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Abstract: The Raman analysis of marijuana is challenging because of the sample’s easy photo-
degradation caused by the laser intensity. In this study, optimization of collection parameters and
laser focusing on marijuana trichome heads allowed collecting Raman spectra without damaging the
samples. The Raman spectra of ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol
(CBN) standard cannabinoids were compared with Raman spectra of five different types of marijuana:
four Sativa varieties (Amnesia Haze, Amnesia Hy-Pro, Original Amnesia, and Y Griega) and one
Indica variety (Black Domina). The results verified the presence of several common spectral bands
that are useful for marijuana characterization. Results were corroborated by the quantum chemical
simulated Raman spectra of their acid-form (tetrahydrocannabinol acid (THCA), cannabidiol acid
(CBDA)) and decarboxylated cannabinoids (THC, CBD, and CBN). A chemometrics-assisted method
based on Raman microscopy and OPLS-DA offered good classification among the different marijuana
varieties allowing identification of the most significant spectral bands.

Keywords: marijuana; trichome; chemometrics; Raman microscopy; discrimination; OPLS-DA

1. Introduction

Cannabis sativa L. is an annual, dioecious herb, belonging to the genus of flowering
plants in the Cannabaceae family and originating from Eastern and Central Asia. It has
been employed from ancient times as a source of a stem fiber (hemp) and a resinous
intoxicant (marijuana). Hemp has been used as source of textiles, as an edible plant, and as
a medicinal and psychoactive plant. At present, hemp fibers are used to produce bioplastic
and antibacterial agents among other biotechnological applications [1]. For drug use, the
interest regarding this plant is due to the unique compounds that it can produce: the
phytocannabinoids [2]. Phytocannabinoids, when they are consumed, act on the central
nervous system (CNS) and peripheral nervous system (PNS), causing an alteration of the
perception, producing euphoric, analgesic, and other effects [3,4]. These effects explain the
wide cultivation and consumption of cannabis-derived products nowadays.

Marijuana refers to the dried leaves, flowers, stems, and seeds from the cannabis plant.
After alcohol, it is the most commonly used psychotropic drug in the United States [5]. In
Europe, cannabis has a prevalence of use about five times larger than other substances,
and it is the most widely used illicit drug available [6]. Whether hemp or drug, Cannabis
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has only one genus with only one species (Sativa) that is highly variable. Nevertheless,
Sativa can also be classified in C. sativa variety Sativa, C. sativa variety Indica, C. sativa vari-
ety Ruderalis, and C. sativa variety Afghanica [1]. Several metabolites called cannabinoids
have been reported for those plants. The acid form of those compounds is predominant
in the fresh tissues; for example, the most common and concentrated compounds are
tetrahydrocannabinol acid (THCA) and cannabidiol acid (CBDA). When acid cannabinoids
are exposed to heat or light, they decompose to decarboxylate molecules such as tetrahy-
drocannabinol (THC) or cannabidiol (CBD), correspondingly. THC corresponds to the
psychoactive form while the acid forms and CBD are related to therapeutic properties, with
antipsychotic effects. However, cannabinol (CBN) seems to be formed by the decomposi-
tion of its acid CBNA form (or its primary CBGA molecule) and even from THCA, which is
an indicator of the thermal decomposition of cannabinoids (Figure 1).
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Figure 1. Molecular structure of tetrahydrocannabinol acid (THCA) and cannabidiol acid (CBDA). In
the presence of heat or light, they decompose to decarboxylate molecules: ∆9-tetrahydrocannabinol
(THC) or cannabidiol (CBD). The cannabinol (CBN) is an indicator of the thermal decomposition of
cannabinoids, through prolonged exposure to elevated temperatures.

The cannabis market is changing with the presence of high-THC-content products,
and new forms of cannabis and extract-based commercial products from the cannabis plant
are becoming increasingly available. The cannabis herb contains about twice as much
THC than a decade ago. In addition, in Europe, drug use or possession offences involving
cannabis comprise 75% of the total drug law offences [6]. Currently, high-performance
liquid chromatography (HPLC) is the most used analytical technique for cannabinoid
determination [7,8]. However, the applications of non-destructive vibrational spectroscopy
approaches based on infrared or Raman spectroscopy to analyze marijuana have increased
in recent years [8]. Thus, Raman spectroscopy has been used to differentiate among
cannabis (THCA-rich hemp), CBD-rich plants, and regular hemp in order to provide a
tool for hemp farming/cultivation [9]. Portable Raman spectroscopy has been success-
fully used to probe the content of THCA in samples [10]. However, there are still open
questions, such as whether Raman microscopy can identify marijuana and discriminate
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among different marijuana varieties. As a consequence, this work aimed to develop a
chemometrics-assisted method based on Raman microscopy for differentiation between
different marijuana varieties.

