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Abstract. In Ambient Assisted Living (AAL), the context-dependent
adaption of a system to a person’s needs is of particular interest. In
the living area, a fine-grained context may not only contain information
about the occupancy of certain furniture, but also the posture of a user
on the occupied furniture. This information is useful in the application
area of home automation, where, for example, a lying user may effect a
different system reaction than a sitting user. In this paper, we present an
approach for determining contextual information from furniture, using
capacitive proximity sensors. Moreover, we evaluate the performance of
Näıve Bayes classifiers, decision trees and radial basis function networks,
regarding the classification of user postures. Therefore, we use our generic
classification framework to visualize, train and evaluate postures with up
to two persons on a couch. Based on a data set collected from multiple
users, we show that this approach is robust and suitable for real-time
classification.
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1 Introduction

Population aging in many industrial countries is posing various challenges to so-
ciety, where a shrinking number of working persons has to care for an ever grow-
ing number of seniors. Assistive health-care applications, designed for elderly
users, are trying to counteract the shrinking budgets in public health care. The
paradigm of Ambient Assisted Living (AAL) represents methods, concepts, sys-
tems and services that unobtrusively support a person in daily life. User-centric
technologies and concepts are integrated into the immediate environment of the
person requiring assistance, and customized to individual needs and capabilities.

To support the adaptation of the environment to a user, it is necessary to
determine an application context, particularly information about a person and
any interaction with the environment. Typical examples include acquiring the
location of a user within the premises or measuring relevant medical data, e.g.
blood pressure. Determining a user’s posture on furniture generates additional
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contextual information that can be used within AAL applications, for example
safety features in home automation. If a user is lying on a bed, the system
can deduct that he will remain there for a while, causing lighting and heating in
adjacent rooms to be adjusted. If the user is suddenly sitting at night, the system
may anticipate that the user is going to the toilet, thus activating dimmed lights
to prevent tripping and falling.

The aim of this work is to classify the posture of a person using capacitive
proximity sensors that are embedded into the living area. Classification refers
to making a discrete observation, e.g ’a person is lying on a couch’, derived
from a set of incoming sensor readings. We have created a generic framework
that is able to interface multiple sensor classes and classification methods. In
this work we will present a system based on capacitive proximity sensors that
can be unobtrusively integrated into existing furniture, while providing reliable
information about the presence of a subject.

Capacitive proximity sensors use oscillating electric fields between an emitter
and a ground electrode. The properties of an electric field change if a conductive
object is brought into it. The human body, or bio mass in general, falls under
this class, thus it is possible to unobtrusively detect a person or body parts of
a person that approach such a sensing device [16]. Combining several sensors,
we are able to fuse their outputs, in order to obtain information about the body
posture.

We have chosen a couch in a living room to test our system. The gener-
ated context can be used for energy saving purposes, e.g. shutting off lighting in
other rooms, but also for controlling ambient parameters like lighting and mul-
timedia equipment that may react differently to sitting and lying persons. We
have equipped an ordinary couch with eight capacitive proximity sensors and
applied various classification techniques to the generated data. We have evalu-
ated different classifiers by testing the prototype system on a diverse group of
persons. Results show that such a system is reliably able to recognize various
user postures, even if body mass and height differ strongly. Moreover, interviews
performed with our test persons strongly indicate that the unobtrusive nature
of capacitive proximity sensors will increase the user acceptance in actual appli-
cations, compared to camera-based systems. The interviews revealed that, using
camera-based systems, people feel particularly observed and consider popular
recent data leaks.

2 Related Work

Intelligent environments have been a research focus in the past decades [15].
Industry has started using developed technologies to link various technical de-
vices in the living area. The property ’intelligent’ refers to systems that are able
to manipulate the environment without explicit user interaction, only using the
implicit context a user generates, based on presence. To acquire this context, it
is necessary to place various sensing devices in the living area. In order to ma-
nipulate the environment, actuators are required. Systems that include cognitive
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capabilities like perception, learning, reasoning, planning or executing tasks are
denoted as Cognitive Technical Systems (CTS)[3].

