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SUMMARY

This thesis contains the classification of two-parameter bifurcations up to
codimension three, using a two-parameter version of parametrised contact

equivalence.

Part one contains the classification up to codimension one. The result consists of the

following components:
1. A list of normal forms for the germs having codimension less or equal to one.
2. Recognition conditions for each normal form in the list, i. . conditions that
characterise the equivalence class of the normal form. These conditions are
equations and inequalities for the Taylor coefficients of the germs.

3. Universal unfoldings for each normal form.

The result is obtained by investigating the smructure of the orbits, which are induced

by the action of the group of equivalences on the space of all bifurcation problems.

Techniques from algebra, algebraic geometry and singularity theory are applied.

1n part two the classification is extended to codimension three. The second chapter of
part two contains a generalisation of the singularity approach to equivariant
bifurcation theory. The case of an action of a compact Lie group on state and
parameter space is considered. The main example is the case of bifurcations with a

cenain Dy-symmerry.
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CHAPTER

Introduction

Golubitsky and Schaeffer [6] used methods from singularity theory to study

bifurcations. This involves defining an appropriate equivalence relation on the set of
alt bifurcation problems and classifying these up to some codimension. In [7]. for

example, the same authors classify one-parameter bi i up to i ion four

using the notion of p ised contact equivalence. This result was extended, for

problems in one state variable, up to codimension seven by Keyfitz [9]. There is a

multitude of other classifications — many for equivariant bifurcations.

The problem treated in this thesis is the classification of two-parameter bifurcations in

one state variable up to codimensian one, using a two-parameter version of

parametrised contact equival . The result ists of the following components:
1. A list of normal forms for the germs having codimension less or equal to one.
2. Recognition conditions for each normal form in the list, i. €. conditions that
characterise the equivalence class of the normal form. These conditions are
equations and inequalities for the Taylor coefficients of the germs.

3. Universal unfoldings for each normal form.

In this context there is a result due to Izumiya [8], who considered germs of the form

4 ek .y

where x i the state variable, A4 and A, being the parameters. She classified these up




to codimension five. As we shall show even at codimension zero there are germs

which are not of the form (1.1), e. g.
P 4xa
LI ¥ VRE O PO
Izumiya does not give any recognition conditions.

The following is an outline of the contents of this thesis.

In chapter Il we set up the theoretical basis for the methods used to obtain the

lassification: First we lise the definition of parametrised contact equivalence

to two-parameter bifurcations. The set of all such equivalences forms a group which
acts on the space of all bif ion p The equivalence classes are the orbits

under this group action. For the classification it is necessary to characterise these

orbits.

The first step is to show that for many germs this problem can be reduced 1o studying
the action of an algebraic group on a finite dimensional vector space. In order to
achieve this the concept of finite determinacy is used. A germ is called finitely
determined if its equivalence class depends only on a finite number of its Taylor
coefficients. Proving finite determinacy for a germ is more complicated than in the

one-parameter case — the Mal ge-Mather P ion Theorem has to be used.

The next step is to calculate the higher-order terms for centain normal forms, i. e.
those terms which do not affect the equivalence class. Subsequenily it is possible to
determine the orbits under the group action modulo higher-order terms. Ta achieve
this we use a thearem of Bruce, du Plessis and Wall [3], which guarantees that the

orbits are algebraic varieties for uniporens equivalences. In order to apply this result

we decompase the group of equivalences into a product, one of the factors being a
bgroup of unip

GL(2, R). The decomposition can be generalised for equivalences of n-parameter

equival Here we use the Bruhat decomposition for

bifurcations, since the Bruhat decomposition is valid for GL{n, R}




To calculate the higher-order terms with respect to the unipotent equivalences, we use
results ped for the case by Melbourne [11]. A ding 1o one of

his thearems, determining the higher-order terms is straightforward provided the
equations defining the orbit are linear. Germs which satisfy this condition are called
linearly determined. In the one-parameter case most germs of low codimension are
linearly determined. This, however, is no longer true in the two-parameter case.

C ly, the calculati to d ine the orbit b rather li d. In

this way the orbits of the normal forms are calculated with respect to the group of

unipatent equivalences.

A ding to the d ition of the group of equivalences the next step is to take

scaling transfc i into This is straightforward. Then the resulting

recognition conditions have to be transformed into conditions with respect to the full
group of equivalences. For several nonnal forms this turns out to be a non-trivial
procedure. It invaolves finding cerntain polynomials which are invariant under the

transformation. This is carried out in chapter 111, section 4.

Knowing the list of ition condivons i diately yields the classification. This

is stated as theorem II1. 6. 1.

Calculating the higher-order terms as described above involves selecting a particular
normal form to start with. This leads to the question of how to reduce the amount of
calculations by choosing the normal form in an appropriate way. We address this
problem in chapter IV,

of the normal

Chapter V ins a list of di giving a ical

forms in the classification and their universal unfoldings.




CHAPTER I

1. Notation

We denote coordinates in R w R2byx, 14, 4. Putting 4 := (Aq, L) we define

£, 2 10 be the ring of all C*- function germs R x R2— R at(0,0) e RxR2.

M, 3 denotes the maximal ideal in £, .

Analogously defined are the rings £, and £, and their maximal ideals M and

M. Sometimes we abbreviate My to M.

Let V be a vector space over the field of real numbers and let vy, ..., vy € V. Then

R (v, ... vi) denotes the linear span of vy, .., vy.

Let G be a Lie group. We denote its Lie algebra by LG.

PO d the iplicative group of positive real
The function sg: R — R is Jefined by

+1,ifx>0
sgix) = 0,ifx=0

-1,ifx <0
Let h be a germ in £ ;. We denote its Taylor coefficients as follows

a+Pey

g (0,0,0)
apy = g 5 00
£ A .)x"ax“‘.ni




For small values of «, § and y we write h, h_,, ha A "11,1‘ etc., instead. It will

always be clear from the context, whether h = 0 means h(0) = 0.

The following typographical scheme has been adopted throughout the text: All

h and definiti are italicised and symbols and terms which are defined are

printed in bold face, when they appear for the first time.




2. Parametrised contact equivalence

In this section we define parametrised contact equivalence for two-parameter
bifurcations. This definition is analogous to the one introduced by Golubitsky and
Schaeffer in the one-parameter case (See [6] and [7]. ). For later use two slightly
are introduced. Each equivalence

modified versions of this equi
relation corresponds to a group and we state some results dealing with relations

between these.

To avoid repetition the following definition incorparates all the three different

lati For ional conveni we use the term E-equivalence for

equi
parametrised contact equivalence. Compare (1], [4], [S] and [10] for the concept of

ordinary contact equivalence.

2.1 Definition. Two germs f, g € M, ; are called E-equivalent , if there exist smooth
germs S, X: B, 0— R, and Ap Ay R2 0— R such that

B A1 A9 = S(x, Ay Ag) FOX(x, ApAQ. Ay(As. Az AyAy A 2)

T

and the

X(0.0,.0)=0
Ay0,00=0
AY0.0)=0
S(0.0,0)>0
X,(0,0,00>0;




Ay, (Apy,

Az, APy,

£ 0

Furthermore, if the germs X, Ay, A, and S satisfy the conditions (2.1) and
additionally

50) =1
Xx(0) = 1
(A, =1
(Apa, =0
(Apa, =1

fand g are called U-equivalent .,
Should X, Ay Ay and S sanisfy (2.1), (2.3) and

Ay, =0
fand g are called 0-equivalent .
Let E be the set of all quadruples (S, X, Aq. A,) satisfying the conditions (2.1) and
(2.2). E acts on MIA in the following way: Letfe M_, and e = (S, R) € E, where
R = (X, A, Ay). The conditions in the previous definition imply that R is a
diffeamorphism germ R3, 0 — [R3, 0. Then the action is defined by

e.fi=S (feR). 2.5)

Ecan be given a group structure by the following definition of a multiplication: Let
e; =(S), Ry). €3 =(S3, Ry) € E. Then




€2-€1:=(52-S12Ry RyaRy)

With this definition of multiplication fi 1a (2.5) defines a group action of E on

M, 3 The orbits generated by this action are precisely the equivalence classes

cor ding to E-equi

Let U (respectively U) be the set of all quadruples (S, X, Ay, Aj) satisfying conditions
(2.1) and (2.3) (respectively (2.1), (2.3) and (2.4)). Then the multiplication on E
induces one on U and U each. In this way U and U become subgroups of E. Again,
the orbits generated by the actions of U and 0 on M, ; correspond to the U- and O-

eq classes, ively.

To illustrate the difference between these various equi

the linear part of an element e = (§, X, Ay, Aj) € E, where
X(x, A1, A0) =px + qhy +1dy + ...
Aj(Ag A9 = 1Ay + 1A+ L

A Ag) = Ulg + viy + ...

S(x,A.A)=A + Bx + CAy + DAy + ..
andp, A>0.

If e is in U, the linear part reduces accordingly:
X(x,ApAg)mx + qAy + rdy + ..
Ay(dqA) = Ap +tdg +
Ax(Ag ) = Az + .

S(x.Ag.A2)=1 + Bx + CAy + DAy + ..

If ¢ is in U, we have




X(x, A o) =x + qAq + 1Ry + ..
Ag(hg,Ay) = Aq + ...
Ax(Ry, 20 = Ay + ...

S(x,Aq,A2)=1 + Bx + CAqy + DAy + ... .

In the two later cases the linear parts of S (i. e. S(0) ) and R = (X, Aq.Ay) are
unipotent matrices. The groups of diffeomorphisms induced by U and U on M LA arc
also unipotent. Therefore the theory for unipotent groups (see {7a]) of
diffeomorphisms developed by Bruce, du Plessis and Wall (See [3]. ) applies to U and
U. One of their results will be stated in section 5.

In the remainder of this section we describe some properties of the groups of
equivalences defined above. The first property is a decomposition of E. We introduce

some notation: Let T, the group of scaling mansfor i denate the group of E

consisting of all equivalences of the form
X(x,A1.A9) =V x
Ay(AgAg) = mi
Ax(hgdg) = nky :

S(x, A, A3) =,

where i, v>0andm, n # 0 . Let W denote the subgroup consisting of the identity

and the equivalence given by
X(x, Ay A9 = x
Ay(hgdp) = A
A Ag) = Ay

S(x, Aq A =1




which interchanges Ay and Ay . Let N denate the subgroup consisting of all
equivalences of the form

X(x,Aq,Ap) = x
Ag(hg Ag) = Ay+airy
Ax(ry,Ag) = LEI
S(x,A1.A9)=1
where & € R. Furthermore, let B=TU .
2.2 Propaosition. The group E can be decomposed as

E=NWB=NWTU .

In order to show this, we need the Bruhat decomposition for GL(2, R). Using the
notation

: ab) \
B .{(;‘,L’,)ludmf
. 1b
N .<((, ,’)Inen}‘

\
{(:,:)lauu/‘.

10) (o1))
UlJ‘[l() [
J




this result is the following:
2.3 Propasition. GL{2, R) can be decomposed as

GL(2,R)=B"W*N*

ab .
Mumpmciscly,( ed ) € GL(2, R)\ B can be written as

be-

A proof can be found in [2], for example. Note that the arder of the factors in the
is not the dard one but has been reversed.

Proof of proposition 2.2: Let ¢ = (S, X, Ay. A,), where
XA A) =px + qAy + rhy + Qu0x, Ay, Ay)
A(Ag ) = shy + thy + Qa(AyAg)
As(Aghp) = udy 4+ viy + Qihs.Ag)

2 2
Qe M, andQ,.Qy€ M, .

If u = O there is nothing to prove. Now suppose u » 0. Then ¢ = n w b, where n is

given by




X(x,ll,l?)-x
ALY = A .“A A,
AyAL Ay = L

S(x,Aq.A0) =1 ,

X(x,Ag.A9) = x
Ay(Rq,2) = LY}
Ayd d) = Ay

S(x.Rq.A9) = 1

andb = (S, X, Ay, Aj), where

v ( v L
X(x.25.3) = px +(' -;CI) A +qh, + (,v"\\ Ay +Ag A

u - a y
Ay “T”"r +3k, + Q{-:AI+A7J.1)

A2y = udy + Q('ﬁ"x"*z-lx)

S(xApAy = s(x. -:—}, + k.l.ll)

This follows from propasition 2.3 . Obviouslyn€ N,we Wandb € B.0




2.4 Remark. E is the disjoint union of B and the set

((S.X.Al.l\i)i El Ay # °> .

and the elements of the latter set can be decomposed as described in the preceding

proaf.
The next statement is a decomposition of U.

2.5 Proposition. The group U can be decomposed as
U=ND .
Proof: Write u = (S, X, Ay, Aj), where
X(x, A, Ag) = x + gqAy + rhy + Qq(x, A1, 22)

Ag(Ag,Ap) = Ay +1hy + Qu(Ag. A2
Axkihy) = Ay + Qa(hyAg),

2 2
QI €M, , andQ,. Q, & M, Then u=nu, where n is given by
X(x, Ay, Ap) = x
Ap(hg.Ag) = Ay+tdy

A2(ry Rg) = LY I

S(x,Aq,A2) = 1




and 0 = (8. X. Ay, Ap), where
X(x. A A =x + ghy + (r —qU)Ay + Qu(x, A -tz A7)
ARy, dg) = Ay + QA - tAgAy)
Ar(Aqhg) = Az + Qa(hy - Az A0)

SOx,AqAp) = S(x,Ay ~tAz2Ay) .0

2.6 Propasition. O is a normal subgroup of E.

Proof: The reasoning is analogous to the one given by Melboume in [11] for the one-

parameter case. Mapping (S, X, Al- A2) (0]

‘Al’l: (,\‘)l:
5(0),X(0).

