries (i.e. φ ◦ ι0 '
ιA) by BrEq((Z1(R), ι0), (Z1(A), ιA)), which is equipped with a natural Aut⊗(A, ιA)-action.

Theoremph 3.43. A 2d SPT/SET order with a higher symmetry R is called a 2d

SPT/SET/R order. We give the following classification.
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(Z1(ΣE), ι0)(Z1(ΣE), ι0)

ΣE ΣE

P

Yid

Figure 6. A 1d SPT P is realized as an invertible domain wall on the trivial 2d SPT Yid.

1. An anomaly-free 2d SET/R order is uniquely characterized by a pair (A, φ), where A is

a unitary fusion 2-category over R describing all topological excitations (including all

condensation descendants) and φ : Z1(R)→ Z1(A) is a braided equivalence rendering

the following diagram commutative (up to natural isomorphisms):

RlLι0

zz

� s

ιA

%%
Z1(R)

φ

'
// Z1(A).

2. When A = R, the pair (R, φ) describes a 2d SPT/R order and (R, idZ1(R)) is the

trivial SPT order. Moreover, the group of all 2d SPT/R orders is isomorphic to the

group Autbr(Z1(R), ι0). For a given category of topological excitations (including all

condensation descendants) A, i.e. a unitary fusion 2-category, we have

{2d anomaly-free SET/R orders with topological excitations A}

=
BrEq((Z1(R), ι0), (Z1(A), ιA))

Aut⊗(A, ιA)
.

Remark 3.44. When R = ΣE for E = Rep(G) or Rep(G, z), the unitary fusion 2-category

A is necessarily monoidally equivalent to ΣC for a unitary modular 1-category C over E

because all 1-codimensional defects are not detectable via braiding, thus must be conden-

sation descendants.

Remark 3.45. In figure 6, if we insert an invertible gapped domain wall P on the trivial

2d SPT order Yid, one can see immediately that this 1d gapped domain wall is a 1d SPT

order. Since an invertible domain wall defines a higher isomorphism of Yid, by adding

invertible domain walls of all higher codimensions on Yφ for all φ ∈ Autbr(Z1(ΣE), ι0), we

obtain a higher group of 2+1D SPT orders G3. If E = Rep(G), by our classification of lower

dimensional bosonic SPT orders, we obtain the formula πi(G3) ' H3−i(G,U(1)), i = 0, 1, 2.

For a properly defined higher group of the minimal modular extensions of Rep(G), the same

formula is rigorously proved (even for i = 3, viewed as (-1+1)D SPT orders) in an upcoming

paper [20]. We can also consider domain walls between Yφ and Yφ′ for φ/'φ′. These walls

are gapless in general especially for the fermionic cases, i.e. E = Rep(G, z). They define
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even more interesting (i.e. gapless) higher morphisms. This picture clearly generalizes to

all higher dimensional SPT/SET orders. As we have mentioned in the introduction, from

a mathematical point of view, the right question is to study the category of SPT/SET

orders instead of the set of them, but is beyond the scope of this work. In this work, we

emphasize the importance of the boundary-bulk relation [52], which should serve as the

guiding principle for the future study of the category of SPT/SET orders as in [51].

In the rest of this subsection, we discuss symmetry anomalies (recall Definition 3.9) of

a UMTC/E (C, ηC), where E is a unitary symmetric fusion 1-category.

We first discuss a relation between anomalies and condensations. Microscopically, a

condensation in a potentially anomalous phase can be achieved by introducing new inter-

actions among excitations. Regarding this phase as the gapped boundary of a potentially

non-trivial 1-dimensional-higher bulk, we see that these new interaction can be restricted

to the boundary of the 1-dimensional-higher bulk without interacting with the physical

degrees of freedom in the bulk. Although these new interactions might break the symme-

tries, it does not change the 1-dimensional-higher bulk up to different symmetries. Macro-

scopically, a condensation of a potentially anomalous phase produces a new potentially

anomalous phase and a gapped domain wall between two phases, which share the same

1-dimensional-higher bulk. This physical intuition coincides with the precise mathematical

theory of 1d condensations developed in [48]. More precisely, in 1d cases, 1d condensations

produces Morita equivalent 1d phases, which share the same 2d bulk. We believe that the

mathematical theory of higher dimensional SET orders and a higher Morita theory will

eventually further confirm this physical intuition. We summarized this physical intuition

in the following physical Theoremph.

Theoremph 3.46. A (potentially symmetry-breaking) condensation of a (potentially

anomalous) SET order does not change the gravitational anomaly (recall Definition 3.8).

When there is no gravitational anomaly, a condensation without breaking the symmetry

preserves the symmetry anomaly.

