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Abstract—Online social networks (OSNs) have seen a remark-
able rise in the presence of surreptitious automated accounts.
Massive human user-base and business-supportive operating
model of social networks (such as Twitter) facilitates the creation
of automated agents. In this paper we outline a systematic
methodology and train a classifier to categorise Twitter accounts
into ‘automated’ and ‘human’ users. To improve classification
accuracy we employ a set of novel steps. First, we divide the
dataset into four popularity bands to compensate for differences
in types of accounts. Second, we create a large ground truth
dataset using human annotations and extract relevant features
from raw tweets. To judge accuracy of the procedure we
calculate agreement among human annotators as well as with
a bot detection research tool. We then apply a Random Forests
classifier that achieves an accuracy close to human agreement.
Finally, as a concluding step we perform tests to measure the
efficacy of our results.

Index Terms—social network analysis; account classification;
automated agents; bot detection

I. INTRODUCTION

Twitter, with its 313 million active monthly users, sustains
an increasingly large population of automated programs on
its platform. This is largely due to its inherently open nature,
convenient sign-ups, its 140 character limit per message, and
an extensive API that offers a multitude of functionalities to
the programming community.

Automated agents, more notoriously referred to as bots, are
on a sharp rise – on the Web in general and on the social
networks in particular [7]. In fact, 51.8% of all Web traffic is
thought to be generated by bots.1 A media analytics company
found that 54% of the online ads shown in 2012 and 2013 were
viewed by bots rather than humans.2 In 2014 Twitter itself
reported that 13.5 million (5% of the total at the time) of its
accounts were either fake, fraudulent or spam.3 Due to their
phenomenal rise and concealed modus operandi, bots have
usually been associated with malevolent purposes and negative
activities. These include posting ads and spamming, link
farming,4 smear campaigning,5 spreading malicious content
or false information, and more recently political infiltration.6

1Bot traffic report 2016 – http://bit.ly/2kzZ6Nn
2Fake ads traffic – http://bit.ly/2cXhfBv
3Twitter’s 2014 Q2 SEC filing – http://bit.ly/1kBx4M8
4Link farming – http://bit.ly/2cXhfBv
5Smear campaign – http://bit.ly/2kvYXI8
6Social bots distort U.S. election – http://bit.ly/2l3VzGf

Despite this ‘negative’ rise, not all bots are created ex-
clusively for malevolent purposes. There are bots which
are benign and benevolent, such as news and emergency
communication, art and discovery,7 content aggregation, fun
and humour,8 marketing and business promotion, and social
activism [16]. Therefore, we introduce the term agent to
represent both good and bad bots on Twitter, in this paper.
To accurately refer to agents in previous research, we will use
the term ‘bots’.

The existence of these agents is further evident from recent
examples. Microsoft’s Tay was a bot operating a Twitter ac-
count learning to mimic human speech patterns by interacting
with other users through tweets and replies. The experiment
had to be terminated when Tay was taught hate-speech and
racism.9 This highlights that automated conversation and con-
tent dissemination may take an unexpected turn that the users
may find offensive and harmful. Recently, an MIT scientist
programmed a Twitter bot that tweets like the US president
Donald Trump.10 The bot uses an AI algorithm to learn
Trump’s style of speech by going through debate transcripts.
This exemplifies the other side of the coin – the recent research
trend of automating content generation and mimicking people
on Twitter.

In this paper we present a methodology and a mechanism
for non-partisan classification of Twitter users into automated
agents and human users, by refining preprocessing and parti-
tioning of datasets, creating and using a large human annotated
dataset as ground truth labels, as well as extracting most
relevant feature-sets (via ablation tests) for each popularity
band.

II. MOTIVATION AND CONTRIBUTIONS

The goal of this research is to classify Twitter users as
automated agents (that tweet via a scheduling tool or an
automated program that uses Twitter API) and human users.
We note that we clearly distinguish between our task of agent
classification and spam detection. Spam is usually subversive
and malicious in nature [18], is often found to be high in vol-
ume and frequency, and contains URLs (that point to malicious
websites) and spam words [1], [14]. However, automation

7Art and discovery bots – http://bit.ly/2lcmPPX
8Fun and humour bots – http://bit.ly/2kCu4Ec
9Microsoft’s Tay – http://bit.ly/2bWnRKV
10DeepDrumpf – http://read.bi/2dpchdd



is not exclusively employed for malevolent purposes. There
could be many variants of automation due to the usage of
APIs and third-party services, and it can often involve direct
human intervention (see §I, IV). Also, there are no guarantees
that a successfully detected spam account is operated by an
agent and not a human – it could be either. This forms a strong
basis for detecting automation without any prior judgement.

