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Abstract. The existence and non-uniqueness of two classes of weak solutions to

the Casimir equation for the Ito system is discussed. In particular, for (i) all possible

travelling wave solutions and (ii) one vital class of self-similar solutions, all possible

families of local power series solutions are found. We are then able to extend both types

of solutions to the entire real line, obtaining separate classes of weak solutions to the

Casimir equation. Such results constitute rare globally valid analytic solutions to a class

of nonlinear wave equations. Closed-form asymptotic approximations are also given in

each case, and these agree nicely with the numerical solutions available in the literature.

1. Introduction. We study a partial differential equation introduced by Olver and

Rosenau [1],

utt = u2
t (u

2
t (ux ± uxxx))x, (1)

which comes from the Ito system [2]

Ut = Uxxx + 3UUx + V Vx, Vt = (UV )x. (2)

Ito showed that the system is highly symmetric and possesses infinitely many conservation

laws. It is an extension of the KdV equation, with an additional field variable. Olver and

Rosenau [1] introduced a dual bi-Hamiltonian system for the Ito system, which admits

a Casimir functional, and the associated Casimir equation

ψt ± ψxxt = (φ− 1)x ± (φ− 1)xxx, φt = a[φ− 2(ψ ± ψxx)]x. (3)
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472 JOHN HAUSSERMANN AND ROBERT A. VAN GORDER

They then introduced a stream function for the system, yielding the equation (1). In [3],

Van Gorder obtained analytic solutions to this equation, which consist of explicit exact

solutions in some cases and implicit integral relations in others.

While the Casimir equation for the Ito system has received relatively little attention

in the recent literature, it is an interesting nonlinear partial differential equation related

to an extension of the KdV equation. Despite being highly nonlinear, as shown in [3]

it admits a variety of exact and analytical solutions. In the present paper, we classify

all possible series solutions to (i) travelling wave reductions of (1) and (ii) a class of

self-similar reductions to (1), in Sections 2 and 3, respectively. In each case, we provide a

method of obtaining global weak solutions from the local series solutions. In order to do

so, we will need two results on the existence and convergence region of series solutions to

nonlinear differential equations, which we give for completeness in the appendix. Then,

in Section 4, we employ an alternate method in order to obtain asymptotic expansions

for large values of the independent variables in each of the travelling wave and self-similar

solution cases.

We should note that by weak solution, we refer specifically to continuous solutions

which may fail to be solutions at a countable number of points, due to a degeneracy

in the derivatives. This loss of differentiability at a countable number of points is due

to the manner of construction of the series solutions: one matches separate solutions

to a countable number of points to obtain a continuous solution. At these points, the

solutions may fail to have a continuous derivative of some finite order, whereas each of the

separate solutions have infinitely many continuous derivatives in their respective finite

domains of definition. Thus, the solutions are in general piecewise differentiable. One

commonly discussed example in the literature of such a function would be a multi-peakon,

with a finite number of points at which the function is continuous yet not continuously

differentiable.

2. Travelling wave solutions. We first assume a solution to (1) of the form u(x, t) =

φ(z), where z = x − St is the travelling wave variable. This has the effect of reducing

the governing partial differential equation (1) to an ordinary differential equation:

φ′′ = S2φ′2(φ′2(φ′ ± φ′′′))′. (4)

Making the substitution f(z) = φ′(z) to reduce the order of (4), and ε = ±1 for notational

simplicity, we obtain

f ′ = S2f2(f2(f + εf ′′))′. (5)

In [3], the solution to this equation was found to satisfy the following implicit equation:∫ f

f0

qdq√
K ′q2 + 2Kq + S−2 − q4

= ±
√
ε(z − z0), (6)

where K and K ′ are constants of integration and f(z0) = f0. Then, we define

G(f) =

∫ f

f0

qdq√
K ′q2 + 2Kq + S−2 − q4

. (7)
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WEAK SOLUTIONS TO THE CASIMIR EQUATION FOR THE ITO SYSTEM 473

Clearly, G(f0) = 0 and G′(f0) =
f0√

K′f02+2Kf0+S−2−f04
. If f0 �= 0, then G′(f0) �= 0. In

this case, in a neighbourhood of z = z0, it is possible to invert (7) for f via reversion

of series [6]. (Meanwhile, if f0 = 0, then one can deduce by induction that f (n)(z0) = 0

for all n, or that f (n)(z0) does not exist for some n. This degenerate case will then be

excluded.) For z near z0, we have solution branches

f±(z) = f0 +

∞∑
n=1

(±1)nαn(z − z0)
nεn/2

n!
, (8)

where for each n ≥ 1,

αn = lim
f→f0

dn−1

dfn−1

(
f − f0
G(f)

)n

. (9)

Computing the first few terms in this series, we obtain

f±(z) =f0 ±
√
ε

f0

√
K ′f0

2 + 2Kf0 + S−2 − f0
4(z − z0)

− ε

2f0
3 (Kf0 + S−2 + f0

4)(z − z0)
2

±
√
K ′f0

2 + 2Kf0 + S−2 − f0
4

√
εS2f0

5

×
(
1− S2

(
3f0

4 + εf0
3 − 1

f0
3 (Kf0 + S−2 + f0

4)ε

))
(z − z0)

3

+O
(
(z − z0)

4
)
.

(10)

Thus, we have a general series solution to (5). Note that from Theorem B of Appendix B

these series each have a non-zero radius of convergence, which will be useful later in this

paper. Observe that when ε = 1 we have real-valued solutions, whereas when ε = −1

we have complex-valued solutions. Now, we would wish to map back a solution into a

solution to (1). Before doing so, we will need to discuss regularization of f in order to

recover a solution φ to (4).

