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ories with two primaries, central charge c < 25, and arbitrary Wronskian index.

In mathematical parlance, we classify all strongly regular vertex operator algebras

(VOAs) with central charge c < 25 and exactly two simple modules. We find that

any such theory is either one of the Mathur–Mukhi–Sen (MMS) theories A1,1, G2,1,

F4,1, or E7,1, or it is a coset of a chiral algebra with one primary operator (also known

as a holomorphic VOA) by such an MMS theory. By leveraging existing results on

the classification of holomorphic VOAs, we are able to explicitly enumerate all of

the aforementioned cosets and compute their characters. This leads to 123 theories,

most of which are new. We emphasize that our work is a bona fide classification

of RCFTs, not just of characters. Our techniques are general, and we argue that

they offer a promising strategy for classifying chiral algebras with low central charge

beyond two primaries.
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1 Introduction

Conformal field theories in two dimensions — and the associated mathematical struc-

tures of chiral algebras, or vertex operator algebras (VOAs) — are ubiquitous in

physics and mathematics. Motivations for their study are numerous: they univer-

sally describe statistical systems near second order phase transitions, they arise on

the world-sheets of string theories, and they encode information about protected

sectors in higher-dimensional quantum field theories, to name a few. The present

work takes the perspective of the conformal bootstrap, and is concerned with the
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classification of a special class of such theories: the unitary, rational conformal field

theories (RCFTs).

The classification of RCFTs in its full glory is of course a very infinite problem;

one is forced to introduce further qualifiers in order to make progress. It is customary

to organize the classification in terms of the central charge c, typically starting with

low values, and making one’s way up. This program is met with striking success

when 0 ≤ c < 1, where it is known that every compact unitary CFT (i.e. every CFT

with a discrete spectrum) is a minimal model [1–6], all of which are rational. At

c = 1, it is believed (but to our knowledge, unproven) that every unitary, compact

conformal field theory is1 2

1) a compact free boson (parametrized by a radius R, up to T-duality),

2) a Z2-orbifold thereof, or

3) one of three isolated theories obtained by orbifolding the compact boson at

its self-dual radius by an exceptional finite subgroup [7] of the diagonal of

SU(2)× SU(2) [8–11].

Beyond c = 1, it is not known even qualitatively what the space of rational conformal

field theories looks like.3

Another parameter which one can introduce to regain control is the number of

primaries4 in the theory, which we call p. In particular, one can fix p to be some small

value and begin to classify theories with p primaries (which we henceforth denote
(p)CFTs), again from low central charge moving up. Conformal field theories with

a finite number of primaries are called rational in the physics literature, and their

chiral algebras form a structure which mathematicians call a strongly regular vertex

operator algebra, with p the number of simple modules.

1Both the compact boson and its Z2 orbifold are irrational CFTs when R2 is an irrational

number; every other known c = 1 theory is rational.
2Throughout this paper, an “orbifold of a CFT by a finite group G” refers to a theory obtained

by restricting to G-invariant states and then adding in twisted-sector states. In other contexts, one

might define the orbifold of a chiral algebra/VOA to simply be the G-invariant subalgebra.
3There are of course many classes of theories known (lattice VOAs, affine Kac–Moody algebras,

W-algebras, etc.), several tools for manipulating them (orbifolds, cosets, tensor products, extensions,

etc.), and even lore which claims that applying these tools to the known classes of theories is

sufficient to reach all of theory space. Still, we appear to be far from an explicit picture.
4Throughout this paper, we will use the word “primary” as a short-hand in place of “multiplet

of primary operators,” so that the number of primaries p is the same as the number of irreducible

representations of the maximal chiral algebra, which may be larger than Virasoro. We hasten to

add that this is a slightly different quantity than the number of (linearly-independent) characters

in the theory, which is less than or equal to the number of primaries, because several irreducible

representations of the chiral algebra may have the same character, as happens for example with

complex conjugate pairs of primaries.
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The simplest case is p = 1, where the sole primary is the identity. In physics, such

theories are often called meromorphic CFTs (though see Footnote 15 for our slightly

differing usage of the term), and in math they are known as holomorphic VOAs. It is

known on general grounds that (1)CFTs can only occur when the central charge is a

multiple of 8. The unique chiral algebra at c = 8 is E8,1, the current algebra (or affine

VOA) based on E8 at level 1. At c = 16, there are two possibilities: E8,1 ⊗ E8,1 and

an extension of D16,1 which we will write as D+
16,1. The classification at c = 24 was

first put forward in classic work of Schellekens [12], where he proposed that there

are 71 such theories. In particular, in addition to the monster CFT [13, 14] and

the Leech lattice VOA, there are 69 chiral algebras, each of which can be obtained

as a conformal extension of the current algebra generated by its space of dimension

one operators, which form a semi-simple Lie algebra. These theories have since been

elucidated and the classification put on firmer mathematical footing in a number

of papers [15–24], with the notable exception of proving that the monster CFT is

the unique c = 24 theory without any continuous symmetry, which remains an open

problem.5 Beyond c = 24, the landscape of (1)CFTs becomes unwieldy quite quickly.

For example, every positive-definite, even, unimodular lattice of rank c defines a
(1)CFT with central charge c, and so there are at least as many theories as there

are lattices. The number of such lattices of rank 32, for instance, has been bounded

below using (a refinement [25] of) the Smith–Minkowski–Siegel mass formula, which

shows that there are more than a billion. It therefore seems unlikely that we will

be witnessing anything resembling a complete classification of (1)CFTs at c = 32 or

higher any time soon.

Instead, it is fruitful to ask how far one can get in the next simplest case, p = 2.

Thus, there is one primary besides the identity, whose conformal dimension we denote

by h. This program was initiated in [26] and taken further in [27–36].6 For reasons

which will be reviewed below, the classification of (p)CFTs is often organized by a

non-negative integer ℓ known as the Wronskian index, rather than by the central

charge c. It is defined roughly as the number of zeros of the Wronskian determinant

of the characters of the (p)CFT (see §2.4 for more details), and in the special case

that p = 2, it satisfies the relation

ℓ =
c

2
− 6h+ 1. (1.1)

With two primaries, it is known [28] that ℓ is even. If a theory has ℓ = 0, 2, or 4,

then it is said to be extremal [31] in the sense that its non-identity primary has as

large a conformal dimension as is permitted by modularity given its central charge.

The (finitely many) physically consistent extremal characters have been completely

5Fortunately, none of our results rely on this conjecture being true.
6Actually, the cited references often operated in the more general setting of two-character the-

ories, as opposed to two-primary theories. The difference between these two notions has been

explained in Footnote 4.
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classified in the above references, and, as our results will confirm, nearly all (2)CFTs

with these characters have been successfully identified, save for two. It is natural to

ask whether one can say anything about the space of (2)CFTs with ℓ ≥ 6, i.e. about
(2)CFTs which are not extremal.

Leaving the safety of low Wronskian index presents qualitatively new challenges.

For example, when ℓ ≥ 6, there can be infinitely many vector-valued modular forms

with positive coefficients at a fixed central charge [32, 33], and most of them will

not correspond to physical theories. The situation is rather analogous to the one

encountered in the classification of meromorphic conformal field theories with c = 24

[12]. In that setting, modularity alone fixes the torus partition function only up to a

free parameter N , which can be thought of as the number of dimension-one currents,

Z(τ) = j(τ)− 744 +N = q−1 +N + 196884q + · · · (1.2)

where j(τ) is the Klein j-invariant. Additional insight was needed to determine

which values of N support conformal field theories, and which do not. Moreover, in

many cases it was found that there are multiple theories for a given value of N .

In the present work, we initiate the perilous excursion into the territory of non-

extremal (2)CFTs with ℓ ≥ 6, and therefore confront similar challenges to the ones

described in the previous paragraph in the context of two-primary theories. To define

a classification question whose answer yields a finite number of theories, we revert

back to organizing (2)CFTs by their central charge instead of by their Wronskian

index; in particular, we will see that our methods allow us to obtain a complete

classification of two-primary theories with c < 25, most of which will turn out to

have ℓ ≥ 6.7

Our approach is to relate the classification of (p)CFTs with p > 1 to the classifica-

tion of (1)CFTs which, as we have reviewed above, has been completed up to central

charge 24. Specifically, we make heavy use of the following idea [37–41], which we

state for simplicity in the context of p = 2 theories, though a version holds when

p > 2 as well (see §2.3).8 Let V be the chiral algebra of a (2)CFT with central charge

c, whose characters transform under a modular representation ̺ : SL2(Z) → GL2(C),

i.e. whose modular data is S = ̺(S) and T = ̺(T ), where S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ).

Instead of repeatedly saying these words, we will simply say that V belongs to the

genus (c, ̺), which we sometimes abbreviate to V ∈ (c, ̺). Now, consider a represen-

7In fact, inspection of Appendix A reveals that the only value of ℓ ≥ 6 which is realized for

theories with c < 25 is ℓ = 8.
8The statement of the idea in general involves appealing to modular tensor categories, however

p = 2 theories are simpler in that their modular tensor categories are completely characterized by

their associated modular representation, so we can avoid category theory and state things more

simply in terms of modular representations. This simplification is not limited to p = 2, but we

restrict to this case anyway because it is the focus of this work.
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tation of the form

˜̺ = ωn̺∗ (1.3)

for some n ∈ {0, 1, 2}, where ω : SL2(Z) → C∗ is defined by the assignments ω(S) = 1

and ω(T ) = e−2πin
3 ; we refer to ˜̺ as a conjugate twist of ̺. Then, we have the fol-

lowing claim, which characterizes all theories belonging to the genus (c̃, ˜̺).

The gluing principle. Any theory Ṽ in the genus (c̃, ˜̺) can be glued to V, which
belongs to the genus (c, ̺), to produce a p = 1 chiral algebra A in the genus (C, ωn),

with

A = (V ⊗ Ṽ)⊕ (V1 ⊗ Ṽ1), C = c+ c̃, ωn = ̺T ˜̺, (1.4)

where V1 and Ṽ1 are the non-vacuum modules of V and Ṽ respectively.9 Conversely,

any Ṽ in the genus (c̃, ˜̺) can be obtained as a coset [43–45] (see [30] for directly

relevant computations) of some A in (C, ωn) by V in (c, ̺), i.e.

Ṽ ∼= A
/
V, c̃ = C − c, ˜̺ = ωn̺∗. (1.5)

Thus, knowledge of even a single theory V ∈ (c, ̺), along with knowledge about how

it embeds into every A ∈ (C, ωn), is sufficient to classify all theories Ṽ ∈ (c̃, ˜̺): one

simply enumerates all inequivalent cosets of the form Eq. (1.5).

The power of this idea when p is small derives from the fact that the physically

consistent low-dimensional modular representations ̺ have been classified [46, 47]

(see also [48, 49]). In light of this, an effective strategy for the classification of
(p)CFTs with p small and fixed, and c < 24, is as follows.

1) Find a minimal set of p-dimensional seed representations {̺} with the prop-

erty that all other physically consistent p-dimensional representations can be

obtained by repeatedly taking conjugate twists of the seeds. In the case that

p = 2, we will use ̺A and ̺G as the seeds, which correspond to the theories A1,1

and G2,1, respectively. (See Eq. (3.17).)

2) Using independent methods, classify all theories which have the seeds as their

modular data, in the range of central charge desired. Fortunately, it has already

been established [50] that A1,1 and G2,1 are the unique theories with c < 24 and

modular representations ̺A and ̺G, respectively.

9A version of this statement holds for p > 2 as well. However, it is not sufficient to just check

that the modular data of V and Ṽ are conjugate twists of one another, one must further check that

their full modular tensor categories are dual [42]. If this is the case, then the tensor product V ⊗ Ṽ
can be extended to a chiral algebra A with one primary.
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3) Iteratively classify theories corresponding to the conjugate twists of the seeds

using the gluing principle, supplemented with the classification of (1)CFTs with

central charge C ≤ 24.

In the case of two-primary theories, it turns out that the classification of modular

representations alone is enough to rule out the existence of (2)CFTs with central

charge in the range 24 ≤ c < 25. This is why we are able to claim that we have

classified theories slightly beyond the c = 24 threshold attainable using the gluing

principle. Our p = 2 analysis is greatly simplified by the fact that the only cosets

that the gluing principle requires us to take feature an affine Kac–Moody algebra

in the denominator. Because this is so, the enumeration of the requisite cosets

essentially reduces to a problem of computing equivalence classes of embeddings of

certain simple Lie algebras, which we are able to carry out successfully.

The full list of theories appears in the tables of Appendix A. Mathematicians

should understand this as a list of strongly regular VOAs with exactly two simple

modules. In total, we find 123 (2)CFTs with c < 25. In each case, we are able to

compute the basic data of the CFT: the central charge c, the conformal dimension

h of the non-identity primary, its degeneracy d, the Wronskian index ℓ, the charac-

ters χi(τ), and the Kac–Moody symmetry algebra.10 Every theory we construct has

a non-zero number N of dimension one currents, but in contrast with the c ≤ 24
(1)CFTs with N 6= 0, not every theory we obtain is pure Sugawara:11 in particular,

we will see that some of them have a stress tensor which receives contributions from

one or more c < 1 minimal models. Thus, contrary to expectations, one could not

have hoped to have achieved our results by imitating the techniques of [12].

1.1 Organization

The organization of this article is as follows.

In §1.2, we provide a glossary of the various notations that we use throughout

the paper.

In §2, we review background material. We start in §2.1 by giving a lightning quick

summary of the basics of rational conformal field theory. In §2.2, we summarize some

relevant facts about theories whose only primary operator is the identity. In §2.3, we

describe how to glue chiral algebras together, as well as how to take cosets. In §2.4,

we establish some character-theoretic methods.

10One could attempt to complete this data with additional information such as primary correla-

tion functions on the sphere and torus, following the methods of [27, 51, 52], though we will not do

so here.
11A chiral algebra with Kac–Moody subalgebra (g1)k1 ⊗ · · · ⊗ (gn)kn

is said to be pure Sugawara

if its central charge c is equal to
∑

i
kidim(gi)
ki+gi

where gi is the dual Coxeter number. That is, V is

pure Sugawara if it is a conformal extension of its Kac–Moody subalgebra.
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We then move on to the classification in §3. We start by classifying physically

admissible two-dimensional modular representations in §3.1. We then classify physi-

cally admissible characters which transform under these modular representations in

§3.2. Finally, we describe how to enumerate the full list of two-primary theories with

c < 25 in §3.3.

We conclude by explaining a few directions for future research in §4.

Appendix A contains tables which list the theories one obtains using the argu-

ments of §3. These constitute our principal results. Appendix B contains data related

to two-dimensional representations of the modular group. Appendix C describes tech-

nical facts about Lie algebras and current algebras. Finally, Appendix D explains

the relationship between characters of two-primary theories and holomorphic/skew-

holomorphic Jacobi forms, with an eye towards penumbral moonshine.

1.2 Notation guide

1 The identity primary of an RCFT.

Φ The non-identity primary of an RCFT with two primaries.

A A chiral algebra, usually of a (1)CFT.
(p)CFT A unitary RCFT whose maximal chiral algebra has p irreducible representations.

c The central charge of a chiral algebra.

C The charge conjugation matrix, C = S2.

C A unitary modular tensor category.

C (p) A unitary modular tensor category with p isomorphism classes of simple objects.

(c,C ) The genus of chiral algebras with central charge c and representation category given

by C .

(c, ̺) The set chiral algebras with central charge c whose modular data is given by the

representation ̺ : SL2(Z) → GLp(C).

D
+
16,1 The unique extension of D16,1 with one irreducible module.

H The upper half-plane, H = {τ ∈ C | Im (τ) > 0}.
h The conformal dimension of the non-identity primary Φ of an RCFT, or the “conformal

dimension” of a vector-valued modular form which does not necessarily have a CFT

interpretation.

ĥ The conformal dimension modulo 1 of the non-identity primary Φ, or the “conformal

dimension” modulo 1 of a vector-valued modular form which does not necessarily have

a CFT interpretation.

h
(ℓ)
c The “conformal dimension” of X

(ℓ)
c,N(τ), determined by X

(ℓ)
c,N,1(τ) = Nq−

c

24+h(ℓ)
c +

O(q−
c

24+h(ℓ)
c

+1).

Lc A simple Virasoro VOA with central charge c.

ℓ The Wronskian index of a vector-valued modular form χ.

Mī The multiplicity matrix of an RCFT, see Eq. (2.2).

m The conductor of a chiral algebra V .
N The number of currents (i.e. dimension one operators) in a chiral algebra V .

N
(ℓ)
c The two values of N which make the matrix S(ℓ)

c,N symmetric are N = ±N
(ℓ)
c .
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N k
ij The fusion coefficients of an RCFT, or more generally the numbers computed from a

modular S-matrix through the Verlinde formula, Eq. (2.7), regardless of whether S is

realized in a physical RCFT.

p The number of irreducible representations of a chiral algebra V . We mostly consider

the cases p = 1, 2 in this work.

S(X) The unique meromorphic c = 24 conformal field theory with X as its current algebra

(see [12]). “S” is for Schellekens.

̺ A representation of SL2(Z), typically of dimension 2.

S, T Generic matrices which generate a representation of SL2(Z) through the assignment

̺(S) = S and ̺(T ) = T .

̺U, ̺V, ̺W Given a two-dimensional representation ̺, we define ̺U = U̺U †, ̺V = V ̺V †, and

̺W = W̺W †, where U, V,W are defined in Eq. (3.14).

SU, TU, . . . The values of ̺U, . . . on the generators.

̺I A specially chosen representative of the Ith equivalence class of two-dimensional SL2(Z)

representations with finite image, where I = 1, . . . , 54. It is defined on the generators

S and T of SL2(Z) through Eq. (3.3) and Eq. (3.1) using the data from Table 2 and

Table 3.