(A'z’xl "‘:‘L:

defines a group homomorphism from E onto R>0 x R>0 x GL(2, R) . U is the kemel

of this homomarphism and hence a normal subgroup of E.

An aliernative proof is tocheck e U e'c U foralle € E.O




3. Tangent spaces

It is a well known feature of singularity theory that ions of equivalence can be
treated on an infinitesimal level. The crucial construction invalved is the tangent space

to an orbit generated by the group of equivalences. The different group actions defined
in section 2 give rise to different tangent spaces to the group orbits. First we give a

geomerrical definition of these tangent spaces. (See [4], for example. ):

3.1 Definition. Let G be a subgroup of E, LG iis Lie algebra and exp: LG — G the
exponential map. Then

d
¢, G) = {I(nmru /)'.l)/A El.(i}

is called the G - tangent space of f.

To calculate the U- and U-tangent spaces of a given germ we use the following

algebraic formulae:

3.2 Proposition.

A > 2
T4.0)=¢,, ( T3 W W T e WA :._>

[ >
& { Ay, A A




T U)=E, ( xt‘,Alf,lzl',llf,.ﬁ.zf‘,x"f‘> +

£ {’-zle-‘i A, Ay A, A0, }

Proof: The results follow from definition 3.1 and the definitions of the groups U and

u.a

3.3 Example. Consider f = A x' + BxXy + CA,,where A.B.C 4 0. Then
4 ) 2 2 2 2
TED) = M+ <hidy,> + n(x A x Ay xRy Ry xApux A AL Ay Ay,
and
4 3
TE U = e canys
s
0 KAy 2 A x A Ay x AL x A AT A Ay A xz} .

In arder to define the concept of codimension, we need another kind of tangent space.

3.4 Definition. Let f be a germ in M, 3. Then
T E) = Exa {£.6,) + Ea (£, 0}

is called the extended E-tangent space of f.




Te(f, E) is the infinitesimal construction associated to unfoldings of the germ f. We

omit the desails, since they are analogous to the one-parameter case (See [7].1).

Note that all these tangent spaces are £;-modules, but — in general — not €, 5-

modules.
3.5 Definition. Let f be a germ in My 3. The codimension of f denoted by cod f

is the codimension of TAf, E) as a vector subspace of ¥,

Note that the codimension of f is finite if and only if either T(f, U) or T(f, U) has finite

codimension. This follows from

T(.B) = TG, U) + n{r, foxfuf A A6 fh,klf.:}

TE V) = T6. 0) + R ( h ’)1}

The first step to determine the codimension of a germ is to show that this codimension
is finite. We deal with this matter in the next section. For both germs appearing in the
next example, we already assume that they have finite codimension. Consequently, we
can do all calculations modulo M* for some k € N and this is to be assumed in this

example.

INote, however, that the ierminolagy in (7] i




3.6 Example. 1. Consider f = x] + xllz + kl.Aﬁer some calculations it tums

out that
2 1 5
TEE) = M +<i, b>+R{1)

and hence

Therefore cod f= 1.

2. Consider f = x* + x3iy + Ay Then

’1‘((1'.E)-!’KA(x‘-i—x).l +12_4x3+11) +gl{x,l}

4 3
-zu<—3x +h,4x +l,}+zl(:(.l}
Define a homomorphism ¢: Bxi — Ex by

o) - x
o0 = -ax’
Q) = 3 x‘

Then the following formula holds:




.

R v( Tr(ll‘. E))

cod [ = dim

This follows from the fact that

N 3
ke”p-‘vu(—:&x +)\2,4x +A1>

which ensures that @ induces an isomorphism between E, 5/Te(f,E) and

4
CEE)

The following equality holds:

o1E) = o5 {2 1))

Hence

which implies cod f = 1 . I am grateful to Jim Damon for the reasoning in this

example.




4 2
The next example shows that the germ f = x + x ll + x A, has infinite

codimension. We treat a more general case.

3.7 Example. Consider { = x‘ + x’w,.uz) + xw(l.l,l.z),whem VEM, .

Then f has infinite codimension. We show this in the following way:

( + X ¢(A)¢ xy), 4: + 2x @) + vm>

d«pd) ay(A) 2 99(A) ay(r)
{ +x—§;T.l _:il__.’x;r

T E < £, {x*x ot x Wi, 5. x o0, wih) }

A

Lo [, 2300 | dwd) 2390 Tava)}

A e ] » R
"oy TR Ty T

ct {xvM)}

Let I denote the ideal E,y { x, w(A) } . Suppose now that f has finite codimension.

Then
k
M c Te(t BEycl

holds for some number k € N . Considering the varieties V(ME) and V(1) in 3

carresponding to the ideals M* and 1, we obtain




Y e v( Mk) = {0,0,0)

This, h isi ible, since the di ion of V(1) is 1. Hence f has infinite

codimension.

For use in the next section we i a name for & sub of Te(f, E) which is an

£, 2-module.

3.8 Definition. Let f be a germ in My 3. Then
RTAf,E) = Exy (£ £y}

is called the restricted extended E-tangent space of f.

The following result will be needed later:

3.9 Proposition. Let fbe a germ in M, 3 and g € E. Then

Tz 1.0) = ¢.T¢, )

Proof: Using definition 3.1 we obtain

. d e
Tg.f,0) = [ 5 (exptA).g.D) . | AeLU }
» t=0

\

/




- {%(g,(g-'cxp(lA)g).f)“oIAELO}

-g_{%((g‘exp(u\)g).f)'_olAELO}. an

Since U is normal in E (Scz proposition I1. 2. 6. ), g ' U g = U holds for all g € E.
Therefore the curves g* exp(t A) g in U range over all curves in U through the identiry
element in U. This implies that the expression in (3.1) is equal 10

d,
g.{ d—'kexp(xA).f)l_olAeLO}

=g. TEO) ,

which proves the result 0




4. Finite determinacy

Due 10 the mixed module structure of Te(f, E), proving finite-determinacy for two-
bif ions is rather licated. In the one-parameter case this problem

can be circumvented: There it is sufficient to consider RT(f, E), since this space has

finite codimension if and only if T(f, E) has. (This result, which is due 1o Damon, is

stated in [7] ). This is no longer true in the two-parameter case.

It is a theorem of Damon (theorem 10.2 in [3a]) that a germ f is finitely determined, if

and only if it has finite cedimension.

In the remainder of this section we abbreviate T(f, E) and RT.(f, E) to T(f) and

RT(f) respectively.

The following method will be used: For some appropriate pairs (k, £) of non-negative

integers the property

k t
Myl moz, eTo @1

is verified. Here T (f) and mte, 3 are regarded as &3 -modules. Instead of checking

(4.1), we shall use the statement in proposition 4.2 below. First, though, it is

necessary to introduce some more dard inology from singularity theory, see

[1], [4]. [5] and [10].

4.1 Definition. A germ fy € E, has finite K-codimension, i

T Kty =L, {fy. ()}

is of finite codimension as a subspace of £, .




4.2 Proposition. Letf € £, j and fp := fix, 0, 0) . If fp is of finite K-codimension then
the condition

{ T (f \
k[ ¢ Sxa | Te0 fra
M| M _— (= M M -
8 s R'I'(/')) RT.H™ T4 . RI',m)
\ e < ¢

implies that

“A)CTG(/).

Proof: The isani di. of Nakayama's lemma, once it

has been shown that B, , /RT(f) is a finitely-generated ¥, -module. We show this in
the following way: Since fg has finite K-codimension, there exist germs my, .. ., my

€ B, such that

- =R {m, ..m.}

g 2
T K

Using the following isomorphism

rl r\vl

TKG) ~ RTMN +<Aphp >,

we obtain

r
A

—_———— a R {m,....m} ,
RT(N + <A A, 58




or equivalently

14
A
R;,(D =R {mg,...m )+ <AL D8,

Since £, 5 /RT.(f) is a finitely-g d B, ;-module the following version of the
Mal Mather P ion Theorem can be applied (See [10].,p. 134 ):

4.3 Thearem. Let M be a finitely-generated E, 3-module, my, .. .. my € E, ;. Nan
&y a-submodule of M and =(x, 1) := A . Then the following conditions are
equivalent:

A) N+ &fm, . .. .m} =M

B) N+ Rf{my,...my} + ("M )M a M
Here ="M, denotes the idcal gencrated by the components of .
Putting M =B, 3 and N =RT(f) it follows that condition (4.2) is equivalent to

L S
F(T‘(f) 8 im,... . m}

i.e. B2 /RT() is a finitely-generated E; -module. O

4.4 Example. Consider f = X+ x Ay + A, . Then fis 4-determined. This can be shown

by the method described here or similarly as in the proof of lemma 3.5.3 in part two

of this thesis.




5. Orbits of unipotent Subgroups of Equivalences

The following theorem of Bruce, du Plessis and Wall shows why it is useful to

ider the unj bgroups of equival defined in section 2.

5.1 Theorem. Ler U be an unipotent affine algebraic group over R acting
algebraically on a real affine algebraic variety V. Then the orbits of U are closed in

the Zariski topology of V., i. e. they are real algebraic subvarieties of V.

Proof: See [3].

h aloeh

5.2 Remark. If G is an algebraic group acting algebraically on a

variety, then the orbits are smooth semi-algebraic sets. See [4] for a proof of this fact.
Under the i of the ding th and if V is smooth — in particular, if

V is a finite-dimensional vector space — the orbits are smooth real algebraic

subvarieties of V.

For one-parameter bifurcations the orbits of the groups of unipotent equivalences are
in fact affine linear subspaces in many cases. This is shown by Melbourne in [11]. It
will turn out that the situation is entirely different for two-parameter bifurcations.




CHAPTER 111

1. Higher - order terms

We give the definition of higher-order terms and some results due to Melbourne (see
[11] ), who proved them for one-parameter bifurcations.
1.1 Definition. Let f be a germ in My 5. Then
M U):=(peM, | f+peU.f)
=fu.f-flueU)
Note that M(f, U) consists exactly of those germs that do not change the equivalence
class of f when added 1o it. Hence determining M(f, U) solves the recognition

problem. However, to do this in practice, we need a slightly different concept of

higher-order terms. In order to define this we introduce some terminology first.

1.2 Definition. Ler G be a subgroup of E. A subspace V of M., is called
G —intrinsic, if it is invariant under the actionof G,i.e. G .V €V  If a subset M of

M x,2 contains a unique maximal G-intrinsic subspace, then this is called the
G —intrinsic part of M and is denoted by Irg M .

1.3 Deflnition. Let U be a uni, subgroup of E. We call

PLU) =(pe M,/ g +pelU.fforallg el f)




the module of U-higher-order terms.

1.4 Theorem. Let f be a germ in M, ; of finite
subgroup of E. Then

A) PEU) =Ty ML U)

B) P(f,U) = lry TS, U) .

Proof: See [11]. The facts that U is unipotent and its action on Mx 3 is linear are

crucial. The proof works for the two-parameter case as well.

Part B) of the preceding thearem is useful for calculations. The first step to determine
P(f, U) is 10 calculate T(f, U), the second is to find its U-intrinsic part. To do this we

use the following criterion:

1.8 Propositlon. Let M « M, 3 be a subsp of finite codi i Then M is
U-intrinsic ifand ondy if LU M c M.

Proof: See [11].

1.6 Remark. To find intrinsic parts of subspaces it is useful to note that spaces of the

form

k t
M <1,.A,> B




where k, £ € Ng are obviously E-intrinsic and hence G-intrinsic for any subgroup G of

E.

1.7 Example. Let f = A)(3 + Bxl; + Clz,whemA.B.C ¢ 0.Then

4 3 2 2 2 2 2
T, U)=M +<l‘,lz> +R¢ x l,.x ).z.xl‘kz,xl,x}.z,».l Kllz.lz

By remark 1.6
4 1
M+ < hy>
i3 U-intrinsic and hence
4 1
Mo+ <ll.12>’ c P(f,U)

holds. By applying the criterion in proposition 1.5 it follows that

4 N
PE W=+ <adp5" 5 B hxd 2 x i A 1,0}
For later use we define another concept related to intrinsic subspaces.

1.8 Definition. Let V be a vector subspace of M, 3 and G a subgroup of E. Then

Ve - ZG.V .

vey




1.9 Pr ition. VG is the llest G-intrinsic subspace containing V, i. e. it satisfies

the following two conditions.

A) V c VG and VG is G-intrinsic.

B) If W c M, , is a G-intrinsic subspace containing V, then VGeow.

The proof is straightforward.




2. Determining the U-orbits

Once P(f, U) is known, it is possible 10 determine the U-orbit of f, more precisely we

determine

This is done by explicitly performing the coordinate changes giving U-equivalent

germs to f.