2.1. Classification of travelling wave series solutions. We shall attempt to find and

classify all non-trivial solutions to equation (5) of the form

f(z) = zp
∞∑

n=0

Cnz
rn, (11)

where r and p are real numbers. Note that we lose no generality in expanding our series

about z0 = 0, yet we will gain notational convenience. Substituting the series (11) into

(5), we obtain

∞∑
k=0

zrk+p−1(rk + p)Ck = S2
∞∑
k=0

(
zrk+5p−1Ik + εzrk+5p−3Jk

)
, (12)

where

Ik =

k∑
l=0

(rl + 3p)

l∑
m=0

m∑
n=0

CnCm−nCl−m

k−l∑
h=0

ChCk−l−h (13)
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and

Jk =

k∑
l=0

(rl+3p−2)

l∑
m=0

m∑
n=0

CnCm−nCl−m(r(l−m)+p)(r(l−m)+p−1)

k−l∑
h=0

ChCk−l−h.

(14)

We shall use the above equations to find suitable series in several cases of the problem.

2.2. Series for initial value problems such that f ∈ C3(Ω). Assume first that we have

initial data for u that is consistent with our travelling wave assumption. Then this leads

to an initial condition which fixes f(0), f ′(0), and f ′′(0). In such a case we know that

we must have r and p non-negative, so that f(0) exists.

2.2.1. Case 1: r and p are integers. In this case, f has derivatives of all orders at

0. Therefore, using inductive reasoning on (5), we conclude that f(0) = 0 implies that

f is the trivial solution. So, we require that f(0) �= 0, and thus p = 0. Thus, upon

examining (12), we see r = 1 or r = 2. Following section 2, we compute the series in

terms of the initial conditions. First, consider r = 1. Notice that if f(z) =
∑∞

n=0 Cnz
n,

then Cn = f(n)(0)
n! . We can find f (n)(0) by differentiating (5) n − 3 times (for n > 2)

and substituting the values of f (k)(0) that we have already found, for k < n. Thus, we

obtain

f(z) =f0 + f0
′z +

f0
′′

2
z2 +

ε

6

(
f0

′ − 2S2f0
3f0

′[f0 + εf0
′′]− f0

′S2f0
4

S2f0
4

)
z3

+
ε

24S2f0
5

(
f0f0

′′ − 4f0
′2 − S2f0

5f0
′′

−2S2f0
3[f0f0

′(f0
′ + εf0

′′′) + f0f0
′′(f0 + εf0

′′)− f0
′2(f0 + εf0

′′)]
)
z4

+O(z5)

(15)

where, for brevity, f0 denotes f(0), f0
′ denotes f ′(0), and so on. Because the coefficient

of zn in the power series for f is proportional to f (n)(0), the r = 2 case can be viewed as a

special case of r = 1, where the odd order derivatives f (2k+1)(0) are zero. By Theorem A

of Appendix A, each of the series in this sub-case has a non-zero radius of convergence. It

should be noted that the travelling wave solutions (10) found above fall into the present

case.

2.2.2. Case 2: r is an integer, p is not an integer. Our differential equation (5) makes

no sense unless f ∈ C3(Ω), where Ω is the set on which f solves (5). Since we have

initial data, we require Ω to contain an open neighbourhood around 0. We adjust p

so that C0 �= 0, and thus p > 3. We no longer require that f(0) �= 0. The first term

with a non-zero coefficient on the left-hand side of (12) is of order zp−1. Examining (14)

carefully, we see that either the first term with a non-zero coefficient on the right-hand

side of (12) is of order z5p−3 or, from (14), 3p = 2 (a contradiction). Therefore, for the

differential equation to be satisfied, the terms of orders zp−1 and z5p−3 must cancel and

thus p = 1
2 , a contradiction. Therefore, no such series solves (5).

2.2.3. Case 3: r is not an integer. As above, we require that f ∈ C3(Ω), and adjust p

so that C0 �= 0. Thus, p+ r > 3 or p+ r is an integer and p+2r > 3. In addition, either

p > 3 or p is an integer. Consider (12). We see that p > 3 leaves unbalanced terms.

Thus, p is an integer, so p + r > 3. If p = 0, no term cancels the second lowest order
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WEAK SOLUTIONS TO THE CASIMIR EQUATION FOR THE ITO SYSTEM 475

term on the right-hand side. If p > 0, no term cancels the second lowest order term on

the left-hand side. Thus, no such series solves (5).

2.3. Series for f such that f /∈ C3(Ω). Consider series solutions which may not be

C3(Ω). For instance, series solutions with powers z1/2 are in such a class; such solutions

are not differentiable at z = 0. For all further sub-cases, we alter p in (11) so that C0 �= 0.
2.3.1. Case 4: r is positive, p = 0. The terms corresponding to k = 0 on both sides

of (12) are 0. Let q be the second smallest natural number for which Cq �= 0. Then
upon examining (12), the lowest order term in the rightmost sum is order zrq−3, unless
rq = 1 or rq = 2. In the first case, we have a contradiction as no term from the other
sums cancels this term. In the second and third cases, since q must be a natural number
greater than 0, this implies that r is of the form r = 1

n where n is a natural number.

Thus, we consider (5) and assume that f(z) = g(ν) where ν = z
1
n . This yields a new

ordinary differential equation

a0ν
2ng′ = S2g2

(
2a0gg

′ν2n(g + ενn+1(a1g
′ + a2νg

′′)) + g2(a0ν
2ng′ + a3g

′ + a4νg
′′ + a5ν

2g′′′)
)
,

(16)

where a0 through a5 are non-zero constants involving n. We shall consider the possibility

of a series expansion in positive integer powers of ν. To this end, we take

g(ν) =

∞∑
k=0

Bkν
k, (17)

where, since f(0) �= 0, we have B0 �= 0. The existence of such a series would be equivalent

to the existence of the type of series we are considering in this sub-case for f . Evaluating

(16) at 0 and realizing that g(0) �= 0, we can see that g′(0) = 0. Differentiating (16), we

obtain g′′(0) = 0, and differentiating again we obtain g′′′(0) = 0. Using strong induction

and these base cases and noticing that due to our assumption (17) g is smooth at 0, it

can be shown that g(n)(0) = 0 for all n > 0. Thus, g is constant, and thus f is constant

in the present sub-case. Examining (5), we see that any constant satisfies the equation.

