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Classification of Urban Functional Areas From
Remote Sensing Images and Time-Series

User Behavior Data
Chen Chen , Jining Yan , Lizhe Wang , Fellow, IEEE, Dong Liang , and Wanfeng Zhang

Abstract—Urbanization is accelerating at a rapid rate, which
has introduced many challenges, especially in the field of urban
planning. Under the backdrop of global urbanization, some cities
are particularly vulnerable to climate change and natural disasters
that are influenced by unplanned urban expansion. Rational plan-
ning of urban functional areas needs to be strengthened to improve
the scientific approach of urban planning and urbanization. In
this study, the classification of urban functional areas based on
dual-modal data (i.e., remote sensing image and user behavior
data) was implemented using machine learning (ML) algorithms.
After the set test, the classification accuracy of urban functional
areas reached 82.45%. Through analysis, it could be concluded that
the use of data of two modalities achieved a higher classification
accuracy than that achieved by using data of a single modality. The
data of the two modalities complement each other, and the use of
ML algorithms to train such data can yield good results.

Index Terms—Classification of urban functional areas,
convolutional neural network (CNN), light gradient boosting
machine (LightGBM), multimodal data.

I. INTRODUCTION

T
HE United Nations has proposed the 2030 Agenda for Sus-
tainable Development to achieve sustainable development

goals (SDGs) [1] in three dimensions: the society, economy,
and environment. Urbanization plays a key role in each of these
dimensions. Cities present a challenging and inspiring scope for
achieving the SDGs, and urban planning is the key factor in real-
izing sustainable construction [2], [3]. With the development of
the social economy, the influence of spatial pattern of functional
zones in cities on the efficiency of life is increasing. To cater to
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the various needs of the residents of a city, the geographical area
of the city is divided on the basis of the functions of the city to
form a development model with different functions in different
areas [4], [5]. Identifying and classifying the functional areas of
cities can improve the scientific nature of urban planning and
promote the construction of new cities [6]–[8].

In recent years, many studies on the functional zones of
cities have been conducted. Chen et al. used building-level
social media data and a dynamic time warping distance based
k-medoids method to group buildings with similar social media
activities into functional areas [9]. Xing and Meng adopted
the random forest (RF) method to process and analyze the
landscape and socioeconomic characteristics data for classifying
urban functional areas [10]. Arnaud used remote sensing images,
three-dimensional city models, and other data to classify urban-
structure types using support vector machine methods [11].

Remote sensing images are rich in information and have
played a vital role in various studies [12]–[15]. However, they
only reflect the actual characteristics of the surface features [16],
[17]. Because of the lack of semantic information regarding the
functions of geographic regions, pure remote sensing images
have certain limitations with respect to the classification of func-
tional areas [18], [19]. The exploration of human social activities
by advanced information technologies has demonstrated that the
travel and habitual activities of people are highly regular [20].
Furthermore, human behavior and urban spatial structures have
been found to be closely related [21], [22]. Therefore, the travel
characteristics of people can be used as an important basis
for urban functional zoning [4], [23], [24]. However, because
functional areas are defined by a combination of human activities
and urban regional space, simple human activity characteristics
cannot be used to explore the actual distribution of functional
areas [25].

In this study, remote sensing image data and online user
behavior data are used to classify urban functional areas. The
user behavior statistical data indicate that the travel direction
and duration of a crowd are related to the type of functional
area. The core functions of different areas of a city can be judged
by the regularity in behavior of the crowd. For remote sensing
image data, a convolutional neural network (CNN) is used as
an algorithm for image recognition to obtain the probabilistic
features of each category. This is because a CNN enables good
image recognition and classification and can accurately extract
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image characteristics, such as color, texture, shape, and spatial
relationships [26]. Finally, light gradient boosting machine
(LightGBM) is used to combine the processed data of the two
modalities for the final classification. LightGBM is a type of
ensemble learning method. Ensemble learning can complete
learning tasks by constructing and combining multiple learners,
which can achieve significantly better generalization perfor-
mance than that achieved with a single learner [27].

With the dataset and algorithm used in this study, after five-
fold cross-validation, a model with an accuracy of 82.45% is
obtained. The results show that the classification using the com-
bined data of the two modalities achieves significant improve-
ment over the classifications using the two modalities separately,
indicating that the data of the two modalities complement each
other and offer certain advantages in functional area classifica-
tion. In addition, a comparison between LightGBM and other
algorithms can show that the former has certain advantages in
terms of classification accuracy and training time. The results
of this study show that the proposed method is effective and
feasible. Therefore, with its definite theoretical and practical
value, the proposed method is suitable for use in urban functional
areas, employing multimodal data.