2. Materials and Methods
2.1. Plant Material and Samples

Five marijuana (Cannabis sativa L.) samples were analyzed: four Sativa (Amnesia
Hy-Pro, Amnesia Haze, Original Amnesia, and Y Griega) and one Indica (Black Domina)
genetic varieties. These plant materials were donated by the Campoactivo grow shop
(Alcalá de Henares, Spain), which produced those plants from their own selected seeds
with the certification of the corresponding genotypes. All varieties studied are technically
hybrids. However, they express strong Sativa phenotypes for the Sativa variety, with very
high Sativa genotypes. Therefore, Amnesia Hy-Pro is mostly 60% Sativa, composed from
a cross of Afghan and Neville’s Haze. Amnesia Haze is 70% Sativa and composed from
a cross of staple strain Haze and several different worldwide landraces, including Thai,
Hawaiian, and Afghani. Original Amnesia is 70% Sativa and it is the cross of a Haze
and a Northern Lights. The Y Griega type is 80% Sativa composed from a cross between
Amnesia Haze and Kali Mist. The Indica variety Black Domina is 95% Indica and its genetic
makeup includes four powerful Indica varieties named Afghanistan, Canadian Ortega,
Northern Lights, and Hash Plant. The marijuana samples were cultivated and prepared in
the Grow Store, simulating a self-consumption with no special care in the drying procedure,
which combined uncontrolled heating and room temperature. Those marijuana samples
were received dried as a collection of buds and leaves and their seasoning of the cannabis
plant materials. The plant material came in individually labelled small plastic hermetic
containers. They were stored within locked dark cabinets in a temperature-controlled room
to preserve them from any extreme heat and light sources. The samples considered in this
study were analyzed after about one month following the plant harvesting and over three
months from their arrival to the lab.

Three standards were acquired (MilliporeSigma, aka Sigma Aldrich, Merck KGaA,
St. Louis, MO, USA) for comparing the samples’ spectra: decarboxylated cannabinoids (−)-
trans-∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) (1.0 mg/mL
in methanol). They were expected as major products from the dried cannabis plant.

2.2. Quantum Chemical Simulated Raman Spectra

Tetrahydrocannabinol acid (THCA), cannabidiol acid (CBDA), tetrahydrocannabinol
(THC), and cannabidiol (CBD) were modeled by quantum chemical calculations using the
Gaussian 16W and Gaussview 6 software packages [11]. The simulated Raman spectra
were calculated from the optimized structures at the Def2TVZP level of calculation.

2.3. Raman Analysis and Spectra Acquisition

A DXR Raman confocal microscope spectrometer (Thermo Fisher Scientific, Waltham,
USA) with a high-precision motorized stage allowed searching and focusing on the trichome
heads (50 to 100 µm wide) of the cannabis samples. The excitation source was a diode-
pumped solid-state (DPSS) He-Ne laser (nominal power: 20 to 25 mW) emitting at 532 nm.
A CCD detector cooled by a thermoelectric cooler to minimize the electrical noise was used
for recording the Raman scattering.