The other two cases, rq = 1 and 3rq = 1, reduce to either Case 1 or similar arguments.

Thus the only solutions in this sub-case are trivial, or already explored.

2.3.2. Case 5: r is positive, p �= 0. In this case, our assumption that C0 �= 0 is

extremely helpful: we deduce immediately that p must be either 1, 1
2 , or

2
3 . First, if

p = 1, no term on the right-hand side of (12) cancels the constant term on the left-hand

side. The p = 2
3 situation is similar. If p = 1

2 , we find that r = 2
n where n is a positive

integer. When n > 1, it can be proven by strong induction, using (12) and the expansion

f ′ = 3S2f4f ′ + εS2f4f ′′′ + εS2f3f ′f ′′ (18)

of (5), that all the coefficients Cw = 0, where 2w
n is not an integer multiple of 2. This

implies that all possible cases reduce to n = 1. Thus, we must have r = 2 and p = 1
2 .

Plugging in such a series for (5), we see that C0 can only be 0 or one of the four fourth
roots of the number 4

S2ε . All the other coefficients in the series are uniquely determined

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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by this choice. The non-trivial solution is:

f(z) =
4

√
4

S2ε
z

1
2 − 1

3
S2

(
4

S2ε

) 5
4

z
5
2 +

(
− 47

630
S6

(
4

S2ε

) 13
4

ε+
3

35
S4

(
4

S2ε

) 9
4

)
z

9
2

+

(
− 3431

80850
S10

(
4

S2ε

) 21
4

k2 − 1261

40425
S6

(
4

S2ε

) 13
4

+
25826

363825
S8

(
4

S2ε

) 17
4

ε

)
z

13
2

+O(z17/2),

(19)

where 4

√
4

S2ε is determined equally for all coefficients. Notice that this function is not

differentiable at 0, and hence f /∈ C3(Ω).

2.3.3. Case 6: r is negative. Examination of (12) leads quickly to p = 0. Let q be

the second smallest integer so that Cq �= 0. Then upon expanding the coefficient zrq−1

by brute force in (12) and (13), we have Cq = 3rqC0
4Cq. Thus, Cq = 0, a contradiction.

Thus, no such series solves (5).

With this, we have classified all possible series solutions to (5). However, we are really

interested in solutions φ to (4). We now turn our attention to recovering a solution φ(z)

to (4) given a solution f(z) to (5).

2.4. Regularization of travelling wave series solutions. We have found two distinct

classes of series solutions to (5), both of which can be written in the form

f(z) = zp
∞∑

n=0

Cnz
rn. (20)

When p = 1
2 , this series appears to have a finite, non-zero radius of convergence. In the

appendix we show that series of the form (15) have non-zero radius of convergence, and

in principle we expect many series of that type to have a finite radius of convergence.

Therefore, we shall do some work to convert these series solutions to (5), which may

have finite radius of convergence, to continuous weak solutions to (4). Let f be of the

form (20) and have f satisfy (5). Let R be a positive number smaller than the radius of

convergence of the series f . Notice that if f(z) is a solution to (5), then so is ±f(z − T )

for any fixed real number T . Let us construct a function F in the following way:

F (z) =

{
f(z − kR) for z ∈ [(2k − 1)R, (2k + 1)R) when k is an even integer ,

−f(z − kR) for z ∈ [(2k − 1)R, (2k + 1)R) when k is an odd integer .
(21)

Then, F is a weak solution to (5) in the sense that F is a solution to (5) except at points

z which are integer multiples of R. Of course, with the appropriate initial data, we may

match solutions to obtain a function F ∈ C0(Ω). We remark that other forms of F are

possible. Assuming we obtain a solution f which has convergent series representation

on |z − z0| ≤ R, we may construct various continuations from z ∈ [z0 − R, z0 + R] to

Ω. Indeed, one can in principle consider such an extension for series solutions in more

than one variable [4] if we do not want to make the travelling wave assumption on the

solutions. Such series solutions would be direct solutions u(x, t) to (1) and could then

be extended to their maximum domain of convergence.

In addition, the function F we’ve constructed is periodic and has integral 0 over any

whole period. Thus, the integral over any subset of the real line is finite. We then define
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Fig. 1. Plots of the travelling wave solutions to (4) satisfying f ′′
0 =

−ε
(
f4
0 + S−2

)
f−3
0 , f ′

0 = 0, f0 = 1 and ε = −1 for various values
of the wave speed S. These solutions scale as exponentials (more
precisely, as sinh) for large z. The smaller the value of S, the more
rapid the increase.

a function Φ by

Φ(z) = Φ0 +

∫ z

z0

F (s)ds. (22)

Clearly, Φ is a continuous, periodic function which satisfies (4). Φ is not necessarily

C4(Ω), since f (and hence F ) is not necessarily C3(Ω). For other forms of F , Φ can still

be continuous, but it would not be expected to exhibit periodicity. The reason for the

periodicity of Φ (in the form we’ve taken it) is the fact that F is periodic with integral

equal to zero over any period. In particular, if τ represents the period of F , then

Φ(z+τ ) = Φ0+

∫ z+τ

z0

F (s)ds = Φ0+

∫ z

z0

F (s)ds+

∫ z+τ

z

F (s)ds = Φ0+

∫ z

z0

F (s)ds = Φ(z) ,

(23)

since ∫ z+τ

z

F (s)ds = 0 . (24)

2.5. Specific examples. Let us consider a specific example in order to illustrate the

form of some of the solutions. It was shown in [3] that exact integrals for the travelling

wave case exist and admit closed form solutions in some specific cases. One such case

corresponds to

f ′′
0 = −ε

(
f4
0 + S−2

f3
0

)
. (25)
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Fig. 2. Plots of the travelling wave solutions to (4) satisfying f ′′
0 =

−ε
(
f4
0 + S−2

)
f−3
0 , f ′

0 = 0, f0 = −1 and ε = 1 for various values
of the wave speed S. The positive ε solutions scale as oscillations
along a linear trend. The smaller the value of S, the more rapid the
increase.