SI , TI The values of ̺I on the generators.

̺
(ℓ)
c,N The representation defined by the matrices S(ℓ)

c,N , T (ℓ)
c,N .

S(ℓ)
c,N , T (ℓ)

c,N The matrices defined in Eq. (2.36), Eq. (2.42), and Eq. (2.47) which describe how the

functions X
(ℓ)
c,N(τ) transform under SL2(Z).

S(ℓ)
c,±, T (ℓ)

c,± The matrices defined in Eq. (2.38), Eq. (2.44), and Eq. (2.49) which describe how the

functions X
(ℓ)
c,±(τ) transform under SL2(Z).

U, V,W The unitary matrices U =
(
−1 0
0 1

)
, V = ( 0 1

1 0 ), and W = UV .

V A chiral algebra/VOA, typically strongly regular.

X
(ℓ)
c,N,i(τ) The two solutions X

(ℓ)
c,N,0(τ) and X

(ℓ)
c,N,1(τ) of an MLDE with Wronskian index ℓ,

defined in Eq. (2.34), Eq. (2.40), and Eq. (2.45).

X
(ℓ)
c,N(τ) The vector-valued function X

(ℓ)
c,N(τ) =

(
X

(ℓ)
c,N,0(τ), X

(ℓ)
c,N,1(τ)

)T
.

X
(ℓ)
c,±,i(τ) The function X

(ℓ)
c,N,i(τ) evaluated at N = ±N

(ℓ)
c , where N

(ℓ)
c is defined in Eq. (2.37),

Eq. (2.43), and Eq. (2.48).

X
(ℓ)
c,±(τ) The vector-valued function X

(ℓ)
c,±(τ) =

(
X

(ℓ)
c,±,0(τ), X

(ℓ)
c,±,1(τ)

)T
.

X
(x)
r A notation which is meant to emphasize that the simple Lie algebra Xr is embedded

into some simple Lie algebra g with an embedding index x. The simple Lie algebra g

is typically clear from context.

Xr,k The current algebra of level k based on the simple Lie algebra Xr of rank r and type

X ∈ {A,B,C,D,E,F,G}.
ω The one-dimensional representation of SL2(Z) defined as ω = ζ8.

ζ The one-dimensional representation of SL2(Z) which assigns ζ(T ) = e2πi/12 and ζ(S) =

−i. It generates the group of one-dimensional representations of SL2(Z), which is cylic

of order 12.
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2 Preliminaries and Background

We begin in §2.1 by summarizing some of the basic properties of RCFTs that we

will use throughout the rest of the paper. We then move on in §2.2 to summarizing

the classification of (1)CFTs with c ≤ 24. Next, we briefly review the method of

coset conformal field theory in §2.3. We conclude in §2.4 by writing down formulae

for vector-valued modular forms coming from modular linear differential equations,

which we will use to construct the characters of the (2)CFTs that we classify.

2.1 RCFT basics

In a 2d conformal field theory (CFT) H, a distinguished role is played by the space of

meromorphic (anti-meromorphic) operators V (V). It forms a consistent truncation

of the full operator algebra which is known as the left-moving (right-moving) chiral

algebra. The mathematical axiomatization of a chiral algebra is known as a vertex

operator algebra (VOA). We will use these two terms interchangeably.

In a non-trivial 2d CFT, at least one of the left-moving or right-moving chiral

algebras should be non-empty. Indeed, any non-trivial local quantum field theory

is expected to have a conserved stress tensor, which is further traceless when the

theory is conformal. These two conditions imply in complex coordinates that T (z) ≡
Tzz(z, z̄) is meromorphic and T (z̄) ≡ Tz̄z̄(z, z̄) is anti-meromorphic, so these operators

(if they are non-zero) as well as the Virasoro algebras they generate populate V and

V , respectively. We can associate a central charge c to V (respectively c̄ to V) through
the operator product expansion (OPE) of the stress tensors with themselves,

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w

T (z̄)T (w̄) ∼ c̄/2

(z̄ − w̄)4
+

2T (w̄)

(z̄ − w̄)2
+

∂̄T (w̄)

z̄ − w̄

(2.1)

where ∼ indicates that we have dropped the regular terms of the OPE. The central

charge is always non-negative, c, c̄ ≥ 0, in a unitary theory.

In this work, we are interested in the situation that V forms what a mathemati-

cian would call a unitary, strongly regular VOA (see e.g. [53–55] for the definition)

and these qualifiers should always be assumed unless it is explicitly stated otherwise.

This loosely coincides with H being what a physicist would call a unitary, rational

conformal field theory (RCFT).12 In particular, such a VOA V (V) has a finite num-

ber p of irreducible representations, and on general grounds, the Hilbert space H can

be decomposed into finitely many representations of V ⊗ V,

H =

p−1⊕

i,̄=0

Mi,̄Vi ⊗ V ̄ (2.2)

12The adjective “unitary” here means that the state space H should be consistent with a positive-

definite inner-product. See e.g. [56] for a rigorous formulation of RCFT.
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where i (̄) is an index which runs over irreducible modules of V (V), and Mi,̄ is

a matrix of non-negative integer multiplicities, with M0,0̄ = 1. In our conventions,

i = 0 (̄ = 0̄) is always the index of the vacuum representation, i.e. the module

obtained by considering V (V) as a representation over itself.

Let us simplify the discussion by restricting attention to the left-moving chiral

algebra; everything we say will apply (with the appropriate modifications) to the

right-moving chiral algebra as well. Define L0 as usual to be the zero-mode of the

stress tensor through

T (z) =
∑

n∈Z

Lnz
−n−2. (2.3)

It is known that the characters of a strongly regular VOA,

χi(τ) = TrVi
qL0− c

24 = q−
c
24

+hi

∑

n≥0

ai(n)q
n, (2.4)

form a weight-zero weakly-holomorphic vector-valued modular form [57, 58]. That

is, the functions χi transform under modular transformations as

χi(−1/τ) =
∑

j

Sijχj(τ), χi(τ + 1) = Tiiχi(τ) (2.5)

and χi(τ) is holomorphic as a function of the upper half-plane, with the exception

of possibly having singularities as τ approaches i∞ or a rational number on the real

line. The number hi is called the conformal dimension of (the multiplet of primary

operators in) Vi, and h0 = 0. Also, S and T are both p× p matrices subject to the

following necessary (though not necessarily sufficient) physical consistency conditions

in a unitary RCFT.13

1) Both S and T are unitary matrices. Further, T is diagonal, S is symmetric,

and S0i > 0 [60].

2) They generate a p-dimensional representation ̺ : SL2(Z) → GLp(C) of the

modular group through the assignment ̺(S) = S and ̺(T ) = T , where S =

( 0 −1
1 0 ) and T = ( 1 1

0 1 ).

3) The matrix S2 ≡ C is a permutation matrix, known as the charge-conjugation

matrix.

13There are further physical consistency conditions one may consider imposing on modular data,

such as constraints coming from the Frobenius–Schur indicators of primary fields [59]. However, in

the case of rank-2 modular data, which we study in §3.1, we find that the conditions we incorporate

into our definition of “admissible” precisely weed out all unphysical modular representations.
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4) The kernel of the representation ̺ contains the principal congruence subgroup

Γ(m) = {( a b
c d ) ∈ SL2(Z) | a, d ≡ 1 mod m; b, c ≡ 0 mod m} (2.6)

for some positive integer m [61, 62]. The smallest such m is known as the

conductor of V.

5) The numbers

N
k

ij ≡
∑

l

SilSjl(S−1)kl
S0l

(2.7)

computed by the Verlinde formula [63, 64] are non-negative integers.

Definition 1. A pair of matrices (S, T ), or a modular representation ̺ : SL2(Z) →
GLn(C), is said to be admissible if it satisfies the 5 conditions above.

We remark that our definition of admissibility does not require that there is a chiral

algebra which realizes (S, T ) through the transformation properties of its charac-

ters, though it will turn out that all two-dimensional admissible representations are

indeed realized by chiral algebras. We also emphasize that admissibility is an ex-

tremely basis-dependent notion: in particular, conjugating an admissible modular

representation (S, T ) by a unitary matrix generically spoils its admissibility.

It is also possible to study vector-valued modular forms more generally, regardless

of whether or not they furnish the characters of an actual RCFT (see e.g. [65–67]

for a beautiful general theory). The following definitions, which are variations on

similar concepts appearing in [33], will be useful in the sequel.

Definition 2. A quasi-character is a vector-valued function χ with the following

properties.

1) The function χ is holomorphic in the interior of the upper half-plane, though

possibly with singularities at the cusps.

2) It transforms according to Eq. (2.5), with (S, T ) generating an admissible mod-

ular representation.

3) It admits a q-expansion of the form Eq. (2.4) with c ≥ 0, hi ≥ 0, and h0 =

0. The numbers c and hi are referred to as the central charge and conformal

dimensions of χ.

4) The coefficients ai(n) in Eq. (2.4) are (not necessarily non-negative) integers

and a0(0) = 1.

If the coefficients ai(n) of a quasi-character are further non-negative then the quasi-

character is said to be an admissible character.
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Remark: Our definitions are stronger than their analogs appearing in [33]. For ex-

ample, we require that a quasi-character transforms under an admissible modular

representation, and we also require that the central charge and conformal dimen-

sions are non-negative, whereas op. cit. did not.

We emphasize that not every admissible character is realized by a unitary, strongly

regular VOA, as we will see explicitly in the next subsection.

In this work, our goal is to classify RCFTs. In general, this is a slightly more

involved problem than just classifying chiral algebras, because the data of an RCFT

H involves the choice of a chiral algebra V and a multiplicity matrix Mi,̄ consistent

with modular invariance.14 In other words, in addition to classifying chiral algebras,

one must also classify multiplicity matricesMi,̄ for which the torus partition function

Z(τ, τ̄) =
∑

i,̄

Mīχi(τ)χ̄(τ̄ ), (2.8)

is invariant under modular transformations,

Z(τ + 1, τ̄ + 1) = Z(τ, τ̄) = Z(−1/τ,−1/τ̄). (2.9)

However, in the case of p = 1 and p = 2 theories, it turns out that there is always

a unique multiplicity matrix, Mi,̄ = δi,̄, consistent with modular invariance. There-

fore, in this situation, classifying RCFTs is equivalent to classifying chiral algebras,

and so we will often say that we are doing the former, even though at a technical

level we are almost always working with the latter objects.

2.2 Meromorphic theories

The classification of (1)CFTs was once thought to be quite a distinct program from

that of classifying (p)CFTs with p > 1. However in recent years it has emerged that

the two are very closely linked [30, 31, 34, 35, 69–71]. This linkage is important for our

goal of classifying (2)CFTs, and will be discussed below at length. In this subsection,

we review some of what is known about (1)CFTs, also known as holomorphic VOAs

to mathematicians.

Such theories have a unique character χ(τ) which transforms under a one-

dimensional representation of SL2(Z). It is known that the one-dimensional rep-

resentations of SL2(Z) form the cyclic group Z12 = 〈ζ〉 with generator

ζ(T ) = eπi/6, ζ(S) = −i. (2.10)

However admissibility in the one-dimensional case requires that S > 0, leaving only

the representations ω ≡ ζ8, ω2, and the trivial representation, which we analyze in

turn.

14Modular invariance is necessary but in general not sufficient [5, 6, 68].
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Because ω(T ) = e−2πi/3, it follows that (1)CFTs whose single character transforms

covariantly with respect to ω have central charge c ≡ 8 mod 24. At c = 8, the unique

admissible character is

χ(τ) = j(τ)
1
3 = q−

1
3 (1 + 248q + · · · ) (2.11)

with j(τ) the Klein j-invariant, and the unique chiral algebra with this character is

E8,1, the current algebra at level 1 based on the exceptional simple Lie algebra E8.

The uniqueness of this theory follows from the fact that the dimension 1 operators

in a unitary RCFT form a reductive Lie algebra whose rank is less than or equal to

the central charge [72, 73]: the unique reductive Lie algebra with dimension 248 and

rank less than or equal to 8 is E8, and it can have level at most 1 because any higher

level leads to a central charge larger than 8.
(1)CFTs with modular representation ω2 have central charge c ≡ 16 mod 24. At

c = 16, the unique admissible character is

χ(τ) = j(τ)
2
3 = q−

2
3 (1 + 496q + · · · ), (2.12)

however there are now two chiral algebras with this character, E8,1 ⊗ E8,1 and the

unique extension of D16,1 which we will label D+
16,1. Again, uniqueness is proved by

noting that E8 and D16 are the two unique reductive Lie algebras with dimension 496

and rank less than or equal to 16.

When the modular representation is the trivial one, which requires that c ≡
0 mod 24, the character of a (1)CFT is modular invariant on its own, and one can

contemplate forming a completely chiral CFT, which we will refer to as a meromor-

phic conformal field theory.15 At c = 24, there is a one-parameter family of putative

modular-invariant partition functions,

χ(τ) = j(τ)− 744 +N = q−1 +N + 196884 + · · · (2.13)

where N is an integer, interpreted as the number of Noether currents in the theory,

which is restricted by admissibility to satisfy N ≥ 0. However, among these infinitely

many possibilities only a finite number correspond to an actual meromorphic CFT.16

Indeed, in a classic paper, Schellekens [12] conjectured that there are just 70

distinct CFTs withN 6= 0 (see [72] for earlier related work), and that they correspond

15Some authors refer to any chiral algebra with one irreducible representation as a meromorphic

conformal field theory, however we reserve the term for chiral algebras with one irreducible rep-

resentation and c ≡ 0 mod 24 because otherwise the character is only modular invariant up to a

phase.
16This exemplifies our earlier claim that not all admissible characters are realized by a physical

theory. The present work furnishes further examples of p = 2 admissible characters that do not

correspond to any (2)CFT. Moreover from the methods we use, it is clear that this will be a generic

feature for all p > 2 as well.
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to a still smaller number of values of N , because different CFTs can have global

symmetry groups of the same dimension. The unique theory whose global symmetry

algebra contains Abelian factors is the Leech lattice VOA with N = 24. Schellekens

then proved that every other holomorphic VOA A with N 6= 0 is pure Sugawara (in

the sense that the Kac–Moody subalgebra K ⊂ A of each theory has central charge

equal to 24), and moreover produced a complete list of 69 possibilities for K. His

conjecture was then that no two holomorphic VOAs with c = 24 share the same

Kac–Moody subalgebra, which he supported by showing that any two meromorphic

CFTs containing the same K are identical as K-modules.

The picture Schellekens painted for the N 6= 0 theories has since been confirmed

and clarified in a number of relatively recent papers [15–24]. The complete list of

theories can be found in the table at the end of [12]. We will use the notation S(X) to

denote the unique Schellekens theory with Kac–Moody subalgebra given by X. The

main gap in the classification of meromorphic CFTs with c = 24 is the proof of the

widely-believed conjecture that the monster CFT [13, 14] is the unique such theory

with N = 0.

As an aside, we comment that it is now understood that these 69 theories can

be obtained in a uniform manner by orbifolding the Leech lattice VOA using a

“generalized deep hole construction” [19] which extends the correspondence between

the 23 Niemeier lattices with non-vanishing root system [74] and the deep holes of

the Leech lattice [75].

Crucially for our purposes, the automorphism groups of the c = 24 theories have

been completely determined [20, 76–78]. The following proposition summarizes the

main property of these automorphism groups which is relevant for our calculations.17

Proposition 3. Let A be any chiral algebra with c = 24 and one simple module,

except for S(A7,4A
3
1,1) and S(D6,5A

2
1,1). The automorphism group of A acts transitively

on the level 1 simple factors of the Kac–Moody subalgebra of A.

Before moving on we remark that, as we mentioned in the introduction, the

number of theories quickly explodes when c > 24. For example, the next non-trivial

case is c = 32, and we can obtain a lower-bound on the number of such theories

by lower-bounding the number of even, unimodular lattices of dimension 32, each of

which defines a distinct (1)CFT with c = 32. The latter bound can be achieved using

the Smith–Minkowski–Siegel mass formula, which says that

∑

Λ

1

|Aut(Λ)| =
|Bc/2|
c

∏

1≤j<c/2

|B2j|
4j

(2.14)

17We are grateful to Ching Hung Lam and Hiroki Shimakura for helping us to distill this propo-

sition from their work.
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where Bn is a Bernoulli number, and the sum is over even, unimodular lattices Λ of

dimension c. In the case that c = 32, the right-hand side evaluates to

∑

Λ

1

|Aut(Λ)| =

4890529010450384254108570593011950899382291953107314413193123

121325280941552041649762780685623131486814208000000000

(2.15)

which is on the order of 4 × 107. The number of lattices is at least twice as many,

because every lattice has an automorphism group with at least two elements (the

identity transformation and the canonical v 7→ −v involution). Refinements of these

ideas produce a stronger lower bound of a billion [25]. Thus, c = 24 is a sort of upper-

critical central charge beyond which implementation of our program of reducing the

classification of p > 1 RCFTs to the classification of (1)CFTs becomes impractical,

at least without additional inputs.

2.3 Genus, cosets, and gluing

A very natural invariant of a chiral algebra V is its genus (c,C ). Here, c is the

central charge, and C = Rep(V) is the equivalence class of the modular tensor

category (MTC) formed by the representations of V [79, 80]. The genus is named

after an analogous invariant of lattices, and it is useful for classification purposes

because it is conjectured that the number of chiral algebras in any genus is finite

[81]. Hence, classifying all chiral algebras in a fixed genus might be an attainable

goal in simple cases.