Next we argue that if Mex(C, ηC) is empty, (C, ηC) has no gravitational anomaly but

only symmetry anomalies. Indeed, a breaking of symmetry can be achieved by condensing

a condensable algebra A in E. As a consequence, we obtain a UMTC CA over EA [19].

When the symmetry E is bosonic, i.e. E = Rep(G), we can break the symmetry completely

by choosing A = Fun(G). In this case, EA = 1Hilb and CA is a UMTC [15, Corollary

4.31], which is anomaly-free. When the symmetry E is fermionic, i.e. E = Rep(G, z),

we can break the symmetry down to only the fermion parity symmetry Rep(Z2, z) by

choosing A properly. This is always possible because there exists a canonical fiber functor

Rep(G, z)→ Rep(Z2, z). It has long been conjectured that 2d fermionic topological orders

are always anomaly-free [4].

By assuming above conjecture and by Definition 3.8 or Theoremph 3.46, we conclude

that if the pair (C, ηC) admits no minimal modular extension, it has no gravitational

anomaly but only symmetry anomalies. In other words, its 3d bulk is a (potentially non-

trivial) SPT order (recall Definition 3.9). A physical example was constructed in [8]. As a
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consistent check, note that there is no 3d SPT order with only the fermion parity symme-

try according to [45, table 2] and [29]. This result is consistent with the conjecture that

2d fermionic topological orders are all anomaly-free. By the classification of bosonic 3d

SPT orders [42, 61], when E = Rep(G), the SET order (C, ηC), which admits no minimal

modular extension, has only ’t Hooft anomaly (recall Definition 3.9).

More generally, let R be a unitary symmetric fusion 2-category.

Theoremph 3.47. A 2d SET/R order with only a symmetry anomaly can be described by

a unitary fusion 2-category over R, i.e. a pair (A, ιA), together with a minimal modular

extension (M, ιM) of R and a braided equivalence φ : M→ Z1(A) satisfying ιA ' φ ◦ ιM.

Example 3.48. If R = ΣE and E = 1Rep(G), then we expect that M 'br Z1(2HilbωG) for

a non-trivial cocycle ω ∈ H4(G,U(1)) (see Theoremph 2.27 and [42, 61]).

Recall that two UMTC/E C1 and C2 are called Witt/E equivalent if there are unitary

fusion 1-categories A1,A2 over E such that there is a braided equivalence

C1 �E Z2(E;Z1(A1)) ' C2 �E Z2(E;Z1(A2)).

The physical meaning of this Witt/E equivalence is that the 2d potentially anomalous SET’s

associated to C1 and C2 can be obtained via anyon condensations without breaking the

symmetry from the same potentially anomalous SET [19]. By Theoremph 3.46, UMTC/E’s

in the same Witt/E equivalence class should share the same symmetry anomaly. As a

consequence, there should be a well-defined group homomorphism

Witt/E group
Z1◦Σ−−−→ Mex(ΣE) (3.21)

[C]/E 7→ (Z1(ΣC), ι),

where ι is defined in Remark 3.32. This group homomorphism might shed light on the

study of both sides. We leave a systematic study of symmetry anomalies to the future.

3.5 nd SPT/SET orders

Theoremph 3.43 is ready to be generalized to all dimensions. For n ≥ 1, let R be a higher

symmetry defined by a unitary symmetric fusion n-category R.

Definition 3.49. For n ≥ 1, a unitary fusion n-category over R is a pair (A, ιA), where

A is a unitary fusion n-category A and ιA : R ↪→ Z1(A) is a braided faithful functor such

that the composed functor R ↪→ Z1(A)→ A is also faithful.

The simplest unitary fusion n-category over R is given by (R, ι0), where ι0 : R ↪→ Z1(R)

is the canonical braided faithful functor.

Definition 3.50 ([19] for n = 1). For n ≥ 1, two unitary fusion n-categories over R, i.e. two

pairs (A, ιA) and (A′, ιA′), are called equivalent if there is a unitary monoidal equivalence

f : A→ A′ rendering the following diagram commutative:

R Z1(A)

Z1(A′) Z1(f),

ιA

ιA′ '

'
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where Z1(f) = FunA|A′(fA
′, fA

′) and fA
′ is an A-A′-bimodule with the left A-module

structure induced from the monoidal functor f .

All such equivalences, together with higher isomorphisms, form an n-groupoid. When

A′ = A, we denote the underlying group by Aut⊗(A, ιA). We denote the set of equivalence

classes of braided equivalences φ : Z1(R)→ Z1(A) preserving the symmetries (i.e. φ ◦ ι0 '
ιA) by BrEq((Z1(R), ι0), (Z1(A), ιA)), which is equipped with a natural Aut⊗(A, ιA)-action.