The two major contributions of this study are as follows.
1) Multimodal data were used. Data from different modalities

complement each other and offer better classification than
that offered by single-modal data.

2) The LightGBM machine learning (ML) algorithm was
used, which has higher classification accuracy and shorter
training time than those of other ML algorithms.

II. RELATED WORK

Remote sensing images are effective in reflecting the regional
characteristics of land, which significantly improves the ability
of remote sensing in the research on the changes in urban land
use and cover [28]. Zhou et al. used the SO-CNN method to
classify urban functional areas based on remote sensing images.
They found that it is highly significant in the study of small-scale
functional spatial structures [29]. Cheng et al. proposed discrim-
inative CNNs to classify remote sensing image scenes, which
solved the problems of within-class diversity and between-class
similarity. This method improved the performance of remote
sensing image scene classification [30]. In addition, remote
sensing images are often used in region segmentation (i.e.,
spatial division of functional regions in an image). Zhang et

al. used VHR satellite images to perform multiscale geological
segmentation of the city and effectively divided the functional ar-
eas of the city [31]. The remote sensing image reflects the actual
features of the ground objects and lacks semantic information
related to human activities. Therefore, a pure remote sensing
image is not ideal for identifying functional areas.

Social software are being widely applied, and the generated
data are also increasing significantly. People extract more and
more effective information from a large amount of data. The use
of location-related information generated by social networks to
study the behavior of people has become a major trend [24]. The
behavior of people reflected in social network data improve the

TABLE I
STATISTICS OF VARIOUS TYPES OF DATA

classification of urban functional areas. Zhi et al. used social
media sign-in data based on the low rank approximation model
to study the regular behavior of people. They identified and
classified functional areas based on the correlation between time
and space in the city [32]. Toole et al. conducted research on
urban land use classification based on human spatiotemporal
activities and big data conditions [33]. Han et al. used bus
smart card data to obtain commutation information and identify
functional areas in Beijing [34]. Yuan et al. used taxi global
positioning system (GPS) information and city point-of-interest
(POI) data to extract features through data mining. They studied
different functions undertaken in different areas of the city [35].
Yao et al. proposed a method based on the Word2Vec model
to extract semantic information from POI data for classifying
functional areas [36].

ML is a method of imitating the human learning behavior.
Through automatic adjustment, it can judge the current learning
situation and make improvements without relying on manpower
to perform autonomous learning. ML generates models by ana-
lyzing more complex data automatically, quickly, and accurately,
with high recognition accuracy and low cost [37]. Owing to
its favorable characteristics, ML plays a key role in various
fields, including engineering, medicine, and geosciences. Wang
et al. detected transportation modes based on the LightGBM
classifier from the GPS trajectory data [27]. Chen et al. used the
LightGBM algorithm to predict the role of proteins for realizing
biological applications [38]. Ju et al. used a model combining
a CNN and LightGBM to study wind power forecasting [39].
Sun et al. adopted the LightGBM algorithm to forecast the price
trend (falling or not falling) of the cryptocurrency market [40].

III. DATASETS

The dataset used in this study comprises multimodal data.
Remote sensing data are represented in the form of images, and
user behaviors are represented in the form of texts. The data
include nine functional areas: residential area, school, industrial
park, railway station, airport, park, shopping area, administrative
district, and hospital. They are expressed by providing the time
information of several user visits corresponding to the scene
of the remote-sensing image for each area. We evaluated the
amount of data contained in each functional area, and the statis-
tical results are presented in Table I. The first column lists each
functional area, and the second column lists the number of files
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Fig. 1. Remote sensing images of various functional areas. (a) Residential area. (b) School. (c) Industrial park. (d) Railway station. (e) Airport. (f) Park.
(g) Shopping area. (h) Administrative district. (i) Hospital.

corresponding to each functional area. This study takes 1/10 of
the dataset as the test set to quantify the training effect.

A. Remote Sensing Data

High-resolution remote sensing images have been widely
used for processes, such as urban function classification. This
study utilized 40 000 satellite images with a pixel size of
100× 100. Examples of remote sensing images are shown in
Fig. 1, where Fig. 1(a)–(i) display residential area, school,
industrial park, railway station, airports, park, shopping area,
administrative district, and hospital, respectively.