We will sometimes write C (p) to emphasize that C has p simple objects, i.e. that

V has p irreducible representations. For example, in this paper, our goal is to classify

all chiral algebras which belong to genera of the form (c,C (2)) with c < 25. Every

MTC C (p) gives rise to a modular representation ̺ : SL2(Z) → GLp(C) which is

ambiguous up to multiplication by the character ωn for some n (though the choice of

a chiral algebra, or even just a central charge c, fixes this ambiguity). In many cases,

there is a unique MTC C (p) with ̺ as its modular representation (for example, this is

true whenever p = 2), and in these cases we are free to write (c, ̺) in place of (c,C (p)).

To any MTC C with modular representation ̺, it is possible to associate a dual MTC

C with modular representation ̺∗ (see e.g. §6 of [42] for precise definitions).

Consider two chiral algebras V and Ṽ in the genera (c,C ) and (c̃, C̃ ), respectively.

In special circumstances to be described below, their tensor product can be extended

to a larger chiral algebra,

V ⊗ Ṽ ⊂ A, (2.16)

in which case one can decompose the extension into V ⊗ Ṽ-modules as

A ∼=
⊕

i,j

di,jVi ⊗ Ṽj, (2.17)

– 15 –



where Vi and Ṽj are the irreducible representations of V and Ṽ, respectively. We say

that A is obtained by gluing V to Ṽ.18 The characters of A,V, and Ṽ then enjoy a

bilinear relation of the form

χA(τ) =
∑

i,j

di,jχi(τ)χ̃j(τ). (2.18)

Mathematically, an extension of the form Eq. (2.17) is possible when A is an algebra

object of a special kind [42, 56, 82] in the Deligne tensor product C ⊠ C̃ of the MTCs

associated to V and Ṽ.
When V and Ṽ are dual in the sense that C̃ ∼= C , one can label the irreducible

modules of V and Ṽ in such a way that taking di,j = δi,j in Eq. (2.17) leads to a

chiral algebra A with only one irreducible module, i.e. a chiral algebra in the genus

(C,VectC), where C = c+ c̃ and VectC is the trivial MTC. For example, when V and

Ṽ are both p = 2 theories, all we must check to ensure that V and Ṽ are dual is that

˜̺ = ωn̺∗ (2.19)

where ̺ and ˜̺ are the modular representations associated to V and Ṽ, and n ∈
{0, 1, 2}. In this p = 2 case, the gluing then takes the form

A ∼= (V ⊗ Ṽ)⊕ (V1 ⊗ Ṽ1). (2.20)

When ̺ and ˜̺ are related by Eq. (2.19), we will say that ˜̺ is a conjugate twist of

̺. In general, Eq. (2.19) holding is not sufficient to determine that V ⊗ Ṽ can be

extended to a p = 1 chiral algebra A, though it is when p = 2.

There is a general construction, known as the coset/commutant construction

[44, 45], which will be useful for us because it provides a way to recover Ṽ from

knowledge of A and V ⊂ A.

Definition 4. Let A be a chiral algebra with stress tensor

T (z) =
∑

n∈Z

Lnz
−n−2, (2.21)

and V ⊂ A a subalgebra with stress tensor

t(z) =
∑

n∈Z

lnz
−n−2 (2.22)

satisfying (L1t)(z) = 0. The coset of A by V, or the commutant of A in V, is defined
to be the space

A
/
V ≡ ComA(V) ≡ {ϕ ∈ V | l−1ϕ = 0}. (2.23)

It is a chiral algebra with stress tensor equal to T (z)− t(z).

18This generalizes an analogous notion of gluing for lattices [75] to the chiral algebra setting.
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Importantly for this work, if V,V ′ ⊂ A are two subalgebras of A which are

related by an automorphism X : A → A in the sense that X(V) = V ′, then X also

induces an isomorphism of the two cosets A
/
V and A

/
V ′ in the obvious way. Thus,

in order to enumerate inequivalent cosets of A, a necessary step is to understand

equivalence classes of subalgebras of A.

If one applies the coset construction to a chiral algebra A that was obtained by

gluing V to Ṽ as in Eq. (2.17), then the coset A
/
V will be an extension of Ṽ, namely

A
/
V ∼=

⊕

j

M0,jṼj . (2.24)

In particular, if we are given that A was obtained by gluing two dual theories V
and Ṽ with a multiplicity matrix di,j = δi,j, then we are guaranteed that A

/
V = Ṽ.

When A
/
V = Ṽ and A

/
Ṽ = V, we say that (V, Ṽ) is a dual pair, or a coset pair,

inside A.

In this work, we will mostly specialize to the case that A is a chiral algebra with

only a single primary operator, and V is an affine Kac–Moody algebra, in which case

the condition (L1t)(z) = 0 is always satisfied. We note that [30] computed several

examples of coset pairs (V, Ṽ) of this kind, with V and Ṽ having p ≥ 2. For the

2 character cases (which included some examples with p > 2), the characters were

explicitly computed in terms of hypergeometric functions (following [27, 28]) and the

relation Eq. (2.18) explicitly verified.

2.4 Modular linear differential equations and quasi-characters

Our main tool for computing spaces of vector-valued modular forms is homogeneous

modular-invariant linear differential equations (MLDEs). The basic strategy is to

write down a general MLDE of second-order, solve it recursively by the Frobenius

method, and explicitly determine the modular properties of the solution.

MLDEs were first proposed as a viable method for classifying RCFTs in [26],

where the authors studied a simple class of MLDEs (those with Wronskian index

ℓ = 0), demanded that the solutions have completely positive q-expansions, and then

associated physical theories with the resulting characters.19 Our present approach

differs slightly in that we will use MLDEs with small Wronskian index (ℓ = 0, 2, 4) to

generate a basis of vector-valued modular forms transforming under a given modular

representation ̺, but we do not impose positivity on the individual members of that

basis; instead, we only impose positivity on linear combinations of the basis elements.

Our work constitutes a special application of the techniques developed in [33].

We begin by reviewing some generalities. The most general second-order MLDE

takes the form (
D2 + φ2(τ)D + φ4(τ)

)
χ(τ) = 0 (2.25)

19We will compare our classification to the results of MMS in more detail in §3.3.
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where D is the covariant derivative which acts as

D ≡ 1

2πi
∂τ −

k

12
E2(τ) (2.26)

on modular forms of weight k. This equation generically has two linearly independent

solutions of the form of Eq. (2.4). As we discuss below, these are potentially identified

with characters of an RCFT. Therefore we take them to be holomorphic in the interior

of the moduli curve SL2(Z)\H. The coefficient functions φr(τ) are modular of weight

r with possible poles in the interior of the upper half-plane. This can be seen by

defining three Wronskian determinants from the solutions,

W2(τ) ≡
∣∣∣∣∣
χ0(τ) χ1(τ)

∂τχ0(τ) ∂τχ1(τ)

∣∣∣∣∣ ,

W4(τ) ≡
∣∣∣∣∣
χ0(τ) χ1(τ)

∂2
τχ0(τ) ∂

2
τχ1(τ)

∣∣∣∣∣ , W6(τ) ≡
∣∣∣∣∣
∂τχ0(τ) ∂τχ1(τ)

∂2
τχ0(τ) ∂

2
τχ1(τ)

∣∣∣∣∣ .
(2.27)

These are weakly-holomorphic modular forms of weights 2,4,6 respectively with sin-

gular behaviour as τ → i∞. It is easy to see that

φ2(τ) = −W4(τ)

W2(τ)
, φ4(τ) =

W6(τ)

W2(τ)
. (2.28)

Thus the maximum number of poles of φ2, φ4 is equal to the number of zeroes of

W2(τ) in SL2(Z)\H. This number is denoted by ℓ
6
, the fractional value being allowed

due to the presence of orbifold singularities at the special points τ = eiπ/3, i, where

a pole counts with weight 1
3
and 1

2
respectively. In recent times ℓ has come to be

known as the Wronskian index of the MLDE. From its definition, we see that ℓ ≥ 0.

The Wronskian W2(τ) has modular weight 2, leading behavior

W2(τ) ∼ q−
c
12

+h + · · · (2.29)

in its q-expansion, and ℓ
6
zeroes. Together these facts imply a relation between

the Wronskian index ℓ, the central charge c, and the single non-trivial conformal

dimension h,

− c

12
+ h =

1− ℓ

6
, (2.30)

or, after re-arranging,

ℓ =
c

2
− 6h+ 1. (2.31)

From this relation, we obtain the bound

ℓ <
c

2
+ 1. (2.32)

Without specifying ℓ, the number of independent meromorphic modular forms

of weight 2 and 4 is unbounded and the MLDE is intractable. Thus, one works case-

by-case for each allowed value of ℓ. It will turn out that taking linear combinations

of solutions to MLDEs with ℓ = 0, 2, 4 is sufficient to obtain all the vector-valued

modular forms relevant for our classification, as we will see explicitly in §3.2.
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Quasi-characters with Wronskian index ℓ = 0

Ref. [26] studied the most general MLDE with ℓ = 0, which takes the form
(
D2 + µE4

)
χ = 0 (2.33)

where µ is a free parameter. The solution X
(0)
c,N(τ) to this equation can be expressed

in terms of hypergeometric functions as

X
(0)
c,N,0(τ) = j(τ)

c
24 2F1

(
− c

24
,
1

3
− c

24
;
5

6
− c

12
;
1728

j(τ)

)

X
(0)
c,N,1(τ) = Nj(τ)−

1
6
− c

24 2F1

(
1

6
+

c

24
,
1

2
+

c

24
;
7

6
+

c

12
;
1728

j(τ)

) (2.34)

where µ = − c(c+4)
576

. The quasi-character so-produced has central charge c, conformal

dimension,

h(0)
c =

c+ 2

12
, (2.35)

and modular S-matrix

S(0)
c,N =




1
2
csc(π c+2

12
) 1

N

2c/2Γ( 4−c
6 )Γ(− c+2

12 )√
πΓ(− c

4)

N
Γ( c+2

12 )Γ(
c+8
6 )

2c/2
√
πcΓ( c

4)
−1

2
csc(π c+2

12
)


 . (2.36)

Demanding that this be symmetric (as required by admissibility) implies that N =

±N
(0)
c , where

N (0)
c =

(
2ccΓ

(
4−c
6

)
Γ
(
− c+2

12

)
Γ
(
c
4

)

Γ
(
c+8
6

)
Γ
(
c+2
12

)
Γ
(
− c

4

)
) 1

2

. (2.37)

Plugging N = ±N
(0)
c into S(0)

c,N , we find

S(0)
c,± ≡




1
2
csc(π c+2

12
) ±

√
1− 1

4
csc2(π c+2

12
)

±
√

1− 1
4
csc2(π c+2

12
) −1

2
csc(π c+2

12
)



 . (2.38)

Quasi-characters with Wronskian index ℓ = 2

Turning now to ℓ = 2 [27, 28, 30], the MLDE again has just one parameter and takes

the form (
D2 +

1

3

E6

E4
+ µE4

)
χ = 0. (2.39)

The solution can again be expressed in terms of hyper-geometric functions as

X
(2)
c,N,0(τ) = j(τ)

c
24 2F1

(
− c

24
,
2

3
− c

24
;
7

6
− c

12
;
1728

j(τ)

)

X
(2)
c,N,1(τ) = Nj(τ)

1
6
− c

24 2F1

(
−1

6
+

c

24
,
1

2
+

c

24
;
5

6
+

c

12
;
1728

j(τ)

) (2.40)
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where µ = − c(c−4)
576

. The central charge of X
(2)
c,N(τ) is c, the conformal dimension is

h(2)
c =

c− 2

12
, (2.41)

and the S-matrix is

S(2)
c,N =




1
2
csc(π 2−c

12
) 1

N

27 2
c
2−9(c−16)(c−12)cΓ( 26−c

6 )Γ( 2−c
12 )√

π(c−14)Γ(6− c
4)

N
28−

c
2 (c−14)Γ( c−20

6 )Γ( c+10
12 )

27
√
π(c−16)(c−12)cΓ( c

4
−5)

−1
2
csc(π 2−c

12
)


 . (2.42)

Demanding that this be symmetric implies that N = ±N
(2)
c , where

N (2)
c = 27 · 2 c−17

2 c
(c− 16)(c− 12)

c− 14

(
Γ
(
26−c
6

)
Γ
(
2−c
12

)
Γ
(
c
4
− 5
)

Γ
(
6− c

4

)
Γ
(
c−20
6

)
Γ
(
c+10
12

)
) 1

2

. (2.43)

Plugging N = ±N
(2)
c back into S(2)

c,N , we find

S(2)
c,± ≡




1
2
csc(π 2−c

12
) ±

√
1− 1

4
csc2(π 2−c

12
)

±
√

1− 1
4
csc2(π 2−c

12
) −1

2
csc(π 2−c

12
)


 . (2.44)

Quasi-characters with Wronskian index ℓ = 4

Finally, we define functions with ℓ = 4 in terms of the ℓ = 0 solutions as

X
(4)
c,N(τ) = j(τ)

1
3X

(0)
c−8,N(τ). (2.45)

The central charge is c, the conformal dimension is

h(4)
c = h

(0)
c−8 =

c− 6

12
, (2.46)

and the S-matrix is

S(4)
c,N = S(0)

c−8,N . (2.47)

Demanding that this is symmetric gives N = ±N
(4)
c , defined by

N (4)
c = N

(0)
c−8, (2.48)

and plugging this back into the S-matrix, we find

S(4)
c,± = S(0)

c−8,±. (2.49)

In each case, the T -matrix can be determined in terms of the central charge and

conformal dimension as

T (ℓ)
c,N = T (ℓ)

c = diag
[
exp

(
−2πi

c

24

)
, exp

(
2πi

(
− c

24
+ h(ℓ)

c

))]
. (2.50)
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Since N is uniquely determined by c up to a sign by demanding that S(ℓ)
c,N be sym-

metric, we simplify our notation henceforth by writing

X
(ℓ)
c,±(τ) ≡ X

(ℓ)
c,N(τ) (N = ±N (ℓ)

c ). (2.51)

In the form that we have expressed the solutionsX
(ℓ)
c,±(τ), their modular properties are

manifest, though the q-expansion and its integrality are not. It is worth emphasizing

that the X
(ℓ)
c,±(τ) are not quasi-characters for arbitrary values of c (in particular,

their q-series are not integral), but rather only for a specific set of allowed values.

We identify these values by classifying admissible modular data in the sequel.
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3 Classification

In this section, we turn to the classification of (2)CFTs with c < 25. In §3.1, we

classify all two-dimensional admissible modular representations (see §2.1 for the def-

inition); every such representation is realized as the modular data of a (2)CFT, and

conversely any (2)CFT has one of these representations as its modular data. Using

these representations, in §3.2, we compute all admissible two-component characters

with c < 25 (again, see §2.1 for the definition). Finally, in §3.3, we complete the

classification, using the gluing principle explained in §2.3.

3.1 Modular data

We begin our investigation of unitary RCFTs with two primaries by classifying all

two-dimensional admissible modular representations (see §2.1 for our definition of

admissible representation). This data can be obtained by going through the classi-

fication of unitary modular tensor categories with 2 simple objects [46], however we

have opted for a more direct, pedestrian approach.

We will restrict our attention in the beginning to irreducible representations,

and then explain at the end why this is justified. As we have reviewed earlier, an

admissible modular representation has a non-trivial kernel which contains a principal

congruence subgroup, ker ̺ ⊃ Γ(m), for some integer m. In particular, since Γ(m)

has finite index in SL2(Z) for every m, it follows that ̺ must have finite image

in a unitary RCFT. Happily, irreducible two-dimensional representations of SL2(Z)

with finite image have been classified [49]. Each takes the following form (up to

equivalence).

Without loss of generality, we may work in a basis in which T is represented by

a diagonal matrix,

T = diag(e2πim0 , e2πim1). (3.1)

Then, letting

κ = e2πi(2m0+m1) − e2πi(m0+2m1),

r = −e6πi(m0+m1)κ2 − 1,
(3.2)

we define the matrix S in terms of the eigenvalues of T as

S = κ−1

(
1

√
r

√
r −1

)
. (3.3)

We note that in all the cases of interest to us, r will be a non-negative real number,

and so there is no ambiguity in what we mean by
√
r.
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Theorem 5 (Theorem 3.7 of [49]). There are 54 equivalence classes of irreducible,

two-dimensional representations of SL2(Z) with finite image. Each has kernel con-

taining Γ(m) for some integer m, and each is obtained by setting ̺(T ) = T and

̺(S) = S for some choice of m0, m1 ∈ Q, where T and S are defined in Eq. (3.1)

and Eq. (3.3), respectively.

The 54 choices of (m0, m1) which lead to inequivalent representations are sum-

marized in Table 2 and Table 3. They are numbered according to the order in which

they appear in Tables 1–4 of [49]. We will define ̺I for I = 1, . . . , 54 to be the

Ith such representation, and also set SI = ̺I(S) and TI = ̺I(T ). Our goal is to

determine which of these representations satisfy the rest of the conditions required

by admissibility (possibly after a change of basis).

By explicit computation, one can confirm that in each case, CI = S2
I = ±1,

which is a basis-independent statement. We can then immediately eliminate the

representations with CI = −1 from consideration because the charge conjugation

matrix is not a permutation matrix for these representations. Alternatively, one can

rule out such representations as follows. First, note that S2, as a transformation

of the upper half-plane, acts trivially on τ . Therefore, modular covariance of the

characters of an RCFT dictates that they obey the equation

χ(τ) = S2χ(τ). (3.4)

Representations with C = −1 therefore will clearly not support (non-vanishing)

vector-valued modular forms of weight zero, and hence will not support functions

which can serve as characters of a putative RCFT.20 The representations with CI =
−1 are the ones appearing in Table 2; they are precisely the ̺I with I an odd integer.