In this case, solutions scale like

f(z) ∼
√
C1 + C2 sinh(z + C3) (26)

for large z and ε = −1. The solution for φ(z) is then found by integrating over (26). For

such solutions, the radius of convergence of the corresponding Taylor series is finite and

positive (sinh has infinite radius of convergence, while the root is the limiting term here,

with finite yet positive radius of convergence, depending on C1 and C2). This shows

that the types of solutions we expect to obtain should have finite yet positive radius of

convergence, and that our method for continuing solutions and then matching at common

points makes sense.

From the identities derived previously, it is necessary for f0 �= 0. That is, we must

exclude the possibility φ′(0) = 0; otherwise, the travelling wave ordinary differential

equation becomes singular. Furthermore, in the limit f0 → 0, the coefficients of the

obtained Taylor series become singular. Performing numerical computations with these

series, we observe a breakdown of solutions for f0 << 1. Similar comments hold for

S → 0, so we avoid S = 0 as well.

Let us demonstrate some of the solutions obtained using (25) in Figure 1. We see

that these solutions obey the scaling (26) for large enough z. There are, of course, other

possible solutions. We have shown that solutions are parametrized by the constants

φ0 = φ(0), f0 = φ′(0), f ′
0 = φ′′(0) and f ′′

0 = φ′′′(0) as well as S. A qualitative change in

solutions is also observed for ε = 1 or ε = −1. Hence, we have solutions corresponding

to parameter manifolds Mε=±1 ⊂ R
5. With such a huge parameter space, a number
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of solutions might be possible, and we cannot discuss them all here. Indeed, the very

restrictive condition (25) is just a narrow restriction which permits comparison to an

explicitly integrable subcase. Note that the first-order correction for any solution with

exactly the same initial data occurs at the fourth-order terms. Then, a small perturbation

0 < χ << 1 in parameter space along the S axis will result in at most the following

variation:

|φS+χ(z)− φS(z)| =
∣∣∣∣ f ′

0

24f4
0

∣∣∣∣
(

1

S2
− 1

(S + χ)2

)
z4 +O(z5) ≤

∣∣∣∣ f ′
0

24f4
0

∣∣∣∣ z4S2
+O(z5) . (27)

Therefore, while initial variations due to a change in S are small for small z, they become

possibly very large for large z. This behavior is observed in Figure 1.

Similar to the results plotted in Figure 1, we again use (25), this time taking ε = 1,

and plot the resulting travelling wave solutions in Figure 2. The ε = 1 solutions are quite

distinct in form compared to the ε = −1 solutions. Here the solutions oscillate along an

increasing trend. Note that both of the plots obtained here agree qualitatively with the

large-z asymptotic solutions that we present in Section 4.

3. Self-similar solutions. As in Van Gorder [3], let us assume a solution of the form

u(x, t) = g(x)h(t). We find that one such solution takes the form u(x, t) =
√
t−Kg(x).

Plugging this back into (1), we see that g satisfies the ordinary differential equation

4g + 2g3(g′)2 + 2εg3g′g′′′ + g4g′′ + εg4g(iv) = 0. (28)

We shall attempt to classify all non-trivial series solutions to this equation of the form

g(x) = xp
∞∑

n=0

Cnx
rn, (29)

where q and r are real numbers. Again, if g(x) is a solution to (28), then so is g(x− T )

for any fixed real number T . Thus, our decision to expand our series at x0 = 0 costs us

no generality. In addition, we adjust p so that C0 is nonzero. We substitute our series

for g into our differential equation. From (28) and (29), upon computing many Cauchy

products, we obtain the identity

4

∞∑
k=0

Ckx
rk+p +

∞∑
k=0

Akx
rk+5p−2 + ε

∞∑
k=0

Bkx
rk+5p−4 = 0 , (30)

where

Ak =

k∑
m=0

(rm+ 3p− 1)

m∑
n=0

Cn(rn+ p)

m−n∑
l=0

ClCm−n−l

k−m∑
b=0

CbCk−m−b (31)

and

Bk =

k∑
m=0

(rm+ 3p− 3)

m∑
n=0

Cn(rn+ p)(rn+ p− 1)(rn+ p− 2)

m−n∑
l=0

ClCm−n−l. (32)
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3.1. Solutions g ∈ C4(R). Assume we have initial data for u that is consistent with

our separability assumption. If K �= 0, this initial data translates to initial conditions on

g of the form g(0), g′(0), g′′(0), and g′′′(0), and we assume g is four times differentiable

at 0 and that g(iv) is continuous at 0. Since g(iv) is continuous at 0, we calculate g(iv)(0)

with a limit:

g(iv)(0) = lim
x→0

4g(x) + 2g(x)3g′(x)2 + 2εg(x)3g′(x)g′′′(x) + g(x)4g′′(x)

−εg(x)4
. (33)

If g is not identically 0, we can cancel a power of g in the numerator and denominator.

Examining the result, we see that if g(0) = 0, then limx→0 g
(iv)(x) does not exist, and

hence g(iv) is not continuous at 0. Thus, we require that g(0) �= 0 so that we avoid

studying the trivial case. Thus, we may assume that p = 0 and r > 0.