B. User Data

This study used 40 000 user files, each of which comprises
user access records in a given area. The data recording time was
from October 1, 2018 to March 31, 2019. The data recording
frequency was 1 h, that is, the data were recorded every hour.
Each piece of data includes the user ID, date, and specific time.
The data format is shown in Table II.

Table II lists the data of several users. As an example, the user
with the user name 0d4fe92bc13a2525 was counted at 8:00,

TABLE II
EXAMPLES OF USER BEHAVIOR DATA

Note: The ellipsis omits part of the time, which is the same as the previous three times.

9:10, etc., on October 9, 2018, and at 8:00, 9:00, 10:00, etc., on
October 10, 2018.

IV. METHODS

In this study, a functional area recognition model was devel-
oped based on dual-modal data of remote sensing images and
text recorded from online user visits. In the case of text modality
data, we use feature engineering for data mining to extract the
travel characteristics of people. In the case of image modality
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Fig. 2. Algorithm flowchart.

data, we use a residual neural network (ResNet), an architecture
of a CNN, for model training. LightGBM is used to combine the
processed data of the two modalities for training and learning.
Fig. 2 shows a flowchart of the algorithm described in this article.

A. Probability Characteristics of the CNN Remote Sensing

Image Classification

CNNs are feedforward neural networks that include convolu-
tion calculations and a deep structure. They achieved promising
results in image recognition [41], [42]. The training process is
described as follows.

1) The input data are first extracted from the convolution and
filter kernels.

2) The nonlinear operation of the data after the convolution
through the activation function makes the model more
adaptable.

3) The data are input into the pooling layer for subsampling,
reducing the complexity of the model, speeding up the
calculation, reducing the possibility of overfitting, and
making the image characteristics after sampling invariant.

4) Finally, the fully connected layer combines features to
perform prediction classification [43].

As a CNN feature extraction network, ResNet solves the
problem of network degradation after the increase in network
depth through a deep residual learning framework. As shown
in Fig. 3, ResNet fits a residual mapping, the input is x, the
mapping to be solved is H(x), and the residual learning aims
to learn the residual between the input and the output (i.e., to

Fig. 3. ResNet.

learn F(x) = H(x) − x). Thus, the initial problem turns into
F (x) + x. It would be easier to push the residual to zero than
to fit an identity mapping by a stack of nonlinear layers if
identity mappings are optimal. The formulation of F (x) + x

can be realized by feedforward neural networks with “shortcut
connections”, which are those connections that skip one or more
layers. In addition, when the dimensions do not match, we can
perform a linear projection Ws by the shortcut connections to
match the dimensions. We consider a building block defined as
y = F (x,Wi) + x [44].

B. Classification of Multimodal Data Based on LightGBM

LightGBM [45] is an efficient implementation of the gradient
lifting decision tree (GBDT), proposed by Microsoft in 2017,
which offers superior performance with respect to classification,
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prediction, and sorting. Therefore, it is widely used in ML and
data mining tasks [38], [40], [46].

1) Foundation of LightGBM—Gradient Lifting Decision

Tree: GBDT [47], [48] uses an addition model and a forward
distribution algorithm to combine several decision trees through
voting and other methods. The key aspect of GBDT is the
use of the negative gradient value of the loss function as an
approximation of the residual to fit a regression tree [49].

For a given supervised training set X = {(xi, yi)}
n
i=1, where

X is the input space, Y is the output space, and T (x; θm) is
the basic learner. GBDT iteratively constructs M regression
trees, T (x, θ1), T (x, θ2) . . . , T (x, θm), and f(x) refers to the
final model.

The expression is as follows [50]:

f(x) =
M
∑

m=1

fm(x) =
M
∑

m=1

βmT (x; θm) (1)

where T (x; θm) is the regression tree and βm is the weight of
the corresponding regression tree. The input space is divided
into J disjoint regions R1, R2, R3, . . . , RJ , which determine
the output constants cj in each region. Then, the regression tree
is expressed as

T (x; θm) =

J
∑

j=1

cjI (x ∈ Rj) . (2)

In the mth step of the forward distribution algorithm, given
the current model fm−1(x), the least squares method and the
gradient are used to calculate the residual direction to obtain the
model parameters θm. The formula is as follows:

θm = argmin
θ,β

N
∑

i=1

[y∗i − βT (x; θ)]2

= argmin
θ,β

N
∑

i=1

⎡

⎣y∗i − β

J
∑

j=1

cjI (xi ∈ Rj)

⎤

⎦

2

.