Therefore, we restrict our attention in the sequel to the representations ̺I with I

even, which appear in Table 3 and all satisfy CI = +1.

Now, in RCFT, it is not sufficient to specify a modular representation up to

equivalence. One must also pick a distinguished choice of basis in which T is diagonal

and the representation is unitary. Various physical quantities, such as the fusion rules

as computed by the Verlinde formula Eq. (2.7), depend on this choice of basis. We

remind the reader that we will always interpret the 0-component as corresponding

to the identity primary 1, and the 1-component as corresponding to the non-identity

primary Φ.

As it stands, we have already expressed each representation in a unitary basis

in which T is diagonal. However there are still other choices of bases in which

the diagonality of T and the unitarity of the representation are maintained. The

following lemma serves to enumerate these bases.

20Such representations however will support vector-valued modular forms with odd weight.
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Lemma 6. Let T be a diagonal 2× 2 matrix with distinct eigenvalues. Any unitary

matrix M for which MT M † is diagonal takes the form

M = eiθ

(
eiϕ 0

0 1

)
or M = eiθ

(
0 eiϕ

1 0

)
. (3.5)

Proof. Parametrize an arbitrary 2× 2 unitary matrix as

M =

(
w z

−eiζz∗ eiζw∗

)
(3.6)

where |z|2 + |w|2 = 1 and ζ is a real number. If we take T = diag(λ1, λ2), then

MT M † =

(
λ1|w|2 + λ2|z|2 e−iζ(λ2 − λ1)wz

eiζ(λ2 − λ1)(wz)
∗ λ2|w|2 + λ1|z|2

)
. (3.7)

In order for this to be diagonal, we require that e−iζ(λ2 − λ1)wz = 0. Since the

eigenvalues of T are distinct by assumption, λ2 − λ1 6= 0 and we must have that

either w = 0 or z = 0. This then guarantees that the other off-diagonal element

vanishes as well.

If w = 0, then z must be a phase, and after redefining variables we find that

M = eiθ

(
0 eiϕ

1 0

)
. (3.8)

On the other hand, if z = 0, then w must be a phase, and after redefining variables

we find that

M = eiθ

(
eiϕ 0

0 1

)
. (3.9)

This completes the proof.

Noting that each of the representations ̺I have m0 6= m1, we have shown that

the admissible irreducible modular representations must belong to the following set,

(S, T ) ∈
{(

UϕSIU
†
ϕ, UϕTIU

†
ϕ

)
| I = 2, 4, . . . , 54, ϕ ∈ R

}

∪
{(

VϕSIV
†
ϕ , VϕTIV

†
ϕ

)
| I = 2, 4, . . . , 54, ϕ ∈ R

} (3.10)

where we have defined the unitary matrices21

Uϕ =

(
eiϕ 0

0 1

)
, Vϕ =

(
0 eiϕ

1 0

)
. (3.11)

21We have used the fact that M1AM
†
1 = M2AM

†
2 whenever M1 = eiθM2 in order to set θ = 0 in

Eq. (3.5) without loss of generality.
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We can further cut down on the number of modular S and T matrices we must

consider by demanding that the coefficients N k
ij computed from S using Eq. (2.7)

be non-negative integers. Note that if one computes putative fusion rules from the

modular S-matrix using the Verlinde formula, one finds that every (S, T ) in the set

Eq. (3.10) leads to the following consistent fusion channels,

1× 1 = 1, 1× Φ = Φ× 1 = Φ. (3.12)

Non-trivial constraints can be obtained by considering the fusion of Φ with itself,

UϕSIU
†
ϕ : Φ× Φ = e−2iϕ

1+ e−iϕ rI − 1√
rI

Φ

VϕSIV
†
ϕ : Φ× Φ = e−2iϕ

1− e−iϕ rI − 1√
rI

Φ
(3.13)

where rI is the non-negative real number associated to ̺I through Eq. (3.2). De-

manding just that the fusion coefficient N 1

ΦΦ be a non-negative integer then requires

that ϕ = 0, π in both cases. Therefore, imposing this on Eq. (3.10) reduces it to a

finite set, and we can check which of these finitely many modular representations is

admissible with a case-by-case computation.

We now introduce some notation which will help us describe the result of this

computation. Define

U ≡ Uπ, V ≡ V0, W ≡ Vπ. (3.14)

Given any two-dimensional representation ̺, we can define equivalent representations

̺U(γ) ≡ U̺(γ)U †, ̺V(γ) ≡ V ̺(γ)V †, ̺W(γ) ≡ W̺(γ)W †. (3.15)

It will also be useful in what follows to abbreviate the representation ̺I to simply

I, and the representations (̺I)X to IX for X = U,V,W. For example, we will write

(̺20)V as 20V. Finally, we define

̺A ≡ ̺20, ̺G ≡ ̺32 (3.16)

so-labeled because ̺20 is the representation with respect to which the characters of

A1,1 transform, and ̺32 is the representation with respect to which the characters

of G2,1 transform. For the convenience of the reader, we explicitly write out the

modular data in these two cases,

SA =
1√
2

(
1 1

1 −1

)
, TA = exp 2πi diag(23/24, 5/24) (3.17)

SG =
1√

2 + ϕ

(
1 φ

φ −1

)
, TG = exp 2πi diag(53/60, 17/60) (3.18)
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where φ = 1+
√
5

2
.

With these conventions in place, we are ready to state the main result of this

subsection. By demanding that N Φ
ΦΦ be a non-negative integer, and that S0i > 0, we

find the following.

Theorem 7. The full set of two-dimensional irreducible, admissible modular repre-

sentations is

Semion : 20, 28W, 24W

Semion : 30W, 26, 22

Fibonacci : 32, 40W, 36W

Fibonacci : 42W, 38, 34

(3.19)

which we have organized by their associated modular tensor categories (see [46]).

Alternatively, this list can be re-written as

Semion : ̺A, ω̺A, ω2̺A

Semion : ̺∗
A
, ω̺∗

A
, ω2̺∗

A

Fibonacci : ̺G, ω̺G, ω2̺G

Fibonacci : ̺∗
G
, ω̺∗

G
, ω2̺∗

G

(3.20)

where ω : SL2(Z) → C∗ is the representation generated by the assignments ω(S) = 1

and ω(T ) = e−2πi/3.

Remark: The admissible A-type representations in Eq. (3.20) give rise to the fusion

rule Φ× Φ = 1 (corresponding to the so-called “Semion MTC” in [46] and its com-

plex conjugate), while the admissible G-type representations give rise to the fusion

rule Φ×Φ = 1+Φ (corresponding to the “Fibonacci MTC” in [46] and its complex

conjugate).

We now explain why the two-dimensional irreducible admissible modular represen-

tations exhaust all of the two-dimensional admissible modular representations. By

assumption, an admissible representation is unitary, and hence if it is not irreducible,

it decomposes into a direct sum of two one-dimensional representations of SL2(Z).

In §2.2, we explained that the one-dimensional representations of SL2(Z) form the

group Z12 with generator ζ given in Eq. (2.10). Thus, an admissible reducible mod-

ular representation ̺ is equivalent to ζa ⊕ ζb for some integers a, b = 0, . . . , 11. It

cannot be the case that a = b, because then ̺(S) is diagonal in every basis, which

violates the requirement that S0i > 0. On the other hand, if a 6= b, then the eigen-

values of ̺(T ) are distinct, and Lemma 6 tells us that any unitary change of basis

which keeps ̺(T ) diagonal will also keep ̺(S) diagonal. Hence, we again run into a

violation of S0i > 0. We therefore have the following.
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Proposition 8. There are no two-dimensional modular representations which are

both admissible and reducible.

We conclude this section by observing that the list of representations in Eq. (3.20)

can be seen to be in one-to-one correspondence with sequences of quasi-characters

from [33] that remain after discarding the following sets: (i) those corresponding to

more than 2 primaries, denoted the A2 and D4 series, (ii) those labeled Type II,

which have infinitely many negative coefficients in their q-expansions, and (iii) those

giving rise to negative fusion rules.

The correspondence is as follows. We start with the series called “Lee-Yang” in

Section 4.3 of [33]. These fall into three classes corresponding to Wronskian index

ℓ = 0, 2, 4 mod 6.

In the first class one has central charges c = 2(6n+1)
5

for n = 0, 1, 2, 3, 5, 6, 7, 8 mod

10. The last four of these correspond to Type II quasi-characters and are discarded.

The first four have central charges c = 2/5, 14/5, 26/5, 38/5 mod 24. Generalizing the

discussion in [27], the first and last of these can be shown to have negative fusion

rules. That leaves central charges c = 14/5, 26/5 mod 24, which correspond to the

representations ̺G, ω̺∗
G
respectively.

Moving on to ℓ = 2, we have c = 2(6n−1)
5

and here n = 7, 8, 9, 10 mod 10 give rise

to Type I characters, of which n = 7, 10 are discarded as they have negative fusion

rules. The remaining ones, with c = 94/5, 106/5, correspond to the representations

ω2̺G, ̺∗
G
respectively.

Finally, the ℓ = 4 quasi-characters are obtained by tensoring the E8,1 character

j(τ)
1
3 with the ℓ = 0 quasi-characters. This process simply multiplies the modular

representation by ω and therefore gives us ω̺G, ω2̺∗
G
, completing the list of G-type

(Fibonacci) representations in Eq. (3.20).

A similar exercise maps type I quasi-characters in the A1 series, Section 4.4 of

[33], to the six A-type (Semion) representations in Eq. (3.20). The ℓ = 0 quasi-

characters correspond to the representations ̺A, ω̺∗
A
, the ℓ = 2 quasi-characters

correspond to the representations ω2̺A, ̺∗
A
, and the ℓ = 4 quasi-characters corre-

spond to the representations ω̺A, ω2̺∗
A
. It is gratifying that the same modular

representations arise from two somewhat different mathematical starting points: the

direct classification of admissible representations vs. the study of MLDEs as in [83–

85].

3.2 Admissible characters

In the previous subsection, we classified two-dimensional admissible modular repre-

sentations. To proceed further, we must ask which of these representations admit

admissible characters with central charge in the range 0 ≤ c ≤ 24. We will see that

every admissible representation we found in the previous subsection supports at least

one admissible character.
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Rigid representations

To begin, we consider vector-valued modular forms for one of the following admissible

representations,

̺ = 20, 22, 26, 32, 34, 38, 28W, 40W (3.21)

or in terms of ̺A and ̺G, the representations

̺ = ̺A, ω2̺∗
A
, ω̺∗

A
, ̺G, ω2̺∗

G
, ω̺∗

G
, ω̺A, ω̺G. (3.22)

We call these representations “rigid” because, as we will show, they admit a unique

admissible character with central charge 0 ≤ c ≤ 24.

Let us start by assuming that ̺ 6= ω̺A, ω̺G. The T -matrix of such a represen-

tation is T = diag(e2πim0 , e2πim1), where the pair (m0, m1) can be read off from the

second column of Table 3 and satisfies 0 ≤ m1 < m0 < 1. If there exists a unitary

RCFT with 0 < c ≤ 24 whose characters transform covariantly with respect to such

a representation, then its central charge must be c = 24(1 − m0), and its vacuum

character must admit a q-expansion of the form

χ0(τ) = qm0−1 +O(qm0). (3.23)

Furthermore, we claim that the character of the non-identity primary would need to

start as

χ1(τ) = aqm1 +O(qm1+1) (3.24)

with a 6= 0. Indeed, since m1 < m0, if the non-identity character started as aqm1−n+

· · · with a 6= 0 for a positive integer n, then the conformal dimension of the non-

identity primary would be negative,

h = (m1 − n)− (m0 − 1) < −n + 1 ≤ 0, (3.25)

in violation of unitarity. On the other hand, should n be a negative integer, then the

Wronskian index would be negative,

ℓ = −6(m0 − 1 +m1 − n) + 1 ≤ −6(m0 +m1) + 1 < 0 (3.26)

and the characters singular, where the right-most inequality can easily be confirmed

by computing −6(m0 +m1) + 1 for each of the representations under consideration,

using the data of Table 3.

For each ̺ 6= ω̺A, ω̺G in Eq. (3.21), an admissible character of the form Eq.

(3.23) and Eq. (3.24) exists, and it is unique. To prove uniqueness, assume there

exists another character χ′ satisfying Eq. (3.23) and Eq. (3.24). Then the difference

of these two characters, χ − χ′, does not have any polar terms in its q-expansion,
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and hence is a holomorphic vector-valued modular form of weight zero for SL2(Z).

Because the modular representations we are working with have Γ(N) as part of their

kernels, it follows that the components of χ− χ′ are ordinary holomorphic modular

forms for Γ(N). It is known that the only such forms are the constant functions,

but constant functions do not transform correctly under the rest of SL2(Z) for these

representations unless they are zero, in which case we have that χ = χ′.

To prove existence, we can explicitly construct the character in each case.

Proposition 9. Let ̺ be one of the admissible modular representations in Eq. (3.21),

except for ω̺A and ω̺G. The unique quasi-character for ̺ with central charge 0 <

c ≤ 24 is

χ(τ) = X
(ℓ)
c,+(τ) (3.27)

where ℓ = −6(m0 +m1) + 7 and c = 24(1−m0). Furthermore, it is admissible.

The remaining two rigid cases can be treated similarly, and one finds the following.

Proposition 10. Let ̺ = ω̺A or ω̺G. There is a unique quasi-character for ̺ with

central charge 0 < c ≤ 24, and it is

χ(τ) = X
(ℓ)
c,+(τ) (3.28)

where ℓ = −6(m0 +m1) + 13 and c = 24(1−m1). Furthermore, it is admissible.

That X
(ℓ)
c,+(τ) has all the right properties (except perhaps for positivity) for

Proposition 9 and Proposition 10 to be true follows from the results of §2.4. The

q-expansions of these characters are reported in Table 1; their positivity to finite

order in the q-expansion can be seen by inspection, or more rigorously by appealing

to the RCFTs we will assign to them in the next subsection.

One-parameter representations

Let us now consider the remaining admissible representations,

̺ = ω2̺A, ̺∗
A
, ω2̺G, ̺∗

G
. (3.29)

We will call these one-parameter representations because, as we claim below, they

support a one-parameter family of admissible characters. We will interpret the pa-

rameter (when it is non-zero) as being the degeneracy of the non-identity primary.

The T -matrix of such a representation is T = diag(e2πim1 , e2πim0), and hence

a unitary RCFT with such a representation as its modular data and 0 < c ≤ 24

must have c = 24(1 −m1). Using arguments which are nearly identical to the ones

employed for rigid representations, one can convince oneself of the following.
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Proposition 11. The most general quasi-character for any ̺ in Eq. (3.29) with

0 < c ≤ 24 takes the form

χ0(τ) = qm1−1 +O(qm1)

χ1(τ) = aqm0−1 +O(qm0)
(3.30)

where a is an integer which completely fixes χ to be

χ(τ) = X
(ℓ)
c,+(τ) + aV X

(ℓ)
c′,+(τ). (3.31)

Here, ℓ = −6(m0 +m1) + 7, c = 24(1 −m1), c
′ = 24(1 −m0), and V is the matrix

defined in Eq. (3.14).

The q-expansions are again summarized in Table 1. The theories we match to

them in the next subsections rigorously show that they can be made completely

positive for suitable choices of the integer a.

3.3 Enumeration of theories

In the previous subsection, we showed that there are 12 admissible representations

which support admissible characters. Their data is summarized in Table 1. We

now turn to classifying the unitary rational conformal field theories which have these

forms as their characters.

3.3.1 Theories with 0 ≤ c < 8

We start with the vector-valued forms whose central charge lies in the range 0 ≤ c <

8. These correspond to the rigid representations

̺ = ̺A, ̺G, ω̺∗
G
, ω̺∗

A
(3.32)

at central charge

c = 1, 14/5, 26/5, 7 (3.33)

respectively. It is known that the MMS theories

A1,1, G2,1, F4,1, E7,1 (3.34)

have characters which match these cases. Moreover, it is possible to show that these

are the unique RCFTs with these characters [50].