3.1.1. Case 1: r is a positive integer. From (30) we see that r = 1 or r = 2. Either

way, we perform an analysis similar to the one in sub-case 1.1 of Section 4 and find that

by differentiating (28) an appropriate number of times we can compute the coefficients

Ck from the initial conditions (as justified in section 2). To fourth order, we obtain:

g(x) = g0 + g0
′x+

g0
′′

2
x2 +

g0
′′′

6
x3 +

4g0 + 2g0
3g0

′2 + 2εg0
3g0

′g0
′′′ + g0

4g0
′′

−24εg04
x4 +O(x5) ,

(34)

where, for brevity, the g0 on the right-hand side denotes g(0) and so on. Differentiating

(28) once, we can see that if g′(0) and g′′′(0) are both 0, then, since g(0) �= 0, we must

have g(v)(0) �= 0, and thus, r �= 2. Thus, the only possibility in this case is r = 1, depicted

above. By Theorem B of Appendix B, each of the series in this case has non-zero radius

of convergence.

3.1.2. Case 2: r is positive, but is not an integer. In this case, r > 4; otherwise, g is

not 4 times differentiable at x = 0. Thus, examining (30), we have a contradiction. So,

no solutions of this type are possible.

3.2. Solutions g /∈ C4(R). We may in principle construct additional series solutions

to (28) of type (29) that may not be differentiable at x = 0. Recall that we have allowed

only those values of p so that C0 �= 0.

3.2.1. Case 3: r is a positive integer, p is not. From (30), either p > 1 or the term of

lowest degree on the right-hand side cancels nothing. If p > 1, nothing cancels the term

of lowest degree on the left. Thus no such series solve (28).

3.2.2. Case 4: r is a positive non-integer. If p < 0, we have a contradiction because

no term cancels the lowest degree on the right-hand side of (30). If p is not an integer,

we have a contradiction for the same reason as in sub-case 2.2. If p ≥ 1, no term cancels

the lowest degree term on the left-hand side (as B0 = 0 when p = 1). Thus, p = 0. We

see that, this being the case, r = 2
N for some natural number N , where, since r is not

an integer, N > 2. We can see (non-trivially) from the right-hand side that Ch = 0 for

all positive natural numbers h where hr < 4 and hr is not an integer. Then, let q be the

smallest integer for which Cq is non-zero and qr is not an integer. Then, we can see that

in (28) no term cancels the term εC0
4Cq(rq)(rq − 1)(rq − 2)(rq − 3)xrq−4, which comes

from the rightmost expression. Thus, no such series solve (28).
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3.2.3. Case 5: r is negative. Upon examining (30), we see that p ≥ 1
2 , or no term

cancels the highest degree term on the left-hand side. However, if p > 1
2 , no term cancels

the highest degree term on the right-hand side. Therefore, p = 1
2 . We see, therefore,

that r = − 2
N , where N is a natural number other than 0. We shall see that when N = 1,

we have a solution. Otherwise, it can be proven by strong induction that all solutions

reduce to N = 1. We have r = −2, p = 1
2 . As in the travelling wave case, there are only

five choices for C0: 0, or one of the four fourth roots of −16. Unlike the travelling wave

case, the rest of the constants in the series are not uniquely determined by the choice

of C0 (C1 can be any number), though they are determined by C0 and C1. As g is not

differentiable at 0 in this case, we cannot use the technique we used in Case 1 to write

down the series in general. We can, however, give an example of such a series:

g(x) = 2ix1/2 +
9
√
2(1 + i)

16
εx−3/2 − 1539

√
2(1 + i)

512
x−7/2

+
238553

√
2(1 + i)

40960
(1 + i)x−11/2 +O

(
x−15/2

)
.

(35)

Notice that in this case we have an asymptotic series solution, valid not for x = 0 but

rather for x → ∞.

3.3. Regularization of self-similar solutions. We have found series solutions to (28).

We wish to regularize those series solutions which are not asymptotic, following the

method presented in section 5. Therefore, the series we are presently concerned with are

of the form:

g(x) =
∞∑

n=0

Cnx
n. (36)

In principle, we expect a series of this type to have a finite radius of convergence; we

already know the radius of convergence is non-zero. Therefore, we will attempt to obtain

weak solutions to (28) from these series. Let g be of the form (36) and satisfy (28). Let

R be a positive number smaller than the radius of convergence of the series g. Recall

that if g(x) is a solution to (28), so is g(x− T ) for any fixed real number T , and that if

g(x) is a solution, so is −g(x). Then, define G in the following way:

G(x) =

{
g(x− kR) for x ∈ [(2k − 1)R, (2k + 1)R) when k is an even integer ,

−g(x− kR) for x ∈ [(2k − 1)R, (2k + 1)R) when k is an odd integer .
(37)

Then, G is a solution to the ordinary differential equation (28) governing the self-similar

solutions to (1), except at points x which are integer multiples of R. Thus (37) constitutes

a weak solution to (28) valid globally.

3.4. Specific examples. Consider ε = −1. As seen before in the travelling wave case,

we have solutions which exhibit exponential growth. Such solutions are shown in Figure

3. These solutions are consistent with the asymptotic solutions which we derive later in

Section 4.

When ε = 1, the solutions become more difficult to obtain. This is because the

solutions for ε = 1 are dominated by oscillatory behavior, which means that the solutions

eventually tend to zero. Yet, this causes (28) to become singular (the g(iv) term has a

coefficient g4). In between regions where g → 0, however, solutions may be obtained as
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Fig. 3. Plots of the travelling wave solutions to (28) satisfying
g′(0) = 0, g′′(0), g′′′(0) = 0 and ε = −1 for various values of the
initial condition g(0).