The spectra of all the samples were collected using OMNIC32 Software (Thermo
Fisher Scientific, Waltham, MA, USA) within the 400 to 4000 cm−1 Raman shift range.
The spectrograph aperture was set to 25-µm-slit for the synthetic cannabinoids (reference
compounds) and 50-µm-pinhole for the cannabis samples. The different adjustable aperture
(slit/pinhole) permits better control of the amount of incoming laser radiation. Usually, the
slit aperture results in a higher Raman signal than the pinhole aperture [12]. Therefore, to
prevent the cannabis samples from burning, lower laser power (8 mW, at the sample) and a
pinhole type-aperture were used.
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The cannabis samples were intentionally measured without any sample pretreatment,
and at different points in time. At the end, all the spectra were assembled for this study.
Cannabis plant material comprises the collection of floral buds and leaves and their season-
ing for marijuana. A small amount (a spatula tip) of every marijuana sample was laid over
a microscopy slide covered with aluminum foil and observed with a 10× objective in the
Raman microscope. The use of aluminum foil is a common Raman trick to avoid the fluo-
rescence produced by the glass [12]. The focus was set on the trichome heads because they
are the site of the cannabinoid production [13–16] and the THC content is expected to be the
highest (15 to 25%) and consequently, there is a stronger spectral signal. This was especially
important because uninformative spectra were obtained when randomly focusing and irra-
diating on any bulk marijuana sample. When a representative capitate-stalked or a bulbous
trichome was encountered, the microscope objective was changed to 50× magnification
to focus only on the trichome (drug-containing) head surface. Figure 2 shows an example
of the trichome magnifications at 10× and 50×. The 10× magnification was only used
for exploring the sample and finding representative trichomes. The 50× magnification
was used for collecting the spectra only from the different spots on the chosen trichomes.
This is practical, considering that at 50× magnification, the laser spot diameter irradiates
an area of about 1.1 µm. In order to avoid burning the samples, three trichome heads
of every marijuana sample were measured with the following conditions: 8 mW laser
irradiation power (at the sample surface), 30 accumulations of 1 s acquisition time each.
In total, 60 spectra were collected for every marijuana sample; that is, 20 spectra were
always gathered from 20 different (randomly selected) points on every trichome’s head.
The cannabinol standards were measured with the following conditions: 14 mW laser
irradiation power (at the sample surface), 20 accumulations of 5 s acquisition time each.

1 
 

  
 Figure 2. Optical microscope image of a trichome head used for collecting the spectra

(left: 10× magnification, used for exploring the sample and finding representative trichomes;
right: 50× magnification, used for collecting the spectra only from different spots on the
selected trichomes).

2.4. Data Pre-Processing and Analysis

From the entire spectral range measured in this work (200 to 4000 cm−1), the spectral
region of interest (ROI) considered for the chemometric analysis was 200–1800 cm−1. This
range was selected because most of the marijuana’s Raman spectral fingerprint can be
found around this region, which is important if the reader wants to perform a comparison.
The whole raw ROI containing all the marijuana samples was pre-treated prior any data
analysis. Data pre-processing is important to ensure that data are standardized and fully
comparable. The pre-processing sequence was always performed verifying that neither
the data nor the results were degraded; that is, negatively affected. The data were treated
to correct the fluorescence background using a 5th-order polynomial baseline correction
method built-in the Omnic software. This fluorescence may come from the chlorophylls,
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chlorophyllin, and analogous compounds, which are highly auto-fluorescent [16,17]. Then,
wavenumber alignment was performed to compensate for the small offsets among and
along the spectra. The wavenumber alignment consisted of shifting the wavenumber axis
to align the spectral bands, to compensate for artificial shifts (i.e., artifacts) due to drifts
in the laser emission wavelength or differences in the instrument optical alignment. This
processing is performed since even very small shifts can impact the data analysis. The
wavenumber alignment was performed using a custom interpolation function, choosing
the first spectrum as the reference. Finally, the spectral intensity was normalized using
the vector normalization procedure, which calculates the average intensity value for all
(chosen) wavenumbers. Afterwards, the intensities are centered and divided by the length
of the spectrum (as a vector); thus, the new spectrum vector has a length of 1. The data
were pre-processed using the MALDIquant, baseline, and hyperSpec packages available
within the R and RStudio v.3.3.2 and v1.0.136 software packages, respectively [18,19].