Every element of a living area can be part of the CTS. For example, Beetz
et al [4] have equipped a kitchen with several types of sensors, realizing various
scenarios based on a robotic assistant for supporting activities of daily life. In-
door localization methods are an important part of many CTS. They allow the
system to provide services like energy saving, home security and fall prevention.
Methods include GSM triangulation [12] or capacitive sensors [13]. Capacitive
sensors are applicable in various AAL-related scenarios, e.g. the detection of
spine strain and subsequent user feedback on appropriate lying positions using
an array of capacitive proximity sensors in a bed [7]. Kivikunnas et al [8] have
equipped a couch with capacitive proximity sensors for future application in
posture recognition.

The fusion and interpretation of data generated by various sensors is one
of the main application areas of machine learning [10]. Specifically they can be
used to map the continuous input sets to discrete classes. Amoretti et al describe
example applications in AAL [1]. As proof-of-concept for our posture recognition
in AAL environments we have tested the system by building a prototype based
on a couch augmented with capacitive proximity sensors.

3 User posture classification

3.1 Sensors

By using capacitive proximity sensors, we can measure the proximity of a per-
son’s body. A typical capacitive sensor consists of an electrode, emitting an
electric field that oscillates at 10 - 200 KHz and a receiving electrode that mea-
sures certain properties of this electric field. Other designs, like ours, are based
on a single electrode that creates a field with other electric potentials within
reach, for example a ground node. When body mass enters this electric field,
the displacement current, measured in the emitting node, changes. This effect
makes it possible to detect the proximity of body mass[16]. Furthermore, it
is possible to gather information about the distance of the object entering. If
an object is uniformly sized, the displacement current will increase when it is
brought closer to an electrode. The operating range and resolution of this sensor
type strongly depends on the electrode size, material used, emitter frequency
and emitter voltages, resulting in achievable distances between a few nanome-
ters and several meters [2]. The generated electric fields will progress through
any non-conductive material. Thus it is possible to install these sensors unob-
trusively, e.g. underneath the upholstery of wooden elements or furnishing. This
makes them less prone to mechanical influences in the operating and setup time,
as well as hiding active system parts from the user allowing a free external design
of the furnishing.
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3.2 Preprocessing & Feature extraction

The sensors deliver continuous signals, which are sampled with a low frequency,
e.g. 10 Hz, and normalized to an interval between 0 and 1. In the next step, over-
lapping short-time windows (e.g. with a length of 1 second), containing samples
from all sensors, are built. Due to the high amount of data contained in a window,
a direct classification is computationally complex or even impossible. Thus, we
must focus on relevant information for classification, the features of a short-time
window.

Typical features for user posture classification are the empirical mean and
the standard deviation of a short-time window. For example, we may extract
the empirical mean from each sensor and use it for classification. A feature
vector Xi = (x1, ..., xn)

T ;Xi ∈ ℜN consists of all extracted features, whereas
the feature space contains all these vectors. In order to be able to uniquely
identify the classes in the classification step, the extracted features must build
a compact and bounded subspace for each class [11].

3.3 Classification

We aim to recognize a discrete class zk, k ∈ {0, 1, ...,K} from the extracted
feature vector Xi. A class may be represented by a statement like ’one person is

sitting at the right side of the couch’ that reflects an observation of the actual
system.

To cope with the complex task of classification, we need to learn from expe-
rience, making use of an annotated training set of feature vectors and the cor-
responding classes. The main goal of classification is to reliably identify a class
for unknown feature vectors. Thus, generalization is a very important property
of a classifier. In the following, we will present three suitable classifier models
for user posture classification.

Näıve Bayes models are very popular models in machine learning applica-
tions due to their simplicity and computational efficiency. The classifier assigns
the most likely class zk to a given feature vector Xi. The classifier’s model struc-
ture is simplified by the assumption that the distributions of all features for a
specific class are conditionally independent. This assumption of conditional in-
dependence of features is often seen as a weakness of the Näıve Bayes model.
However, this property makes the Näıve Bayes model very fast and efficient for
testing and evaluation purposes [5].

Unlike the Näıve Bayes model, Decision tree classifiers can overcome the
problem of conditional dependence of features. A decision tree consists of nodes,
which represent logic rules and leafs, which represent the final decision, as shown
in figure 1 at the right. Classifications are made by traversing the tree structure,
evaluating a decision function in each node, until a leaf is reached. In prac-
tice, binary decision trees with threshold decision functions for a single feature
are commonly used (e.g. xj <= r;xj , r ∈ ℜ). The advantage of decision trees
is the input-dependent traversal of its nodes. Decision trees can be built with
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Fig. 1. Left: Layout of an RBF network. Right: An example decision tree

algorithms like the C4.5 algorithm, which selects the feature with the highest
information gain for each decision node [9, 5].