2.1 Example. Let f=Ax’ + BxAy + CA,, where A.B,C£0 . P(f, 1) was

d in the section, le 1.7. Working modulo P(f, U) we obtain

the U-orbit of f by first runcating equivalences (8, X, A{, A,) in the following way:

X(x,kl,A2) = x+phy +qh,
I
A,la‘_).:n- }.2+slf+lxllz+ufz;

S(x,ApA) =1 + ax .
Now define

h(x, A 1, Ag) 1= S(x A g, ) FOX(x, A g4 Rg) Ag(hy Ag)s Ag(hgu R g)).




(1 +ax) (A(x +ph +q12)3+ B(x + pll +ql2)(kl + r12)2+
C().2+s).;+ x).‘).2+ux;) )

Modulo P(f, U) this reduces to

(1+ax)(A(x+pll+q12)]+Bxlzl+C(l2+sl';)).

Expanding this yields
Csl: + 3Apx21l + Ax:‘| + CXy + Caxh, +( B + Cas + 3Ap2)xxf

+ terms in P(f, U)

Using this result, we obtain a parametrisation of U . f/ P(f, U) . The coordinates in
this space are the Taylor coeffici of h. The isation is




- 2B +2Cns+6Ap1
"™

According to theorem II. 5. 1 U . f/ P(f, U) is an algebraic variety. Eliminating the
parameters p, s and a yields the equations defining it:

h=0
hy=0
hyy =0
M, =0

ha, =0
Ber =6 A

6ACh,, - 6AMy ; by - Chy, =12ABC .

These are the U-recognition conditions for the germ f, i. e. each germ h whose Taylor

coefficients satisfy these equations is U-equivalent to f. We rewrite the equations in
the following way:

h=0
h,=0
hyy =0
M, =0




12ABC




3. Solving the B-recognition problem

In this section we show how 1o obtain the B-recognition conditions of a germ, when
the U-recognition conditions are already known. The following example illustrates

the procedure.

3.1 Example. Let f = sz + lezl + 4, , where €, &€ (-1,+1). Since
B=TU=UT

he B.f holdsif and only if he U.k forsome k € T. f. The T-orbit of f is

T.f= <epv3x3 + auvmlezl-o- undy [ gy >0mn s 0) i

This expression shows that k € T . f holds, if and only if k is of the form
3 2
Ax + Bx 11 +C 12 .

where A, B and C satisfy the following conditions:

sgA=€
sgB=38
CkO.

The conditions for h € U . k were derived in example 2. 1 in the previous section.

Combining these with (3.1), it follows that the B-recognition canditions for f are




hul| hxllll hxli 4 0

h
0 baa, Py

We now give a list of certain germs and the corresponding B-recognition conditions.
The germs have been chosen according to the following consideration: A K-versal

unfolding of the germ x™ (m 2 2) is given by

+
* 2% ¥ %t

where @y,..., 0y € R (Sec [1], [4]. [5] and [10]. ). Hence every twa-parameter

gemm f(x, A4, X,) is E-equivalent to some germ of the form

P Y W W S Y Y DIV S (W W

where @).....9qn.1 € £;3. To obtain germs of low codimension we consider

m =2, 3, 4 and choose the germs @; to be linear or quadratic in Ay and A5 .




EX + A

whereee {-1,41)

2
ex + 2,

wheree€ (-1,+1)

h=0
hy=0
sghyy=¢
hx’=()

h"z*O

Table 3.2




3
Ex + XAy +hy

wherege [ -1,+1)

h=0

hy =0

hyy=0
sghyyx =€
by, =0

Table 3.3




3

EX + XA, + A

wheree € |

Table 3.4




ex’ + S(xz, + Ai)

wheree,5€ { -1,+1)

h=0
hy=0
h,=0
b, =0
sghy,=¢
sgDy=¢d
igH=¢e.

h
!

Table 3.5




Ex2+ 8(1: - ).f.

where g, 8€ {-1,+1)

h=0
he=0

h,=0

sghy, =¢
sgD)=¢€¢8
sgH=-¢,

Table 3.6




3 .2 a
ex” + 3xAi+ 2

wheree, 56 (1,41 )

Table 3.7




£x +x).lok,

whereee (-1,+1)

h=0
hy=0
hex =0
hexx =0
S8 hoex = €
=0
1
A#0

Table 3.8




4. Solving the E-recognition problem

Once the B-recognition problem has been solved, there is one additional step to solve
the E iti bl This p di is based on proposition II. 2. 2 and is

P

therefore a consequence of the Bruhat decomposition for GL(2, R). Since this
decomposition is valid for GL(n, R), the method described below can be applied to

bifurcations having more than two parameters.
4.1 Proposition. Let fand h be germs in M, ;. Then the following statements are
equivalent:

A)heE [ .

B) Either h € B .{ or there exists ¢ € R suchthat h(x, cAg+A3. A)€B .f.

Proof: We use the decomposition of E given in proposition II. 2. 2.

A)» B):Let h=¢.f,where e € E. According to remark II. 2. 4 and proposition I1.
2.2cither e€ B or e=nwb,where n€ N, weé W and b € B. In the latter case

it follows that
(win?) h=0b.f .

By the definition of the groups N and W there exists 8 o € R such that

((#'n*).h ) A A) = hix, oA+,

holds. Hence h(x, 6Ay+A3,A)€ B.f.




The implication B) » A) is proved similarly. O

In order to apply part B) of the proposition it is necessary to know how the Taylor
coefficients of h(x, Gy + Az, Aq) relate 10 thase of h. This relationship is as follows:
4.2 Proposition. Let hbe a germ in £ ; and

A (x Ay Ay mhx, dAg+A3 4y)

for some 6 € B . Then
B) k
o h %
(k l"17 ‘/{‘

Proof: Fix (a', ', Y) € N03, choose an integer m such that m2a'+ f'+ ¥y and

consider the m-jet of h:

m 1 a.B.y

3B A ) = 2 ’u—,o,—y!hl"xwx A AL
(@Bnen, 12
a+P+rysm

This implies

m_ e 1 i(ﬂ) k a,y+k.B-k
i h(x.ll.lz) - z ;;B!_‘I’h‘ulek; k| o x Al 12

(@.Byed, k=D

a+f+y<sm

The coefficient of xa‘ ).‘: A; in this expression is




)

1
Lt ) !
a0 © (B'-k)

To obtain h'" gy We multiply by a't @1 y'!
x AA
1Az

h -
sy

We now solve the E-recognition problem for three particular germs. These results are

stated in thearems 4.3, 4.4 and 4.6.

2 2
43Theorem. Let f = € x + 5(1, + l;), where €,5€(-1,+1) andlet hbea
germin M, ,  Then h is E-equivalent to f if and only if h sarisfies the following

conditions:

h=
hy=0
Sghy =€
h"-o
;.lzra
sgDy=¢€8
sgH=¢,




h h h
x2; TAd; TAp,

Proofs both of this and the next thearem will be given following remark 4.5 .

44 Thearem, Let f = ex” + AL = A3 .where €€ (-1, +1 ) andlet hbe a germ

in M, 3 - Then h is E-equivalent to f if and only if h satisfies the following
conditions:




h, A B
a2, Maga, Mg,

h h h
xdp TAd; TAA,

4.5 Remark. The determinant H appearing in theorems 4.3 and 4.4 is the determinant
of the Hessian of the function h . The results show that no third-order-terms appear in
the recognition conditions. That is, f is 2-determined. Therefore the classification
corresponds here ta the classification of quadratic forms allowing linear coordinate
changes which preserve the sign of h,, . For example, taking € = § = 1 in theorem

4.3 the recognition conditions

hyy>0
D,;>0
H>0

are exactly the conditions for the quadratic form defined by thie symmetric matrix

bex b, A xhy
h h. h
By A Tk

h h h.
\ My ‘1‘1"

to be positive definite.

Proof of theorem 4.3: We apply praposition 4.1. Conditions (4.1) — (4.7) are
identical with the conditions thath € B . f (Compare table 3.5. ). Hence the aim is to
show that (4.1) — (4.7) are invariant under the transformation of Taylor coefficients
given in proposition 4.2. For o € R let h*(x, Ay, X,) := h(x, O Ay + A3, Ay) . The

relevant Taylor coefficients of h* are given by




h“_‘ + ‘”‘;Al

hl A

- ‘ot
hA_lM-i-mhlllz o Ay

= h + Gh,
Ay Ay
= h
A2y

Applying the B iti ditions to h* and substituting these expressions yields

the following: (4.1), (4.2) and (4.3) are obviously preserved. (4.4) and (4.5) are
mansformed into

hy +ah, =0
X A

and these equations are equivalent to

Hence (4.4) and (4.5) are preserved.




Now consider conditions (4.6) and (4.7). Let ¥ := h,, H . By (4.3) condition (4.7) is

equivalent 1o

The following identity holds:

h

xx hxlz
Py Mg

Now we determine the mansforms of the three determinants Dy, D* and D5 . After
some calculations it turns out that D; ransforms into Dy +2 o D* + 62 D,, D* into
D° + o D and Dj into D;. Now consider conditions (4.6) and (4.14). (4.14) implies

sgDy = 5gD; .




Hence (4.6) is equivalent to sg Dy = € 8 . This transforms into sg Dy = £ § . Hence

condition (4.6) is preserved. The transform of the determinant in (4.15) is
- 2 .
Dz+20D +0oD D + 0D,
D + ch D,

* 2 2 A - 2.2
= DlDz+20DlD +uDI-(D) -ZchD -G Dl

Hence ¥ is invariant under the transformation and condition (4.14) is preserved as
well. Since h,, is invariant under the transformation, it follows that H is invariant.

This proves the result. O

Proof of theorem 4.4: According to table (3.6) the B-recognition conditions for f are

(4.8) — (4.13) plus
sgDyj=¢ . (4.16)

The invariance of (4.13) under the transformation of the Taylor coefficients follows in
the same way as in the preceding proof. Using the same definition for ¥ as above

(4.13) is equivalent 10




Now consider condition (4.16), which transforms into
sg(Dy +20D° + o2D))=¢ . (4.18)
Suppose that D) § 0. Then the quadratic polynomial in (4.18) has - 4 ¥ as its

discriminant. By (4.17) this discriminant is positive. Hence the polynomial assumes

negative and positive values, since it has two distinct real roots. Suppose now that

D,= 0. By (4.17) D* does not vanish and hence the exp ion in (4.18)

positive and negative values.

‘We have shown that in both cases there exist values of ¢ such that (4.18) holds

without further restrictions on D}, D® and D5 . By propasition 4.1 the result follows. O

4.6 Thearem, Let f = €3’ + 6x4,0+ A, ,where €.8€ (-1, + 1} andlet hbea

germin M, . Then h is E-equivalent 1o f if and only if h satisfies the following

conditions:




Proof: The proof it divided into two steps.

Step 1: We show that the B-recognition conditions for f given in table 3.7 are

equivalent to (4.19) — (4.24) plus the condition hll =0 . It is sufficient to show that

by, =0




hy 40

hﬂl =0

K40
are equivalent to

hll-o

A=0

r+o

Assume the conditions stated first hold. Since hll =0, = hy, Ky Since hy 40,
itfollows that T 4 0. “H -h""l =0 implies A =0.
To show the converse, note that again T = hxz K, . Hence hkz #0and K, 0.

Since 0= A =- hlz hd, , it follows that h"'l =0.
Step 2: We apply conditions (4.19) — (4.24) and (4.25) to the function
h*(x,Aq.X3) = h(x, 0 As + A Aq)

We express the Taylor coefficients of h* according to propasition 4.2. Apart from the

formulae stated in the proof of theorem 4.3 we need

h

xxhy " hex

hiaa, wal,

- 2
Py mhap, + 200G 4 9T hG

«h +0oh
xad, * O han

h"% = h“lll

Condition (4.25) ransforms into




The transform of A is

= -A.
Hence (4.23) is preserved. Now consider the ransform of T". After some calculation it

turns out that K mansforms into K3 - 2K® - 0 K . Let Q denote the transform of

2K* - K3 . Then I ransforms inta

K, - 2K - oK, Q

hA, + thll h‘l

Condition (4.26) implies that this is equal 1o

by, (K3 - 2K* - 6 K;)

= hy, (K2 - 2K") - ahy K,

By (4.26) this is equal to

Iy, (Kz - 2K") + hy K




This calculation shows that T is invariant under the transformation and hence

condition (4.24) is preserved. By (4.24) h‘] and hl _ cannot both vanish. Therefore

there exisis a & € R satisfying (4.26) if and only if hh # 0. It is rivial 1o show that

(4.19) — (4.22) are preserved.
We have shown that h* € B . f holds if and only if (4.19) — (4.22) hold and
hll k0
A=0

r+0 .

By proposition 4.1 the result in the theorem follows. O




§. Data for E-equivalence

We now give lists of the E iti diti for a collection of normal forms.

These germs correspond to those in section 3, except that some of them are E-

equivalent to each other like

)(2-&1l andx2+12.

The reasons for choosing the germs are discussed in section 3.