The multivariate analysis was carried out on the collected marijuana spectra for dis-
criminating the Indica and Sativa genetics and the Sativa varieties whilst trying to explain
their profile. The orthogonal partial least-squares discriminant analysis (OPLS-DA) was per-
formed using SIMCA (Sartorius Stedim Biotech, Göttingen, Germany) software. OPLS-DA
is a statistical modeling tool that combines orthogonal signal correction (OSC) and partial
least-squares discriminant analysis (PLS-DA) [20–23]. It provides understanding about the
separations among the experimental groups; in this case, based on data containing high-
dimensional spectral measurements with multicollinear and noisy variables [20,22–25]. The
default scaling for the X-block and Y-block in the default workset was set to the Pareto
variance to compensate for any magnitude unbalance and/or variance. This enabled elimi-
nating any weight due to the variables or observation magnitude. In the Pareto scaling,
the base weight was computed as 1/sqrt(sdj), where sdj is the standard deviation of the
variable j computed around the mean. The confidence level of the fitting parameters was
set to 95%, and the significance level for Hotelling’s T2 was set to 0.05 [25]. The analysis
was performed using a non-linear iterative partial least-squares (NIPALS) algorithm. The
goodness of fitting, which included an uncertainty test, was assessed using the leave-
one-out cross-validation (CV) method, where each observation is left out once during the
cross-validation. Furthermore, the number of cross-validation rounds was kept to seven
by default. This is the number of groups that one by one is left out of the modeling and
repredicted during the cross-validation. Hence, because OPLS-DA is sensitive to the model
complexity [25], and to avoid overfitting, a repeated 7-fold CV was set to estimate the
relevant number of components in the OPLS models [26]. Nonetheless, in order to stay in
the safe side of the model fitting and still have the optimal number of proper factors for
generating a predictive model, less than five latent variables were used in all cases.

The OPLS-DA scatter plots allowed visualizing the discriminated groups along the re-
sulting latent variables, as well as the corresponding experimental variables (wavelengths)
that best described those groups’ behavior. After finding the models, the subsequent confu-
sion matrices were used to report the fitting results, i.e., the performance of a classification
model. Some results were compared using contribution plots, which are point-focused
versions of the variable importance of the projection (VIP) plots. The contribution plots
show why a specific point (or group of points) in a score or Hotelling’s T2 plot deviates from
the average or from another point in the X-space. In other words, they show the weighted
difference between the point’s data (scaled and centered as the dataset) and the average of
the model. Here, the weights are by default derived from the underlying model. The plot
shows one bar per active variable or term on the X-side. The vertical scale corresponds to
the scaling of X, and since the X is Pareto-scaled in this workset, the vertical scale is given
in terms of 1/sqrt(StdDevs) units. The largest bars denote which variables deviate most
from the reference point (here the average), and the sign of the bar (up = plus/positive and
down = minus/negative) designate in which direction the variables diverge.
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3. Results and Discussion

The most utilized strategy to determine the cannabinoid profile of plant material
and the quality of cannabis samples involves liquid–liquid extraction followed by high-
performance liquid chromatography (HPLC). In addition, gas chromatography (GC) in con-
junction with mass spectrometry (MS) or flame ionization detection (FID) can be employed
for this purpose, but a derivatization step is essential if the acids need to be quantified [27].
Current methods of cannabinoid analysis present some disadvantages such as expensive
equipment and alteration or destruction of the sample, and are time-consuming. An al-
ternative approach is therefore here proposed for the fast and non-destructive cannabis
material analysis consisting of the use of vibrational Raman spectroscopy.

3.1. Marijuana Spectral Characteristics

Since the capitate-stalked and bulbous trichomes of the marijuana contain high
cannabinoid accumulation levels [13,14], they were the target structures to be located
using a microscope as shown in Figure 2 [15].

Figure 3 shows the average Raman spectrum of marijuana. This spectrum was obtained
from the average spectra of the five studied marijuana types (Amnesia Haze, Amnesia
Hy-Pro, Original Amnesia, Y Griega, and Black Domina). The average spectra of every
marijuana type were visually very similar, with slight differences in the shifts and intensities
of the Raman bands, which will be discussed later in the chemometric analysis. In addition,
Figure S1 shows a normalized spectrum (at 1438 cm−1) of the marijuana and decarboxylated
cannabinoids (THC, CBD and CBN). The signal at 1438 cm−1 is attributed to vibrations of
the CH2 groups, which are usually present in many related structural biological compounds,
in this case cannabinoids. This vibrational mode is in a free region, avoiding the influence
of other bands, and it is suitable to use to normalize the spectra.
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Figure 3. Experimental average Raman spectrum of marijuana and the main cannabinoids (THC,
CBD, CBN) used as standards.