Theoremph 3.51. For n ≥ 1, we call an nd (spatial dimension) SPT/SET order with a

higher symmetry R an nd SPT/SET/R order. We propose the following classification.

1. An anomaly-free nd SET/R order is uniquely characterized by a pair (A, φ), where A is

a unitary fusion n-category over R describing all topological excitations (including all

condensation descendants) and φ : Z1(R)→ Z1(A) is a braided equivalence rendering

the following diagram commutative (up to natural isomorphisms):

RkKι0
xx

� t

ιA
''

Z1(R) '
φ // Z1(A).

2. When A = R, the pair (R, φ) describes an SPT/R order and (R, idZ1(R)) describes the

trivial SPT/R order. Moreover, the group of all SPT/R orders is isomorphic to the

group Autbr(Z1(R), ι0), which denotes the underlying group of braided autoequiva-

lences of Z1(R) preserving ι0. For a given category A of topological excitations (in-

cluding all condensation descendants), i.e. a unitary fusion n-category over R, we have

{nd anomaly-free SET/R orders with topological excitations A}

=
BrEq((Z1(R), ι0), (Z1(A), ιA))

Aut⊗(A, ιA)
.

Remark 3.52. When the higher symmetry R is trivial, i.e. R = nHilb, the statement

of Theoremph 3.51 reduces to the classification of topological orders modulo invertible

topological orders without symmetries (see [42, 51]). This result was first proposed in [51].

But the definition of a multi-fusion n-category given in [51] is wrong due to the lack of

Karoubi completion [33]. The correct one is given in [42], where one can also find many

strong results with rigorous proof. The notion of unitarity for higher category is still

missing (see Remark A.2).

Remark 3.53. Note that the braided equivalence φ : Z1(R)
'−→ Z1(A) seems to suggests

that A is “Morita invertible” over R. But one has to take this “Morita invertibility”

with caution because the bimodule X defining the “Morita equivalence” can be gapless

(see the example given in Remark 3.39). An example of “gapless Morita equivalence” was

introduced in [55] for 1+1D gapless edges of 2+1D topological orders under the name of

“spatially Morita equivalence”.
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Remark 3.54. The statement of Theoremph 3.51 makes sense if R is only a unitary braided

fusion n-category but not symmetric. In this case, R contains non-trivial topological ex-

citations. Can we still view R as some kind of higher symmetries? It is interesting to

investigate this question along the line of [41].

Remark 3.55. We would like to point out that our classification of SPT orders, even in the

case R = nRep(G), goes beyond the usual group-cohomology classification (see also [78]).

The assumed compatibility of Theoremph 2.27 and 3.51 has some immediate conse-

quences. We briefly discuss a few of them in the rest of this subsection. We start from the

case R = nHilb. In this case, we obtain the compatibility of the 0-codimensional descrip-

tion and the 1-codimensional description of anomaly-free nd topological orders for n ≥ 2.

This compatibility was a basic assumption in [51].

Theoremph 3.56. For n ≥ 2, a unitary fusion n-category T has the trivial monoidal center

if and only if there is a unitary modular (n-1)-category M such that T ' ΣM as unitary

fusion n-categories.

Remark 3.57. The non-unitary version of this result is proved recently by Johnson-Freyd

in [42, Corollary IV.2]. Although Johnson-Freyd ignored the subtle issue of the lack of a

universally accepted and well developed model or theory of weak n-categories, for physically

oriented readers, we believe that it is safe to take this result as a theorem.

Similarly, we expect a generalization of (3.17) for higher fusion categories.

Theoremph 3.58. For n ≥ 1 and a unitary fusion n-categories P, there should be a natural

monoidal equivalence:

ΣZ1(P) ' Z0(ΣP) := FunnHilb(ΣP,ΣP). (3.22)

When the higher symmetry R is non-trivial, the assumed compatibility of

Theoremph 2.27 and 3.51 can be stated more precisely. Let E be a unitary symmetric

fusion n-category and (C, ηC) a unitary modular n-category over E. Similar to the 2d

case (recall Remark 3.32), we expect that there should be a natural braided embedding

ι : ΣE ↪→ Z1(ΣC) rendering ΣC a unitary fusion (n+1)-category over ΣE.

Theoremph 3.59. There should be a natural isomorphism between the set of minimal

modular extensions of (C, ηC) and the set of BrEq((Z1(ΣE), ι0), (Z1(ΣC), ι)). When C = E,

this isomorphism should be a group isomorphism.