Proofs far the recognition conditions in tables 5.3, 5.4 and 5.5 are given in section 4.
The proofs for the other results are considerably easier. In fact, the relevant steps
appear in the proofs in section 4 as well — as the rather trivial parts. For this reason

these proofs are omitted here.

As additional information we include the codi ion and — provided this is positi
— the unfolding terms are given. Details concerning how ta calculate E,1/T.(f, E)
can be found in example II. 3. 6 for two cases. The calculations for the other cases are

straightforward and similar to example I1. 3. 6. 1 .




whereee (-1,+1}

codimension 0

sghy=¢

thy, ) # (0,0)

Table 5.1




wheree € (-1, +1 )

codimension 0

Table 5.2




uz + S(AZI + Aé)

wheree, 8€ {-1,+1}

codimension 1

unfolding term: 1

h=0
h, =0
sghy=¢
h, =0
h,=0
sgDy=¢€8
sgH=¢,

Table 5.3




Ex;+‘!‘1_‘;

where €€ (-1, +1)

codimension 1

unfolding term: 1

h=0
he=0
sghyy, =€
by, =0
hk}=n
sgH=-¢,

h

h h
LR ¥ PR

Ay

hlh "1‘11 h%

Table 5.4




tx3+sxk:+12

whereg, € {-1,+1)

codimension 1

unfolding term: x

h=0
h, =0
hyy =0
sghy=¢
A=0
rso




Table 5.5




Ex + ‘A, + A,

whereee (-1,+1)
codimension |

unfolding term: x2

h=0
he=0
hey =0
Bexx =0
Sghyxxx ™ €

A#O

Table 5.6




6. The classification theorem

In this section we give the classification of two-parameter bifurcations up to

codimension one.

6.1 Theorem. Let hbe a germ in E, ; satisfying h = hy = 0 . Let the codimension of
h be less than or equal to one. Then h is E-equivaient 1o one of the following germs:

2
ex + A4,

2 2 2
Ex + Ay -4,

ex’ + 8522+ 2y

L)

EX + XA, + A,
3 2

ex +0xA, + 4,
e xa, +a

Ex +xA, +4,,

where £,8€{-1,+1).

the E

Proof: The essential part of the proof ists of inspecting
conditions for the normal forms given in section §. The following diagram makes the

procedure more transparent.




|

#0 0
Rypyy et A cmm—

=0

Y

IcndheZ Il codh 2 2 ]

#(0.0) 2
$ ex + A,

= (0,0)

2 s 2
ex’+ §(X|+ X))




Suppose h € E_, satisfies h=h, =0. Starting with h,, and following the arrows in

the flow chart, the diagram shows how the Taylor coefficients determine the

equivalence class of h.

There are five paths in the flow chart which terminate with the statement cod h 22 .
This follows from the fact that for each of these h satisfies five defining conditions
(including h = h, = 0 ) — these are denoted by arrows marked by " = 0 . The

d dent defining diti minus

codimension of a germ equals the number of i
three — provided this is a non-negative number. The proof of this siatement is

I to the cor g one for {See [7], corallary

Nl 2.6.,p.126.). 0




CHAPTER IV

1. Efficient calculation of the higher-order terms

In this section we describe a result, which is relevant for choosing the normal forms
which were used in section I11. 2 10 calculate the U-arbits. The following example

illustrates the importance of choosing the normal form appropriately.

2
1.1 Example. Consider the germ f = £x3 + le, + M.whem g 8€ {-1,+1] .fis
2
E-equivalentto g = € xJ + 8xA; + A, Itis possible to solve the E-recognition problem

for g instead of f. However, the calculations are a great deal more complicated for the

following reason: The higher-order terms for f are given by

4 - 2 2 2\
PEWU =M + <hhy> 0“{1 L},xlll‘,.lk?l,k_,.)\:/

(Compare example III. 2. 1.), whereas
4 L}
Pg.U) = M +<1‘.L:> .

Hence U.g/P(g, U) has five extra dimensions compared to U . f/P(f, U) . As a
the isation of U.g/P(g, U) tums out to be very complicated.

However, it is possible to check that it eventually results in the same E-recognition
conditions as for f .! Clearly, it is advantageous to choose f and not g as the normal

form.

1This computation was done using MAPLE — a for symbolic




The example shows that it would be useful 10 have a criterion which allows to
distinguish between f and g. The result which will be given below is such a criterion,
which works in many cases. It is based on the relationship between the groups U and

u.

Let f be a germ in M, 3 and g(x, A, A5) = f(x, X o, ).l) . We consider the tangent
space T(f, U). Its relationship with T(f, U) is given by

TfU) = TF,0) + R <l:fx.>

Hence it is trivial to compute T(f, U) once T(f, 0) is known. It is obvious that the

expression

o 8 2 )
T(f,U =E‘.)\ {lf‘).l{,A:f.llf‘.lzf‘.\ f, /0

2 2
‘llfxz"‘x)‘:'x_,'lzfx_, }

A3 ; 2
g, <A1fl‘.l‘k:,fh Az,

is symmetric in the differential operatars appearing with respect to exchanging Ay
with &, and3/9) ¢ and 3/3X,. Let w € W be the equivalence interchanging Ajandd,
(See section I1. 2.). Then g(x, Ay, Ay) = f(x, Aq, Ay} = w.f . Fram proposition II. 3. 9

we obtain
T(g0)= T(w.£,0)aw. T, 0) . an
This means that when T(f, U) is already known, T(g, U) is obtained by exchanging A 4

with A, in T(f, U). Again it is then trivial to determine T(g, U) by adding the one-
dimensional space R - {3, hl) .

We now state the criterion.




1.2 Theorem. Ler f be a germ in M, 3 of finite codi i Then the foll

statemenis are equivalent:
A) P(F,0) cP(U) .

Bj Forallp € P(f,U)

A’;ﬁe U
B g

o

Jorallk € by

1.3 Remark. Note that statement B) does not involve P(f, U). Hence it can be
checked once P(f, U) and T(f, U) are known. For this A,k 9kp/o k € T(f, U) has to
be checked only for a finite number of integers k and for a finite number of germs p,

since f i finitely-determined.

Theorem 1.2 can be used in the following way: Let f and g be defined as above. The
first step is to calculate T(f, U) and to determine P(f, U) = Irrgy T(f, U) by theorem
I 1. 4. This immediately yields P(g, U) by exchanging A, with X, in P(f, U), since
P(g, U) = Irgy T(g, U) and by equality (1.1). Applying the theorem it is possible to
check, whether

P(f, 0) < P(f, U) or P(g.0)c P(g, U) 1.2)
holds. The germ which the corresponding inclusion is satisfied for will then be chosen

for calculating its U-higher-order terms. For many of the germs appearing in the

classification theorem in section III. 6 one of the inclusions in (1.2) is satisfied.

2 3 3
1.4 Examples. 1. Consider f = Ax‘ + Bxl’l +Chryand g = Ax" + Bxiy+ Chy




where A, B,C 4 0. Then

TED) = M+ <hphy> +R<x Apx Ay xAg Ag x Aa x Agu A A Ay A)_

2 2 2
P, 0) = M‘ + <1|,A,2>3 + R(x LN TRV Y i 12.12>_

In this case T(f, U) = T(f, U) and it turns out that condition B) of theorem 1.2 is

satisfied. To sec this it is only necessary to check

A a_ﬂ € T(,U)
za

1
where p is one of the monomials
o W WY W L W WP L
As aconsequence P(f, U) € P(f, U) . In fact, in this case P(f, U) = P(f, U) .

For g we have

T D) = M+ <hypdy> +n<. Ania, xllh.xli,xl‘,K;,l‘H.l;>.

POy = M+ Apny> +n{x’1,.x1 XA A, Ag s }

and it tumns out that condition B) is not satisfied. Hence P(g, 0) ¢ P(g, U) — in fact,

4 3
PEU) = M + <1,‘.Ll>




3 3 3
2. Consider f = x] +xh+ hyand g = x + ")‘2 + A, . For these germs neither

P(f, U) c P(f, U) nor P(g, 0) c P(g, U) holds. The codimension of f is two.
We now give the proof of theorem 1.2, First we state a lemma.
1.8 Lemma. Let f be a germ in M, of finite codimension. Then the following
statements are equivalent:
A) P(f.O) c P U) .
Bj There exists a U-intrinsic subspace V of T(f, U) suchthat P(f,0)cV.

C) Forall pe PE0) U.pcTHU) .

Proof: A) # B): This is trivial, since P(f, U) is U-intrinsic.

B) » C): Suppose P(f, 0)c V € T(f, U) for a U-intrinsic vector space V. Then
U.VveVeT(¢ U,

which implies C).

C) # A): Condition C) implies

P, )Y = z U.p € T, U)
pe PELD)

By proposition 1, 1.9 P(f, 0)U is U-intrinsic. Hence it follows that




P(f, 0)U c IryT(f, U) = P(f,U) .

P, 0y c P, OV c P(f,U) . 0

Proof of theorem 1.2: Assume P(f, U) c P(f, U) holds and let p € P(f,U) . Itis
sufficient to prove candition B) for the case, when p is a polynomial. To see this note

that since f is finitely-determined T(f, U) can be written as

k
TED =M +V,
where V is a finite-dimensional vector space. ME is obviously U-intrinsic, hence
MEc P, 0) .

Therefore we can write

k
k 3 k
wherer € M and p is a polynomial. It is mivial to show that A, —: isin M and hence
A,

x
B2 ew e ey

1.3

a,

forall k € Np.

Now consider a polynomial p € P(f, 0) . By lemma 15 U.pc T(f,U) . In
particular p(x, Ay +tX3,A3) € T(f, U) forall t€ M . Using ihe Taylor-expansion -

which terminates — with respectto t at t =0 we obtain




k
oA, + thyhy) = PO ALA) + D

1 J
H .—p(x Al (13
J=1

for some number k € Ng . Applying this formula for k pairwise distinct values 6.
1 and using the abbreviations

w, = p(x, )‘l + 1112.7.2) - pix AL )

I 4
- li—p(xk
? 5K,

for i,j=1,.. . k, we obtain the following linear system of equations:

|a &

Sincew; € T(f, U) for i=1,..

. k and the matrix in the system is invertible, it
follows that

3. b

ax‘.

isin T(f, U) for j=1,.. ., k, which implies B).




To shaw the converse first note that it is again sufficient only to consider polynomials

p € P(f.U) and an equivalence u € U. According 1o proposition 11. 2. S we can

write u=nu,wheren € Nando € U. We have
u.p=(n0).p
=n.(d.p) .
Since P(f, 0) is U-intrinsic, u . p isin P(f, U). Define p:=0.p. Then
u.p(AgAy) = 0. lx, Ay, Ay)

=B Ay +thAy)

for some t € R By (1.2) it follows that P(x, Ay + t A3, A2) € T(f, U) and hence
u.p& T(f,U). 0




CHAPTER V

1. Geometrical description of two-parameter bifurcations

This section contains diagrams depicting the ts and discrimi. of the
normal forms in the classification and their universal unfoldings. The discriminant

associated to a given germ f& M, ; is the following set

3
{u.l,x,ng R | There exists x € R such that fx.Ap hy) =+

The coordinates in the diagrams are oriented as fallows:

Coordinates for the zero-sets

Fig. 1.1

for the discri

Fig. 1.2
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Chapter 1

Classification of

two-parameter bifurcations

1 Introduction

This chapter containa an extension of the work in part one of thia thesis. The
result is a classification of two-parameter bifurcations in one state variable
up to codimension 3.

The classification theorem is stated in subsection 2.1. The normal forms
are obtained by classifying the orbits arising from the action of the group
of equivalences inductively on degree using Mather’s lemma [Mat70]. The
necersary determinacy results are then obtained by calculating the unipo-
tent tangent spaces using results of Melhourne and Gaffney [Mcl88], [Gaf86]
based on work by Bruce, du Plessia and Wall [BdPW87|. A list of miniversal
unfoldings of the germs in the classification theorem is alao given.

Subsection 2.2 contains some examples of germs that have codimension
greater than 3.

The work contained in part one of this thesis has meanwhile appeared
in summarised form in [Pet91). The normal forma given there also arise in
a completely different context as part of another classification by Arnal'd in
the paper [Arn76).




Notation in chapter 1 is the same as in part one.

2 The classification up to codimension 3

2.1 The classification theorem

Theorem 2.1.1 Let h € £,;5 be a germ satisfying h = k, = 0. Let the
codimenasion of h be less than or equal to 3. Then h is E-equivalent to one
of the germs in table 1.1. Here £,6,9 € {~1,+1} and s € R\ {0}. The
coeffictent u in the normal form puz? 4+ ez + X3+ A is a modal parameter.

Praof. It will be shown how to derive the normal forms ez® + 6zA§ + A,
and €27 + zA; + 6A}. The ather cases can be treated similarly. Also note
that the germs of the form z? 4+ ¢(A;, A;) have heen classified by Izumiya
up to cadimension five in [Izu84].

Throughout the proof k-jets of germs g € £, are written as

3

i*e aprTPAAG

1 grtatr
aki mm(o,o,u).
Let £%, denotc the space of k-jets of germa in £, .