An implemented research tool that offers an API is
BOTORNOT [5]. BOTORNOT uses six feature-sets and a
Random Forests classifier to output bot-likelihood score of
a given Twitter account. We carry out a well-defined hu-
man annotation task (see §IV) and compare these to the
BOTORNOT annotations. In our experiments, we have found
that BOTORNOT produces an average agreement of 48% with
human annotators, while the average agreement among human
annotators is 89%.

Our work has the following contributions: (i) Use of raw
historical data (60 million tweets) for attribute collection and
account classification (722, 109 tweets) to cater for stealthier
agents that are harder to discern from humans; (ii) A Twitter
dataset divided into user popularity bands, further partitioned
into lists of agents and humans (for reasons refer to §IV) using
a human annotation task. This serves as a large ground truth
dataset; (iii) 14 novel features from a total feature-set of 21
attributes (see §IV); (iv) Performance evaluation of current
state of the art in bot detection by calculating agreement
between human annotators and BOTORNOT; (v) Application
of supervised learning approach – Random Forests classifier
– for non-partisan account categorisation; (vi) Identification
of a distinct group of features (using ablation tests) that are
most informative for classifying automated agents within each
popularity band (cf. Table VIII); and (vii) Hypotheses (cf.
Table I) verification against our findings using t-tests (see §VI).

III. RELATED WORK

Research has focussed on a number of different aspects of
social media. Relevant work can be categorised into four do-
mains: user behaviour, social media infiltration experiments,
social impact of bots, and the problem of bot detection on
social networks. Coincidentally, there has been a recent surge
in research focused on automating content generation [17] that
looks to have been produced by humans.

User behaviour. In [12] authors used follower-to-following
ratio on Twitter to classify the users into broadcasters (having
significantly more followers than following), acquaintances
(congruent follower-to-following ratio), and miscreants and
evangelists. In a related work [20] authors use principal
component analysis to identify deviations in anomalous user
behaviour from normal user behaviour. The authors then
apply unsupervised anomaly detection technique to address
the problem of detecting subversive promotion techniques via
fake and compromised accounts, and collusion networks or
bot farms on Facebook. Both of these works perform user
classification to detect subversive and attacker strategies in
online social settings, but do not focus on automation.

Social media infiltration experiments. In [2], Boshmaf
et al. evaluate vulnerability of Facebook against large-scale
infiltration by deploying a social bot network of 102 profiles.
They found that 86% of bots infiltrated up to 50 user profiles
and 10% bots were able to infiltrate up to 80 user profiles.
They found that a successful infiltration reveals users’ private
information, and security defences are not sufficient to guard
from a stealthy infiltrator. Similarly, in [8] Freitas et al.
evaluate infiltration strategies on Twitter using 120 social bot
profiles. They conclude that infiltration is indeed successful,
can affect influence/popularity scores and possibly impact the
social network as bots can manipulate trending topics during
political and social campaigns.

Social impact of bots. In a recent work [9] authors devised
a non-infiltrating honeypot experiment to study the impact of
bots on content popularity. In [6], Edwards et al. highlight
a positive view on the existence of bots on social media
by studying the differences in perceptions of the quality
of communication for a human agent and a bot agent on
Twitter. They find that Twitter bots can be viewed as credible,
attractive, competent in communication, and interactive.

Bot detection. In [21], Yan studied if an automated Turing
test such as the CAPTCHA is sufficient to verify that an entity
behind a computer is a human or an algorithm. The study
concludes that CAPTCHA, apart from being inappropriate for
some usability concerns, is insufficient to discern humans from
bots. In a comprehensive work [3], Chu et al. distinguish and
identify Twitter accounts operated by three entities: humans,
cyborgs and bots. The authors make this classification by
observing the differences among the three entities in terms
of tweeting behaviour, tweet content and account properties.
Using 1, 000 training samples the authors devised a system that
classified their subset of the Twitter population into 5 : 4 : 1
proportions for human:cyborg:bot, respectively. However, they
neither provide an API for evaluation nor share datasets. The
importance of bot detection on social media has recently
gained momentum due to the rapid rise of bots. DARPA
organised a Twitter bot challenge in 2016 [19] to detect
influence bots – bots that illicitly shape topical discussions
on Twitter to serve the purposes of their masters. DARPA
provided 7, 038 accounts as ground truth labels that they knew
about to the six teams who participated. The report concludes
that detection of evolving influence bots requires carefully
designed workflow.