The proof of this is straightforward. The space of dimension one operators in a

unitary RCFT must form a reductive Lie algebra with rank less than or equal to the

central charge [72, 73]. For example, in the case of the representation ̺A, inspection

of the characters reveals that there are 3 currents, so the global symmetry algebra

must be a reductive Lie algebra of dimension 3 and rank at most 1. Of course A1 is
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̺ (c, ĥ) Theory χ(τ)
q

c

24 χ0(τ)

q
c

24
−hχ1(τ)

̺A (1, 1/4) A1,1 [0, 1, 2]
1 + 3q + 4q2 + 7q3 + 13q4 + 19q5 + 29q6 + 43q7 + 62q8 + O(q9)

2 + 2q + 6q2 + 8q3 + 14q4 + 20q5 + 34q6 + 46q7 + 70q8 + O(q9)

ω̺A (9, 1/4) M
(16)

/

E7,1 [4, 9, 2]
1 + 251q + 4872q2 + 48123q3 + 335627q4 + 1868001q5 + O(q6)

2 + 498q + 8750q2 + 79248q3 + 522498q4 + 2786256q5 + O(q6)

ω2̺A (17, 1/4) M
(24)

/

E7,1
[2, 17, 1632] 1 + (88a + 323)q + (5192a + 60860)q2 + O(q3)

+ aV [2, 11, 88] a + (1632 − 319a)q + (162656 − 11077a)q2 + O(q3)

̺∗
A

(23, 3/4) M
(24)

/

A1,1
[2, 23, 32384] 1 + (10a + 69)q + (98a + 131905)q2 + (690a + 12195106)q3 + O(q4)

+ aV [2, 5, 10] a + (32384 − 65a)q + (4418944 − 450a)q2 + O(q3)

ω̺∗
A

(7, 3/4)
M

(8)
/

A1,1
[0, 7, 56]

1 + 133q + 1673q2 + 11914q3 + 63252q4 + 278313q5 + O(q6)

∼= E7,1 56 + 968q + 7504q2 + 42616q3 + 194768q4 + 772576q5 + O(q6)

ω2̺∗
A

(15, 3/4) M
(16)

/

A1,1 [4, 15, 56]
1 + 381q + 38781q2 + 1010062q3 + 14752518q5 + O(q6)

56 + 14856q + 478512q2 + 7841752q3 + 87285024q4 + O(q5)

̺G (14/5, 2/5) G2,1 [0, 14/5, 7]
1 + 14q + 42q2 + 140q3 + 350q4 + 840q5 + 1827q6 + 3858q7 + O(q8)

7 + 34q + 119q2 + 322q3 + 819q4 + 1862q5 + 4025q6 + 8218q7 + O(q8)

ω̺G (54/5, 2/5) M
(16)

/

F4,1 [4, 54/5, 7]
1 + 262q + 7638q2 + 103044q3 + 907932q4 + 6165852q5 + O(q6)

7 + 1770q + 37419q2 + 413314q3 + 3244881q4 + 20317202q5 + O(q6)

ω2̺G (94/5, 2/5) M
(24)

/

F4,1
[2, 94/5, 4794] 1 + (46a + 188)q + (2093a + 62087)q2 + (27002a + 2923494)q3 + O(q4)

+ aV [2, 46/5, 46] a + (4794 − 184a)q + (532134 − 3841a)q2 + O(q3)

̺∗
G

(106/5, 3/5) M
(24)

/

G2,1
[2, 106/5, 15847] 1 + (17a + 106)q + (442a + 84429)q2 + (4063a + 5825442)q3 + O(q4)

+aV [2, 34/5, 17] a + (15847 − 102a)q + (1991846 − 1088a)q2 + O(q3)

ω̺∗
G

(26/5, 3/5)
M

(8)
/

G2,1
[0, 26/5, 26]

1 + 52q + 377q2 + 1976q3 + 7852q4 + 27404q5 + 84981q6 + O(q7)

∼= F4,1 26 + 299q + 1702q2 + 7475q3 + 27300q4 + 88452q5 + 260650q6 + O(q7)

ω2̺∗
G

(66/5, 3/5) M
(16)

/

G2,1 [4, 66/5, 26]
1 + 300q + 17397q2 + 344672q3 + 4072878q4 + 35365284q5 + O(q6)

26 + 6747q + 183078q2 + 2566199q3 + 24832272q4 + O(q5)

Table 1: Admissible characters for the admissible two-dimensional modular repre-

sentations. Here, [ℓ, c, N ] stands for the function X
(ℓ)
c,N(τ), and M(c) denotes a chiral

algebra with one primary and central charge c.

the unique such Lie algebra, and the only possible level we can place it at without

exceeding c = 1 is level 1. In fact, the central charge of A1,1 is equal to 1 and the

algebra already has two primaries, so we know this must be the correct theory on the

nose. The same argument goes through mutatis mutandis in the other three cases.

An alternative proof for the uniqueness of F4,1 and E7,1 which is more in the

spirit of this paper is the following. Let us consider the genus (c, ̺) = (26/5, ω̺∗
G
) (see

§2.3 for the definition of genus). Unitarity of the representation ̺G implies that

̺T
G
· (ω̺∗

G
) = ω (3.35)

What this means is that any theory supported at the genus (26/5, ω̺∗
G
) can be glued

to a theory supported at (14/5, ̺G) (the unique choice being G2,1) to produce a chiral

algebra with one primary operator in the genus (8, ω) (the unique choice being E8,1).

Conversely, if any theory in the genus (26/5, ω̺∗
G
) is to exist, then it must be expressible

as a coset of the form E8,1

/
G2,1. Any two G2,1 subalgebras of E8,1 are related by an
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automorphism of E8,1, and so there is a unique theory of the form E8,1

/
G2,1 up to

isomorphim: it is none other than F4,1, so F4,1 is the unique theory with c = 26/5

and modular representation ω̺∗
G
. A similar argument proves that E7,1 is the unique

theory at genus (7, ω̺∗
A
).

A reader familiar with [26] may be surprised that we are claiming that there are

only 4 theories in this range of central charge, so we pause for a moment to compare

to older results. By studying the most general ℓ = 0 MLDE, namely Eq. (2.33), op.

cit. found that the values of c which render the solution X
(0)
c,+(τ) positive are

c = 2/5, 1, 2, 14/5, 4, 26/5, 6, 7, 38/5, 8 (3.36)

corresponding to the MMS theories

LY, A1,1, A2,1, G2,1, D4,1, F4,1, E6,1, E7,1, E7 1
2
,1, E8,1. (3.37)

This identification is rigorous in the sense that the characters of the above theories

can be independently computed and shown to be equal to those produced by the

MLDE.22 Why has our classification not recovered these additional cases?

First, as is well-known, E8,1 is a
(1)CFT, and its unique character has re-appeared

as a solution to a rank-2 MLDE that happens to be modular invariant by itself. Thus

it can be discarded since our goal in the present work is to classify only theories

with precisely two primary fields. Next, A2,1 and E6,1 are actually theories with three

primaries, two of which have the same character because they are complex conjugates

of each other. Similarly D4,1 describes a
(4)CFT, three of whose primaries are related

by triality and therefore have the same character. We must discard these as well.

This leaves the quasi-characters having central charges 2/5 and 38/5. In [27] it was

shown that both have at least one negative fusion-rule coefficient (as calculated from

the modular S-matrix using the Verlinde formula [63, 64]). These were therefore

discarded.23 The above works also noted that if one switches which character they

consider to correspond to the vacuum and which they consider to correspond to

the non-identity primary, then the c = 2/5, 38/5 characters can be reinterpreted as

characters with c = −22/5,−58/5. In the former case, this leads to a non-unitary

theory with consistent fusion rules. The conformal dimension in this case is −1/5

which permits us to identify this character with the non-unitary Lee-Yang minimal

model. The c = 38/5 case is different: it also acquires consistent fusion rules after

exchanging characters, but this exchange leads to a 57-fold degenerate vacuum state.

22Several years after the above discovery and working from a very different point of view, Deligne

[86] discovered the same series as a set of finite Lie algebras sharing some remarkable properties.

This series of Lie algebras was also found independently by Cvitanovič and is described in [87].
23Today both of these are known as Intermediate Vertex Operator Algebras (IVOA), a generali-

sation of VOAs where negative fusion rules are permitted [88]. We will not include IVOAs in our

classification in the present work.
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Thus its characters cannot be written in the form Eq. (2.4) with unit coefficient for

the first term in the first line and the exchanged theory also has to be rejected.

Since we are restricting attention to unitary theories, both the 2/5, 38/5 cases as

well as their exchanged versions are unacceptable. Hence the short summary of [26]

for us is that there are precisely four unitary (2)CFTs with ℓ = 0, namely the WZW

models A1,1,G2,1, F4,1,E7,1.

3.3.2 Theories with 8 ≤ c < 16

Next, we turn to theories with central charge in the range 8 ≤ c ≤ 16. Such theories

must be associated to the rigid modular representations

̺ = ω̺A, ω̺G, ω2̺∗
G
, ω2̺∗

A
, (3.38)

which occur at central charge

c = 9, 54/5, 66/5, 15 (3.39)

and support admissible characters of Wronskian index ℓ = 4. These can be paired

with the representations

˜̺ = ω̺∗
A
, ω̺∗

G
, ̺G, ̺A (3.40)

respectively, which occur at central charges

c̃ = 7, 26/5, 14/5, 1. (3.41)

Their pairing leads to the relations

̺T · ˜̺ = ω2, c+ c̃ = 16. (3.42)

At the level of theories, what this means is that any theory in the genus (c, ̺) can be

glued to an MMS theory in the dual genus (c̃, ˜̺) to produce a chiral algebra with one

primary operator in the genus (16, ω2), the two choices being E8,1 ⊗ E8,1 and D
+
16,1.

Conversely, any (2)CFT with 8 ≤ c < 16 can be obtained as a coset of E8,1 ⊗ E8,1 or

D
+
16,1 by an MMS theory. Such cosets can be explicitly enumerated (using the results

of Appendix C), and one finds

(9, ω̺A) = {E8,1 ⊗ A1,1
∼= (E8,1 ⊗ E8,1)

/
E7,1}

(54/5, ω̺G) = {E8,1 ⊗ G2,1
∼= (E8,1 ⊗ E8,1)

/
F4,1}

(66/5, ω2̺∗
G
) = {E8,1 ⊗ F4,1

∼= (E8,1 ⊗ E8,1)
/
G2,1, D

+
16,1

/
G2,1}

(15, ω2̺∗
A
) = {E8,1 ⊗ E7,1

∼= (E8,1 ⊗ E8,1)
/
A1,1, D

+
16,1

/
A1,1}.

(3.43)

We again compare to previous work. Admissible characters with ℓ = 4 were

studied and classified in [31, 33, 36]. Furthermore, these references identified at least
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one example of a chiral algebra for each admissible character. In particular, the

theories E8,1 ⊗ MMS were identified as furnishing admissible ℓ = 4 characters, but

the two cosets D
+
16,1

/
G2,1 and D

+
16,1

/
A1,1 (which to our knowledge, have not been

considered previously in the literature) did not appear because they are isospectral

with E8,1 ⊗ F4,1 and E8,1 ⊗ E7,1, respectively. The rest of the admissible characters

they found in the range 8 ≤ c < 16 don’t arise in our classification for similar reasons

as in the previous subsection.

In addition, the ℓ = 4 MLDE can be shown to permit three new admissible

characters with c = 162/5, 33, 34. None of these values of c are less than 25, the case

of interest here, so we can ignore them henceforth. However for the interested reader

we mention that the c = 33 case has been identified with a CFT in [36], and the

c = 162/5 case was found to be of IVOA type in [33]. To our knowledge, the status

of the c = 34 case remains unclear; in any case, it has fusion rules of A2,1-type and

therefore can at best describe a theory with three primaries.

3.3.3 Theories with 16 ≤ c < 25

Finally, we enumerate the p = 2 theories with central charge satisfying 16 ≤ c < 25.

First, we note that there are no theories in the range 24 ≤ c < 25. Indeed,

by examining the matrix element T00 in every two-dimensional admissible modular

representation, we see that no chiral algebra can have c mod 24 in the interval [0, 1).

Thus, we restrict our attention from now on to chiral algebras with 16 ≤ c < 24.

These must belong to the genera

(c, ̺) = (17, ω2̺A), (94/5, ω2̺G), (106/5, ̺∗
G
), (23, ̺∗

A
). (3.44)

By the gluing principle, any theory in these genera must be obtained as a coset of a

c = 24 chiral algebra A with one irreducible representation (i.e. a Schellekens theory

[12]) by one of the algebras E7,1, F4,1, G2,1, or A1,1, respectively (cf. Table 1).

Fixing A to be a Schellekens theory, and V to be one of E7,1, F4,1,G2,1, or A1,1,

there may be multiple cosets of A by V. This has a chance of happening if there are

multiple inequivalent ways of realizing V inside of A as a subalgebra, i.e. if there are

multiple subalgebras isomorphic to V which are not related by an automorphism of

A (cf. the discussion in §2.3).

As explained in Appendix C, any embedding V →֒ A must factor through one

of the simple Kac–Moody factors of A at level 1,

V →֒ g1 →֒ A. (3.45)

Let us imagine embedding V into A in two different ways, and asking whether they

lead to isomorphic cosets or not. There are three different scenarios.

Scenario 1. In the first scenario, we imagine two embeddings ι, ι′ : V → A which

factor through two non-isomorphic simple factors g1, g
′
1, respectively, as in part (a)
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V

g1 g′1

g1 ⊕ g′1

A
(a)

V

g1

A
(b)

V

g1 g1

g1 ⊕ g1

A
(c)

Figure 1: Different pairs of embeddings of V = A1,1,G2,1, F4,1, or E7,1 into a c = 24

chiral algebra A with one simple module.

of Figure 1. One generically expects that the two cosets so-obtained will be non-

isomorphic: indeed, in all the cases we consider, this can be seen by using the

techniques of Appendix C to compute the Lie algebras of the automorphism groups

of the two cosets A
/
ι(V) and A

/
ι′(V), and verifying that they are not isomorphic.

Scenario 2. Another possibility is that V is embedded in two different ways into

the same simple factor g1 of A. By Proposition 13, the images of any two such

embeddings can be rotated into one another using the Lie group symmetries of A,

and hence lead to isomorphic coset theories. This situation is summarized in part

(b) of Figure 1.

Scenario 3. The most subtle possibility is that V is embedded into two different

simple factors of A which are isomorphic to one another, as described in part (c) of

Figure 1. In this case, we must search the symmetry group of A for outer automor-

phisms which map one simple factor to the other. If such an automorphism can be

found, then the cosets are isomorphic. Otherwise, further consideration is needed.

Proposition 3 guarantees that such an automorphism can be found in all but two

cases.

Example 12. To make the preceding discussion more concrete, consider the theory

S(A2
7,1D

2
5,1), numbered 49 in [12]. The claim is that there are two inequivalent cosets

of the form S(A2
7,1D

2
5,1)
/
A1,1, one obtained by embedding A1,1 into either of the A7,1

factors, and the other obtained by embedding A1,1 into either of the D5,1 factors.

We label these two cosets S(A2
7,1D

2
5,1)
/
(A1,1 →֒ A7,1) and S(A2

7,1D
2
5,1)
/
(A1,1 →֒ D5,1),

respectively.

For the purposes of this discussion, let us distinguish the two copies of A7,1 by

giving one of them a prime, and likewise for D5,1; hence, we write the Schellekens

theory as S(A7,1A
′
7,1D5,1D

′
5,1). To see why the claim of the preceding paragraph is true,

note that by Proposition 13, any two A1,1 subalgebras which reside in the same A7,1
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factor, as in Scenario 2, can be rotated into one another by the Lie group symmetries

of S(A2
7,1D

2
5,1), and hence lead to isomorphic cosets (likewise for A7,1 replaced by D5,1).

Furthermore, by Proposition 3, the following two cosets, which follow Scenario

3, are isomorphic

S(A7,1A
′
7,1D5,1D

′
5,1)
/
(A1,1 →֒ A7,1) ∼= S(A7,1A

′
7,1D5,1D

′
5,1)
/
(A1,1 →֒ A

′
7,1) (3.46)

because there is an outer automorphism of S(A7,1A
′
7,1D5,1D

′
5,1) which maps A7,1 to

A′
7,1 (likewise for A7,1,A

′
7,1 replaced by D5,1,D

′
5,1).

On the other hand, the two cosets

S(A7,1A
′
7,1D5,1D

′
5,1)
/
(A1,1 →֒ A7,1), S(A7,1A

′
7,1D5,1D

′
5,1)
/
(A1,1 →֒ D5,1) (3.47)

are inequivalent, as in Scenario 1. Indeed, by appealing to Table 4, we see that the

former inherits an A7,1A5,1D
2
5,1U1 Kac–Moody algebra, whereas the latter inherits an

A2
7,1D5,1A3,1A1,1 Kac–Moody algebra; in particular, their global symmetry groups have

different Lie algebras, and hence they are distinct theories.

Using arguments analogous to the ones employed above, in conjunction with the

techniques and data provided in Appendix C, one can enumerate all the inequivalent

cosets A
/
V, with A a Schellekens theory and V one of the four, two-primary MMS

theories. However, there are two exceptions we must contend with (which occur when

A is one of the exceptions to Proposition 3). We conclude by treating these in turn.24

Exception 1. The first exception is when A = S(D6,5A1,1A
′
1,1). In this case, there is

no automorphism which maps A1,1 into A′
1,1 and so there is a chance that the cosets

S(D6,5A1,1A
′
1,1)
/
A1,1 and S(D6,5A1,1A

′
1,1)
/
A
′
1,1 are inequivalent. We can verify that

this is indeed true. We note that, using the results of [12], the first coset decomposes

into D6,5A1,1-modules as

S(D6,5A1,1A
′
1,1)
/
A1,1

∼=
[
(0, 0, 0, 0, 0, 0)⊕ (0, 1, 0, 0, 0, 2)⊕ (0, 1, 0, 0, 2, 0)

⊕ (1, 0, 0, 1, 1, 1)⊕ (0, 0, 2, 0, 0, 0)⊕ (2, 0, 0, 1, 0, 0)
]
⊗ A1,1

⊕
[
(0, 0, 0, 0, 0, 5)⊕ (0, 0, 0, 1, 0, 1)⊕ (2, 0, 0, 1, 0, 1)

⊕ (1, 1, 0, 0, 1, 0) + (0, 0, 2, 0, 0, 1) + (0, 1, 0, 0, 2, 1)
]
⊗ J

(3.48)

24We thank Ching Hung Lam and Hiroki Shimakura for useful exchanges related to these excep-

tions.
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while the second coset decomposes as

S(D6,5A1,1A
′
1,1)
/
A
′
1,1

∼=
[
(0, 0, 0, 0, 0, 0)⊕ (0, 1, 0, 0, 0, 2)⊕ (0, 1, 0, 0, 2, 0)

⊕ (1, 0, 0, 1, 1, 1)⊕ (0, 0, 2, 0, 0, 0)⊕ (2, 0, 0, 1, 0, 0)
]
⊗ A1,1

⊕
[
(0, 0, 0, 0, 5, 0)⊕ (2, 0, 0, 1, 1, 0)⊕ (0, 0, 0, 1, 1, 0)

⊕ (1, 1, 0, 0, 0, 1)⊕ (0, 0, 2, 0, 1, 0)⊕ (0, 1, 0, 0, 1, 2)
]
⊗ J

(3.49)

where here, J is the unique non-vacuum module of A1,1, and (λ1, · · · , λ6) denotes

the D6,5-module with Dynkin labels given by λi. As can be seen by inspection of

the module structure, an isomorphism which relates these two cosets would need to

restrict to an automorphism of Z := S(D6,5A1,1A
′
1,1)
/
A1,1A

′
1,1 which is a lift of the

diagram outer-automorphism of D6,5. But since A is a simple-current extension of

Z ⊗ A1,1A
′
1,1, if Z had such an automorphism, then it could be lifted to an outer

automorphism of A, using Theorem 2.1 of [89]. By consulting Table 1 of [20], one

sees that the outer automorphism group of A is trivial, and hence no such outer

automorphism exists. Thus, there cannot be an isomorphism which relates the two

cosets, and they should be thought of as distinct theories.