A) Consider germs in £, having non-vanishing 1-jet and satisfying h =
hy = 0. Without loss of generality j'h = A; can he assumed. Now consider
2-jets of germs, whose 1-jets are equivalent to A;. By applying Mather’s
lemma [Mat70] one finds three orbits in £2, listed helow together with their
carresponding recognition conditions:

1. @300 #0: Ay £ 22
2. 200 = 0,a101 # 0: Ay 4 7A;

3. azo0 = 0,410 = 0: )




germ codimension

ex? 4 N o
e 4 zha + Ay
[ZAEFIYED W
ez? + A1 - M

ex? + 5(21 + 2}

ez’ 4 620) + ),

ex? 4+ 607 + A3

ez + 22 + 633
ex¥ + 223+ A
ez + 6zt + 230+ N
ex? 4 A + WA}
nr’ 4 ezd+zda+ A
3 4 870) + A
£x5 4 6z 4+ 9223 + Xy

28 4 82% + 220 + 2

ex? +6x' 4200+ 0

Table 1.1: Normal formas for the germa up to codimension 3




Consider the last case. The arbits in £}, for germs whase 2-jeta are equiva-

lent to Ay are given by
1 awpa #0,D#0: A +x+2)]
2. a300=0,D #£0: A + 22,
3 awo#0.D=0: A % 2°
4. a300=0.D=0: A\ + 273

Here
D := 6awoaies — 2ady, -

Consider the third case. The orbits in £3, for germs whose 3-jets are equiv-
alent to Ay % 23 are

1 ay0a #0: A 20 4+ 223
2. ajaa = 0: Ay %27

Taking the second case one finds for the orbits in £3, of germs whose 4-jets

are equivalent to Ay + z°:
1. a0 #0: Ay 274 1]
2 ajoa=0: A t2°

The second case leads to germs of codimension greater than 3. In the first
case the germ Aj + z? + zA} 18 5-determined and has codimension 3.

B) Consider germs in £, having vanishing 1-jet. Mather's lemma yiclds
the following orbita in £2,

1 a0 £ 0. K #0: £17 + A7 —Ad, 22+ (A} +0))

2. a0 #0.Aor D #0: 22+ )7

3 @ #0.A=0,D=0: +z?

4. 8300 =0,L #0: zA; + 2}




. a0 =0.L=0,ap0rag #0: 23,
. @200 = 0,450 = D,ay0; = 0, D" # 0: £(A2 + M), A7 — A2
. azo0 = O.a10 = 0,a501 = 0, D" = 0, agzg 0f agog # 0: A}

. azop = 0,a510 = 0,a50; = 0, D" = 0,8030 = 0,a007 = 0: 0

2
-4@0201200 + @10,

—400020200 + 81p;

2
a311@200 ~ Gandyi0a1a1 — 4820040201002 + @020870y + A7)0%002 «

2 2
002310 ~ 1010114110 t A9 B020

D* agyy ~ 4a0020030 .

Consider the fourth case. The arhita in £3, of germs whose 2-jets are equiv-

alent to zA; £ A} are
1. axo # 0: 2% 4 23, £ M
2. agon = 0,a20) # 0: zA; £ A3 + 22,
3. aso = 0.aq; =0: zA; + A}

Proceeding further in the second and third case leads to germs of codimen-
sion greater than 3. The germ #z + 7y + A} is J-determined and has

codimension 2. O

Coarollary 2.1.2 Miniversal unfoldings of the germa in theorem 2.1.1 can
be chosen as listed in table 1.2.

Prool. It will be shown how to derive miniversal unfoldings for the germs

ez’ + 824 4+ 270+ A

ex® 4+ 6z + x5 4 Ay
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germ unfolding terms
z:’:)l

x4 zh+ M

ex' +xda+ N

ex?+ 21— a2
ex? + 5(A1 + 2]
ez + 8xM) + &,
ex? + 621 4 A
£z 422y 4+ 6)3
ex¥ 4z} 4+ M 2,7
ez 4+ b6z 4+ 270+ Ay z,2M
ez 4 6M1 4 9} 1,22, M
pxtd ezt +zha 4 M 22,20, 27
ez 4 8zAl 4+ M T,2A1, 204

S + 824 4 9zA] 4 Ay z,2%,27;

ex® 4 625 + 220+ A Z,2A),2X;

ez? 4 82 + 200 4 ),

z,zA},23

Tahle 1.2: Miniversal unfoldings of the normal formu




A) Let g = e27+ 6z + 2’ A3+ A, . The germ g ia 7-determined. This implies
M" C T.(g).
where
Te(g) = Enn {ex” + 62" + Ay + Ay, Tea® + 462° 4 2020} + 62 (1,27} .
A calculation shows that
T(g) = M+ < i da>' +R{2"M)]:a € {0,2}}
+ R {28020, 200 20 da 2, 2h 2200 + 4627}

Hence the only monomials z®3¥2] not cantained in Te(g) are 27,223, 7},
and z. Since 2zAz + 462% € T.(g), it follows that codim(q) = 3 and that
x,zA3 and 22 can be chosen to yield a miniversal unfolding of g .

B)Let g = Ay+z?A3+ 62! + 2% . The germ g ia 5-determined, which can
be shown by using the preparation theorem. Since this method ia described
in a much more complicated case in chapter 2 in the proof of lemma 1.5.3
the details are omitted here.

A calculation shows that

Te(g) = M+ M <A A >+ <A ha>?
+ R {e% 21,220, + 462" A 0a 1)

It follows that g has codimension 2 and that r and zA; can be chosen as
unfolding terms. O

Remark 2.1.8 It is possible to abtain the saame result as in the preceding
proof for £2% 4 62 4 22X3 + Ay in a different way using a theorem of Mond
and Montaldi [MM91]. Onc can check by explicit coordinate changes that g
is equivalent ta

g=,\,+: A} 4 2P0 4 20

One can think of g as being induced by the mapping

i) — (A jerdn)
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into the apace (a,b,¢) of unfoldi of a K-mini 1 unfoldi
of z4 given by z* + az? 4+ bz + ¢. The theorem of Mond and Montaldi staten
that T Ky .y and T,(g) bave inomorphic normal spaces. Here T R'y.v denotes
the tangent space of the mapping ¥ with respect to K'y-equivalence, which
preserves the discriminant of z¢ + az? 4 bz + ¢ — the swallowtail. Using the
explicit formula for TRy .7 leads to the same result as given above for the
codimension and unfolding of g .

2.2 Some additional information

Thia subsection containas some examples concerning germs of codimension

greater than 3.

Example 2.2.1 Consider the family of germs gi := ez¥*! + 223+ A , where
k>2ande€ {-1,+1)}. All germs gy are finitely-determined and

k-1

codim(gy) = F 2L 1 @

gs in k + l-determined only for k = 2 and k = 3.
The first step to show that 2.5 holds is to obtain the formula

codim(ge) = dimg

by g lising the ing used in le 3.6.2 of part one of this thesis.

To determine £,1s1 {1, 2} define two sets Xa and X, by

Xo = {pk+q(k+1):pgeNa},
Xy = {pk+gk+1)+1:p,qg€ No}

and let X := XoUX,. Alsolet I,,, := {n € Nog : n > m}. The sct X hasa the
following property: Suppose X contains a subset of k successive integers,
{m,m 4+ 1,....m 4 (k — 1)} say, for some m € Ng. Then I, C X. It
follows that it is sufficient for J,, C X to hold that X contains the subsct
{m.m+1, .. m+ (k- 2)} of k-1 successive integers.




The set X can be written as
Xo={J A,
a0
where
A, ={pk+qk+1):p+g=2pg€ No}.
Note that the scts A, are pairwise disjoint and that A, consists of s 4 1
successive integers, since
A, = {sk. sk 41, ak + )

Hence k—2 is the smallest value of s such that A, consists of k ~ 1 successive
integers. This implies

T C X,

showing that
ALY Allz)

It follows by 2.2 that
cadim(gs) < (k ~ 2)k < oo .
To determine the precise value of codim(gs) note that hy the description of
Xg given in 2.3, Ng \ X is the disjoint union of the sets
G,:={(a-1)}(k+1)+2,....sk—1}

vovo k= 2. Thercfore
k-2

codim(q) = 3~ #G..

a=1
and since #G, = k — 5 — 1, the result is

codim(gs) * 2{(5_ 1

It follows from

k-2
No\Xx = |J6.

that the germs gy = £z*+! 4 225 + A, are k 4 1-determined only for k = 2
and k= 3.




Example 2.2.2 Let k£ > 1 and consider the germs h = £2% 4 524 4+ A,
for even k and hy := £z + 225 + A, for odd k, where £ € {~1,+1}.
Then codim(hg) = k — 1 and the terma z,22,,...,22? yield a miniversal
unfolding of Ay .

Example 2.2.8 Let k& > 2 and consider the germs p; 1= ez% + zX; + 824
for even k and p; := £2% + zA; + M for odd k, where £ € {—1, +1} . Then
codim(pz) = k and the terms 1, A, yield a miniversal unfolding of p; in the
case k = 2 and the terma 1, Ay, Ag, . ,A;_’ for k> 2.

Example 2.2.4 The germs £z +8z2] + M) and ez® + 6223 + A% + A3, where
£,6 € {~1,+1}, both have codimension 4. Minivereal unfoldings are given
by the terms z7,7223,z,2,; inthe first and by z,z33,1,); in the second

case.




Chapter 2

Equivariant bifurcations

with group action on state

and parameter space

1 Introduction

This chapter is devated to ta a generalisation of the singularity theory ap-
proach to equivariant bifurcation theary. In this context one atndies the
equivalence relation of parametrised contact equivalence on a set of map-
pings B" x Rf — R", where R" is referred to as the state space and R¥
as the parameter apace. These concepts were introduced by Goluhitsky and
Schacffer [GS79h, GS79a]. Many cascs have been studied, in which the bifur-
cations are equivariant, see e. g. [Mel86], [Me188], [Mel87], [GR87], [GS84|.
[GSS88], [SteBS). The property of equivariance is defined via a group action
of a compact Lie group I on the state space. The aim of this chapter is to
study cases where the group T acts on the parameter space as well. This
type of group action has been studied in a somewhat different context by
Janeczko and Roberts [JR91], who use the theory of Lagrangian singularities
to classify aymmetric caustics. (See also [JR] for their work on this topic.)

The problema treated in this chapter are certain Z;-equivariant and Dy-




equivariant bifurcations. The first is a simple example treated to show that
the general theory outlined in section 2 works. The case of D,-equivariant
bifurcations forms the main example and is treated in section 3. The group
action of D, defined there ia motivated by a problem in physics having thia
particular symmetry.

2 General definitions and background

2.1 Notation

The following is a list of notation used in chapter 2. More notation will be
defined within the text.

Coordinates in the atate space R" are denoted by z := (z,....,z,) and
coordinates in the parameter space R by A := (A, ..., A).

£.,...un denotes the ring of real-valued C™-function germs in the vari-
ables uy,...,um at (0,...,0). M,
Enr oot -

Let T be a compact Lie group acting linearly on R" and let Homr(R")

denotes the maximal ideal in

denote the set of linear maps R" — R" that commute with the action of
I'. Then £(I)" is defined ta be the connected component containing the
identity map of Homr(R") N GL{n, ).

The identity matrix in GL(n.R) is denoted by I, . The trivial group is
denoted by 1.

The aymbal ~ is used to denote T-equivalence. See definition 2.2.4.

2.2 Definitions and determinacy theorems
Definition 2.2.1 Let T be a compact Lie gronp acting on R" x R* by
72, 4) = (y2,74),

i. e. T has onc representation on the state space R" and another one on the
parameter space RY .




A) A smooth map germ g : R" x R* — R" at {0,0) is said to he I-
eguivariant, if

9(y2,yA) = y.9(x.A)
forally €T,z € R" and A € R
B) A smooth function germ f : R" x R* — R at (0,0) is said to be
I'-invariant, if

vz 92) = f(z,2)
forall yeT.z € R" and ) € R*.

Remark 2.2.2 Let a particular group action of T he fixed. Then the set of
I-iovariant function germs forms a ring denoted by £,5(T'). The set of T'
equivariant map germs bas the atructure of an £,3(T')-module and is denoted
by £.2(T).

Definition 2.2.3 Let g € £, (T). If g satisfies
9(0,0)=0 and (D.g){0,0)=0,
it is called a bifurcation problem.

Definition 2.2.4 Two bifurcation problems g,k € £, (') are said to be
T-equivalent, if there exist I-equivariant diffromorphism germs R and §
satisfying the conditions given below such that

h=S-goR.

R in a diffeomorphism germ R" x R¥ — R” x R* at (0,0) of the form

R(z.2) = (X(2.A),A(N),
where X is a smooth map germ R™ x R¥ — R™ at (0. 0) satisfying

X(0.,00=0

D.X(0,0)€ £L(T)";
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and where A ia a smooth map germ R! — R* at 0 satisfying

ALD

det{ DA(0)) # 0.
5 ia a diffeomarphiem germ R™ x R¥ — G L(n, R) at (0,0) satisfying
5(0.0) € £(I')°.
Remark 2.2.6 The property of I'-equivariance for § can be restated as
S(yz,4A) = 7.8(z, 277",
i. e. the action of T on GL(n, R) is defined by
.M = 7.My"!

for all 4 € T and Af € GL(n.R). The set of all T-equivariant matrix-valued
germs R” x R¥ — GL{n.R) ia denoted by £,a (I). The condition of
I'-equivariance for R can be reatated as
X(rz,92) = 1X(2.A)
A7) = 7A(A).
Using these statements it is eany to show that the set of all I'-equivalences

forms a group denoted by E, in which multiplication is defined in the atan-
dard way. {Compare [GSS88, Mel88] or part 1 of this thesis.)