The discussion of 1d, 2d SET/R orders with only symmetry anomalies (recall

Theoremph 3.10 and 3.47) can be generalized to nd cases directly.

Theoremph 3.60. For n ≥ 1, an nd (spatial dimension) SET/R order with only a symmetry

anomaly (without gravitational anomaly) is characterized by a quintuple (A, ιA;M, ιM;φ),

where (A, ιA) is a unitary fusion n-category over R describing all topological excitations (in-

cluding all condensation descendants), (M, ιM) is a minimal modular extension of (R, idR)
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(which determines the symmetry anomaly), and φ : M → Z1(A) is a braided equivalence

rendering the following diagram commutative (up to natural isomorphisms):

RlLιM

zz

� t

ιA
''

M '
φ // Z1(A).

If (M, ιM)/'(Z1(R), ι0), then the symmetry anomaly is non-trivial. We obtain

{nd SET/R orders with symmetry anomaly (M, ιM) and topological excitations A}

=
BrEq((M, ιM), (Z1(A), ιA))

Aut⊗(A, ιA)
.

Remark 3.61. Since (M, ιM) describes an n+1d SPT order which is invertible under

stacking, we expect a natural group isomorphism Autbr(M, ιM) ' Autbr(Z1(R), ι0). Note

that all nd invertible domain walls associated to φ ∈ Autbr(M, ιM) can be obtained from

stacking nd SPT orders with the trivial domain wall associated to idM.

Remark 3.62. For our classification results to be useful in the study of real cases in

practice, the key is to compute the monoidal center of higher fusion n-categories. Unfor-

tunately, not many results on this problem are available partially because higher category

theory is still underdeveloped and partially because computing center is already non-trivial

for fusion 1-, 2-categories. As far as we know, only the categories of topological excitations

of Dijkgraaf-Witten theories (as the monoidal centers of nVecωG) were computed in [80] for

the 2d cases and in [56] for the 3d cases, and conjectured in [56] for all higher dimensional

cases. In a unique situation, when the 1-dimensional higher bulk is known to be 3d and

bosonic, there is no need to compute the center because this bulk is uniquely determined

by a 4-cocycle in H4(G,U(1)) according to [61]. In this case, one can treat the 4-cocycle

directly as the anomaly as in [3, 5, 75].

Remark 3.63. The generalization to mixed gravitational and symmetry anomaly is im-

mediate. In short, one simply allow the modular extension M in the above theorem to

be not minimal. Note that the minimal modular extension description of an anomaly-free

n+1d SET/R order may be simplified to the data R
ιM−−→ M, where M is a unitary mod-

ular n-category and ιM is a braided embedding. The topological excitations are given by

the E2-centralizer Z2(ιM) (recall Remark 2.30), and M is naturally a minimal modular

extension of Z2(ιM). The topological excitations of an anomalous nd SET order are still

described by a fusion n-category A over R. By the boundary-bulk relation, we obtain the

following commutative diagram:

RlLιM

zz

� t

ιA
''

M '
φ // Z1(A) ,

(3.23)

which automatically induces an equivalence between the bulk excitations Z2(ιM) ' Z2(ιA).

When Z2(ιM) is larger than R, there is a gravitational anomaly.
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Remark 3.64. We want to emphasize again that the second approach based on the idea

of boundary-bulk relation is not independent from the first approach based on the idea of

gauging the symmetry. More precisely, the categorical description of a potentially anoma-

lous nd SPT/SET order depends on the categorical description of 1-higher-dimensional

SPT orders obtained from the idea of gauging the symmetry. If we do not gauge the

symmetry of the 1-higher-dimensional SPT order, one can still apply the boundary-bulk

relation (by taking an over-R center), but then the categorical data of a 1-dimension-higher

SPT order is not complete either. One should consider even higher dimensional SPT orders.

As a consequence, we obtain an infinite tower of higher dimensional SPT orders. Although

one can speculate if this infinite tower can provide a precise description of an nd SPT/SET

order, one can see, from this perspective, that applying the trick of gauging the symmetry

allows us to truncate the tower and complete the missing data in the 1-higher dimension.

In retrospective and from a mathematical point of view, to be able to gauge the symmetry

in the same dimension is both miraculous and mysterious, and demands further studies.
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A Multi-fusion n-categories

In this appendix, we briefly review Gaiotto and Johnson-Freyd’s construction of the

Karoubi completion of an n-category [33] and the notion of a (braided) multi-fusion n-

category [42] and various higher centers [58].

Consider two potentially anomalous nd gapped phases X and Y . A condensation of X

onto Y is a pair of (n-1)d gapped domain walls f : X � Y : g, together with a condensation

of the composite (n-1)d gapped wall f ◦g from Y to Y onto the trivial wall idY from Y to Y .