However, as mentioned earlier most of the techniques
neither expose their datasets nor their tools, which makes
evaluation tough. To the best of our knowledge there is only
one freely available and useable research tool, BOTORNOT
[5], that detects bots on Twitter. The tool applies a Random
Forests classifier and uses six groups of features to classify
accounts as ‘bots’ or ‘humans’. The model is trained using
a list of social bots identified in [15] and a dataset from the
Twitter Search API of 200 most recent tweets of these bots
and 100 most recent tweets mentioning these bots. Apart from
using a Random Forests classifier and a similar feature-set,
we use raw historical data to cater for evolution of agents and



stealthier agents. We use a dataset partitioned into four popu-
larity bands representing Twitter population at a more granular
level, as agents differ according to the popularity and purpose
of their creation and presence. We use 14 novel features from
a set of total 21 attributes. Furthermore, we employ account
categorisation in the preprocessed and partitioned datasets, and
perform ablation tests to identify distinct group of features that
are most effective for each popularity band (see §IV).

IV. METHODOLOGY

A tweet is formed of attributes written in JSON structure.
Features we consider in this study are defined in Table I. While
there are some features that have been used by previous studies
[3], [5], a number of features that we consider in this work
are used for the first time for this purpose to the best of our
knowledge. These include: (i) favourites-to-tweets ratio, (ii)
lists per user, (iii) likes/favourites per tweet, (iv) retweets per
tweet, (v) user replies, (vi) 7 activity source identity (or source
type) categories, (vii) source count, and (viii) CDN content
size.

TABLE I
FEATURES

Feature Description and Hypotheses
Age of account The age of the Twitter account in days. We assume humans

have older accounts.
Favourites-to-
tweets ratio

‘Favourites’ or ‘likes’ received for all user tweets. Humans
tend to receive more ‘likes’ [10].

Lists per user Lists subscribed to. Agents typically follow more lists to
obtain lists of users to follow.

Followers-to-
friends ratio

Previous research [3] shows that humans typically have this
ratio close to 1.

User favourites Tweets ‘favourited’ by a user. ‘Liking’ a post suggests an
agreement, thus pointing to human-like behaviour.

Likes/favourites per
tweet

‘Favourites’ received by a user. Humans typically receive
more ‘likes’ [10], owing to content originality and topic
diversity.

Retweets per tweet ‘Retweets’ received by a user. Humans typically receive
more ‘retweets’ [10], owing to content originality and topic
diversity.

User replies Tweets replied to by a user. We assume humans engage in
conversations with other users.

User tweets User-generated tweets. Agents tweet more aggressively [10].
User retweets User-generated retweets. Aggressive retweeting is a sign of

automation [3].
Tweet frequency Daily tweet frequency of a user. Agents often tweet much

more often than humans per day [10].
URLs count URLs are used to redirect traffic to elsewhere from Twitter

platform. Presence of URLs within tweets suggests automa-
tion [3].

Activity source type A ‘source’ is the endpoint from where a user posts tweets,
denoted as Sn. We categorise this as: browser or web client
(S1), mobile device apps (S2), social media management
apps (S3), social media scheduling and automation (S4),
marketing and brand promotion (S5), news content web
services (S6), any other not part of the defined list (S0).
Humans mostly use S1, S2, and S3; whereas agents mostly
use S4, S5, and S6.

Source count The number of the endpoints used. We assume humans use
more sources.

CDN content size Content uploaded on Twitter. Agents on average tend to
upload more content on Twitter [10].

We use the Stweeler11 platform [11] for collecting data,
defining subsets, filtering data, calculating feature values and
various other preprocessing, pre-analysis and classification
tasks. For the purposes of this study we used a dataset

11Stweeler– https://github.com/zafargilani/stcs

collected in the month of April in 2016. We do not mention
any keywords and collect everything offered by the Streaming
API. On average the Streaming API provides between 2.5 and
3 million tweets a day.

Next, we partition the dataset.12 into four user popularity
bands to compensate for the variety of the purposes and
activities associated with the popularity of the accounts. Note
that we select accounts randomly for each band, and do not
filter accounts based on any criteria (language or location).
For example, an account with global recognition would not
post malicious content. Most popular accounts are mostly
legitimate, irrespective of being automated or human operated.
Similarly, it is much more likely to find automated agents
surreptitiously operating a less popular account. Moreover,
we partition the dataset in only four popularity bands because
these four groups are a sample that largely represents Twitter
population where each metric follows Gaussian distribution, as
detailed in a recent study [10]. The top two bands (Band10M

and Band1M ) are similar in their characteristics. These rep-
resent 0.04% and 0.61%, respectively, of the total partitioned
accounts. Band1K represents the bulk of Twitter – the most
commonly found accounts representing users with ordinary
popularity (approximately 94.40% of the total partitioned
accounts in our dataset). Band100K bridges the gap between
the most popular and least popular ones, representing approx-
imately 4.93% of the total partitioned accounts.