Definition 2.2.8 Let g€ £,5 (T). Then

TI(9) = £ (T)g + (D10)£:x (T) + (Dag)En ()

ia called the eztended tangent spare of the germ g. The number
Eeil
codim®(g) := dimp .I;' 1

is said ta bhe the I'-codimenaion of the germ g.
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The following is the determinacy result for I-equivalence due to Da-
mon [Dam84].
Theorem 2.2.7 Let g € £4 ([). Then g is finitely-determined with re-
spect 1o T-equinalence if and only if A (g) has finite codimension in £ .2 (T) .

Praof. This follows by slightly modifying Damon's reault to accaunt for the
action of T on the parameter space R* . (Compare theorem 10.2in [Dam84].)
o

Definition 2.2.8 Let (5, R) = (§,X,A) be a I'equivalence as defined in
definition 2.2.4. The subgroup U consisting of all I'-equivalences satisfying
the additional conditions
5(0,0)
D,X(0.0)
DyA(0)

is called the subgroup of uni r

Definition 2.2.9 Let g € £, (T'). Then
RTT(g,U) = ME,x (D)g + (Deg)(M3} + Ma)Eax (T)
ia called the reatricted unipotent I'-tangent space of the germ g and
T'(g,U):= RT(9.U) + (Drg) M} £ (T)
ia called the unipotent I'-fangent space of the germ g.

Remark 2.2.10 The unipotent I-tangent space TV (g, U) corresponds to
the group U of unipatent I'-equivalences. It has finite codimension if and
only if T! (g) bas.

Definition 2.2.11 Let g € £, (T). The following &,x(T)-submodule of
En(D)

P(g) = {pé Eea(T):h+p~gfor Al h € £y (T)satisfyingh ~ g}

is called the module of higher-onder terma of the gorm g.
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Definition 2.2.12 Let E be the gronp of I-equivalences and let V he a
vector subspace of £, (T).

A) V in said to be intrinsic, if it is invariant under the action of E | i. e. if
EV=V

B) The vector space

ItV = [ eV
ek

is called the intrinsic part of V.

The following theorem duc to Gaffney [Gaf8G] based on work by Bruce, du
Plessis and Wall [BAPW87| is a determinacy result for I-equivalence.

Theorem 2.2.13 Let g € £, (I) be a germ of finite codimenaion. Then

P(g) > e (T'(g, 1)) .

Proof. The proof of thia result is analogous to the one given in [Gaf86] in
the cane of ardinary [-equivalence. O

2.3 An example with Z;-symmetry

In this subsection a simple example for the general theory outlined ahove is
considered. Let a group action of T = Z, be defined hy

=1z A):=(—2,-A).

It is easy to check (rec alao [GSS88]) that uy := 27, u; := zA and ug:= A?
are gencrators of £3(Z3) and that they satiefy the relation

wuz — uj = 0.

Similarly one finds that £, (Z3) is generated by z and A over £,3(Z;) and
Exa (Z3) = £,:0(Z3). Hence the extended Z;-tangent space is

TZ(g) = Euyusus {9+ 200 A2} + Euy {302) (3.1)




The extended tangent space in the corresponding case without symmetry
(i. . T = 1), which is atudied in [GS84, Key86] is

TNg) = Ear{9.9:) + Ex{ma)} .

Since
TZ(g) = THg)N £ (7).,

@, which ig finitely

it follows that any Z;-cquivari bifurcation p:
determined with reapect to 1-equivalence, is finitely-determined with reapect
to Zy-equivalence as well.

Example 2.3.1 Let ¢ 23 — A, where £ € {—1,+1}. This is called a
hysteresis bifurcation in [GS84]. Calculating T,z‘(y) yields

T2(g) = Euur {627 - 2,362%3e2%0} + £, (- 3)
E...,._,(:J, A,x’)) .

It fallows that X
Ear (Z3) R{z)
"(g)

7

This implies that codimZi(g) = 1 and a nuniversal unfolding of g is given
by ez — A 4 ar.

It in easy to check that g = ex? — A is the hifurcation of least possible
Z,-codimension and hence can be regarded as the generic Zz-equivariant hi-
furcation: Consider first a bifurcation h € £ ;1 (Z;) having a non-vanishing
1-jet. It follows by Mather's lemma that k is in either of the two orbits in
the space of 1 jets represented by A and A — 2%, Continuing thia reasaning

one finds a family of Z,-equivariant germs

Gm =2 % form>1,




so that codim®i(g,,) = m. This reault corresponds to the family gn
£2* + 82 (where § € {~1,+1})" in the unsymmetric case. (Compare [GS84].)
The complement of TZ(gp) in €41 (Z3) can — a5 one would expect — he
obtained by removing all the terme z! for even ! from the complement of
T Gm) in £;3 (1) = £z2. Theae are precisely those terms which are nat
2, cquivariant. Now consider a bifurcation h € £ ya (Z;) with vanisbing
1-jet. It follows by formula 3.1 that codimZ2(h) > 2.

3 D,-symmetry
3.1 Introduction

In this section the following action of D, on R? x R? generated by
K21, 22, A1, Aa) 1= (21, -Z2, Ak, Aa)

uzn T2 A Ag) = (32,71, A1 — Ag)

will be atudied. Thia is mativated by a problem in mechanics. Consider a
thin aquare plate and two pairs of forces Fy and Fj acting on it horizontally
and vertically as shown in figure 1.1. Constructing 2 mathematical model for
thia aituation leads to a description where two coordinates z,,z; represent
different buckling modes and two parameters Fy. Fy give the values of the
forces. To study physically interesting phenomena like buckling of the plate
one can try ta explait the fact that the model has a certain symmetry: The
phyrical situation does not change under the transformations

(z1.22 A Fy) — (21, -2, Fi )

and
(21,22, Fi, Fy) — (23,7, Fp, 1)

"The sign § docs nt appeat in [GS84], nince there the condition AL (0) > 0 is used in

the definition of equivalence.




Figure 1.1: Forces acting on a square plate

These two transformations generate a Dy-actian. Introducing the new vari-
ahlea A, := Fy + F; and A, := F; — F; this action appears in the form given
above.

The following is an outline of the materjal contained in thia section. from
now on I' will always refer to the particular action of D just described. The
subsections 3.2 and 3.3 give results which explicitly describe the ring £,(T)
of T-invariant function germs, the module é,. (T') of T-equivariant map
germs and the module £, (T) of I-equivariant matrix-valued germs. For
the latter twa scts of generators are found, which generate these modules
frecly over a ring £, ., , Where u;...., u  are certain I-invariant germa.

Using these results the tangent epaces T§ (g) and T"(g, U) are determined
in terms of the i (| and equivari in aub ion 3.4. This ia the
masat convenient way of doing calculations invalving TF(g) and TT(g,U).

Subsection 3.5 containe the main result, namely a normal form for generic
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Dy-equivariant bifurcations. it is obtained by using theorem 2.2.11 to de-
termine the module of higher-order terms for the narmal form. to this end

it is necessary ta work out TT(g,U) explicitly. this proves to be rather

complicated and involves using the Mather-Malgrange preparation theorem
(see [Mar82] and alsa part one). The next step is to show that TT(g,U)
is intrinsic in the sense of definition 2.2.12. Finally the normal form is ob-
tained by a acaling tranaformation. The last subsection contains bifurcation

diagrams for the normal form.

3.2 Invariants

Let T denote the action of D, on R? x R? generated by
K.(Z1, 72, My Aa) 1= (21, — 22, A1y A)

and
u{z1, 22, A1 Ag) 1= (22, 21, A1, = Ag)

Let N,6,A,u, denote the fallowing expressions

N i 4 23

Also let u = (uy, ..., ug).

Proposition 3.2.1 The ring £,(T) of amooth T-invariant functiona can be
written as £,, where uy = N, u3 = A, ug = Ay, ug = A}, uy = 635 .

Proof. By a theorem of Schwarz [Sch75] it is sufficient to show that every
Iinvariant polynomial can be written as a polynamial in u.

Let f be a polynomial in R[zr,z3, Ay, Az]. Assume that f ia T-invariant.
This is equi to the fall & two conditions:

Hziiz2,21,09) = f(21,~22, M1, 49) (2.1)
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and
flzix0, M. 00) = f(z, 21, M, - Da) . (2.2)

It follows from (2.1) that f is an even function of z3. Hence there exists a
polynomial F € R[zy, z3, M1, Ag] such that

£ =Tz 23,0, 0).
Using this and (2.2) it follows that
F(z1, 23, A0, 02) = Flza, 2], Ay = A (2.3)

The right hand side of this equation is an even function of z,, hence the left
hand side is as well. Therefore there existas a palynomialf such that

T = fzh. 23 A0 00)

and therefore

Azr,33, 0, 09) = f(zfed M)

The result of the action of s on (27,23, Ay, ) is (23,23, Ay, —23) . Equiva-

lently the result of its action on ( N,8, Ay, Aa) in (N, =6, Ay, =Az). It is easy
to sec that the invariants for the Z;-action on R? defined by

-L{z.p):=(~z,~y)

are z?, zy and y?. Hence the invariants in the case ahove are N, A; and
67 = A, §); and A]. It follows that f can be written as a polynomial in
uy,..., us, which proves the resnlt. O

Remark 3.2.2 The invariants u;,....us satisfy one relation, namely
uf = ugu,.

Otherwise there are no relations,




3.3 Equivariants

Proposition 3.3.1 £, (T) is generated by

(el ala) w={ )
as an £,3(T)-module.

Proof. By a theotem of Poenaru [Poe76] it is sufficient to show that

() o(2) = ()

T3 -T3 Iz

generate P (I') — the P(T')-module of I-equivariant polynomials. Let f €
P{T). f can be witten as

(f|(2|‘=z-4\|.4\2)\|
\ filznza A0, ) )

Ay, A

where fi, f1 € Rlzy, 72,01, 24].
Since f is I'-equivariant, f commutes with x. This is equivalent to
Sz, 13, A1, 02) Sz, 22, A1, — A7)
fazy —za, A 02) = = fa(zi 22, A Aa).
It follows that f, is an even and f; an add function of z3. Hence there exist
polynomials f; and f; such that
filzrz2 i 2a) = Tilmnzd A da)
filzrz3,00087) = wafata.el A ).

Using the fact that f commutes with 4 as well a similar argument shows
that

[ mfiahad A )
\ zafa(zh 23, A0, X))

f(z1.22, 210 22) (3.1)




for some polynomials f; and f;. Define a := z] and 8 := z] and consider
the mapping f given by

f‘l(ﬂ‘ﬂv\hh) A
faa, B, A0 09) )

The condition ui.f = fu can be restated as

fla 8,21, 23) (

fuBiadn-2) = fa(a,B, A1, 29)
fBiad=2a) = fila. B2 0).
Defining
2(f| +f2)
and !
92:=3(Nh - fa)
the last two equations are equivalent to g = gy and gy = —g,. Since x
acts trivially on (a, 8, Aj, A3) the first condition means that g, is [-invariant.
The second condition implies that
91 = gnr(o — B) + gn2da,

which can be seen by considering the Zj-action mentioned in the proof of
proposition (3.2.1). Returning to (3.1) reaubstituting yields

Sz zad ) = ¢ ( :l ) —9216( ; ) +yn/\z( ) .

which proves the result. O
Proposition 3.3.2 £, (I') 1 generated by

f1 0N /xa 0N /6 o)

Vo) le -n)lo )

0 z.z;\‘ 0 z)22Ag e 0 z,126
zyz2 0 ) EXE IO 0 —z1226 0

an an £,,(T)-module.




Praof. This proof is very similar to the one of proposition 3.3.1. For this
reason some of the details are omitted. Let S € £, (T). This is equivalent

to the two conditions

S(kdz1,22, A1, A2)) = £.8(z1,22, A1, 22)s "}

S(pdzrza, A ha)) = pS(ar, 23, M dade

As before we can assume that the ¢ of S are poly ials. Using

the definitions for x and i it can be shown that there exist palynomials &,
(1 < i,j < 2) auch that

snlz, 23,0, 0) ziz382(27,73. M. Aa)

S(z1,22, A1, A7) (

niradnled zf, My —2a)  duladal M, -2a)

(3.4)
The following polynomial mappings (@ ‘= ]
filo

Su(a.ﬁ.A|-h)=(

inld, e
"

S B mon = e T ‘i,‘.)

hold o
both satisfy conditions (3.2) and (3.3) in the proof of propasition 3.2.1. The
reasoning there shaws that the diagonal elements of the matrix in (3.4) are

(1) +(5)<(5) = (3):

where a,b,¢ € £,(T). The last case occurs, when $; = 0.

of the types

In the same way it followa that the off-diagonal elcments in 3.4 are of

)0

where ¢, f,g € £,,(I'). The result follows. O

the types
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Propasition 3.3.8 4) £4(T) = £,., , where ug = M.
B) £ (T) sa freely generated by

(a) = ()

Proof. A) This follows immediately from proposition 3.2.1.
D) Let

as an £3(T)-module.