Exception 2. The second exception is when A = S(A7,4A
3
1,1). In this case, there is

a Z2 automorphism which swaps two of the A1,1 factors, but does not connect them

to the third A1,1 factor. Thus, there are potentially two inequivalent cosets, which

we might write as

S(A7,4A
′
1,1A

2
1,1)
/
A1,1, S(A7,4A

′
1,1A

2
1,1)
/
A
′
1,1. (3.50)

One can verify that they are indeed inequivalent by using the results of [12] to decom-

pose the two cosets into A7,4A
2
1,1-modules, and confirming that the modules which

appear cannot be related by any outer automorphism of A7,4A
2
1,1.

The full list of 123 two-primary theories with c < 25 is reported in Appendix A.
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4 Future Directions

In this work, we have classified all unitary, rational (2)CFTs with central charge

c < 25. Every such theory is either one of four MMS theories — A1,1, G2,1, F4,1,

E7,1 — or a coset of a chiral algebra with one primary by such an MMS theory.

Such theories can be explicitly enumerated, and their basic properties (characters,

Kac–Moody subalgebras, etc.) computed. The complete list appears in Appendix

A. There are a number of questions which are ripe for future research.

The most immediate question one can ask is whether or not it is possible to

push the classification of (2)CFTs to higher central charge. The next case where

one expects to find theories is c = 25. The logic of the gluing principle says that

classifying such theories is equivalent to classifying (1)CFTs with c = 32 and an E7,1

subalgebra. Some examples here are known [34], but the list is far from complete.

One motivation for studying this question comes from penumbral moonshine [90–

93] (see also Appendix D). To explain this connection, note that the most general

quasi-character with central charge c = 25 is

χ(τ) = X
(0)
25,+(τ) + βV X

(0)
19,+(τ) + γX

(0)
1,+(τ). (4.1)

In [91], it was found that if one sets β = γ = 0, then the function

F (−4,1)(τ) = 2η(τ)χ(τ)

=

{
2q−1 − 492 + 2 · 142884q + 2 · 18473000q2 + · · ·
2 · 565760q 5

4 + 2 · 51179520q 9
4 + 2 · 1912896000q 13

4 + · · ·
(4.2)

enjoys a tight relationship with the representation theory of the exceptional finite

group G(−4,1) = 2.F4(2).2.
25 For example, 142884 and 565760 are precisely the

dimensions of certain irreducible representations of G(−4,1). It would be remarkable

if this connection could find some physical explanation in terms of VOA, or VOA-

adjacent structures. There are of course obstacles to a unitary RCFT interpretation

of this function as written: the vacuum is doubly degenerate and there is a negativity

in the spectrum. Note however that the negativity can be cured by taking γ ≥ 246

in Eq. (4.1), though it is not obvious that one can do this without sacrificing the

appearance of the group G(−4,1). Similarly, it might be found in the final analysis

that the overall factor of 2 which leads to a degenerate vacuum is inessential, or

alternatively, that the degenerate vacuum has a natural interpretation in terms of

intermediate vertex operator algebras [88]. Regardless, having complete knowledge

of the genus (c, ̺) = (25, ̺A) may offer valuable clues for teasing out the physical

origin of penumbral moonshine.

Another question is how effectively one can classify (p)CFTs with p > 2 and

c . 24 using the strategy we have employed in this paper.26 One of the simplifying

25In the Gap [94] database, this group appears as “Isoclinic(2.F4(2).2)”.
26Note added: This problem is addressed in [95].
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features of the p = 2 analysis was that the only cosets we were required to take

involved level 1 affine Kac–Moody algebras based on simple Lie algebras. Thus,

the enumeration of these cosets more or less reduced to the enumeration of index-1

embeddings of ordinary simple Lie algebras into simple Lie algebras, a problem for

which there are an abundance of tools available. In the p > 2 setting, the cosets

required will be more involved. For example, the Ising model is the unique (3)CFT

at c = 1/2, and therefore the classification of theories at c = 47/2 with conjugate

modular data will involve having a detailed understanding of equivalence classes of

Ising subalgebras in meromorphic conformal field theories. In the monster CFT V ♮,

it is understood [96] that Ising subalgebras are in one-to-one correspondence with

involutions in a particular conjugacy class of the monster group M, which in the

Atlas [97] conventions is called the 2A conjugacy class. All of these Ising subalgebras

are conjugate to one another, and so the coset V ♮
/
L1/2 is always isomorphic to the

Baby Monster VOA VB♮ [37, 98] (see also [70, 99, 100]).27 Beyond the monster CFT,

there are many beautiful results [96, 101–107] which contend with the structure of

Ising subalgebras in meromorphic CFTs; it would be interesting if everything that is

known at present could be synthesized to produce a complete classification of (3)CFTs

with c = 47/2.

Our classification naturally pairs p = 2 chiral algebras V, Ṽ which can be glued

together to produce a p = 1 theory. Recently it has been appreciated that a new

class of Hecke operators [32, 35], which act on vector-valued modular forms rather

than scalar modular forms, often relate the characters of Ṽ to those of V when the

central charge of Ṽ is an integer multiple of the central charge of V (see also [70, 71]).

It would be interesting to explore how this Hecke correspondence plays out in the

context of the (2)CFTs classified in this paper. Even more interesting would be if

one could define a generalized class of Hecke operators which relate the characters

of Ṽ to those of V even when the central charge of Ṽ is only a fractional multiple of

the central charge of V.
Finally, it would be interesting if one could use the techniques we have described

in this paper to classify CFTs, but relaxing some of the assumptions of unitarity,

regularity, etc. Among the many reasons to study non-unitary theories, the prospect

of leveraging them to learn about 4d N = 2 SCFTs [108–110] is a comparatively

recent and exciting one.
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A Theories

This appendix contains tables which enumerate all theories with p = 2 primaries

and c < 25, ordered by increasing central charge. In each table, the first column

specifies the number of the theory. The second column gives a description of the

theory. The notation S(X) denotes the unique c = 24 meromorphic CFT with Kac–

Moody subalgebra X. The notation S(· · ·Xr,1 · · · )
/
(Yr′,1 →֒ Xr,1) stands for the coset

of the Schellekens theory S(· · ·Xr,1 · · · ) by Yr′,1 (which is always an MMS theory)

embedded into the factor Xr,1. When there is only a single kind of factor at level

1 in the Kac–Moody subalgebra of the Schellekens theory, we abbreviate this coset

to S(· · ·Xr,1 · · · )
/
Yr′,1. The third column is the genus, i.e. a tuple consisting of the

central charge and the modular tensor category which characterizes the representa-

tion theory of the chiral algebra. Sem stands for the “Semion MTC”, Fib stands

for the “Fibonacci MTC”, and Sem, Fib are their complex conjugates (see [46] for

details). The fourth column is the conformal dimension of the non-identity primary

and the fifth column is the Wronskian index. The sixth column provides a subalge-

bra of the theory with the same central charge (i.e. a conformal subalgebra). This

subalgebra captures the full Kac–Moody symmetry of the theory; Abelian factors are

represented by U1. In the cases that the Kac–Moody subalgebra does not saturate

the central charge of the full theory, the specified subalgebra includes a tensor prod-

uct of minimal model chiral algebras, Lc with c < 1, which make up the difference.

The seventh column indicates the degeneracy d of the non-identity primary. Finally,

chiral algebras which are isomorphic to lattice VOAs are decorated by a ⋆.
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No. Theory (c,C ) h ℓ Subalgebra d

⋆ 1 A1,1 (1, Sem) 1/4 0 A1,1 2

2 G2,1 (14/5,Fib) 2/5 0 G2,1 7

3 F4,1
∼= E8,1

/
G2,1 (26/5,Fib) 3/5 0 F4,1 26

⋆ 4 E7,1
∼= E8,1

/
A1,1 (7, Sem) 3/4 0 E7,1 56

⋆ 5 E8,1A1,1
∼= E2

8,1

/
E7,1 (9, Sem) 1/4 4 A1,1E8,1 2

6 E8,1G2,1
∼= E2

8,1

/
F4,1 (54/5,Fib) 2/5 4 G2,1E8,1 7

7 E8,1F4,1
∼= E2

8,1

/
G2,1 (66/5,Fib) 3/5 4 F4,1E8,1 26

8 D
+
16,1

/
G2,1 (66/5,Fib) 3/5 4 B12,1L7/10 26

⋆ 9 E8,1E7,1
∼= E2

8,1

/
A1,1 (15, Sem) 3/4 4 E7,1E8,1 56

⋆ 10 D
+
16,1

/
A1,1 (15, Sem) 3/4 4 D14,1A1,1 56

⋆ 11 S(D10,1E
2
7,1)
/
(E7,1 →֒ E7,1) (17, Sem) 5/4 2 D10,1E7,1 1632

⋆ 12 S(A17,1E7,1)
/
(E7,1 →֒ E7,1) (17, Sem) 5/4 2 A17,1 1632

⋆ 13 E2
8,1A1,1

∼= E3
8,1

/
E7,1 (17, Sem) 1/4 8 E2

8,1A1,1 2

⋆ 14 S(D16,1E8,1)
/
(E7,1 →֒ E8,1) (17, Sem) 1/4 8 D16,1A1,1 2

15 S(C8,1F
2
4,1)
/
(F4,1 →֒ F4,1) (94/5,Fib) 7/5 2 C8,1F4,1 4794

16 S(E7,2B5,1F4,1)
/
(F4,1 →֒ F4,1) (94/5,Fib) 7/5 2 E7,2B5,1 4794

17 S(E4
6,1)
/
F4,1 (94/5,Fib) 2/5 8 E3

6,1L4/5 1

18 S(A11,1D7,1E6,1)
/
(F4,1 →֒ E6,1) (94/5,Fib) 2/5 8 A11,1D7,1L4/5 1

19 S(D10,1E
2
7,1)
/
(F4,1 →֒ E7,1) (94/5,Fib) 2/5 8 D10,1E7,1A1,3 3

20 S(A17,1E7,1)
/
(F4,1 →֒ E7,1) (94/5,Fib) 2/5 8 A17,1A1,3 3

21 E2
8,1G2,1

∼= E3
8,1

/
F4,1 (94/5,Fib) 2/5 8 E2

8,1G2,1 7

22 S(D16,1E8,1)
/
(F4,1 →֒ E8,1) (94/5,Fib) 2/5 8 D16,1G2,1 7

23 S(E6,3G
3
2,1)
/
G2,1 (106/5,Fib) 8/5 2 E6,3G

2
2,1 15847

24 S(D7,3A3,1G2,1)
/
(G2,1 →֒ G2,1) (106/5,Fib) 8/5 2 D7,3A3,1 15847

25 S(D6,2C4,1B
2
3,1)
/
(G2,1 →֒ B3,1) (106/5,Fib) 3/5 8 D6,2C4,1B3,1L7/10 1

26 S(A9,2A4,1B3,1)
/
(G2,1 →֒ B3,1) (106/5,Fib) 3/5 8 A9,2A4,1L7/10 1

27 S(D6
4,1)
/
G2,1 (106/5,Fib) 3/5 8 D5

4,1L1/2L7/10 2

28 S(A4
5,1D4,1)

/
(G2,1 →֒ D4,1) (106/5,Fib) 3/5 8 A4

5,1L1/2L7/10 2

29 S(D8,2B
2
4,1)
/
G2,1 (106/5,Fib) 3/5 8 D8,2B4,1U1L7/10 3

30 S(C2
6,1B4,1)

/
(G2,1 →֒ B4,1) (106/5,Fib) 3/5 8 C2

6,1U1L7/10 3

31 S(A2
7,1D

2
5,1)
/
(G2,1 →֒ D5,1) (106/5,Fib) 3/5 8 A2

7,1D5,1A1,2L7/10 4

32 S(C8,1F
2
4,1)
/
(G2,1 →֒ F4,1) (106/5,Fib) 3/5 8 C8,1F4,1A1,8 5

33 S(E7,2B5,1F4,1)
/
(G2,1 →֒ B5,1) (106/5,Fib) 3/5 8 E7,2A

2
1,1F4,1L7/10 5

34 S(E7,2B5,1F4,1)
/
(G2,1 →֒ F4,1) (106/5,Fib) 3/5 8 E7,2B5,1A1,8 5

35 S(D4
6,1)
/
G2,1 (106/5,Fib) 3/5 8 D3

6,1B2,1L7/10 6

36 S(A2
9,1D6,1)

/
(G2,1 →֒ D6,1) (106/5,Fib) 3/5 8 A2

9,1B2,1L7/10 6

37 S(C10,1B6,1)
/
(G2,1 →֒ B6,1) (106/5,Fib) 3/5 8 C10,1A3,1L7/10 7

38 S(E4
6,1)
/
G2,1 (106/5,Fib) 3/5 8 E3

6,1A2,2 8

39 S(A11,1D7,1E6,1)
/
(G2,1 →֒ D7,1) (106/5,Fib) 3/5 8 A11,1B3,1E6,1L7/10 8

40 S(A11,1D7,1E6,1)
/
(G2,1 →֒ E6,1) (106/5,Fib) 3/5 8 A11,1D7,1A2,2 8
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No. Theory (c,C ) h ℓ Subalgebra d