This leads to the precise formulation of an n-condensation between two objects X and Y in

an n-category (assumed to be weak) defined inductively. More precisely, 0-condensations

are equalities among elements in a set. An n-condensation of X onto Y is pair of 1-

morphisms f : X � Y : g, together with an (n-1)-condensation of fg to idY . A walking

n-condensation is the n-category ♠n freely generated by an n-condensation. Therefore, an

n-condensation in C is precisely a functor ♠n → C. Its full subcategory on the object X

is denoted by ♣n. A condensation n-monad in an n-category C is a functor ♣n → C. An

n-category C has all condensates if all (n-1)-categories HomC(X,Y ) have all condensates

and every condensation monad ♣n → C extends to a condensation ♠n → C, which is

– 42 –



J
H
E
P
0
9
(
2
0
2
0
)
0
9
3

automatically unique if exists. An n-category is called Karoubi complete if every conden-

sation monad factors through a condensation. Moreover, by [33, Theorem 2.3.10], for an n-

category C whose (n-1)-categories of morphisms have all condensates, there is an n-category

Kar(C) called the “Karoubi envelope” (or “Karoubi completion”) of C, such that there is

a fully faithful functor C→ Kar(C), which is an equivalence if C has all condensations.

An n-category is called C-linear if the set of n-morphisms of given domain and

codomain is a vector space over C and all compositions are C-linear in each variables; called

additive if the direct sum is defined for all k-morphisms 0 ≤ k < n. Following [42], we define

“the delooping” of a C-linear additive Karoubi complete n-category C by ΣC := Kar(BC),

where BC denotes the “one-point delooping” of C. We denote the category of C-linear addi-

tive Karoubi complete monoidal n-categories (as objects) and bimodules (as 1-morphisms)

by AlgMor
E1

(nCatkc
C ), which is itself symmetric monoidal with tensor product � defined by

the naive tensor product ⊗ followed by a Karoubi completion [42, section II.B].

Definition A.1 ([42]). A monoidal n-category C is multi-fusion if it is additive, C-linear,

Karoubi complete and fully dualizable in AlgMor
E1

(nCatkc
C ). It is fusion, if, in addition,

ΩnC = C.

A braided monoidal n-category is an E2-algebra in the (n+1)-category of n-categories,

or equivalently, an E1-algebra in the (n+1)-category of monoidal n-categories. A symmet-

ric monoidal n-category is an En+2-algebra (automatically an E∞-algebra) in the (n+1)-

category of n-categories. We assume that a proper notion of a unitary braided (multi-

)fusion n-category can be defined.

Remark A.2. Tentatively, following [51, Definition A.4]), a unitary n-category is a C-

linear category C equipped with an equivalence δ : C → Cop fixing all k-morphisms for

0 ≤ k < n, and is antilinear, involutive and positive on n-morphisms, i.e.

δ(λf) ' λ̄δ(f), δδ(f) = f, f ◦ δ(f) = 0⇒ f = 0,

for all n-morphisms f in C and λ ∈ C. If C has adjoints (i.e. all k-morphisms have the

left and right adjoints for 1 ≤ k < n), then the left adjoint and the right adjoint of a

k-morphism f are canonically equivalent [51, Proposition A.7]. An n-functor F : C → C′

is unitary if F is C-linear for n-morphisms and F ◦ δ = δ ◦ F .

Using the definition of ΣC := Kar(BC), one can define ΣC := Vec, i.e. the category of

finite dimensional vector spaces over C, and nVec := ΣnC. We assume that it generalizes

to the unitary cases, ΣC = Hilb and nHilb := ΣnC. By [33, Corollary 4.2.3 & 4.2.4],

for a multi-fusion n-category A, ΣA = Kar(BA) is equivalent to the category RModfd
A of

fully dualizable A-module n-categories. We further assume that the Karoubi completion is

compatible with the notion of unitarity. For a unitary multi-fusion n-category, we expect

that there is an equivalence ΣA ' RModfd
A ((n+1)Hilb).

For a multi-fusion category C, its monoidal center or E1-center, denoted by Z1(C), can

be defined via the universal property [58], or more concretely by FunC�Cop(C,C). The notion
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of an En-center, denoted by Zn(−), can also be defined by the universal property, or more

concretely by the E1-center of an E1-algebra in the category of En−1-algebras [58]. The

notion of centralizers can be defined similarly (see [58, section 5.3]). A unitary modular

n-category can be defined as a unitary braided fusion n-category C with a trivial E2-center

(or satisfying Z1(C) ' C� C).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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