{ Ma.29)
\ Aa(AiAa) )

be T-equivariant. This is equivalent ta u.A = Api, i. e.

ALAy

[ M) ) A -da)
(R WINPH I Il WV WY

Hence A; is an even and A; an odd function of A5, which implics that ( (1) )

and ( :' ] generate £ (T) over £4(T). It is straightforward to check that

these generatars are free. O

Unlike as for £ (T') the sets of generators given for £ (T') and £ 71 ()
are not free. Tlis is due to the fact that the - invarianta u,y, ..., us satisfy
a relation. { Sec remark 3.2.2.) However, for the tangent space calculations
in subsection 3.4 it will be advantageous to work with free modules. To this
end we show that hoth £, (I') and £ 3 (T) can be written as free modules

aver &, .4, by increasing the number of gencrators.

Propozition 3.3.4 £, (T) is freely generated by

anan £, -module.




Proof. Let g € £, (T). By proposition 3.3.1 g can be written as

9 1'( ‘_ )""’[‘ ‘)‘H'.' )

where p.g.r € £,:(T) £, Since u} = uju,, there exist germs
PGt € Euy . uy (1= 1,2) such that

p=pi+8hpy,

7=q +bdq.

r=ry 4 8dra,

wrf B le=n ()

1..\;( _;’ ) + u.r;é( ;2: )

L)) ()

gencrate £, () aa an £, ., -module.
Now suppare

(o )es( D )eem( 2 )2en(2)=(0)
where a,b,r.d € €., ., Thia is equivalent to two equations:

atbbtery+dfdg = 0
a-b5—cha+dbry = 0.
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Adding thene yiclda
2a + 2d6A; - 0,

which is cquivalent to
a -8A,d

a is an even function of A;. This implies d = 0 and hence a = 0. Similarly,
subtracting (3.6) fram (1.5) yields

268 + 2¢hy =0,

which implies ¢ = 0 and b = 0. Hence the four mappings given above are

free geacrators of £,y (T) over £, .u,. O

Proposition 3.3.5 £,, (T) is freely generated by

(0)03 58 5)

0 r2; ( 0 173da 0 EN VA
EITS] [ 71%2A; [] —z,226 0 )

(g 1)Ll )

as an £.,, ., -module.

Proof. Let Sy,..., S, he the matrices listed in proposition 3.3.2 and let

a,\,(; l:)
,.\J( .\"_’ .”', )

Let F £, w{S1.....5s}. To shaw that F — £, (T), it ia sufficient
to check that 8335, € Ffor j = 1,...,6. This condition is shown to hold




by the following calculations:
82, 85,
;5
LPPRY
82,5,
LEPR-IY
81; Sg

Now auppose

00)

where a, € £,,, . ., for 1 & This condition is equivalent to four
equations involving a;, s It in eany to check that these equations con-
sist of two pairs each of which can he treated analogously to the proof of
proposition 1.3.4. In this way it follows that @, = 0 for 1 = 1 8 and
hence Sy...., Sy are free generators of £,, (T) over £, -

3.4 Tangent spaces for the D -action

To he able to conveniently calculate with T-cquivariant germs, we use in-
variant otation. Compare [GS588, GR87] . From now on the abhreviation

(u cby) is used.

Definition 3.4.1 A) Let p,g.r.s € £5. Then

B) Let I, be ideals in &g for i = 1, 4. Then we define the following
submodule of £,, (I'):

(.12, 15, 1] := K[1,0,0.0] + 13[0,1,0.0] + £[0,0.1.0] + £,[0.0.0,1]

Remark 3.4.2 By proposition 3.3.4 cach germ g € £, (T') can he written
uniquely as g = [p.q.r,s] for some p.g.r,s € £5. In other words £, {r)
can be identified with £g @ &5 @ €0 ® &x
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The remainder of this subacction is devoted to formulae for the variona

tangent spacen.
Proposition 3.4.3 Let g = [p,q,r, 5], where p,q,r,5€ £g. Then

Te(9) = Ealgr.. .. 913} + Ex,u {913, 914)

Ip.g.r 4],
[war.uqa, p.q]
[Ag.p. Axr],
[Np—Ag.p- Ng.—-Nr4 As, ~r 4 Na|,
|Ap - NAq.Np- Aq.NAs - Ar,As - N1,
Nugr + Auga, —ugr + Nuoa,Np - Aq,p— Ng|,
[Augs ugr, Ag. pl.
[~Auar + NAugs,~Nuyr + Augs,Ap~ NAg, Np— Aq],
[2NpNn + 4Apa + p.2Nan + 48 + 3¢, 2Nry + 4Ara + 7,
2Nan + 4As4 + 24)
~2ApN — ANApa + Ag. —2A8qn - 4NAga — 2Ng + p,
~2Ary — dNArs + As, 288y - 4NAsa — 2Na 4 7],
~2Augan ~ AN Augan — 2Nugs + ugr, ~2uign — 4N ugga + ugs,
2Agn - ANAga - 2qN + p, ~2pn - 4Npa + g,
[2NAui(pn + sn) + 4276, (pa + 5a) + JDugs,
2Nu N + 4Aurs + uer 2N Agn + 4A%4 + 384, ).
[P v ga,ara,, ],

[2u4pu,  204gu,  2uare, + 7. 2048, + 3]

Proof. Dy definition 2.2.6

Te(g) = £2r(T)g +(D,g) £ £x (T) + (Dag)éa (T)




The generators g;.. ... gs are obtained hy proposition 3.3.5. We have
o= S.[pq.r]

for + = 1,....8, where §, are the generators of £, (T) fram proposi-
tion 3.3.5. Tahle 4.1 displays a list of all the products S,y, (1= 1,....8 j =
1,...,4), where y, are the generators of £, (T') from praposition 1.3.4. The

(T o T » T w [ W

5 [1 0,0,0] [o.1.0, o] L [0.0.1,0] [0,0,0.1]
S| [0,0.1,0] [0.0,0,1] [14.0,0,0]

:': [0.1.0.0] | [4,0,0.0] L [0.0.0,1] {0.0,4,0]
(¥, 1,0.0) LA, N,0,0] $(0.0,N,1] 4l0,0,4,N]

{0, u4,0,0]

jla,¥,0,0]| -}I¥A, 4,001 -}[0,0,4,N] io.0.8A.A] |

§10,0,N,1) [ -4(0,0,8 4] | —}[Nus,u0,0,0] | 3[Auq, Nug,0,0]

(0,0.0.1) [0,0.4,0] [0, v, 0,0] [Au,,0,0.0]

40,04 N] [ -4[0,0,NA A] | —L[Ang, Nuy. 0.0] '[A’A 1 Auy, 0, n]l
1

Table 4.1: The products S,y,

expressions for g.. . ., ga follow immediately from table 4.1, (Table 4.1 will
be used again in the proof of lemma 3.5.7.)
The generators gg, . .., g1z arine from (D,g) £, (T'). They are obtained
aa follows. We have
9, =(D.g)y,
for j =1,...,4. Note that

na () oo ) e 5)
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oo (n(2)):

The formulae for gg,...,q12 now follow hy calculating all the products of
the four terms in (4.1) and yy...., g . One sample calculation will be given
for

Firstly, we have

{Dg dq

\om, ‘0:;) = (221qn ~ 42, hys ., 2ragn + 4128,

) J é ( t ) (221N — 471694, 2229w + 47269a)

coon(e(21))

¢ ( : ) (271g8 — 4718ga, 212qn + 4726q4)
X ( vt 254,
"\ e —2:3-4
This yields
o.(w( % ) () o( o )(—'M.v—‘”qa)“z

n(é-2M\
+g)
E ’( 228 +2N) )
= [0,0,-2Aqn ~ 4NAga - 2gN.g].

The calculati for the g 913 and 9,4 arising from (D,g)£, (T)
are considerably easier and are therefore omitted. O




Proposition 3.4.4 Letg = [p.q.1,8], wherep,q,r, s € Egandlet g,.
be as in proposition 8.4.3. Then
T(9.U) = Ea{Ngi.Agi. }11.%491,91,93. 94. 95, 96: 97, 98, N go. Ago, 2195,
4495, 910,911, 012)
+ Eayu (M913, 24013, M1 914, Bag14) -

Proof. The result follows in the same way as for T.(g) — the only difference
being the use of the conditions for unipotent Dg-equivalences. (Compare
definition 2.2.9.) O

Proposition 3.4.8 Letg = [p,q.r, 4], wherep,q,7r.5€ £, andletg,....,gi4
be as in proposition 8.4.8. Then

Te(9) = T(9.U) + R{q1. g0, 13, M1g13. 914} -

Proof. This follows i diately from itions 3.4.3 and 3.4.4. O

3.5 The generic narmal form

Theorem 3.5.1 Let g = [eg)) + aN,€,1,0], where ég,¢; € {~1.+1} and
@ # 0,6y. Then g has D,-codi ion 1. All bif ions h = [p.q.r.5],
which satisfy p = 0,4 #0, py 20, pxn ~q# 0, px, # 0 and r # 0 are
equivalent to g, with the coefficients e, ¢y and a satisfying the conditions
€ = 5gps, , €1 = ngq and a = pn/|q| . Difurcations which do not satisfy all

non-degeneracy conditions are of higher codimenaion than g .

The proof of theorem 3.5.1 will he given at the end of this subsection.

Remark 3.5.2 The theorem can be interpreted in the follawing way: The
parameter a which satisfies @ = py/|g| can be regarded as a modulus. In
the proof of theorem 3.5.1 it will be shown that

Tlg) = [(N’.Na\u.Af.A.u.~ M, M, ¢
+ R {a{N,0,0,0] 4 ¢[0,1,0,0],[1,0,0.0],[,,0,0,0],[0,0,1,0]} .
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Here M denotes the maximal ideal in £g. Hence [N,0.0,0] can be chosen
as an unfolding term since

T.(9) + R[N,0,0.0] = £, (T).

For this reason it is juatified to regard the normal form g = [eg Ay + aN,¢,,1,0]
as the generic Dy-equivariant bifurcation.

Lemma 3.5.8 Let g = [A + aN.3.1,0], where a, A # 0 and o # §. Then

T(9.U) = [< NN AL A ue> M M. £

Proof. Applying proposition 344 withp= A +aNg=08,r=13=10
yields the following for the generators of T(g, U):

= [NAj+aN? AN, N.0).
[AM + aNA,BA,A,0),
(A} + aNALBAL MO,
[Area + aN g, Bug, uq,0],
[ug. 0.0 + aN, 5],
84,2 + aN,0,1],
[N +aN? - A, A + (@~ f)N,-N,-1].
[AX 4+ (a ~BINA NX\ +aN? - A, -A,-N],
[~Nug, ~wy, NAy + aN? - BA A + (a - B)N],
[0.us.84, A 4 0N
[-Aus. —Nuy, Ary 4 (a - B)NA,NA + aN? - 34],
[N) +3aN,N,0],
{AA; 4+ 3aNA.384.A.0],
[Af 4 3aN A1 380, 0,,0],
[Mug + 3aN uy, 38uy.u,,0],
{(~20 + B)A. A + (a - 20)N.0,1],
(44,0, A1 4 (a = 20)N, ~2a + 3],
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= [2aNAusui 304, +aN],

Mga = [3.0.0.0],
g2 [u4,0,0,0],
Mg [0,0.2,,0],
ugia [0,0, uq,0] .

The proof is divided into three steps.
Step 1: Calculation of the module

Eu
RT(g.U)+ < M, uq >E5

It will be shown that

Eu

RT(g,U)+ < A, uy >&x

is generated by [N, 0,0,0,(1,0,0,0],(0,1,0,0] and [0,0, 1, 0] aa a vector space
over R provided a4 # 0 and a # 4. To this end consider the module

M= Enalhi,.... b,

[aN? BN, N.0],

[aNA,BA, A,0),

[0,0.aN,4],

[8A.aN.0,1].

[aN? - BA.(a — BIN,-N,-1],
[(e = BYNA,aN? — A -A,—N],
[0.0.aN? - 3A.(a - B)N],
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{0,0,84,aN],

[0,0,(a - BNA,aN? - BA],
[3aN?, 38N, N,0],
[3aNA,38A,4,0],

[(~2a + 8)A,(a - 28)N,0,1],
{0,0,(a - 28)N,-2a + 4],
[0,0.38A,0N].

The g h, are obtained from the of RT(g.U) working
modulo < Aj,ug >£y. A straightforward if cumbersome calculation

showa that
M= < N A Sy s Mya, MuaEnal

if 0,0 # 0 and a # (. (Here the subscript NA indicates that all ideals
are to be taken in the ring £xa ). The conditione for a and § arise in the
following way: The calculation yields the terms
&N~ A'A
2a(8 - a)N?
N -~ aA
a¥(2a - BN + (—2a + /)B%A

ing the firat comp of M. The matrix
‘ ot
2a(f - a) L]
a -a
| a’(2a - ) (-2a+ B)8* |
defined by the cocfficients of these terms has rank 2, if @, # 0 and a, 3.
This implies the result for M.
It follows that

B =

BT(9.U)+ < M. ue >Ex
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is generated by [¥,0,0,0),[1,0,0,0],[0,1,0,0] and {0.0, 1,0] as a vector apace
over R,ifn,A# Dand o # 3.