(3)

The formula for the gradient y∗ is

y∗i = −

[

∂L (yi, F (xi))

∂F (xi)

]

f(x)=fm−1(x)

. (4)

The optimal value is determined according to T (x; θm), that
is, the weight of the current model

βm = argmin
β

N
∑

i=1

L (yi, fm−1 (xi) + βT (xi; θm))

= argmin
β

N
∑

i=1

L

⎛

⎝yi, fm−1 (xi) + β

J
∑

j=1

cjmI (xi ∈ Rjm)

⎞

⎠ .

(5)

This algorithm has a high prediction accuracy and is widely
used. However, when the original data are input into the GBDT
for analysis, the feature selection node split needs to traverse
all possible division points, calculate information gain, and
find the optimal division point, which are time consuming and
computationally complex [51], [52].

2) LightGBM: With the drastic growth in the amount of data,
the GBDT is encountering increasing problems in terms of
efficiency. The LightGBM algorithm was proposed to solve
these problems. It can reduce time and memory utilization
without a reduction in accuracy. LightGBM includes two new
technologies to resolve the issues faced by the GBDT [53], [54].

a) Gradient-based one-side sampling (GOSS): The data
from different gradients have different roles in the calculation
of information gain. The smaller the gradient of the sample,
the smaller the training error and weight. Therefore, data with
a larger gradient have a greater impact on the calculation of
information gain. Samples with larger gradients can be retained,
whereas those with smaller gradients can be removed. However,
after the sample removal, the original data distribution changes.
Therefore, GOSS retains the samples with larger gradients,
sets the sampling ratio, and randomly draws the samples with
smaller gradients. First, the gradient values are sorted according
to the absolute values. The sample with the largest gradient
is drawn according to the set ratio a× 100%, after which the
remaining samples are drawn according to the ratio b× 100%.

When calculating the information gain, the multiplying factor
of the sample with a small gradient is amplified by (1−a)

b
, which

can cause the samples with larger training errors to not have a
significant impact on the original data distribution [55].

b) Exclusive feature building: In practical applications,
high-dimensional datasets are typically highly sparse, and most
are mutually exclusive, that is, they almost never take nonzero
values at the same time. Hence, a bundling strategy can be
adopted for such data, thereby reducing the feature dimen-
sions [55]. LightGBM can package mutually exclusive features
into a single feature. It uses the feature scanning algorithm to
build the same feature histogram from these feature packages.
Hence, the complexity of the algorithm can be reduced from
O(#data ×#feature) to O(#data ×#bundle). The value of the
bundle is significantly lower than the value of the feature.

V. RESULTS

A. Processing and Results of Remote Sensing

Image and User Data

The CNN model after training can fit the training dataset well.
To reduce overfitting of the training model, the CNN model was
optimized through five-fold cross-validation. This study uses
the deep CNN models ResNet50 and ResNet101 for training
classification.

The ResNet50 model is a 50-layer residual network with five
parts. The first part is a 7× 7× 64 convolutional layer. The
data then pass through 3 + 4 + 6 + 3 building blocks, with three
layers for each block, and finally a layer of fc. The ResNet101
model is a 101-layer residual network with five parts. The first
part is a 7× 7× 64 convolutional layer. The data then passes
through 3 + 4+ 23 + 3 building blocks, with three layers for
each block, and finally a layer of fc. The difference between the
two models is the conv4_x layer, where ResNet50 has 6 blocks,
whereas ResNet101 has 23 blocks.

For remote sensing images, we removed the black occluded
pictures and performed data enhancement. For the text modal
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TABLE III
RESNET50’S PREDICTION OF THE NUMBER OF EACH FUNCTIONAL AREA

Fig. 4. Relationship between iterations and accuracy.

data, we simply count the number of people in each region at
each moment. The classification accuracy of the models on the
test set using two models at different iteration times is shown in
Fig. 4. According to the results, the classification accuracy of the
model increases first and then decreases, reaching a maximum
value when the number of iterations is 40. At this point, the
accuracy of ResNet50 was 69.72%, and that of ResNet101 was
69.30%.