Marijuana spectral bands were compared with those of the decarboxilated cannabi-
noid spectra (THC, CBD, CBN), since the laser was focused over the main production
site of cannabinoids. The assignments of the Raman spectral features from the cannabis
samples were performed within the 600–1800 cm−1 range, because this is where the more
characteristic molecular vibration modes occur (molecular fingerprint). The spectral assign-
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ments were based on the information derived from the experimental and calculated Raman
spectra of the cannabinoids and by comparison with previously reported data [9].

The Raman spectrum of marijuana was assigned considering mainly the three rep-
resentative zones derived from the vibrational modes of the main types of groups in the
chemical structure (C=C, C–C, CH2, CH3, C–O–C, and others) of its main constituents, the
cannabinoids (Figure 1). The first zone at a higher wavenumber is related to the presence
of the C=C double bonds. Indeed, the bands at 1666 cm−1, 1623 cm−1, and the shoulders at
1600 and 1570 cm−1 are in the C=C stretching region and were assigned with confidence to
these cannabinoid modes. Figure S1 shows the spectra normalized to 1438 cm−1, which
roughly lets us appreciate a compound’s contribution to the marijuana spectrum. As can
be seen, the overlapped spectra of the THC, CBD, and CBN molecules suggest the presence
of more related-structure molecules. It seems that the precursor acid forms could also be
present and contributed to this broad band. Figure S2 shows the theoretical calculated
Raman spectra of both acid and decarboxylated cannabinoid molecules. It allows visualiz-
ing the very similar position of the C=C stretching modes; therefore, it is appropriate to
also assign the contributions of the acid form molecules to this spectral region. Further,
a related-structures contribution cannot be ruled out considering the tens of marijuana
cannabinoids elucidated previously.

The second representative region of the marijuana Raman spectrum was located
between 1500 and 1100 cm−1, which is characterized by the different types of CH2 bending
signals. According to the simulated vibrations of THC, CBD, and their acid precursors, the
CH2 scissor bending was expected to appear at higher wavenumbers. Hence, the bands at
around 1438 cm−1 were assigned to these marijuana cannabinoid modes. Then, the band at
1297 cm−1 and those closer were attributed to the CH2 bending of cannabinoids. This was
predicted by quantum chemical calculations, which agree with previous reports regarding
related structures. Redshifting was observed within other lower intense bands at 1187 and
1114 cm−1 in the marijuana spectrum. This agrees with the region of the CH2 twist bending
modes, in this case attributable to the main components of the trichomes; the cannabinoids.

The lower wavenumber region of the marijuana spectrum (1100 to 600 cm−1) was less
intense. However, some well-defined bands were observed at around 1079 cm−1, which
were attributed to the C-C stretch vibrations of the alkyl groups belonging to the expected
cannabinoids. Likewise, the bands at 836 and 786 cm−1 agreed with the CH3 and CH2
rocking modes of the same molecules in the trichomes of marijuana.

It must be noted that the marijuana’s Raman spectrum is representative of its main
components. Cannabinoids have remarkably similar structures characterized by alkyl,
aromatic, and heterocycle groups. Furthermore, the similarities in their Raman spectra
are also high, which result in complex and unambiguous assignment of the whole spectra.
Even more, lignin, cellulose, pectin, and carotenoids could also be present because the
trichome is a vegetable tissue. For example, the band at 1185 cm−1 could also result
from the contribution of the C−O−H stretching next to the aromatic ring and the CH
bending, assigned to xylan. Likewise, the band at 1114 cm−1 could be assigned to the
vibrational modes of the C−O−C symmetric and C−OH bending of cellulose [9]. In this
regard, a general description of the marijuana Raman spectrum was present in the previous
paragraphs, as it may be more suitable and useful to understand the varied classification
results of the marijuana Raman spectra when using chemometric methods.

3.2. Marijuana Classification

Figure 4 shows the comparison of the average spectra belonging to the Indica and
Sativa genetic variants in the 200–1800 cm−1 spectral range. In general, both spectra are
visually very similar with just a few differences in the intensity and peak features along
the spectra.
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Figure 4. Raman data set highlighting the similarities and differences among the average spectra of
the Indica (Black Domina, in black) and Sativa varieties (Amnesia Haze, in red; Amnesia Hy-Pro, in
gold, Original Amnesia, in blue; and Y Griega, in green).