Radial basis function (RBF) networks, as shown in figure 1 at the left, are a
specialization of artificial neural networks and are often applied on classification
problems. RBF networks consists of three layers, one input layer, a hidden layer
with radial activation functions and an output layer, that implements a weighted
sum over the hidden unit’s outputs. The number of chosen basis functions is
essential for the network’s generalization abilities. RBF networks, or artificial
neural networks in general, face the problem that their output behaviour is often
not easy to comprehend, especially when a transparent functioning is required
[9, 6].

4 The smart couch scenario

4.1 SenseKit: A generic approach

Since there are numerous scenarios for applying user posture classification, we
have developed a generic framework called SenseKit for posture classification
tasks. Different scenarios, e.g. posture-detecting chairs or beds require different
types and numbers of capacitive sensors, in order to reliable detect the required
postures. Sensekit tackles these classification tasks and provides additional func-
tionality, most notably visualization and evaluation of the processing pipeline.
Sensekit is based on a configurable dependency injection framework that allows
all components (classifiers, sensors, feature extractors, etc.) to be dynamically
combined, corresponding to the individual application scenario.

Apart from SenseKit’s classification and digital signal processing abilities it
also implements training and visualization components. Sensor readings, as well
as the final classification results, may be visualized and presented in an effective
way. We have integrated various machine learning algorithms into our framework.
Most algorithms are adapted from the WEKA Machine Learning Project [14].
Moreover, we integrated WEKA’s explorer into our framework, a comprehensive
tool that provides functionality to evaluate recorded training data.



6 Classification of user postures in AAL-environments

Fig. 2. Left: Visualization of a classification. Right: Visualization of sensor readings

Our prototype is an ordinary couch augmented with capacitive proximity
sensors hidden underneath the upholstery. In order to prove our methodology,
we intended to classify a high amount of potential postures, various sitting and
lying positions (2 at the left) for one and two persons. We deemed eight sensors
to be sufficient in establishing a good data basis for classification of the vari-
ous postures. The final design consists of two sensors, placed underneath both
armrests, two sensors in the back rests and another four sensors underneath the
sitting area, as shown in figure 2 at the right. Even though the sensors are up
to 15 centimeters away from the user and covered by upholstery and wood (see
3), we are still able to retrieve good measurements of body mass proximity, sup-
ported by the fact that some electrodes have pressure applied to them, causing
a geometric deformation that also affects the output signal.

Fig. 3. An ordinary couch has been equipped with capacitive proximity sensors that
have been set up under the upholstery and wooden elements

In order to determine a suitable test set, we are distinguishing nine different
possible postures on a couch that can be performed by one or two persons. The
18 test persons were given simple written instructions to perform the desired
postures. The persons performed all postures, relaxed and without restrictions
in their movements, for approx. 30 seconds. Similar postures were always inter-
rupted by unrelated postures. The data set contains a training set, with data
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from 9 test persons, and a test set with data of another 9 persons. Both, the
training and test data set, were recorded on different days with different test
persons. Additionally, we recorded body weights and sizes (figure 4), since those
are the main properties affecting sensor measurements. Our training set con-
sists of 2829 instances (about 24 minutes), whereas our test set consists of 2312
instances (about 20 minutes).
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Fig. 4. A box plot of body heights and weights in our data set. The blue box denotes
data from lower to upper quartile, the red dash denotes the median and red crosses
mark outliers.

In the regarded scenario, we use the empirical means of our eight sensors,
which are extracted from a short-time window, as feature vector. Overlapping
short-time windows are passed to the classifier every second, containing the last
2 seconds of sensor readings.

4.2 Evaluation

Three classifiers were evaluated on our data set. We evaluate the performance
of the Näıve Bayes classifier, decision trees and RBF networks. To measure the
performance, we consider the metrics of precision and recall. As each sensor has
individual characteristics, e.g. caused by different electrode sizes, the evaluation
results are not symmetrical concerning the geometry of the couch. Furthermore,
each sensor produces an individual amount of noise that has to be taken into
account. The performances of the three classifiers are shown in table 1.