Table III lists the prediction number of the ResNet50 algo-
rithm for each functional area and the classification accuracy of
each of the nine functional areas. The numbers in the first to
ninth rows represent the numbers of corresponding files, and the
values in the last row represent the classification accuracies of
the different categories. According to the data, the correct num-
ber of classifications in the residential area is 809, accounting
for 82.47% of the total residential area. The number of areas
correctly classified as school is 522, accounting for 68.50%
of the total number of school. The number of areas correctly
classified as industrial park is 230, accounting for 63.01% of the
total number of industrial park. The number of areas correctly
classified as railway station is 70, accounting for 60.34% of the
total number of railway station. The number of areas correctly
classified as airport is 298, accounting for 90.58% of the total
number of airport. The number of areas correctly classified as

park is 337, accounting for 61.05% of the total number of park.
The correct number of categories in the shopping area is 215,
accounting for 60.73% of the total shopping area. The number
of correct classifications in the administrative district is 139,
accounting for 53.26% of the total number of administrative
district. The number of areas correctly classified as hospital is
169, accounting for 60.36% of the total number of hospital.

Taking parks as an example, the classification using ResNet50
was evaluated. The correct classification accuracy of this func-
tional area is 61.05%, and the images shown in Fig. 5 are
examples of the correct classification of a park. Fig. 6 displays
images of parks that were misclassified as residential area .

B. Extraction of User Behavior Features

User behavior data contains a large amount of information,
consisting of both user information and access time information.
Human activities and travel have certain characteristics in terms
of time. Based on this, information regarding the time and
frequency of occurrence in the data can be studied to determine
the type of functional area.

Considering that most people go out to work or school in
the morning on weekdays, the starting point is generally the
residential area and the destination point is a school, industrial
park, administrative district, etc. The starting and destination
points for travelling at night are the opposite to those in the
morning. The main activities engaged in weekends and holidays
are shopping, leisure, and entertainment, so the frequency of
user visits in park and shopping area will increase relatively.
Therefore, the data on working days and rest days (weekends and
holidays) for the various functional areas should be considered
separately. The average number of people appearing in different
categories of dates and functional areas each hour was counted,
and the results were displayed in the form of a line chart.
The statistical results are shown in Fig. 7, where Fig. 7(a)–(i)
represent the residential area, school, industrial park, railway
station, airport, park, shopping area, administrative district, and
hospital, respectively.

Fig. 7 shows the difference in the statistical characteristics of
the number of people at different times in the functional area
of the same category, where the abscissa refers to the specific
time of day, and the ordinate refers to the average number of
people per hour. Because the amount of data in each category is
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Fig. 5. Images correctly classified as parks by using the ResNet50 algorithm. (a)–(c) Parks.

Fig. 6. Images of park that were misclassified as residential area by using the ResNet50 algorithm. (a)–(c) Parks.

Fig. 7. Statistics of user behavior characteristics by category. (a) Residential area. (b) School. (c) Industrial park. (d) Railway station. (e) Airport. (f) Park.
(g) Shopping area. (h) Administrative district. (i) Hospital.
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Fig. 8. Statistics of user data on various dates. (a) Workday. (b) Weekend. (c) Festival.

different, the displayed data are the average number of people
corresponding to the range of each remote sensing image in a
category.

It can be seen from Fig. 7 that the number of people who
appear in different functional areas at different times varies
greatly. The data reveal that there is some regularity in people’s
travel. During the time period 8:00–18:00, the number of people
present on working days in the residential area is significantly
smaller than the number on ordinary weekends. The number of
people in the residential area during holidays is also relatively
low. In the school area, the number of people present on working
days and ordinary weekends was significantly higher than the
number of people on holidays. The number of people present
in the industrial park on working days is also significantly
higher than the number of people on weekends and holidays.
In addition, in the time period from 0:00 to 5:00, although the
number of people in all functional areas using the social network
at night decreased, it is still possible to observe the difference in
the number of people in different functional areas. The number
of people in residential area, hospital, and other areas at night
is more than the number of people in administrative district,
shopping area, and other areas. The number of people in schools
on weekdays and ordinary weekends differs greatly from the
number of people on holidays.

To compare the different characteristics of each functional
area in terms of time more clearly, the characteristics of the num-
ber of people in each functional area on weekdays, weekends,
and holidays were separately counted.