Some of the weak spectral differences among the samples are visually observable
especially in the 800–1200 cm−1 range. Moreover, the visual intensity relation between
the bands at 1300 and 1600 cm−1 looks different amid the Indica and Sativa samples.
Nonetheless, a classification OPLS-DA method was explored to test whether the different
cannabis varieties could be differentiated.

Figure 5A shows the 2D score scatter plot from the OPLS-DA model, which differenti-
ates the class within the Indica and Sativa marijuana spectra. This chemometric technique
allowed distinguishing the two genetic variants. The vertical to[1] orthogonal direction
(axis) expresses within-class variability, which is unrelated to the question of discriminating
between the two classes, but it is still important for the total understanding of the problem.

The 7-fold (groups) CV autofit algorithm suggested one predictive t[1] and eight
orthogonal to[1–8] variables. However, as can be seen, the separation of the genus was
already clear using only one predictive t[1] and one orthogonal to[1] variable. The R2X[1]
parameter indicated that about 6.4% of the X variation was modeled by the predictive t[1]
component. Likewise, R2Xo[1] showed that 41.2% of the X variation was modeled by the
orthogonal to[1] component. Moreover, a total of 62.1% of the X variation was modeled by
the four orthogonal to[1–4] components, which rendered a rather good 68.5% explanation
of the separation. The outliers outside the 95% confidence Hotelling’s T2 ellipse were not
excluded from the analysis because in spite of their condition, in perspective, they did not
affect the overall separation results.

Figure 5B shows the top (positively marked) part of the contribution plot for the Indica
versus Sativa samples. This plot shows the variables (wavelengths) that contribute to make
the Indica class so different from the Sativa class. The variables colored in orange contribute
the most because the original variables are outside the ±3 standard deviation (StdDev)
limits for the corresponding observations. Hence, the following band and shoulder region
results were quite important for the Indica discrimination: 346–354 and 359–362 cm−1.
Some other important bands and band regions were 283, 290–293, 309–312, 317, 330,
339–341, 380, 404, 570, 785, 1296–1300, and 1324 cm−1.

A confusion matrix is a specific table layout that allows visualizing the performance of
an algorithm, which represents the statistic classification accuracy, specificity, and sensitivity.
In this case, Table 1 shows the confusion matrix for a 7-fold cross-validation classification
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procedure on the marijuana genetic dataset. Its 100% high classification accuracy indicates
that it is possible to distinguish the marijuana genetics from Raman spectra taken from
marijuana trichomes.
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Table 1. Confusion matrix for the marijuana genetics classification.

Predicted

Actual

Indica Sativa Sum

Sativa 238 1 239

Indica 0 60 60

Sum 238 61 299
Fisher’s probability was 0 and is satisfied when p < 0.05 for a 95% confidence level. For the calculation of Fisher’s
probability, all probabilities more extreme than the observed pattern are computed and summed to give the
probability of the table occurring by chance.

Given these results and in order to discriminate between the Sativa sample (vari-
ety/type) classes if possible, a new OPLS-DA model was created without the Indica
samples. Although the separation was rather good considering all spectra, a few strong
outliers were removed from the analysis as they were influencing the model too much.
Figure 6 shows the separation of the sample types by OPLS-DA after auto-fitting three
predictive t[1–3] and eight orthogonal to[1–8] variables (latent variables or components).
On the one hand, the three predictive t[1–3] components accounted for 24.4% of the to-
tal variability, from which 19.8, 23.4, and 24.4% of the X variation was modeled by the
t[1–3] components. On the other hand, the eight orthogonal components to[1–8] explained
54.8% of the X variation. In other words, the entire model explained 79.3% of the sample
variability, which represents a rather good discrimination model. The remaining outliers
outside the 95% confidence Hotelling’s T2 ellipse were not excluded from the analysis for
the sake of showing that despite their nature, they did not significantly affect the overall
discrimination results.
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Figure 6. 3D score scatter plot from the OPLS-DA model applied to the Sativa marijuana Raman
spectra in order to differentiate the sample types. Supplementary Figure S3 shows the individual 2D
representations of these 3D planes.

The first component, t[1], was able to discriminate Original Amnesia from the other
samples, especially YGriega and AmnesiaHaze. The second component, t[2], was good
for separating Amnesia Haze Hypro from the other sample types, especially YGriega and
AmnesiaHaze. The third component, t[3], was rather good at separating YGriega from
AmnesiaHaze. However, there were some samples that were confounded in the zero zone
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of each OPLS-DA component; the full discrimination results are better appreciated in a 3D
perspective scatter plot (Figure 6).