Step 2: Let R:= [< NI, N2, A} A ug >, M, M,E]. Then R/T(g.U)
is generated by [N'3,,0,0,0], [Nu,,0,0,0},(0,4,,0,0] and [0, us,0,0] as an
Ex,u, - module.

Dy the preparation theorem it followa from the result of step 1 that

£u
RT(9.U)
is generated by [N,0,0,0],(1.0,0,0]]0,1,0,0] and [0,0,1,0] as an £,,.,-
module. Now auppose ¢ € R. ¢ can be represented as
@ = ¢1[N.0,0,0]+ ¢2[1.0,0,0] + $2[0,1,0,0] + ¢4[0,0,1,0] + p1,
where ¢; € £3,4, (i = 1,...,4) and u € RT(g,U). Since RT(g,U)C R
compare the list of generators for RT(g,U) — this implies
@1[N,0,0,0] + $2(1,0,0,0] + ¢2[0,1,0,0] + ¢,[0,0,1,0] € R .
This, in turn, implies ¢, $3. 94 € My, u, and ¢2 € £x,4, {3], uq} . Therefore
R/RT(g,U) ia generated as an £3,,,-module hy
[V 2,.0.0,0],{Nu,,0,0.,0],[31,0,0,0],[u..0.0,0],
(0,1,0,0],[0,u4,0,0],(8,0, 21,0],[0,0, us,0]..
Recalling that

T(g.U) = RT(q.U) + &3, {[A’,o.o.o],[u..o.o.o],[o.o.A.,o],[o.o. o]}

yields the result.
Step 3: T'(g.U)=R.
It remains to show that R € T(g.U). The elements of RT(g, U) give rise
to relations between the generators of the £y, -maodule R/T(g,U). In arder
1 dund

to express these i more ¢ jently some ge are
added yielding the following liat:

[N%,0,0,0],[NX,,0,0,0],{NA,0,0,0],[Nu,.0,0,0],[A,0,0,0],
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[0, ¥.0,0],(0,A,0,0),[0, A;,0,0], [0, u4, 0,0]. [0, N2,0,0],
[0.0.N,0],[0,0,A.0],[0,0,¥2,0],]0,0,NA,0],[0,0,0,1].
[0,0,0,N],{0.0,0,N%,[0,0,0,A].

Now consider the relations defined by the following elements of RT(g.U):

Ng1.Ag... .. g12 ( the generators of RT(g,U), 18 relations) and

1
Ng1.A¢i, Nga Ngr.Ngro. Ngus. Agur .~ 5N(g10 =~ g3).,

1 1 1 1
5(910 ~ ga) .~ 5090 ~ 92). = 5NUgn1 — g2) s ~ 5801 — 92) 94— 3.

1 1
95— Bg1 N(Ngi - 04). 5(309: = Bga) . 5N (IAg) — Ago),
ga+Agu Ngr+9a.Ngra— 911, N(g2 - Jige).
l.N(ﬁNyl - Nyo).l_A(JNg. - Ngo). K and L
(another 25 relations), where
K :=g;— Bga — 3aNg + 2aNgo

L:=p(ga+ 94+ Ngi) - 2aN(ga-g1).
The generators and relations define a matrix with entries in £3,,, the
relations correspond to its rows and the generators to its columns. In order
to show R C T(g,U) we can ignore terms in M), , R by Nakayama's lemma.
This simplifien the matrix, which is diaplayed in figure 5.1 — a and A heing
replaced by a and b, respectively and yields the following: If a,8 # 0
and o # 4, this matrix bas rank 18. 7 This implies
R 5
T(g,U)
and hence R C T(g,U). O
The following propositions 3.5.4, 3.5.5 and 3.5.6 are devoted ta praving
that the tangent apace T(g,U) of lemma 3.5.] is intrinsic with respect to

*This wan checked using symhalic com putation.
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Figure 5.1: The matrix defined by between the
R/T(g,V)




the group of Dy- equivalences. This implies that the module P(g) of higher-
order terma contains T(g, U'), which is the content of lemma 3.5.7 below.
In order to show that T(g, U) ia intrinsic, it is necessary ta consider the
effect of D-equivalences on a germ g by explicit coordinate changes.
Let e = (5, X,A) be a D -equivalence, where X = [a,b,¢,d], a,b,c,d€
£5.a(0) > 0 and

A(MnA2) = (A(Ar ug) AaAg(Arwa))

where A1 € My, . Az € Eayu -
The following list contains notation for some invariants in £, which will

be used frequently below.

Ny a?N + B®NA 4 *Nug + d*N Auy - 2abA — 2cdAuy ., (5.1)
Ny := 2beN + 2adN - 2ac - 2bdA , (5.2)
a4+ 87A + c?uq + d*Auy — 2abN — 2¢dNuy, (5.3)
2bcA + 2adA — 2aeN — 26dNA (5.4)
D}, (5.5)

D\D,, (5.6)
D3, (5.7)
AA; + udds, (5.8)
2A;. (5.9)

Propasition 3.5.4 Let X and A be defined as above and let N := N o X
i=AoX,Ai=XoA, iy :=usoA. Then the following formulac hold:

N Ny +68)3 N, (5.10)
A A4 80A,, (5.11)

Ay LYILI (5.12)
ug usAd(Ar, uq) - (5.13)

Proaf. The results are obtained by ightforward calc




Praposition $.5.6 Let p € £y and let X and A be defined as above. Let
p:=po(X,A). Then there exiat germa py,p; € g such that

P = PN Ar A iia) + 62apr + Augps

The point of this statement is that the firat term in the expression for p
depends on Ny, A;,A),uq only — and not on N; and A;. This will he
relevant in the proof of lemma 3.5.7 helow.

Proof. Define

Flen,m,z,y.2,w):= p(z + a1,y + a2, 2, w).

Flay.a,z.y.7,w) = F(0,0,7,y,2,w)

2
+Zn.gl0.0.z... X

+ 3 Hylm,aa.z,y, 2, v)aie]
=

for some germs H,,. Putting
aF
hi = B—n.(ﬂ,ﬂ.z.y,z.w) (1=1,2)
and applying the last equation to a; = 8MN;, a3 = 6MA;, 2 = Ny,
y=A;.2=X and w = uy yields
P(N1+823N2, A + 83287, Ay wd)
= pP(NLAL AL )
+ 630 (Naha(Ni Ar A wa) + Agha(Ny. Ay A i)
DI ]

=1

(BAN AN A Ny Ay A iy

Since the germs H,,(6X3¥3.62342, Ny, Ay, Ay, i) are T-invariant, there ex-
ist germs K, L,, € £y such that

Hij(83aN2, 8228, Ny, By, Ay, ug) = R5y(0) + 82aL,, (1)
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Defining

Nah (N Ay A0 + Bgha(F, Ay Ay i)
+4u Y MNL,,

=2
P o= ) NiNK,
i+y=2
yields the result, since
P = PNy +82aN2, Ay + 62aAq, 0 i0).
a

Praposition 3.6.8 Let p.q.r,s€ £g. Then

Byl g.r 8] = [Auy, uor, Ag,p].

Praof. The following calculation yiclds the result:

..\,(p(:;)wﬁ( _2,',)"”’( —:l,)““’(: ))

,m\,(;')i-qA»\;( )+ru.6(_!")+a.ﬁu.( )

a
Lemma 3.56.7 Letg = [A; + aN.§,1,0], wheren,d # 0 anda # §. Then
P(g) > [< NAUNAMAL A uy > M M £

Proof. Let

Ri= [« N NAAL A w> MM E]
By lemnma 3.53 R = T(g.U). It will be shown that R is intrinsic with
respect to the group of D4-equivalences. Then a theorem of Gaffney [Gaf86)
implies the result.




Let e = (5, X,A) he a Dy-equivalence as defined abave,
T:=< N NALA A uy >

and let p,q,r,8 € £g such that p € ] and ¢,r € M. It will be shawn first
that e.h, € Rfore=1,...,4, where

hy = [p,0,0,0],ha = {0.9,0,0], k3 = (0,0,7,0],hq = [0,0.0.4] .
Consider the effect of a coordinate change (X,A) on h;:
hyo(X.A) = (po(X,A){a,b,c.d]
= pla,be,d).
Hence by proposition 3 5.5
hio(X,A) = p(Ny, Ay A i)a,b,c.d]
+4dapia, b, e, d]
+ Auypafa.b,e,d].

It follows from propasition 3.5.6 that the second and third term are in R .
Connider the first term.
By formula 5.1
NM=aN+m,
where m € I'. Hence N,I € I. Formula (5.8) implics A, € I. It is obvious
that A} € I and iy € /. Also My}, € I, since &; € My,,, - It follows that

PN AL u) €T,

since p€ I. Hence hya (X,A)€R.
Now cansider hj o (X, A). Using formulae (5.3) and (5.4) a calculation
ahows that

h0(X.A) = g[bAD, + cusDa.aD; + dusD2,dAD, + aDy, D, + bDy).

where ¢ = ga(X,A). Dy propositions 3.5.5 and 3.5.6 it suffices to consider

@(N1 A1 3 5)[BAD + cusDy,aD, + duyDy dAD, + aDa,eDy + bDy].
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Inapection of thia expreasion shaws that it is sufficient to prove that
(N, Ay A tig)aD € M.

This, however, follows immediately, since Ny A A, ey € M by formutare
(5.1). (5.8).(5.12) and (5.13), and since Q€ M. Hence hqo(X,A)€e R.
Now connider A3 o (X,A)€ R. A calculation yields

hao(X,A) = FluqeAs, uedAz, als, bAs),

where = ro(X,A). Since fuseA; € I and # € M, it follows that hy o
(X,A)€R.
For hy o (X, A) one obtains

hao(X,A) = a[DiA;Awed + DyAsuia, DyAguac + DiAzu b,
Dy AzAb + DaAguee, DyAza + DyAgu,d],

where i = s0(X,A), showing that h, o(X.A)eR.

So far it has been shown that & = [p.g.r. 8] € R implics h o(X,A)ER.
It remaina to ahow that h € R implies ;2 € B for 1 = 1, 8., where 8,
are the generatorn of £, (T). (Compare proposition 3.3.5.) Thia can ensily
be verified by looking at the multiplication table 4.1 in subsection 3.4. It
follows that R is intrinsic. O
Proof of thearem 8.5.1: Consider a bifurcation h = [p.q, r, a] satisfying
the recognition conditions p = 0, ¢ #FO0.pn #0.py—g#0.py, #0and
T#0. Lete=(5 X,A)bea D,-equivalence an ahove and let

ag:=a(0), ho:=(A(), (0.0) and mg:= Ag(0.0).

By lemma 3.5.7

Plg) 2 [« NLNALAL A e > M. M. £]

Working modulo P(g) the germ h reduces to

h:=[p, A1 + pNN,q,7.0].
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Again working modulo P(g) it is easy to check using formulae (5.1), (5.12)
and table (4.1) that e.h reduces to

Ipa, acliodr + pnad N, gad, ragmo. 0] . (5.14)
Let €9 := sgpy, and ¢; := sgg. The scaling equivalence defined by
o= lgl b, hor=lpa gl moi= gl
(5.14) becomes
PN

al
Define a := px/|g|. This shows that all bifurcations h satisfying the condi-

N.e1,1,0

A +

tions in the theorem are Dg-equivalent to the normal form g.
It follaws by propasition 3.4.5 that

Tg) = T(g.U)+ R{[A +aN,#.1,0],[M + 30N, 3¢.1,0],
[1.0.0.0].(A,,0.0.0],[0.0.1.0]} .

A short calculation shows that

T(g) = [< NLNMALA u > M M.E
+ R {a[N,0,0.0] + ¢(0,1.0,0],(1,0,0,0],[2,0,0,0],[0,0,1,0]}.

Hence T,(g) and thercfore g is of Dy-codi ion 1.

To prove the last statement note first that for A = [p,q.r,s] ta be a
bifurcation, it has to satisfy p = 0. If one of the degenaracy conditions is
not satisfied, it follows by proposition 3.4.3 that

codim®e(h) > 2.




3.6 Geometrical description of the generic normal form

This subsection contains gyratory bifurcation diagrams for the generic nor-
mal form in theorem 3.5.1. These schematic diagrams contain the following

information: The curves drawn in the diagrams represent the hranches of

the zero set of the normal form. The case ¢g = ¢; = 0 is considered — i. e.
g = {A1 + aN,1,1,0]. Choosing other values for the signs ¢g and ¢, yiclds
similar dingrams. The vertical coordinate corresponds to N = z§ + 23. The

horizontal coardinate, which is dencted by s, parametrises a circle around
the origin in parameter space given by A; = coss and A; = sins. (This
explains the term gyratory). There are three different cases to consider:
a<00<a<landa>1l.




Fignre 62: 0 ca <1

Figure 6.3: a > 1
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