Numbers 1–9 in Fig. 8 represent residential area, school,
industrial park, railway station, airport, park, shopping area,
administrative district, and hospital, respectively. The abscissa
refers to the specific 24 h of the day, and the ordinate refers
to the number of people. Fig. 8(a) shows the statistical char-
acteristics of the nine functional areas on weekdays. Fig. 8(b)
shows the statistical characteristics of the nine functional areas
on weekends. Fig. 8(c) shows the statistical characteristics of
the nine functional areas on holidays. The curve in the figure
demonstrates the difference in the number of people in each
functional area over different time periods.

The difference reflects people’s different travel purposes, that
is, the difference in the functional area in the city where people
go. To make use of ML and deep learning algorithms to obtain
good prediction classification for the features observed in the
data, irregular and redundant data should be converted into rules

TABLE IV
LIGHTGBM PARAMETER SETTINGS

by statistical methods, highlighting the data features that can be
used as partial input data for the algorithms. Therefore, the traffic
characteristics of each category for each hour were estimated
for working days and rest days. According to the information in
Fig. 8, there is a considerable difference in the number of people
present before and after 0:00, 8:00, and 18:00. Therefore, these
specific times were used as the dividing points to partition one
day into three time periods, and the flow characteristics of each
time period were estimated.

In addition, the user ID also provides a wealth of information,
with a high user overlap rate in the dataset. The same user can
appear in different areas multiple times, so the total duration that
the same user appeared in each functional area was counted.

C. Classification Results Using LightGBM Algorithm

1) Experimental Environment and Parameter Settings:

Python 3.7 was employed to implement the algorithms. The
experiments were performed on a computer with a 2.50 GHz,
8-GB RAM, and 64-b Windows 10 operating system. The metric
used was classification accuracy, which is the number of correct
classifications divided by the total amount of data. The parameter
settings used in the experiment are listed in Table IV.

After repeated experiments, the variation of classification
accuracy with learning rate is shown in Fig. 9 after five-fold
cross-validation.

It can be seen from Fig. 9 that different learning rates have
an impact on the classification accuracy. LightGBM performed
best when the learning rate was 0.11 and the maximum accuracy
was 82.45%. Therefore, the learning rate used in this study was
0.11.

2) Prediction Accuracy of Various Functional Areas: Ta-
ble V lists the prediction number from the LightGBM algorithm
for each functional area and the classification accuracy of each of
the nine functional areas. The numbers in the first to ninth rows
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TABLE V
LIGHTGBM’S PREDICTION OF THE NUMBER OF EACH FUNCTIONAL AREA

Fig. 9. Relationship between learning rate and accuracy.

represent the numbers of corresponding files, and the values
in the last row represent the classification accuracies of the
different categories. According to the data, the correct num-
ber of classifications in the residential area is 814, accounting
for 82.98% of the total residential area. The number of areas
correctly classified as school is 609, accounting for 79.92%
of the total number of school. The number of areas correctly
classified as industrial park is 313, accounting for 85.75% of the
total number of industrial park. The number of areas correctly
classified as railway station is 107, accounting for 92.24% of the
total number of railway station. The number of areas correctly
classified as airport is 318, accounting for 96.66% of the total
number of airport. The number of areas correctly classified as
park is 446, accounting for 80.80% of the total number of park.
The correct number of categories in the shopping area is 280,
accounting for 79.10% of the total shopping area. The number
of correct classifications in the administrative district was 194,
accounting for 74.33% of the total number of administrative dis-
trict. The number of areas correctly classified as hospital is 217,
accounting for 77.50% of the total number of hospital. The use
of the LightGBM algorithm shows relatively high accuracy in
the classification of railway station and airport, reaching 92.24%
and 96.66%, respectively, whereas the accuracy in classification
of administrative district and hospital is relatively low, at 74.33%
and 77.50%.

Fig. 10. LightGBM’s prediction of the number of each functional area.

Fig. 10 shows the classification of various types using the
LightGBM algorithm, where numbers 0–8 represent residential
area, school, industrial park, railway station, airport, park, shop-
ping area, administrative district, and hospital, respectively. The
grid in the figure is the proportion of the functional area when the
functional area is represented by the ordinate, and the LightGBM
classification is represented by the abscissa. A dark grid color
indicates comparatively large proportions. The number in the
grid is the ratio of the actual number of classifications to the total
number of functional areas, and the units are percentage. Taking
the ordinate of 0 as an example, the value of the intersection with
the abscissa 1 is 6.3, which means that all the residential areas
in the test set are classified and the actual number of schools is
6.3% of the total number of residential area.