1) Band10M : a subset of Twitter users with the highest
number of followers, i.e., ≥ 9M followers. These
include 50 (24 agent and 26 human accounts)13 most
popular users that hold celebrity status (humans) and are
globally renowned (agents). Such accounts (e.g., CNN,
BBC-World, NatGeo) post high quality content.

2) Band1M : a subset of Twitter users that have between
0.9M and 1.1M followers. These include 746 (295
agent and 450 human accounts, and 1 tie) very popular
users (e.g., AlArabiya, dominos, pcgamer) that are close
to attaining the celebrity status and global recognition.

3) Band100K : a subset of 1, 447 user accounts (707 agent
and 740 human accounts, and 1 tie) that include users
having between 90K and 110K followers. These ac-
counts (e.g., Amtrak, BoobsVIP, CBSNewYork) that
show high activity and have a bigger accumulated impact
on Twitter.

4) Band1K : a subset of 1, 293 Twitter users (499 agent
and 794 human accounts) having between 0.9K and
1.1K followers which represent most commonly found
(ordinary) users that form the bulk of the social graph
(e.g., ALTLENE bot, hope bot, Taiwan Agent, Ticker-
Report).

As examples depict, not all agents have malicious intent,
indulge in infiltration or are purposed to be spammers.

12Datasets can be found here – https://goo.gl/SigsQB. Classifier is
available as a part of Stweeler.

13This division is based on the majority vote of 4 annotators – see §V for
more detail.



TABLE II
SUMMARY OF THE TWITTER ACCOUNTS DATASET.

Band Followers Accounts # Tweets
Band10M ≥ 9M 50 150, 336
Band1M 0.9M − 1.1M 746 303, 517
Band100K 90K − 110K 1, 447 230, 577
Band1K 0.9K − 1.1K 1, 293 37, 679

Total 3, 536 722, 109

We then ask human participants to perform a cognitive
or human annotation task to identify agents and humans.
Chosen annotators are trained computer scientists and active
Twitter users. Each annotator is given the same lists divided
into the aforementioned four popularity bands and human
annotation task guidelines14 that outline a set of account
properties and rules. Note that from the accounts provided,
human annotators discard all the accounts that are: (i) no
longer available, (ii) suspended or deleted, or (iii) have an-
notation score (bot:human) tied at 2:2. The task was time-
bounded which meant that only a subset of the total accounts
were annotated. Table II summarises the data in each of the
popularity bands that were successfully annotated.

Further to the human annotation task, we collect annotations
for the four popularity bands from the latest implementation
of BOTORNOT for evaluation and comparison purposes. We
use BOTORNOT for comparison purposes because hardly any
past research makes the API to their tool or their datasets
available online.15 Also, hardly any past work compares other
detection or classification tools to their experiments. We
use BOTORNOT’s HTTP REST API, which returns a bot-
likelihood score for each Twitter account. BOTORNOT does
not assign labels as ‘bot’ or ‘human’, but a 50% threshold
(inferred from BOTORNOT website) is set as the boundary
between an account being a human account (i.e. < 50%
likelihood) and an account being a bot account (>= 50%
likelihood). Whenever BOTORNOT returns a bot-likelihood
score of less than 50% we assign ‘human’ label to that account,
otherwise we assign ‘agent’ label.

We assume that the human annotation task produces a
dataset annotated with the labels that are the closest approx-
imations of the “ground truth” labels, since the latter are, in
general, unavailable (see the discussion in §V). Furthermore,
we use the agreement between the human annotators to bench-
mark the performance of the automated agent classification
system.

We then calculate statistics for various features listed in
Table I, and use a Random Forests classifier to perform three
sets of experiments. First, we run a 5-fold cross-validation
experiment in which we use 4 folds to train and 1 fold to test
the classifier in each of the runs, with each fold containing
subsets of all popularity bands, and report the results averaged
across all 5 runs. Second, we report the results on the data

14Human annotation task – http://bit.ly/2cH0YvA
15At the time of writing BOTORNOT does not open access to the

details of their feature extraction and classifier, but provides an API –
https://botometer.iuni.iu.edu/

originating with each of the popularity bands in particular.
Third, we test how generalisable the features are, and for that
we train the classifier using sets of 3 popularity bands and test
it on 1 remaining popularity band in each of the runs.