41 S(D3
8,1)
/
G2,1 (106/5,Fib) 3/5 8 D2

8,1B4,1L7/10 10

42 S(E8,2B8,1)
/
G2,1 (106/5,Fib) 3/5 8 E8,2D5,1L7/10 11

43 S(A15,1D9,1)
/
(G2,1 →֒ D9,1) (106/5,Fib) 3/5 8 A15,1B5,1L7/10 12

44 S(D10,1E
2
7,1)
/
(G2,1 →֒ D10,1) (106/5,Fib) 3/5 8 B6,1E

2
7,1L7/10 14

45 S(D10,1E
2
7,1)
/
(G2,1 →֒ E7,1) (106/5,Fib) 3/5 8 D10,1E7,1C3,1 14

46 S(A17,1E7,1)
/
(G2,1 →֒ E7,1) (106/5,Fib) 3/5 8 A17,1C3,1 14

47 S(D2
12,1)

/
G2,1 (106/5,Fib) 3/5 8 D12,1B8,1L7/10 18

48 E2
8,1F4,1

∼= E3
8,1

/
G2,1 (106/5,Fib) 3/5 8 E2

8,1F4,1 26

49 S(D16,1E8,1)
/
(G2,1 →֒ D16,1) (106/5,Fib) 3/5 8 B12,1E8,1L7/10 26

50 D
+
16,1F4,1

∼= S(D16,1E8,1)
/
(G2,1 →֒ E8,1) (106/5,Fib) 3/5 8 D16,1F4,1 26

51 S(D24,1)
/
G2,1 (106/5,Fib) 3/5 8 B20,1L7/10 42

⋆ 52 S(A24
1,1)
/
A1,1 (23, Sem) 7/4 2 A23

1,1 32384

53 S(A4
3,2A

4
1,1)
/
A1,1 (23, Sem) 7/4 2 A4

3,2A
3
1,1 32384

54 S(A5,3D4,3A
3
1,1)
/
A1,1 (23, Sem) 7/4 2 A5,3D4,3A

2
1,1 32384

55 S(A7,4A
′
1,1A

2
1,1)
/
A1,1 (23, Sem) 7/4 2 A7,4A

2
1,1 32384

56 S(A7,4A
′
1,1A

2
1,1)
/
A′
1,1 (23, Sem) 7/4 2 A7,4A

2
1,1 32384

57 S(D5,4C3,2A
2
1,1)
/
A1,1 (23, Sem) 7/4 2 D5,4C3,2A1,1 32384

58 S(D6,5A1,1A
′
1,1)
/
A1,1 (23, Sem) 7/4 2 D6,5A1,1 32384

59 S(D6,5A1,1A
′
1,1)
/
A
′
1,1 (23, Sem) 7/4 2 D6,5A1,1 32384

60 S(C5,3G2,2A1,1)
/
A1,1 (23, Sem) 7/4 2 C5,3G2,2 32384

⋆ 61 S(A12
2,1)
/
A1,1 (23, Sem) 3/4 8 A

11
2,1U1 2

62 S(D2
4,2B

4
2,1)
/
A1,1 (23, Sem) 3/4 8 D2

4,2B
3
2,1A1,1L1/2 2

63 S(A2
5,2B2,1A

2
2,1)
/
(A1,1 →֒ A2,1) (23, Sem) 3/4 8 A

2
5,2C2,1A2,1U1 2

64 S(A2
5,2B2,1A

2
2,1)
/
(A1,1 →֒ B2,1) (23, Sem) 3/4 8 A2

5,2A1,1A
2
2,1L1/2 2

65 S(A8,3A
2
2,1)
/
A1,1 (23, Sem) 3/4 8 A8,3A2,1U1 2

66 S(E6,4B2,1A2,1)
/
(A1,1 →֒ B2,1) (23, Sem) 3/4 8 E6,4A1,1A2,1L1/2 2

67 S(E6,4B2,1A2,1)
/
(A1,1 →֒ A2,1) (23, Sem) 3/4 8 E6,4C2,1U1 2

⋆ 68 S(A8
3,1)
/
A1,1 (23, Sem) 3/4 8 A7

3,1A1,1U1 4

69 S(D2
5,2A

2
3,1)
/
A1,1 (23, Sem) 3/4 8 D

2
5,2A3,1A1,1U1 4

70 S(E6,3G
3
2,1)
/
A1,1 (23, Sem) 3/4 8 E6,3G

2
2,1A1,3 4

71 S(A7,2C
2
3,1A3,1)

/
(A1,1 →֒ A3,1) (23, Sem) 3/4 8 A7,2C

2
3,1A1,1U1 4

72 S(A7,2C
2
3,1A3,1)

/
(A1,1 →֒ C3,1) (23, Sem) 3/4 8 A7,2C3,1B2,1A3,1L7/10 4

73 S(D7,3A3,1G2,1)
/
(A1,1 →֒ G2,1) (23, Sem) 3/4 8 D7,3A3,1A1,3 4

74 S(D7,3A3,1G2,1)
/
(A1,1 →֒ A3,1) (23, Sem) 3/4 8 D7,3G2,1A1,1U1 4

75 S(C7,2A3,1)
/
A1,1 (23, Sem) 3/4 8 C7,2A1,1U1 4

⋆ 76 S(A6
4,1)
/
A1,1 (23, Sem) 3/4 8 A5

4,1A2,1U1 6

77 S(C4
4,1)
/
A1,1 (23, Sem) 3/4 8 C3

4,1C3,1L4/5 6

78 S(D6,2C4,1B
2
3,1)
/
(A1,1 →֒ C4,1) (23, Sem) 3/4 8 D6,2C3,1B

2
3,1L4/5 6

79 S(D6,2C4,1B
2
3,1)
/
(A1,1 →֒ B3,1) (23, Sem) 3/4 8 D6,2C4,1B3,1A1,2A1,1 6

80 S(A9,2A4,1B3,1)
/
(A1,1 →֒ A4,1) (23, Sem) 3/4 8 A9,2A2,1B3,1U1 6

81 S(A9,2A4,1B3,1)
/
(A1,1 →֒ B3,1) (23, Sem) 3/4 8 A9,2A4,1A1,2A1,1 6

⋆ 82 S(D6
4,1)
/
A1,1 (23, Sem) 3/4 8 D5

4,1A1,1A1,1A1,1 8
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No. Theory (c,C ) h ℓ Subalgebra d

⋆ 83 S(A4
5,1D4,1)

/
(A1,1 →֒ A5,1) (23, Sem) 3/4 8 A3

5,1A3,1D4,1U1 8

⋆ 84 S(A4
5,1D4,1)

/
(A1,1 →֒ D4,1) (23, Sem) 3/4 8 A

4
5,1A

3
1,1 8

85 S(E6,2C5,1A5,1)
/
(A1,1 →֒ C5,1) (23, Sem) 3/4 8 E6,2C4,1A5,1L6/7 8

86 S(E6,2C5,1A5,1)
/
(A1,1 →֒ A5,1) (23, Sem) 3/4 8 E6,2C5,1A3,1U1 8

87 S(E7,3A5,1)
/
A1,1 (23, Sem) 3/4 8 E7,3A3,1U1 8

⋆ 88 S(A4
6,1)
/
A1,1 (23, Sem) 3/4 8 A3

6,1A4,1U1 10

89 S(D8,2B
2
4,1)
/
A1,1 (23, Sem) 3/4 8 D8,2B4,1B2,1A1,1 10

90 S(C2
6,1B4,1)

/
(A1,1 →֒ C6,1) (23, Sem) 3/4 8 C6,1C5,1B4,1L25/28 10

91 S(C2
6,1B4,1)

/
(A1,1 →֒ B4,1) (23, Sem) 3/4 8 C2

6,1B2,1A1,1 10

⋆ 92 S(A2
7,1D

2
5,1)
/
(A1,1 →֒ A7,1) (23, Sem) 3/4 8 A7,1A5,1D

2
5,1U1 12

⋆ 93 S(A2
7,1D

2
5,1)
/
(A1,1 →֒ D5,1) (23, Sem) 3/4 8 A2

7,1A3,1A1,1D5,1 12

94 S(D9,2A7,1)
/
A1,1 (23, Sem) 3/4 8 D9,2A5,1U1 12

⋆ 95 S(A3
8,1)
/
A1,1 (23, Sem) 3/4 8 A2

8,1A6,1U1 14

96 S(C8,1F
2
4,1)
/
(A1,1 →֒ C8,1) (23, Sem) 3/4 8 C7,1F

2
4,1L14/15 14

97 S(C8,1F
2
4,1)
/
(A1,1 →֒ F4,1) (23, Sem) 3/4 8 C8,1F4,1C3,1 14

98 S(E7,2B5,1F4,1)
/
(A1,1 →֒ B5,1) (23, Sem) 3/4 8 E7,2B3,1A1,1F4,1 14

99 S(E7,2B5,1F4,1)
/
(A1,1 →֒ F4,1) (23, Sem) 3/4 8 E7,2B5,1C3,1 14

⋆ 100 S(D4
6,1)
/
A1,1 (23, Sem) 3/4 8 D3

6,1D4,1A1,1 16

⋆ 101 S(A2
9,1D6,1)

/
(A1,1 →֒ A9,1) (23, Sem) 3/4 8 A9,1A7,1D6,1U1 16

⋆ 102 S(A2
9,1D6,1)

/
(A1,1 →֒ D6,1) (23, Sem) 3/4 8 A2

9,1D4,1A1,1 16

103 S(C10,1B6,1)
/
(A1,1 →֒ C10,1) (23, Sem) 3/4 8 C9,1B6,1L21/22 18

104 S(C10,1B6,1)
/
(A1,1 →֒ B6,1) (23, Sem) 3/4 8 C10,1B4,1A1,1 18

⋆ 105 S(E4
6,1)
/
A1,1 (23, Sem) 3/4 8 E3

6,1A5,1 20

⋆ 106 S(A11,1D7,1E6,1)
/
(A1,1 →֒ A11,1) (23, Sem) 3/4 8 A9,1D7,1E6,1U1 20

⋆ 107 S(A11,1D7,1E6,1)
/
(A1,1 →֒ D7,1) (23, Sem) 3/4 8 A11,1D5,1A1,1E6,1 20

⋆ 108 S(A11,1D7,1E6,1)
/
(A1,1 →֒ E6,1) (23, Sem) 3/4 8 A11,1D7,1A5,1 20

⋆ 109 S(A2
12,1)

/
A1,1 (23, Sem) 3/4 8 A12,1A10,1U1 22

⋆ 110 S(D3
8,1)
/
A1,1 (23, Sem) 3/4 8 D2

8,1D6,1A1,1 24

111 S(E8,2B8,1)
/
A1,1 (23, Sem) 3/4 8 E8,2B6,1A1,1 26

⋆ 112 S(A15,1D9,1)
/
(A1,1 →֒ A15,1) (23, Sem) 3/4 8 A13,1D9,1U1 28

⋆ 113 S(A15,1D9,1)
/
(A1,1 →֒ D9,1) (23, Sem) 3/4 8 A15,1D7,1A1,1 28

⋆ 114 S(D10,1E
2
7,1)
/
(A1,1 →֒ D10,1) (23, Sem) 3/4 8 D8,1A1,1E

2
7,1 32

⋆ 115 S(D10,1E
2
7,1)
/
(A1,1 →֒ E7,1) (23, Sem) 3/4 8 D10,1E7,1D6,1 32

⋆ 116 S(A17,1E7,1)
/
(A1,1 →֒ A17,1) (23, Sem) 3/4 8 A15,1E7,1U1 32

⋆ 117 S(A17,1E7,1)
/
(A1,1 →֒ E7,1) (23, Sem) 3/4 8 A17,1D6,1 32

⋆ 118 S(D2
12,1)

/
A1,1 (23, Sem) 3/4 8 D12,1D10,1A1,1 40

⋆ 119 S(A24,1)
/
A1,1 (23, Sem) 3/4 8 A22,1U1 46

⋆ 120 E2
8,1E7,1

∼= E3
8,1

/
A1,1 (23, Sem) 3/4 8 E2

8,1E7,1 56

⋆ 121 S(D16,1E8,1)
/
(A1,1 →֒ D16,1) (23, Sem) 3/4 8 D14,1A1,1E8,1 56

⋆ 122 D
+
16,1E7,1

∼= S(D16,1E8,1)
/
(A1,1 →֒ E8,1) (23, Sem) 3/4 8 D16,1E7,1 56

⋆ 123 S(D24,1)
/
A1,1 (23, Sem) 3/4 8 D22,1A1,1 88
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B Two-Dimensional Representations of the Modular Group

Table 2 contains all equivalence classes of two-dimensional irreducible representations

̺ with finite image and ̺(S)2 = −1. The first column is the label/number of the

representation, and the second column contains the pair (m0, m1) which determines

̺(S) and ̺(T ) through Eq. (3.3) and Eq. (3.1).

Table 3 contains all equivalence classes of two-dimensional irreducible represen-

tations ̺ with finite image and ̺(S)2 = +1. The first column is the number I which

labels the equivalence class of the representation. The second column provides the

associated rational numbers (m0, m1) which can be used to reconstruct ̺(S) and

̺(T ) through Eq. (3.3) and Eq. (3.1). The third column computes ℓ̂, which is the

Wronskian index modulo 6 of any vector-valued modular form which transforms co-

variantly with respect to the representation ̺ (or ̺U, ̺V, or ̺W). The fourth column

contains (ĉ, ĥ) which are respectively the value of the central charge modulo 24 and

the conformal dimension of Φ modulo 1 for any unitary RCFT (if any exists) with

characters which transform covariantly under either ̺ or ̺U. Likewise, (ĉV, ĥV) are

respectively the value of the central charge modulo 24 and the conformal dimension

of Φ modulo 1 for any unitary RCFT (if any exists) with characters which transform

covariantly under either ̺V or ̺W. An entry is colored green if the modular repre-

sentation is admissible, in the sense of §2.1. Finally, the last three columns identify

the label of ̺∗, ω̺∗, and ω2̺∗, where ̺∗ is the representation obtained by complex

conjugating the entries of ̺, and ω : SL2(Z) → C∗ is the character of the modular

group which assigns ω(T ) = e−2πi/3 and ω(S) = 1.

No. (m0, m1)

1 (3⁄4,1⁄4)

3 (11⁄12,5⁄12)

5 (7⁄12,1⁄12)

7 (2⁄3,1⁄3)

9 (5⁄6,1⁄2)

11 (2⁄3,0)

13 (5⁄6,1⁄6)

15 (1⁄3,0)

17 (1⁄2,1⁄6)

No. (m0, m1)

19 (7⁄8,1⁄8)

21 (7⁄24,1⁄24)

23 (11⁄24,5⁄24)

25 (5⁄8,3⁄8)

27 (19⁄24,13⁄24)

29 (23⁄24,17⁄24)

31 (4⁄5,1⁄5)

33 (29⁄30,11⁄30)

35 (8⁄15,2⁄15)

No. (m0, m1)

37 (7⁄10,3⁄10)

39 (13⁄15,7⁄15)

41 (19⁄30,1⁄30)

43 (3⁄5,2⁄5)

45 (23⁄30,17⁄30)

47 (14⁄15,11⁄15)

49 (9⁄10,1⁄10)

51 (4⁄15,1⁄15)

53 (13⁄30,7⁄30)

Table 2: Equivalence classes of two-dimensional irreducible representations ̺ of

SL2(Z) with finite image and ̺(S)2 = −1.
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No. (m0,m1) ℓ̂ (ĉ, ĥ) ̺ ̺U (ĉV, ĥV) ̺V ̺W ̺∗ ω̺∗ ω2̺∗

2 (5⁄6,1⁄3) 0 (4, 1/2) 2 2U (16, 1/2) 2V 2W 6W 2 4

4 (1⁄2,0) 4 (12, 1/2) 4 4U (24, 1/2) 4V 4W 4 6W 2

6 (2⁄3,1⁄6) 2 (8, 1/2) 6 6U (20, 1/2) 6V 6W 2W 4W 6

8 (3⁄4,5⁄12) 0 (6, 2/3) 8 8U (14, 1/3) 8V 8W 18W 14 10W

10 (11⁄12,7⁄12) 4 (2, 2/3) 10 10U (10, 1/3) 10V 10W 16W 12 8W

12 (3⁄4,1⁄12) 2 (6, 1/3) 12 12U (22, 2/3) 12V 12W 14W 10 18

14 (11⁄12,1⁄4) 0 (2, 1/3) 14 14U (18, 2/3) 14V 14W 12W 8 16

16 (5⁄12,1⁄12) 4 (14, 2/3) 16 16U (22, 1/3) 16V 16W 10W 18W 14

18 (7⁄12,1⁄4) 2 (10, 2/3) 18 18U (18, 1/3) 18V 18W 8W 16W 12

20 (23⁄24,5⁄24) 0 (1, 1/4) 20 20U (19, 3/4) 20V 20W 30W 26 22

22 (3⁄8,1⁄8) 4 (15, 3/4) 22 22U (21, 1/4) 22V 22W 28W 24W 20

24 (13⁄24,7⁄24) 2 (11, 3/4) 24 24U (17, 1/4) 24V 24W 26W 22W 30

26 (17⁄24,11⁄24) 0 (7, 3/4) 26 26U (13, 1/4) 26V 26W 24W 20 28W

28 (7⁄8,5⁄8) 4 (3, 3/4) 28 28U (9, 1/4) 28V 28W 22W 30 26W

30 (19⁄24,1⁄24) 2 (5, 1/4) 30 30U (23, 3/4) 30V 30W 20W 28 24

32 (53⁄60,17⁄60) 0 (14/5, 2/5) 32 32U (86/5, 3/5) 32V 32W 42W 38 34

34 (9⁄20,1⁄20) 4 (66/5, 3/5) 34 34U (114/5, 2/5) 34V 34W 40W 36W 32

36 (37⁄60,13⁄60) 2 (46/5, 3/5) 36 36U (94/5, 2/5) 36V 36W 38W 34W 42

38 (47⁄60,23⁄60) 0 (26/5, 3/5) 38 38U (74/5, 2/5) 38V 38W 36W 32 40W

40 (19⁄20,11⁄20) 4 (6/5, 3/5) 40 40U (54/5, 2/5) 40V 40W 34W 42 38W

42 (43⁄60,7⁄60) 2 (34/5, 2/5) 42 42U (106/5, 3/5) 42V 42W 32W 40 36

44 (41⁄60,29⁄60) 0 (38/5, 4/5) 44 44U (62/5, 1/5) 44V 44W 54W 50 46W

46 (17⁄20,13⁄20) 4 (18/5, 4/5) 46 46U (42/5, 1/5) 46V 46W 52W 48 44W

48 (49⁄60,1⁄60) 2 (22/5, 1/5) 48 48U (118/5, 4/5) 48V 48W 50W 46 54

50 (59⁄60,11⁄60) 0 (2/5, 1/5) 50 50U (98/5, 4/5) 50V 50W 48W 44 52

52 (7⁄20,3⁄20) 4 (78/5, 4/5) 52 52U (102/5, 1/5) 52V 52W 46W 54W 50

54 (31⁄60,19⁄60) 2 (58/5, 4/5) 54 54U (82/5, 1/5) 54V 54W 44W 52W 48

Table 3: Two-dimensional irreducible representations ̺ of SL2(Z) with finite image

and ̺(S)2 = +1. The representations highlighted green are admissible.
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C Lie Algebras and Current Algebras

In this section, we summarize a number of facts about Lie algebras and affine Kac–

Moody algebras that are relevant for our analysis.

Our classification requires us to enumerate cosets of the form A
/
hk, where A is

a chiral algebra and hk is the level k affine Kac–Moody algebra based on a simple

Lie algebra h. This in turn requires us to understand all subalgebras hk ⊂ A up to

equivalence. Recall (cf. §2.3) that we consider two subalgebras of a chiral algebra A
to be equivalent if there is an automorphism/symmetry of A which maps one to the

other.

To this end, let

(g1)k1 ⊗ · · · ⊗ (gn)kn ⊂ A (C.1)

be the Kac–Moody subalgebra of A, excluding any Abelian factors. Here, (gi)ki is

the level ki affine Kac–Moody algebra based on the simple Lie algebra gi. Unitarity

forces the levels ki of a Kac–Moody subalgebra inside of any chiral algebra to be non-

negative integers. Because hk is generated by its dimension 1 currents, an embedding

hk →֒ A is completely determined by the induced embedding of ordinary Lie algebras

h →֒ g1 ⊕ · · · ⊕ gn (C.2)

which describes how the space of dimension 1 operators of hk sits inside the space of

dimension 1 operators of A.

In order for a Lie algebra embedding of the form (C.2) to extend to an embedding

hk →֒ (g1)k1 ⊗ · · · ⊗ (gn)kn →֒ A (C.3)

of chiral algebras, it must satisfy an additional property: namely, its embedding

indices must be compatible with the levels k, k1, . . . , kn. There are two useful defi-

nitions of the index x(h →֒ g) associated to an embedding h →֒ g of one simple Lie

algebra into another.