The classification of each functional area can be seen intu-
itively from the image. In the diagonal part, the diagonal grid
as a whole is significantly darker than the nondiagonal line,
indicating that the proportion of correct classification of each
functional area is much higher than the proportion of incorrect
classification, of which the colors of the railway station and
airport are the darkest, and the classification accuracy is the
highest. The lower right corner of the grid is lighter, and the
classification accuracy is relatively low. In the nondiagonal part,
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Fig. 11. Images correctly classified as parks by using the LightGBM algorithm. (a)–(c) Parks.

Fig. 12. Images of park that were misclassified as residential area by using the LightGBM algorithm. (a)–(c) Parks.

Fig. 13. Images that were correctly classified after adding data with time features. (a)–(c) Parks.

there is a high proportion of misclassification of functional
areas of school, park, shopping area, administrative district, and
hospital as residential area, and the overall color of this part is
darker.

Taking the park as an example, the classification using Light-
GBM is evaluated. The correct classification accuracy of this
functional area is 80.80%, and the images shown in Fig. 11
are examples of the correct classification as a park. The images
shown in Fig. 12 are examples of images in a park that have been
misclassified as a residential area.

Fig. 13 shows an example of data that was originally mis-
classified as a residential area and now correctly classified as a
park after adding data containing the time characteristics of user
access instead of using only image data.

Fig. 14 shows an example of parks that were originally mis-
classified as residential area and were still misclassified as resi-
dential area after adding data containing the time characteristics
of user access instead of using only image data.

One possible reason for this result is that the remote sensing
image can only display the actual appearance of the landform,
and the functional areas of different categories have overlap-
ping features, such as architecture and greening, so that when
only the remote sensing image is available, the type of remote
sensing image cannot be clearly identified. The urban spatial
structure has a close relationship with human activities, so after
adding human-activity information, information that cannot be
extracted from remote sensing data can be supplemented, and
the classification accuracy is improved.
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Fig. 14. Images that were still misclassified after adding data with time features. (a)–(c) Parks.

TABLE VI
COMPARISON OF RESULTS BETWEEN MULTIMODAL DATA AND

SINGLE-MODAL DATA

TABLE VII
CLASSIFICATION ACCURACY AND TRAINING DURATION OF ML ALGORITHMS

D. Comparative Test

1) Comparison Between Multimodal Data and Single-Modal

Data: Table VI lists the classification accuracy achieved using
the data of each modality. It shows that the classification accu-
racies achieved using image and text modality data separately
are 48.28% and 80.43%, respectively, whereas the classification
accuracy achieved using the combined image and text modality
data is 82.45%.

Table VI indicates that the classification accuracy achieved
by combining the data of the two modalities is the highest
(34.17% and 2.02% higher than the classification accuracies
achieved using image and text modality data, respectively). In
other words, the table indicates that combining the data of the
image and text modalities improves the classification accuracy.
The improvement over image modality is higher than that over
text modality. One possible reason is that the image modality
dataset used in this study has low pixels, and thus, a relatively
low amount of information can be extracted from it.

2) Comparison of LightGBM and Other ML Algorithms:

Table VII lists the classification accuracy and training duration
of each algorithm. The data in Table VII show that the clas-
sification accuracy and training time of the RF algorithm are
80.40% and 163 s, respectively. The classification accuracy and
training time of the GBDT are 81.05% and 10532 s, respectively.

The classification accuracy and training time of the extreme
gradient boosting (XGBoost) algorithm are 81.98% and 2794 s,
respectively. The classification accuracy and training time of the
LightGBM algorithm are 82.45% and 372 s, respectively.

From the perspective of accuracy, the LightGBM algorithm
has the highest accuracy among the ML algorithms, at 82.45%,
and the classification accuracy of the RF algorithm is relatively
low, at 80.40%. In terms of time, the training time of the RF
algorithm is the shortest, at 163 s, and the training time of
the LightGBM algorithm is also short. Because the LightGBM
method has been improved, the training time is much shorter than
those of the GBDT and XGBoost methods. Overall, LightGBM
is the most suitable algorithm for this process.