We perform ablation tests: we start with the full feature-
set and then remove features one by one in order to detect
the minimal optimal feature combination that yields the best
results on the task. Features that show up most often in
the best performing feature splits in our experiments include
followers-to-friends ratio, user retweets, tweet frequency and
URLs count.

We finally obtain the classified datasets as well as the
best features and their respective feature splits. Results of the
annotation task and agent classification are presented in §V
and §VI, respectively.

V. HUMAN ANNOTATION TASK

The annotation task fulfils two goals: first, it is used to
derive the ground truth labels for the machine learning experi-
ments presented in §VI. We cannot reliably use the information
provided by the Twitter users on their accounts. Depending on
the goals of a Twitter account operated by an agent, it may or
may not self-identify as such: e.g., if the goal is to spread false
information and malicious content, the agent may pretend to
be a human.

Second, human annotation task helps us estimate how accu-
rately humans can identify agents on Twitter. This provides a
very useful point of comparison for the machine learning ex-
periments presented in §VI. The ultimate goal is to implement
an automated tool for agent classification on Twitter that would
perform comparably to humans, but it might be unrealistic to
expect it to outperform humans. We will therefore compare
the performance of the classifier presented in §VI to the inter-
annotator agreement.

Human annotators have been provided with specific instruc-
tions (see §IV for more details). Twitter data within each
popularity band has been independently annotated by 4 anno-
tators. Each account is marked as either human or agent, and
final ground truth labels are used (in the following machine
learning experiments) iff majority vote holds between all an-
notators. Table III reports the average pairwise inter-annotator
agreement across all popularity bands. In addition, we report
average annotators’ agreement with the final annotation, and
average agreement of the annotators with the labels assigned
by BOTORNOT (BON) [5]. The inter-annotator agreement in
Table III is reported on the scale from 0% to 100%, with 0%
showing lack of agreement and 100% being perfect agreement.

Table IV reports Cohen’s kappa (κ) coefficient widely
used in annotation experiments for assessing how reliable
the annotators’ judgements are, or determining “the degree,
significance, and sampling stability of their agreement” [4].
This coefficient takes into account the observed agreement
between the annotators po as well as the agreement that is
expected by chance pc, that is estimated by finding the joint
probabilities of the marginals. The κ coefficient is calculated
as follows:



TABLE III
AVERAGE INTER-ANNOTATOR AGREEMENT (%-AGE).

Ann Band10M Band1M Band100K Band1K

An1 94.50 82.14 73.15 91.32
An2 95.50 79.46 72.02 89.75
An3 95.50 75.63 68.32 86.87
An4 90.50 79.69 70.88 90.72
Avg 95.58 80.65 73.00 90.40
Final 96.00 86.32 80.66 93.35
BON 46.00 58.58 42.98 44.00

TABLE IV
AVERAGE COHEN’S κ.

Ann Band10M Band1M Band100K Band1K

An1 89.00 63.26 46.37 81.68
An2 90.93 57.90 44.21 77.99
An3 90.93 50.41 36.69 72.17
An4 80.86 58.03 41.71 80.14
Avg 85.15 60.27 46.05 79.58
Final 91.96 71.76 61.28 85.91
BON −8.69 01.90 −14.46 −14.70

κ =
po − pc
1− pc

(1)

Following interpretation of κ values provided by [13], we
conclude that annotators in our experiment achieve moder-
ate (κ ∈ [0.41 − 0.60] for band100K) to substantial (κ ∈
[0.61− 0.80] for band1K and band1M ) to almost perfect (κ ∈
[0.81−0.99] for band10M ) agreement which can be considered
reliable in all cases. It is also worth noting that agreement
of BOTORNOT with human annotators ranges from less than
chance (κ < 0.00 for band1K , band100K and band10M ) to
slight (κ ∈ [0.01− 0.20] for band1M ) agreement only, which
shows that human annotators almost always disagree with the
labels assigned by BOTORNOT.

Interestingly, we observe the highest disagreement for the
band100K . Less particular properties within this band make
these accounts similar to each other: e.g., the annotators
reported that a number of accounts within this band seemed
to be initially agent-operated but were personalised later as
human users started actively using them, and vice versa. This
interesting phenomenon is worth exploring in the future.