Fig. 4. Plots of the solution to (28) satisfying g(0) = 5, g′(0) = 1,
g′′(0), g′′′(0) = 0 and ε = 1.

discussed above. One such solution is displayed in Figure 4. Again, such solutions are

consistent with the form of the asymptotic solutions derived in Section 4.

The dynamics of the solution in Figure 4 are best shown on a phase portrait, and we do

this in Figure 5. As g → 0, the solution becomes undefined, while for intermediate values
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Fig. 5. Numerically generated phase portrait of the solution to (28)
satisfying g(0) = 5, g′(0) = 1, g′′(0), g′′′(0) = 0 and ε = 1.

of x the solution approaches periodic behavior of fixed amplitude, before this structure

is destroyed when g → 0 on the other side of the sub-domain. Thus, these solutions exist

on intervals of the form (x1, x2), where limx→x+
1
g(x) = 0 and limx→x−

2
g(x) = 0. On the

interior of this interval, we observe the emergence of oscillations.

4. Asymptotic properties of solutions. Here we shall discuss asymptotic approx-

imations for both the travelling wave and self-similar solutions. These solutions will be

qualitatively distinct from those discussed previously in Sections 2 and 3.

4.1. Asymptotic properties of the travelling wave solutions. In order to ascertain the

large-z asymptotics for (5), let us introduce the change of function h(χ) = f(z) where

χ = 1/z. Then, (5) becomes

h′′′ − 6

χ
h′′ + 3

(
ε

χ4
+

2

χ2

)
h′ + 2

h′h′′

h
+

4

χ

h′2

h
− ε

S2χ4

h′

h4
= 0 . (38)

Assuming nonlinear terms contribute sufficiently small contributions to the asymptotics,

we have

h′′′ − 6

χ
h′′ + 3

(
ε

χ4
+

2

χ2

)
h′ = 0 . (39)

This is a second-order equation for h′, and we find

h′(χ)= iχ4

(
c1

(
ε+ i

√
3εχ+χ2

)
exp

(
i
√
3ε

χ

)
+c2

(
−ε+ i

√
3εχ+ χ2

)
exp

(
− i

√
3ε

χ

))
.

(40)
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4.1.1. The ε = 1 reduction. Let us first consider the case when ε = 1. Picking c1 =

c2 = β/2 for simplicity,

h′(χ) = β
(
1− χ2

)
χ4 sin

(√
3

χ

)
+
√
3βχ5 cos

(√
3

χ

)
. (41)

Performing one integration, we recover

h(χ) =β1 +
√
3β

(
χ7 − 4

5
χ5 +

1

5
χ3 − 3

10
χ

)
sin

(√
3

χ

)

− β

(
3χ6 +

3

5
χ4 − 3

10
χ2

)
cos

(√
3

χ

)
+

9β

10
Ci

(√
3

χ

)
,

(42)

where β1 is another constant of integration, Ci(x) denotes the cosine integral [5]

Ci(x) = γ + ln(x) +

∫ x

0

(
cos(τ )− 1

τ

)
dτ, (43)

and γ is the Euler-Mascheroni constant. Then, the asymptotics for f become

f(z) ∼β1 + β
√
3

(
1

z7
− 4

5

1

z5
+

1

5

1

z3
− 3

10

1

z

)
sin

(√
3z

)

− β

(
3
1

z6
+

3

5

1

z4
− 3

10

1

z2

)
cos

(√
3z

)
+

9β

10
Ci

(√
3z

)
.

(44)

Integrating (44) once more, we obtain the asymptotics for φ:

φ(z) ∼β1z + β2 − β
√
3

(
1

6

1

z6
− 3

40

1

z4
+

19

80

1

z2
+

3

10

)
sin

(√
3z

)

+ β

(
1

2

1

z5
+

11

40

1

z3
− 81

80

1

z

)
cos

(√
3z

)
+

9β

10
zCi

(√
3z

)
− 21β

√
3

16
Si
(√

3z
)
,

(45)

where Si(x) denotes the sine integral [5],

Si(x) =

∫ x

0

sin(τ )

τ
dτ. (46)

4.1.2. The ε = −1 reduction. For the remaining case of ε = −1, we obtain two solution

branches: one which exponentially decays, and the other which exponentially grows. For

simplicity of the expressions, let us take the exponentially decaying branch. Results for

the other branch are similar in form. To this end, set c1 = −iβ and c2 = 0. Then

h′(χ) = β
(
1 +

√
3χ+ χ2

)
χ4 exp

(
−
√
3

χ

)
. (47)

Integrating once, we have

h(χ) =
β

70
χ
(
10χ6 + 10

√
3χ5 + 8χ4 − 2

√
3χ3 + 2χ2 −

√
3χ+ 3

)
exp

(
−
√
3

χ

)

+ β1 −
3
√
3β

70
Ei

(√
3

χ

)
.

(48)
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Here Ei is the exponential integral [5],

Ei(x) =

∫ ∞

1

e−xτ

τ
dτ. (49)

The asymptotics for f are then

f(z) ∼ β

70

1

z

(
10

z6
+

10
√
3

z5
+

8

z4
− 2

√
3

z3
+

2

z2
−

√
3

z
+ 3

)
e−

√
3z

+ β1 −
3
√
3β

70
Ei

(√
3z

)
.

(50)

Integrating (50) once more, we have the asymptotics for φ:

φ(z) ∼ β

70

(
3 +

27
√
3

8z
− 19

8z2
+

11
√
3

12z3
− 3

4z4
− 5

√
3

3z5
− 5

3z6

)
e−

√
3z

+ β1z + β2 −
3β

560

(
35 + 8

√
3z

)
Ei

(√
3z

)
.