3) Prediction Accuracy of Different ML Algorithms for Each

Functional Area: Table VIII lists the predicted number of each
functional area using the RF algorithm and the classification
accuracy of the nine functional areas. The numbers in the first to
ninth rows represent the numbers of corresponding files, and the
values in the last row represent the classification accuracies of the
different categories. From the data, the correct number of classi-
fications of residential area is 829, accounting for 84.51% of the
total number of residential area. The number of correctly classi-
fied school is 594, accounting for 77.95% of the total number of
school. The correct number of classifications of industrial park
is 306, accounting for 83.84% of the total number of industrial
park. The number of areas correctly classified as railway station
is 100, accounting for 86.21% of the total number of railway
station. The number of areas correctly classified as airport is
316, accounting for 96.05% of the total number of airport. The
number of areas correctly classified as park is 421, accounting
for 76.27% of the total number of park. The correct number of
classifications of shopping area is 263, accounting for 74.29%
of the total shopping area. The number of correct classifications
of administrative district is 180, accounting for 68.97% of the
total number of administrative district. The number of areas
correctly classified as hospital is 207, accounting for 73.93%
of the total number of hospital. In conclusion, the accuracy
of classification of airport using the RF algorithm is relatively
high, reaching 96.05%, whereas the accuracy of classification of
administrative district is relatively low (68.97%). The structures
of Tables IX and X are similar to the structure of Table VIII.
Tables IX and X present the number of each functional area
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TABLE VIII
RF’S PREDICTION OF THE NUMBER OF EACH FUNCTIONAL AREA

TABLE IX
GBDT’S PREDICTION OF THE NUMBER OF EACH FUNCTIONAL AREA

TABLE X
XGBOOST’S PREDICTION OF THE NUMBER OF EACH FUNCTIONAL AREA

predicted by the GBDT and XGBoost algorithms, respectively,
and the classification accuracy of each of the nine functional
areas.

Figs. 15–17 show the classification of various types using
different algorithms. The format is the same as in Fig. 10. For
school, park, shopping area, administrative district, and hospital,
the five functional areas are misclassified as residential area, the
overall color of which is darker. Among them, the XGBoost,
GBDT, and LightGBM algorithms are lighter than RF, indicating
that the classification error rate of RF in this part is higher. For
the rest, the XGBoost and LightGBM algorithms are shallower
than those of the GBDT and RF algorithms, and the classification
error rate of the first two is generally lower.

The line chart in Fig. 18 is a comparison of the accuracy of
classification by each algorithm in each category. The abscissas
0–8 in the figure represent residential area, school, industrial
park, railway station, airport, park, shopping area, administrative
district, and hospital, respectively, and the ordinate refers to
the accuracy. Combining Tables V, VIII–X, and Fig. 17, it can
be seen intuitively that the accuracy of classification using RF
for most functional areas is slightly lower than that of other
algorithms, and it is significantly lower in shopping area, admin-
istrative district, and hospital, respectively, at 74.29%, 68.97%,
and 73.93%. The accuracy of classification for residential area is
higher than that of other algorithms, at 84.51%, and the accuracy
of classification by GBDT on railway station is obviously low,
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Fig. 15. RF’s prediction of the number of each functional area.

Fig. 16. GBDT’s prediction of the number of each functional area.

Fig. 17. XGBoost’s prediction of the number of each functional area.

Fig. 18. Classification accuracy of each ML algorithm.

at only 84.48%. In conclusion, the LightGBM algorithm has a
high classification accuracy for various functional areas.

VI. CONCLUSION

In this article, we propose a method based on the data from
two modalities and ML algorithms to classify urban functional
areas. The main technical contributions of this study include the
following: first, the data from two modalities were processed
and combined. Second, LightGBM ML algorithm was used to
classify urban functional areas, and it achieved a relatively high
accuracy and a short training time. The effective combination
of image recognition technology and statistical technology pro-
vides new ideas for the classification of urban functional areas
and new solutions for the sustainable development of cities. The
use of big data technology is an inevitable choice for urban
scientific planning.

There are still some technical problems associated with ur-
ban functional area classification based on the remote sensing
images used in this study. The images used were multiple local
images in each category, which are conducive to the recognition
and classification of different functional areas by their unique
landforms but cannot directly reflect the distribution of different
types of functional areas in the city and their interrelationships.
Hence, it is impossible to draw a functional area planning map
of the city using these images, which leads to certain limitations
in studying the geographical distribution of functional areas.
In addition, through experiments, it was found that increasing
the time information regarding a user visit greatly improved the
recognition accuracy. The reason for this result is that adding the
time feature adds another aspect to the separate image dataset.
However, the classification accuracy can still be improved. One
of the reasons for this is that the mining of user behavior infor-
mation is insufficient. Therefore, the focus of future research is
to determine ways to fully express the time information in the
dataset.
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