Based on the results of the annotation task we conclude that:
(i) The annotators mostly agree when they assign labels to the
Twitter accounts, and the annotation can be considered reliable
for all bands. (ii) BOTORNOT does not perform well on the
given data and shows considerably large disagreement with hu-
man annotators’ votes. (iii) We set the human annotation-based
benchmark for the machine learning experiments reported in
§VI at 87.42, or at the average observed agreement of the
annotators with the final labels on the whole dataset spanning
all four popularity bands.

VI. CLASSIFYING AGENTS AND HUMANS

We approach agent classification on Twitter as a binary
classification task. Some previous research [3] distinguished
between bots, humans and cyborgs – accounts that are partly

TABLE V
DATASET BENCHMARKS.

Band Majority Human BON
baseline agreement

Band10M 52.00 96.00 46.00
Band1M 60.50 86.32 58.58
Band100K 51.24 80.66 42.98
Band1K 61.41 93.35 44.00
Total 56.28 89.08 47.89

operated by humans and also include automation, thus having
properties of both bots and humans. In this work, we choose
to perform binary classification distinguishing between agents
and humans only, because accounts that consistently involve
automation (e.g., automated tweeting) should be characterised
as automated accounts. As we noted in §I, our primary goal is
to present a thorough methodological mechanism that allows
identification of Twitter accounts as agents and humans using
supervised classification.

We apply Random Forests classifier implemented using
scikit- learn toolkit16 and 100 decision tree estimators.
We first define the benchmarks against which the automated
account classification system is evaluated. The lower bound
is set as the majority class distribution in the data, which for
all popularity bands is equal to the proportion of accounts
that belong to humans. In other words, if the automated
account classification system always “guesses” that an account
belongs to a human, then it will perform at the majority
class baseline level. Next, we use the average observed inter-
annotator agreement between each of the annotators and the
final annotation, which tells us how well humans perform on
this task as it may be unrealistic to expect an automated system
to outperform humans (see §V). Finally, we also include the
average agreement between the annotators and labels assigned
by BOTORNOT. Table V reports these estimates for each of
the popularity bands as well as the average across all data
points in the whole dataset.

We perform three types of machine learning experiments
(see §VI-A, VI-B, and VI-C) aimed at detecting how informa-
tive and generalisable features, that we overview in §IV, are
for this task. For each of the experiments, we report accuracy
of classification (Acc) which shows the proportion of agent
and human accounts that the classifier identifies correctly,
and precision (P), recall (R) and F1 measures on the class
of agents which show classifier’s performance in identifying
agents specifically.

A. Classifying agents by training and testing on all bands with
5-fold cross-validation

In the first experiment, we apply 5-fold cross-validation: we
split the data into 5 non-overlapping folds, each containing
approximately equal proportion of data points from each of
the popularity bands, as well as having similar distribution of
human and agent accounts. We then run the classifier over the
folds, using each of the 5 folds as a test set once and training

16scikit-learn toolkit – http://scikit-learn.org/



Fig. 1. Classifying agents by training and testing on all bands with 5-fold
cross-validation.

the classifier on the other 4 folds for each of the runs. Figure
1 illustrates this experiment. The first row (Total) of Table VI
reports the results obtained with the best-performing feature-
sets. This type of test enables us to determine the general
accuracy of the classifier.

We run ablation tests to detect the most optimal feature-set –
the minimal feature-set that yields the best accuracy. Ablation
tests show that among the total of 21 features that we use
in this work 12 features score among the most informative
features across all 5 folds in the cross-validation experiment.
These include user replies, retweets per tweet, tweet frequency,
age of account, followers-to-friends ratio, favourites-to-tweet
ratio, URLs count, and S1, S2, S3, S5, S0. Note that human
annotators also mentioned similar characteristics as strong
indicators. A group of 6 other features score well for 4 out of 5
folds. These include user tweets, user retweets, user favourites,
likes/favourites per tweet, lists per user, and S4. Based on
these results, we conclude that features that represent con-
tent dissemination (frequently tweeting, retweeting, posting
URLs with tweets) and user engagement (following, receiving
likes, receiving retweets, subscribing to lists) are overall the
strongest predictors of automation.

Interestingly, activity source count and CDN content size
considered in this experiment do not score as frequently among
the most discriminative features on the data that combines all
popularity bands. The annotators noted that the use of the
Twitter API or automated activity source was a strong indicator
of an automated behaviour on Twitter. This is confirmed by
the nature or type of the activity sources (S1 = browser, S2

= mobile apps, S3 = management, S5 = marketing, and S0

= all other services), all of which are strong indicators of
automation.