(51)

4.2. Asymptotic properties of the self-similar solutions. Let us make the change of

function j(y) = g(x) where y = 1/x. Then, (28) becomes

j(iv) +
12

y
j′′′ +

(
ε

y4
+

36

y2

)
j′′ +

(
2ε

y5
+

24

y3

)
j′

+
j′

j

(
2j′′′ +

2

y
j′′ +

(
2ε

y4
+

12

y2

)
j′
)
+

4ε

y8
1

j3
= 0.

(52)

Assuming nonlinear terms contribute sufficiently small contributions to the asymptotics,

we have

j(iv) +
12

y
j′′′ +

(
ε

y4
+

36

y2

)
j′′ +

(
2ε

y5
+

24

y3

)
j′ = 0. (53)

The exact solution to this equation takes the form

j(y) = β0 +
β1

y
+ β2 cosh

(√
−ε

2y

)
+ β3 sinh

(√
−ε

2y

)
cosh

(√
−ε

2y

)
. (54)

We then recover the asymptotic solution for g(x):

g(x) = β0 + β1x+ β2 cosh

(√
−ε

2
x

)
+ β3 sinh

(√
−ε

2
x

)
cosh

(√
−ε

2
x

)
. (55)

Thus, when ε = 1 we obtain oscillatory solutions (just as in the travelling wave case)

while when ε = −1 we obtain solutions with exponential growth and decay (again, just

like in the travelling wave case).

5. Conclusions. We have used various analytic techniques to classify all power series

solutions to (1) of the travelling wave type, including a general power series solution

obtained by reversion of series in [3]. We have regularized the series solutions of the

travelling wave type, so that our power series solutions with finite radius of convergence

may be used to construct weak solutions which are valid globally except at countably

many real numbers. The class of such solutions constructed was periodic, but non-

periodic constructions are also possible.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



486 JOHN HAUSSERMANN AND ROBERT A. VAN GORDER

We have used similar analytic techniques to classify all power series solutions to (1) of

a certain self-similar type. In this case we found that asymptotic series, which are con-

vergent for large x and divergent for small x, exist. We have regularized those self-similar

series solutions that do converge for small x, again obtaining periodic weak solutions.

With this, we have given a constructive proof of the existence of weak global solutions

to (1) in both the travelling wave and self-similar cases discussed. Importantly, since

we’ve obtained multiple series solutions in each case, the obtained solutions are not

unique.

Finally, we have constructed asymptotic solutions (not of series type) for both the

travelling wave and self-similar cases. In each case, the asymptotic solutions are oscil-

latory when ε = 1 and exhibit exponential growth or decay when ε = −1. This is in

complete agreement with the numerical results presented in [3].

Appendix A. General formulas for series solution coefficients. We consider

power series with positive integer powers in the independent variable which converge on

a non-trivial interval. Let f be a real-valued function of real numbers that admits such

a power series at, say, 0. Then in a neighbourhood of x = 0,

f(x) =

∞∑
m=0

Cmxm. (56)

Consider a differential equation of the form

F (f, f ′, f ′′, ..., f (n)) = 0, (57)

where F is an analytic function of its independent variables in a neighbourhood of 0. We

will use notation like ∂
∂xF (f, f ′, f ′′) = 0 in this section. To understand this notation,

consider an example:

G(f, f ′, f ′′) ≡ f − f ′′2. (58)

Then,
∂

∂x
G(f, f ′, f ′′, f ′′′) = f ′ − 2f ′′f ′′′, (59)

where we have added an additional argument to ∂
∂xG to indicate its dependence on f ′′′.

Realize that this convention serves only to make our theorem easier to read, and that if

such a function F depends only on derivatives up to order n, then the q-th derivative

of F depends only on derivatives up to order n + q, and is analytic in its independent

variables in a neighbourhood of 0. We will often treat a differential equation such as G

as a function of real numbers. To see how this works, consider the example above. Then

G(2, 4, 1) = 3, and ∂
∂xG(1, 4, 3, 5) = −26.

Theorem A. Let g(x) =
∑∞

m=0 Cm(x − x0)
m in a neighbourhood of x = x0. Let

F (f, f ′, ..., f (n)) = 0 be a differential equation, where F is an analytic function of its

independent variables in a neighbourhood of 0. Then, for all j ∈ N0,

∂j

∂jx
F (C0, C1, ..., (n+ j)!Cn+j) = 0 (60)

if and only if F (g, g′, ..., g(n)) = 0 in a neighbourhood of x = xo.
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Proof. We first prove the “only if” direction. Place the power series expression for g

into the function F . Then, as both are analytic, so is their composition (in a neighbour-

hood of x = x0). Thus, the resulting equation is a power series in x which converges in

a neighbourhood of x = x0. We shall call this power series f . Then

f(x) =

∞∑
m=0

Km(x− x0)
m. (61)

We shall argue that each coefficient of this power series is 0. Notice that for each q ∈ N0,

q!Kq = f (q)(x0), (62)

and that

f(x) = F (g(x), g′(x), ..., g(n)(x)). (63)

In fact, using our notation,

f (q)(x) =
∂q

∂qx
F (g(x), g′(x), ..., g(n+q)(x)). (64)

Notice that g(r)(x0) = r!Cr for each r ∈ N0. Then by the hypothesis of the theorem,

Kq = 0 for each q ∈ N0.