Projection matrix: There is a projection matrix P, unique up to Weyl reflections,

which projects any weight λ of g onto a weight µ of h. Consider θg, θh, the highest

roots of g, h respectively. In terms of these, the embedding index x(h →֒ g) is defined

as

x(h →֒ g) ≡ |Pθg|2
|θh|2

. (C.4)

This quantity is a positive integer if the embedding is non-trivial, and 0 if it is trivial.

Branching rules: Any irreducible representation Rλ of g can be decomposed into

irreducible representations Rµ of h as

Rλ =
⊕

µ

bλµRµ. (C.5)
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The coefficients bλµ are called branching coefficients, non-negative integers that label

the multiplicity of Rµ inside Rλ. Given the coefficients bλµ for any single λ, the

embedding index is determined as

x(h →֒ g) =
∑

µ

bλµ
xµ

xλ

. (C.6)

In this formula, xλ and xµ are the Dynkin indices (or simply indices) associated to

the irreducible representations Rλ and Rµ, respectively. For example,

xλ =
dimRλ

2 dim g
(λ, λ+ 2ρ) (C.7)

where ρ is the Weyl vector,

ρ =
1

2

∑

α∈∆+

α, (C.8)

defined as half the sum of the positive roots; xµ is defined similarly.

We can now describe when the Lie algebra embedding (C.2) extends to the affine

embedding (C.3). It is precisely when the levels k, k1, . . . , kn are related as

k =
∑

i

x(h →֒ gi)ki (C.9)

where x(h →֒ gi) is the index of the induced embedding h →֒ gi. One consequence

of this is that when k = 1, the affine Kac–Moody algebra h1 must sit entirely inside

a single simple factor (gi)ki which has ki = 1 and x(h →֒ gi) = 1, and must embed

trivially into every (gj)kj with j 6= i.

Another useful fact is that the coset A
/
hk inherits a continuous global symmetry

algebra from A (which is necessarily a reductive Lie algebra) given by the centralizer

C(h) = p1 ⊕ · · · ⊕ pm ⊕ U
r
1 (C.10)

where the pj are simple Lie algebras, Ur
1 is the Abelian part, and the centralizer is

taken inside of the continuous global symmetry algebra of A. In fact, one can say

more: each pj is the dimension 1 subspace of an affine Kac–Moody algebra

(pj)k′j →֒ A
/
hk →֒ A (C.11)

which embeds into the coset. The level k′
j of this affine Kac–Moody algebra is

determined as before through the formula

k′
j =

∑

i

x(pj →֒ gi)ki. (C.12)
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The currents associated to the Abelian factors in Eq. (C.10) similarly sit inside their

own Kac–Moody subalgebras.

Now, let us consider two isomorphic Kac–Moody subalgebras h1, h
′
1 ⊂ A at level

k = 1. We are interested in whether these define distinct cosets A
/
h1, A

/
h′1, or

whether the two cosets are isomorphic. As we explained in §2.3, if there is an auto-

morphism X : A → A which maps X(h1) = h′1, then the cosets will be isomorphic,

so we are interested in determining when such an automorphism X exists.

First, note that because k = 1, both h1 and h′1 must each be embedded into a sin-

gle level 1 factor of the Kac–Moody subalgebra of A, i.e. h1 →֒ (gi)1 and h′1 →֒ (gj)1,

respectively. Let us start by considering the special case that i = j, i.e. the situation

that they are embedded into the same factor g1 := (gi)1 = (gj)1. Exponentials of

the zero-modes of the Noether currents in g1 lift to Lie group symmetries of A which

we could use to attempt to relate h1 and h′1. At the level of ordinary Lie algebras,

this translates to the question of whether h, h′ ⊂ g are equivalent subalgebras, in the

sense of being taken into one another by the adjoint Lie group action of the expo-

nential of g. If the answer is yes, then the cosets A
/
h1 and A

/
h′1 are isomorphic. To

this end, we have the following proposition.

Proposition 13. Let g be any simple Lie algebra such that g1 ⊂ A for some c = 24

chiral algebra A with one primary operator (see Table 4 for a superset of g which

arise in this way). Furthermore, let h, h′ be Lie subalgebras of g with embedding

indices x(h →֒ g) = x(h′ →֒ g) = 1 such that h and h′ are both isomorphic to one of

A1, G2, F4, or E7. Then h and h′ are equivalent subalgebras inside of g.

Before substantiating this proposition, we comment on its implications. Proposition

13 shows that if A is a c = 24 theory with one primary, then any two cosets A
/
h1

and A
/
h′1 are isomorphic if h1, h

′
1 are both isomorphic to A1,1, G2,1, F4,1, or E7,1, and

are both embedded into the same Kac–Moody factor g1 ⊂ A.

This leaves just the case that h1 lies inside one factor g1 ⊂ A, and h′1 lies inside

another factor g′1 ⊂ A. In this case, the cosets A
/
h1 and A

/
h′1 are isomorphic if

there is an automorphism X : A → A which maps g1 into g′1. Indeed, X maps h1 to

a subalgebra X(h1) ⊂ g′1, and then one could use the proposition above to produce

an automorphism Y which rotates X(h1) into h′1. Whether such an X exists can

be determined using the (outer) automorphism groups computed in [20, 78]. See

Proposition 3 in the main text.

Proof. First, we note that there is a different useful notion of equivalence of Lie

subalgebras, called linear equivalence. Two subalgebras h, h′ ⊂ g are said to be

linearly equivalent in g if, for every representation ρ : g → gl(V ), the subalgebras

ρ(h), ρ(h′) ⊂ gl(V ) are conjugate under GL(V ). Now, let g be a simple Lie algebra

which appears in Table 4, and let N be the number of linear equivalence classes of
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subalgebras h such that x(h →֒ g) = 1 and h is isomorphic to A1,G2, F4, or E7. Then,

one can use the computer algorithms of [94, 111] to conclude that N = 0 or N = 1.

Now, two subalgebras which are equivalent are necessarily linearly equivalent,

but the converse is not necessarily true in general. According to Theorem 3 of [112],

if g ∼= An,Bn,Cn,G2, F4 or if h ∼= A1, then the notions of linear equivalence and

ordinary equivalence coincide, and so the considerations of the previous paragraph

show that the proposition holds in these cases. The remaining cases which we must

check are the following,

(h, g) ∈ {(G2,Dn), (G2,En), (F4,En), (E7,E8)}. (C.13)

Theorem 4 of [112] explains that if the fundamental representation of Dn, when

decomposed into representations of h ⊂ Dn, contains an odd-dimensional orthogonal

subrepresentation, then the notions of linear equivalence and equivalence coincide.

This is true in the case that h ∼= G2, because the fundamental representation of Dn

decomposes as 7 ⊕ 1 ⊕ · · · ⊕ 1, and 7 is an orthogonal representation according to

Table 1 of [113]. One similarly concludes that there is a unique equivalence class

of subalgebras with embedding index 1 in the remaining cases in Eq. (C.13) by

consulting the various tables in [112].

Table 4 lists centralizers of each of the subalgebras appearing in Proposition 13,

as well as the embedding indices of each of their simple factors. These were computed

using Gap [94].
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g\h(1) A
(1)
1 G

(1)
2 F

(1)
4 E

(1)
7

A1 0 – – –

A2 U1 – – –

A3 A
(1)
1 U1 – – –

A4 A
(1)
2 U1 – – –

A5 A
(1)
3 U1 – – –

A6 A
(1)
4 U1 – – –

A7 A
(1)
5 U1 – – –

A8 A
(1)
6 U1 – – –

A9 A
(1)
7 U1 – – –

A10 A
(1)
8 U1 – – –

A11 A
(1)
9 U1 – – –

A12 A
(1)
10 U1 – – –

A15 A
(1)
13 U1 – – –

A17 A
(1)
15 U1 – – –

A24 A
(1)
22 U1 – – –

B2 A
(1)
1 – – –

B3 A
(2)
1 A

(1)
1 0 – –

B4 B
(1)
2 A

(1)
1 U1 – –

B5 B
(1)
3 A

(1)
1 A

(1)
1 A

(1)
1 – –

B6 B
(1)
4 A

(1)
1 A

(1)
3 – –

B7 B
(1)
5 A

(1)
1 D

(1)
4 – –

B8 B
(1)
6 A

(1)
1 D

(1)
5 – –

g\h(1) A
(1)
1 G

(1)
2 F

(1)
4 E

(1)
7

C3 B
(1)
2 – – –

C4 C
(1)
3 – – –

C5 C
(1)
4 – – –

C6 C
(1)
5 – – –

C7 C
(1)
6 – – –

C8 C
(1)
7 – – –

C10 C
(1)
9 – – –

D4 A
(1)
1 A

(1)
1 A

(1)
1 0 – –

D5 A
(1)
3 A

(1)
1 A

(2)
1 – –

D6 D
(1)
4 A

(1)
1 B

(1)
2 – –

D7 D
(1)
5 A

(1)
1 B

(1)
3 – –

D8 D
(1)
6 A

(1)
1 B

(1)
4 – –

D9 D
(1)
7 A

(1)
1 B

(1)
5 – –

D10 D
(1)
8 A

(1)
1 B

(1)
6 – –

D12 D
(1)
10 A

(1)
1 B

(1)
8 – –

D16 D
(1)
14 A

(1)
1 B

(1)
12 – –

D24 D
(1)
22 A

(1)
1 B

(1)
20 – –

E6 A
(1)
5 A

(2)
2 0 –

E7 D
(1)
6 C

(1)
3 A

(3)
1 0

E8 E
(1)
7 F

(1)
4 G

(1)
2 A

(1)
1

F4 C
(1)
3 A

(8)
1 0 –

G2 A
(3)
1 0 – –

Table 4: Centralizers of A
(1)
1 , G

(1)
2 , F

(1)
4 , and E

(1)
7 in simple Lie algebras with small

rank. Each entry is Cg(h) where h ⊂ g is the unique subalgebra (up to equivalence)

with embedding index x(h →֒ g) = 1. The notation X
(x)
r indicates that the rank

r simple Lie algebra Xr sits inside g with embedding index x. For example, the

centralizer of G2 inside F4 (embedded with index 1) is A1, which sits inside of F4 with

index 8. A dash – indicates that there is no embedding h →֒ g with index 1, and 0

indicates that the embedding has a trivial centralizer.
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D Holomorphic and Skew-Holomorphic Jacobi Forms

In §3.1, we classified two-dimensional admissible representations of SL2(Z), and in

§3.2, we computed vector-valued modular forms for these representations using mod-

ular linear differential equations. In this appendix, we telegraphically describe an

alternative method for computing vector-valued modular forms for the A-type rep-

resentations, i.e. the representations

̺A, ω̺A, ω2̺A, ̺∗
A
, ω̺∗

A
, ω2̺∗

A
(D.1)

where ̺A is defined in Eq. (3.17). The key will be to relate vector-valued modular

forms for the representations ωn̺∗
A
to holomorphic Jacobi forms of index 1 [114],

and vector-valued modular forms for the representations ωn̺A to skew-holomorphic

Jacobi forms of index 1 [115], both of which have been more or less classified. Part of

our motivation for highlighting this connection is to facilitate future comparisons of

theories with two primaries to Umbral Moonshine [116, 117] and Penumbral Moon-

shine [90–93] (though it is “mock” [118] Jacobi forms which appear in the former

setting, and so one should expect a structure more subtle than ordinary unitary

RCFT to categorify the functions there, see e.g. [119–121]).

We follow the exposition of [91, 122] closely. First, we say that a function ϕ :

H × C → C is an elliptic form of index m if ϕ is holomorphic, and if

ϕ(τ, z + λτ + µ) = e−2πi(mλ2τ+2mλz)ϕ(τ, z) (D.2)

for any integers λ, µ ∈ Z. Any elliptic form admits a theta-decomposition of the form

ϕ(τ, z) =
∑

r mod 2m

hr(τ)θm,r(τ, z) (D.3)

where hr(τ) are arbitrary functions, and

θm,r(τ, z) =
∑

s≡r mod 2m

qs
2/4me2πizs. (D.4)

To see this, note that taking λ = 0 and µ = 1 in Eq. (D.2) implies that ϕ is periodic

under z 7→ z + 1, and hence admits a Fourier expansion of the form

ϕ(τ, z) =
∑

l∈Z

bl(τ)e
2πilz. (D.5)

Imposing the λ = 1, µ = 0 transformation on this Fourier expansion shows that

∑

l∈Z

(e2πilτ bl(τ))e
2πilz = e−2πimτ

∑

l∈Z

bl(τ)e
2πi(l−2m)z (D.6)

which implies that hr(τ) ≡ br(τ)q
−r2/4m only depends on the value of r modulo 2m.
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We further say that ϕ is a holomorphic Jacobi form of weight k and index m

if it is an elliptic form of index m with holomorphic theta coefficients hr(τ) which

remain bounded as τ → i∞, and if it satisfies

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cmz2

cτ + d

)
(cτ + d)kϕ(τ, z). (D.7)

Similarly, we say that ϕ is a skew-holomorphic Jacobi form of weight k and index m if

it is an elliptic form of index m with anti-holomorphic theta coefficients hr(τ) = gr(τ)

which remain bounded as τ → i∞, and if it satisfies

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cmz2

cτ + d

)
|cτ + d|(cτ̄ + d)k−1ϕ(τ, z). (D.8)

It will be useful for us to note that the holomorphic and skew-holomorphic Jacobi

forms of index 1 have been classified. For example, it is known that the space Jk of

holomorphic Jacobi forms of weight k and index 1 takes the form

Jk = Mk−4(SL2(Z)) ·E4,1(τ, z)⊕Mk−6(SL2(Z)) · E6,1(τ, z) (D.9)

where Mk(SL2(Z)) is the space of ordinary holomorphic modular forms of weight k,

and Ek,1(τ, z) is a Jacobi Eisenstein series, which in general is defined as

Ek,m(τ, z) =

1

2

∑

c,d∈Z

(c,d)=1

∑

λ∈Z

(cτ + d)−k exp 2πim

(
λ2aτ + b

cτ + d
+ 2λ

z

cτ + d
− cz2

cτ + d

)
. (D.10)

(See [114] for the Fourier expansion.) Meanwhile, the space J sk
k of skew-holomorphic

Jacobi forms of weight k and index 1 is

J sk
k = Mk−1(SL2(Z)) · T (τ, z)⊕Mk−3(SL2(Z)) · U(τ, z) (D.11)

where

T (τ, z) =
∑

r mod 2m

θ1,r(τ, 0)θ1,r(τ, z)

U(τ, z) =
12

πi

∂T

∂τ̄
(τ, z) + E2(τ)T (τ, z).

(D.12)

Because of the modular transformation properties of the theta functions θm,r(τ, z),

it follows that the theta-coefficients hr(τ) of a holomorphic Jacobi form constitute a

holomorphic vector-valued modular form of weight k − 1
2
which transforms as

hr

(
aτ + b

cτ + d

)
= (cτ + d)k−

1
2

∑

s mod 2m

̺∗√
2mZ

( a b
c d )r,s hs(τ). (D.13)
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Similarly, the complex-conjugates gr(τ) = hr(τ) of the theta-coefficients of a skew-

holomorphic Jacobi form constitute a holomorphic vector-valued modular form of

weight k − 1
2
which transforms as

gr

(
aτ + b

cτ + d

)
= (cτ + d)k−

1
2

∑

s mod 2m

̺√2mZ
( a b
c d )r,s gs(τ). (D.14)

Here, ̺√2mZ
is a projective representation of SL2(Z) defined on the generators as

̺√2mZ
(T )r,s = eπir

2/2mδr,s, ̺√2mZ
(S)r,s =

e−πi/4

√
2m

e−πirs/m. (D.15)

It is a special case (corresponding to L =
√
2mZ) of a family of representations ̺L

known as the Weil representations, which can be associated to any even lattice L.

Thus, any skew-holomorphic/holomorphic Jacobi form defines a vector-valued

modular form transforming under the Weil representation or its conjugate, and

conversely every such vector-valued modular form determines a holomorphic/skew-

holomorphic Jacobi form through Eq. (D.3).

In the case that m = 1, the Weil representation is a two-dimensional projective

representation, and we can ask how it is related to the two-dimensional admissible

representations that we classified. The key fact is that

̺A = ̺√2mZ
/ǫ (D.16)

where ǫ : SL2(Z) → C∗ is the projective representation describing how the Dedekind

eta function transforms. Specifically, it is defined through

ǫ(T ) = eπi/12, ǫ(S) =
√
−i. (D.17)

(Note that ǫ2 = ζ which was defined in Eq. (2.10).) Thus, this shows that the most

general quasi-character transforming under the representation ωn̺A for n = 0, 1, 2

with central charge c = 8n+ 24q + 1 can be expressed as

χ(τ) =
g(τ)

η(τ)8n+24q+1
(D.18)

where g(τ) is the holomorphic vector-valued modular form associated to a skew-

holomorphic Jacobi form of weight 4n + 12q + 1, the most general of which can be

determined from Eq. (D.11). Likewise, the most general quasi-character transforming

under the representation ωn̺∗
A
for n = 0, 1, 2 with central charge c = 8n+ 24q− 1 is

χ(τ) =
h(τ)

η(τ)8n+24q−1
(D.19)

where h(τ) is the vector-valued modular form associated to a holomorphic Jacobi

form of weight 4n + 12q, the most general of which can be determined from Eq.

(D.9).
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As an illustrative example, we have claimed that the characters of E7,1 transform

covariantly with respect to the representation ω̺∗
A
, and so should be expressible as

χE7,1(τ) = h(τ)/η(τ)7 (D.20)

where h(τ) are the theta-coefficients of a holomorphic Jacobi form of weight 4. The

unique weight 4 Jacobi form is E4,1(τ, z), and one can check that the function one

obtains from Eq. (D.20) agrees with the one reported in Table 1 to low orders in the

q-expansion.
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