B. Classifying agents by training on all and testing on specific
bands with 5-fold cross-validation

In the second experiment, we train our classifier using the
same 5 training folds containing data from all popularity
bands, but report the results and run the ablation tests on
the subsets of the test data that belong to each of the 4
popularity bands separately. Figure 2 describes the design
of this experiment. In essence, the classifier is trained on
the features that describe accounts from all 4 bands, but is
then applied to the test data from one particular popularity
band.17 This experiment helps us discriminate between the

17Note that the data in the training and test sets is non-overlapping as
before: i.e., each of the 5 test folds contains a different 20% of the data, with
the rest being used for training.

Fig. 2. Classifying agents by training on all and testing on specific bands
with 5-fold cross-validation.

TABLE VI
MACHINE LEARNING EXPERIMENTS RESULTS.

Band Acc Pagents Ragents F1agents

Total 86.44 85.40 82.20 83.60

Band10M 100.00 100.00 100.00 100.00
Band1M 91.76 90.60 88.00 89.40
Band100K 85.70 85.60 85.40 85.60
Band1K 88.25 87.80 80.80 84.00

results obtained on the data points originating within different
popularity bands. Table VI reports the results.

We note that the performance follows similar trends as we
report for the human annotation experiments (see Table III and
Table IV): the classifier performs the best on band10M and
the worst on band100K , whereas we also noted that human
annotators reach highest agreement on band10M and lowest
on band100K . Interestingly, when we train the classifier on
the data from all popularity bands and measure its perfor-
mance on specific bands, the classifier’s accuracy on band10M ,
band1M and band100K is above human agreement, and closely
approaches human agreement on band1K (cf. Table VI and
Table V). The most informative features include retweets per
tweet, lists per user, tweet frequency, CDN content size, and
S2, S4. We note that features such as age of account, follower-
to-friend ratio, favourites-to-tweet ratio, and URLs count that
were informative when we combined data from all popularity
bands, are not discriminative when we look at the popularity
bands separately. On the contrary, features such as lists per
user, CDN content size and S4 = automation services, were
not informative for combined data but are discriminative upon
observing popularity bands separately.

C. Cross-band experiments

We then test how well the system generalises across the
popularity bands with respect to the features used. For that,
for each popularity band we train a classifier on the data from
other 3 popularity bands and apply it to the particular band
(see Figure 3). The experimental design is described in Figure
3, and the results are reported in Table VII.

We note that the classifier performance is consistently high
for all bands, reaching the highest for band10M . This effect
might also be due to the size of the training and test sets: the
ratio is the highest for band10M with 3, 486 training and 50 test
cases, and the lowest for band100K with 2, 089 training and
1, 447 test cases. Nevertheless, we note that the performance
on all bands is stable, with the accuracy being significantly
above the majority class baseline as well as BOTORNOT



Fig. 3. Cross-band experiments.

TABLE VII
CROSS-BAND EXPERIMENTS RESULTS.

Band Acc Pagents Ragents F1agents

Band10M 90.00 83.00 100.00 91.00
Band1M 86.73 83.00 82.00 83.00
Band100K 81.65 82.00 80.00 81.00
Band1K 84.17 87.00 70.00 77.00

performance (see Table V).
We also note the effect of the training data size on gen-

eralisability of the feature-set itself: the largest training set
for band10M allows the classifier to achieve an accuracy of
90.00 using only 7 features (user replies, follower-to-friend
ratio, tweet frequency, favourites-to-tweet ratio, and S4 =
automation services, S5 = marketing, S6 = news content
web services), while the smallest training set for band100K

allows the classifier to achieve an accuracy of 81.65 relying
on 16 out of the total of 21 features. The features that are
most informative across all the bands include age of account,
user replies, retweets per tweet, tweet frequency, favourites-
to-tweets ratio, and S4 = automation services, S5 = marketing,
S6 = news content web services. We conclude that this
set represents the most generalisable features that are quite
independent of the type of account (i.e., popularity level). We
also note that they are in general consistent with the features
that score well in other experiments, as well as the account
properties that human annotators considered important when
making their decisions (see §V).

D. Hypotheses testing

Finally, we check and report whether the features that we
use in this work comply with our original hypotheses. For
instance, we have assumed that agents tweet more aggressively
than humans do and, thus, an average tweet frequency should
be significantly higher for agent accounts than for human
ones. In the last set of experiments, we apply t-test to the
features for the humans and agents within each band and
report: (1) whether the difference is statistically significant,
and (2) whether it supports our original hypotheses in terms
of the sign of the difference between the means.

Table VIII reports the results: we use + where the values
for agent accounts are higher than those for human accounts,
and - when human accounts have higher values; ∗∗ denotes
statistical significance at 99% confidence level and ∗ at 95%
confidence level.