Our evaluation results show that the Näıve Bayes model does deliver inferior
results compared to more sophisticated models, such as RBF networks. This fact
is mainly caused by the very strong assumption of conditional independence,
which is not satisfied in user posture classification scenarios. However, the Näıve
Bayes model provides sufficiently precise results, as well as efficient training and
data analysis. We retrieve an overall recall of 92.2% and a precision of 90.6%.
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Näıve Bayes Decision Trees RBF network

Class Prec Rec Prec Rec Prec Rec

sitting outer left one person : OL 0.92 0.97 1.0 0.84 1.0 0.99

sitting middle left one person : ML 0.99 0.60 0.99 0.90 0.98 0.88

sitting outer right one person : OR 1.0 0.78 1.0 0.63 1.0 0.96

sitting middle right one person : MR 0.96 0.93 0.93 1.0 1.0 0.95

lying head right one person : LR 0.77 1.0 1.0 0.89 0.92 1.0

lying head left one person : LL 0.85 1.0 0.7 0.95 0.98 0.99

two persons sitting together : TT 0.77 1.0 0.95 1.0 0.87 1.0

two persons sitting gap : TG 1.0 0.99 0.98 0.64 1.0 0.99

no person : NP 1.0 0.92 0.66 1.00 1.0 1.0

Weighted average 0.92 0.91 0.91 0.87 0.98 0.97
Table 1. Evaluation results for the three classifiers

The evaluation of decision trees, built with the C4.5 algorithm, shows similar
results as the Näıve Bayes model. Classes like ’two persons sitting together with

a gap’ were sometimes classified as lying postures. Moreover, many activities
with lower sensor measurements, e.g. caused by a low body weight, have been
classified as ’no person’, resulting in a poor precision of 66.4% for this particular
class. The overall recall is 87.3%, whereas the overall precision is 90.7%.

Table 2 shows the confusion matrix of an RBF network, evaluated on our
test set. We can see that some sitting postures on the right of the couch have
been classified as lying head right postures, leading to a lower precision for this
class. Moreover, we retrieve a low recall for sitting middle left postures, as they
are often misclassified as sitting together postures. However, in general, RBF
networks perform very well on the test set with an overall recall of 97.5% and a
precision of 97.2%. Furthermore, the determined clusters and their corresponding
weights indicate that all sensors contribute equally to classification.

OL ML OR MR LR LL TT TG NP Prec Rec

sitting outer left one person : OL 296 1 0 0 0 2 1 0 0 0.99 0.987

sitting middle left one person : ML 3 227 0 0 0 0 28 0 0 0.983 0.88

sitting outer right one person : OR 0 0 253 0 11 0 0 0 0 1.0 0.958

sitting middle right one person : MR 0 0 0 243 12 0 0 0 0 1.0 0.953

lying head right one person : LR 0 0 0 0 260 0 0 0 0 0.919 1.0

lying head left one person : LL 0 3 0 0 0 254 0 0 0 0.981 0.988

two persons sitting together : TT 0 0 0 0 0 0 197 0 0 0.872 1.0

two persons sitting gap : TG 0 0 0 0 0 3 0 212 0 1.0 0.986

no person : NP 1 0 0 0 0 0 0 0 306 1.0 1.0
Table 2. Confusion matrix for the RBF network classifier
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We can conclude that RBF networks are a robust classifier model with a
high accuracy for user posture classification in our scenario. The generalization
abilities of this classifier are coping well with the variation of body heights and
weight of the different test persons. We have identified a decent generalization
ability as an essential requirement for classifiers in user posture classification.

5 Summary

5.1 Conclusions

We have shown that capacitive proximity sensors are well-suited to give robust
and reliable information about a user’s context, proven in an evaluation with
18 different test persons of diverse body height and weight. Using only eight
sensors in our couch example we have achieved a reliability of more than 97% in
eight different postures using RBF network based classifiers. The classification
based on machine-learning methods is easily implemented, trained and can be
visualized by using the created SenseKit framework. We have achieved a fine-
grained and reliable detection of user application context that can be used by
intelligent systems to control the environment.