Next, we prove the “if” direction. Since F (g, g′, ..., g(n)) = 0 in a neighbourhood of

x = x0 and F and g are smooth there,

∂j

∂jx
F (g, g′, ..., g(n+j)) = 0 (65)

for each j ∈ N0. Thus, (65) is true at x = x0 for each j ∈ N0. This is exactly (60). �

Corollary A. Let g(x) =
∑∞

m=0 Cmxm in a neighbourhood of x = x0. Let

F (f, f ′, ..., f (n)) = 0 be a differential equation, where F is given by

F (f, f ′, ..., f (n)) ≡
n∑

k=0

Akf
(n). (66)

Then g solves F (f, f ′, ..., f (n)) = 0 in a neighbourhood of x = x0 if and only if for all

j ∈ N0,
n∑

k=0

Ak(k + j)!Ck+j = 0. (67)

Proof. This is an application of the above theorem to the linear differential equation

F . �

Appendix B. Convergence of series solutions. Consider the differential equa-

tion

f (k) =
P

Q
, (68)

where P and Q are polynomials in f, f ′, ..., f (k−1), and k ≥ 1. Then:
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Theorem B. All power series solutions to (68) of the form

f(x) =
∞∑
j=0

f0
(j)

j!
(x− x0)

j (69)

have non-zero radius of convergence, where f0 ≡ f(x0) and so on, provided that

Q(f0, ..., f0
(k−1)) �= 0 (70)

in a neighborhood of x0.

Proof. Let P have TP terms, Q have TQ terms. Let n be the degree of P , or 1,

whichever is greater, and let m be the degree of Q, or 1, whichever is greater. Let UP

denote the largest number among the magnitudes of the coefficients of P . If this number

is less than 1, let UP be 1. Let UQ be determined in the same manner from the coefficients

of Q, and similarly changed to 1 if that is larger. We shall prove by induction that for

all a ∈ N0,

f0
(k+a) =

Ra

Q1+2a
, (71)

where Q is evaluated henceforth at f0, ..., f0
(k−1), and where Ra is a polynomial of degree

no greater than 2am + (1 + a)n in f0, ..., f0
(k−1) with at most 2aka(TPTQ)

2a+1 terms,

and whose largest coefficient (in magnitude) is no greater in magnitude than

M(a) ≡ (2UPUQmn(m+ n))2a+1(2a+ 1)!!. (72)

We shall refer to these conditions collectively as B(a), and whenever we speak about the

largeness of coefficients, we shall always be referring to their magnitudes.

Base case: Notice that P has all the properties required of R0 when evaluated at

f0, ..., f0
(k−1).

Inductive step: Let B(a) hold. We shall prove B(a+1). Differentiating (71) with respect

to the independent variable of f , we obtain

f0
(k+a+1) =

Q1+2aRa
′ − (1 + 2a)Q2aQ′Ra

Q2+4a
(73)

=
QRa

′ − (1 + 2a)Q′Ra

Q2+2a
. (74)

We notice that Ra
′ and Q′ are polynomials in f0, ..., f0

(k). Each instance of f0
(k) is

degree 1, by chain rule. We substitute every instance of f0
(k) using (71), and obtain a

rational expression in the numerator of (74). We multiply the top and bottom of (74)

by Q and obtain

f0
(k+a+1) =

QR̂a − (1 + 2a)Q̂Ra

Q1+2(a+1)
, (75)

where R̂a and Q̂ are the polynomials obtained respectively from Ra
′ and Q′ by the

substitutions and multiplication described above, and their arguments are therefore

f0, ..., f0
(k−1). From (72), we have that the largest coefficient of Ra is no more than

M(a). Differentiating this polynomial, we find that the largest coefficient of Ra
′ is no

more than M(a)(2am + (1 + a)n). Thus, substituting instances of f0
(k) with (71) and

multiplying through by Q, we find that the largest coefficient of R̂a is no more than
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M(a)(2am+ (1 + a)n)UPUQ. Upon multiplying by Q, we find the largest coefficient of

QR̂a is no more than

M(a)(2am+ (1 + a)n)UPUQ
2 ≤ M(a)(m+ n)(2a+ 3)(UPUQ)

2. (76)

Similarly, we find that the largest coefficient of (1+2a)Q̂Ra is at mostM(a)mUQ
2UP (2a+

1). Thus, the largest coefficient of the numerator of (75) is no more than

2M(a)m(m+ n)(2a+ 3)(UPUQ)
2, (77)

which is less than M(a + 1). From B(a), we know that the degree of Ra is at most

2am + (1 + a)n. The degree of Ra
′ is at most that same number, and therefore upon

substituting instances of f0
(k) with (71) and multiplying through by Q, we find that the

degree of R̂a is at most 2am + (1 + a)n + m + n. Thus, the degree of QR̂a is at most

2m(a+1)+(2+n)n. By a similar argument, we find that the same is true of (1+2a)Q̂Ra,

and therefore the same is true of their sum. Since Ra has at most 2aka(TPTQ)
2a+1 terms,

Ra
′ has at most k times that many terms (by product rule). Substituting instances of

f0
(k) with (71) and multiplying through by Q, R̂a has at most 2aka+1(TPTQ)

2a+1TPTQ

terms. Therefore QR̂a has no more than 2aka+1(TPTQ)
2(a+1)+1 terms. Similarly, Q̂Ra

has no more terms than 2aka+1(TPTQ)
2(a+1)+1. Therefore, their sum has no more than

twice this many terms, which, along with our previous work, proves B(a+ 1).

Now consider (69). We shall show that the coefficients f0
(j)

j! are bounded by βj for

some constant β, and thus the series has a non-zero radius of convergence. It suffices to

consider j larger than k. Let f∗ be the largest in magnitude among f0, ..., f0
(k). Then

by our inductive proof,

|f0(k+j)| ≤ 2jkj(TPTQ)
2j+1(2UPUQmn(m+ n))2j+1(2j + 1)!!|f∗|

Q1+2(j−k)
, (78)

where Q is evaluated at f0, ..., f0
(k−1). Thus, for some constant α,

f0
(k+j) ≤ αj(2j + 1)!!. (79)

Thus, as (2j+1)!!
j! ≤ 3j , we have that, for some constant β,

f0
(k+j)

j!
≤ βj . (80)

Thus, the power series (69) has a non-zero radius of convergence. �
Remark. The series solutions considered in this appendix are indeed solutions to

(68), by Theorem A.
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