We note that these results are generally in accordance with
our assumptions and also corroborate annotators’ feedback as
well as classification results: e.g., tweet frequency, S2 = mobile
apps, S4 = automation services, S5 = marketing, S0 = all

TABLE VIII
FEATURE SIGNIFICANCE.

Feature 10M 1M 100K 1K All
Age of account +∗∗ + - -∗∗ -
Favourites-to- -∗ + - -∗∗ -
tweets ratio
Lists per user -∗ +∗∗ +∗ +∗∗ -
Followers-to- + + - +∗∗ +
friends ratio
User favourites + - -∗∗ - -∗∗

Likes/favourites -∗∗ N/A N/A N/A -∗∗

per tweet
Retweets per -∗∗ N/A N/A N/A -∗∗

tweet
User replies - + + + +∗∗

User tweets - +∗ +∗∗ +∗∗ +
User retweets - +∗∗ +∗∗ +∗∗ +∗∗

Tweet frequency + +∗∗ +∗∗ +∗∗ +∗∗

URLs count + + +∗∗ +∗∗ +∗∗

S1 = browser + + - - -
S2 = mobile apps -∗∗ -∗∗ -∗∗ -∗∗ -∗∗

S3 = OSN management +∗ +∗∗ - - +∗∗

S4 = automation +∗∗ +∗∗ +∗∗ +∗∗ +∗∗

S5 = marketing +∗ +∗ +∗∗ +∗∗ +∗∗

S6 = news content +∗ + + N/A +∗

S0 = all other +∗ +∗∗ +∗∗ +∗∗ +∗∗

Source count +∗∗ +∗∗ +∗∗ +∗∗ +∗∗

CDN content size + + +∗∗ +∗∗ +∗

other services, and source count show the highest statistical
significance overall. To summarise, there are several trends
worth noting:

• Age of account is a good predictor at the extreme ends of
the popularity bands. At the same time, within the high
popularity bands the agent accounts (e.g., those of news
agencies) are significantly older than human accounts
(e.g., those of celebrities). At the lower popularity levels,
the difference is exactly the opposite, with the human
accounts being significantly older than agent accounts.

• Humans in the high popularity band10M follow signifi-
cantly more lists than agents, while within the other bands
agents join significantly more lists.

• Humans in the high popularity band10M post more
replies, and also tweet and retweet more than agents.
Within the other popularity bands the trends change to
exactly the opposite.

• The number of URLs posted, as well as the CDN content
size, are higher for agents across all popularity bands,
but the difference becomes statistically significant for
band100K and band1K .

• S2 = mobile app usage is significantly higher for humans
than agents in all popularity bands.

• Usage of S4 = automation services, S5 = marketing and
S0 = all other services is significantly higher for agents
than humans in all popularity bands.

• S3 = OSN management seems to be employed by agents
in band10M and band1M , while the opposite is true for
band100K and band1K .

• The number of source count is significantly higher for
agents in all popularity bands. This shows that within
band10M and band1M humans post many URLs as well.



VII. CONCLUSION AND FUTURE WORK

In this paper we developed and evaluated a thorough mecha-
nism to reliably classify automated agents and human users on
Twitter using a dataset divided into four popularity bands. We
use a human annotation task to create ground truth labels, and
verify the annotations using inter-annotator agreement among
human annotators and BOTORNOT (a bot detection research
tool). We use a Random Forests classifier and perform three
different machine learning experiments. Our classifier yields
an accuracy that is on a par with human agreement for all four
popularity bands. We also report on how different feature splits
perform for different experiments. We note that 6 features
show the highest statistical significance overall.

This work opens possibilities for related research in the
future. A lot can be learned from topic analysis of the type of
lists an account is following: e.g., if the main goal of an agent
is to expand its reach it can be assumed that the agent account
would try to follow many different lists without particular topic
coherence. This may also be useful as a feature.

Moreover, human annotation experiment (§V) shows that
people pay attention to the content of the tweets: e.g., human
annotators cited the style and pattern of the tweets as strong
indicators of agent-operated accounts, and also noted that
abundance of promotional and depersonalised content strongly
suggested that the account was operated by an automated
agent. In this work, URLs count was used as one of the features
to analyse the tweet content, with the higher number of URLs
suggesting promotional and depersonalised content. Future
research can focus on content analysis using NLP techniques
to distinguish between the two entities. Another line of work
can explore the provenance of social botnets, and ask if least
popular Twitter accounts (having minimum activity) are being
used to artificially inflate another account’s popularity.
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