5.2 Future Work

Open issues are the reliable detection of nearly similar postures, e.g. one person
lying and two persons sitting. Most issues related to this topic can be solved by
simply using more sensors. Even though SenseKit is supporting this the higher
costs and complexity of the used hardware are undesirable. We intend to test
other physical sensor configurations that could achieve better results as our cur-
rent prototype. However, a well-defined theory and methodology, that describes
the ideal distribution of sensors within the furniture, based on number of sen-
sors and desired posture classes, is highly desired. Given the nature of capacitive
proximity sensors and the highly complex distribution of electric fields, another
option would be to use a simplified model to simulate the sensor values within
the furniture and apply optimization strategies to achieve a good sensor configu-
ration. We are planning to integrate some of this functionality in future versions
of our easily extendable SenseKit. Another topic of interest is testing our system
on different types of furniture and integrating other types of sensors that might
provide more diverse applications while achieving the same reliable results.

Acknowledgments

We would like to thank the students of TU Darmstadt and the employees of
Fraunhofer IGD that lent us their sitting and lying abilities for the evaluation.



10 Classification of user postures in AAL-environments

References

1. Amoretti, M., Wientapper, F., Furfari, F., Lenzi, S., Chessa, S.: Sensor data fusion
for activity monitoring in ambient assisted living environments. In: Sensor Systems
and Software, pp. 206–221. International Conference on Wireless Sensor Network
(WSN) Systems and Software 2009 (2009)

2. Baxter, L.: Capacitive Sensors: Design and Applications. IEEE Press (1996)
3. Beetz, M., Buss, M., Wollherr, D.: Cognitive technical systems what is the role

of artificial intelligence. In: KI 2007: Advances in Artificial Intelligence, pp. 19–42.
Springer Berlin, Heidelberg (2007)

4. Beetz, M., Jan, B., Kirsch, R., Maldonado, A., Mller, A., Rusu, R.B.: The as-
sistive kitchen a demonstration scenario for cognitive technical systems. In: in
Proceedings of the 4th COE Workshop on Human Adaptive Mechatronics (2007)

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc. (2006)

6. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge
University Press (2003)

7. Hamisu, P., Braun, A.: Analyse des schlafverhaltens durch kapazitive sensorar-
rays zur ermittlung der wirbelsulenbelastung. In: Proceedings of the Conference of
Ambient Assisted Living 2010. VDE Verlag GmbH (2010)

8. Kivikunnas, S., Strmmer, E., Korkalainen, M., Heikkil, T., Haverinen, M.: In-
telligent furniture and their ubiquitous use scenarios. In: Proceedings of the
AALIANCE conference (2010)

9. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques.
In: Proceeding of the 2007 conference on Emerging Artificial Intelligence Appli-
cations in Computer Engineering: Real Word AI Systems with Applications in
eHealth, HCI, Information Retrieval and Pervasive Technologies. pp. 3–24. IOS
Press (2007)

10. Mitchell, T.M.: Machine learning and data mining. Commun. ACM pp. 30–36
(1999)

11. Niemann, H.: Klassifikation von Mustern. Universität Erlangen-Nürnberg,
Lehrstuhl für Mustererkennung (2003)

12. Otsason, V., Varshavsky, A., LaMarca, A., Lara, E.d.: Accurate gsm indoor local-
ization. In: IN THE PROC. OF UBICOMP 2005. pp. 141–158 (2005)

13. Steinhage, A., Lauterbach, C.: Sensfloor(r): Ein aal sensorsystem fr sicherheit,
homecare und komfort. In: Proceedings of the Ambient Assisted Living Congress
2008 (2008)

14. University of Waikato: Weka machine learning project (May 2011), http://www.
cs.waikato.ac.nz/ml/weka

15. Wren, C.R., Sparacino, F., Azarbayejani, A.J., Darrell, T.J., Starner, T.E., Kotani,
A., Chao, C.M., Hlavac, M., Pentland, A.P.: Perceptive spaces for performance and
entertainment: Untethered interaction using computer vision and audition. Applied
Artificial Intelligence pp. 267–284 (1997)

16. Zimmerman, T.G., Smith, J.R., Paradiso, J.A., Allport, D., Gershenfeld, N.: Ap-
plying electric field sensing to human-computer interfaces. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. pp. 280–287. CHI ’95
(1995)