Table 2 shows the confusion matrix for a 7-fold cross validation classification of the
Sativa marijuana types. Its high classification accuracy of 100% indicates that it was possible
to distinguish the various Sativa marijuana types considering their Raman spectra.

Table 2. Confusion matrix for the Sativa marijuana type classification.

Predicted

Actual

YGriega OriginalAmnesia AmnesiaHazeHypro AmnesiaHaze Sum

YGriega 54 0 0 0 54

OriginalAmnesia 0 49 0 0 49

AmnesiaHazeHypro 0 0 53 0 53

AmnesiaHaze 1 0 0 58 59

Sum 55 49 53 58 215

Fisher’s probability; that is, the probability that this table may occur by chance was 0.

Various contribution plots were created in order to find the bands responsible for such
a separation among the Sativa genus (Figure S4). The Original Amnesia class (Figure S4A)
is visually rather different from the other Sativa types that can be distinguished in a
group. According to its corresponding contribution plot, most of its bands influenced its
differentiation. The most important (the tallest) bands in the contribution plot corresponded
to small bands and shoulders along the Original Amnesia spectra but mainly in the central
spectral region.

Although the spectra of the Amnesia Haze Hypro class (Figure S4B) visually does not
stand out significantly from the other classes, it has a few bands and shoulders that differ
in the extremes of the spectral range. The most important bands and shoulder regions for
differentiating the Amnesia Haze Hypro class were at about 1360, 1440 (probably corre-
sponding to the bending vibration mode of the aliphatic CH2 and CH3 of the cannabinoids),
1634, and 1666 cm−1 (C=C stretching vibrational mode of the cannabinoids).

The following bands were quite important for the complete YGriega differentiation
(Figure S4C) among the other classes: 1313, 1386 (those in the CH2 bending vibration of the
cannabinoids’ aliphatic region), 1570, and 1595 cm−1. For the Amnesia Haze class (Figure
S4D), the band and shoulder regions important for its differentiation were 981, 1275, 1495,
and 1595 cm−1. They corresponded to some initial bands and shoulders plus the largest
bands and shoulders in their spectral range. It can be noted that YGriega and Amnesia
Haze classes had strong coincidences at the 397, 411, 985, 1258, 1293, 1300, 1313, 1318, 1495,
1591, and 1595 cm−1 bands.

4. Conclusions

Raman spectroscopy parameters need to be properly selected to measure marijuana
trichomes. Thus, a precise focusing over the trichome zone and low laser intensity were
necessary to obtain good Raman spectra while avoiding sample damage.

The Raman spectra of the ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and
cannabinol (CBN) standard cannabinoids were compared with the Raman spectra of five
different types of marijuana: four Sativa varieties (Amnesia Haze, Amnesia Hy-Pro, Origi-
nal Amnesia, and Y Griega) and one Indica variety (Black Domina). The results show the
presence of several common spectral bands, which are useful for marijuana characteriza-
tion. These findings were supported by quantum chemical simulated Raman spectra of
the cannabinoid acid-forms (tetrahydrocannabinol acid (THCA), cannabidiol acid (CBDA))
and decarboxylated cannabinoids (THC, CBD, and CBN).



Toxics 2022, 10, 115 12 of 13

A chemometics-assisted method based on Raman microscopy and an OPLS-DA model
offered good classification and discrimination of the different marijuana genetics and
varieties, which opens interesting perspectives in the forensic field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics10030115/s1, Figure S1: Normalized Raman spectra (at 1438 cm−1)
of those in Figure 3; Figure S2: Experimental Raman spectrum from the marijuana trichomes and
quantum chemical simulated spectra for the main expected marijuana cannabinoids at the Def2-TZVP
calculation model; Figure S3: 2D Scores Scatter plots representing the three planes forming the 3D
Scores Scatter plot from the OPLS-DA model (Figure 6) applied to the Sativa marijuana Raman
spectra in order to differentiate the sample type; Figure S4: Contribution (loadings-focused) plots
for the various Sativa samples analysed in this work. (A) Original Amnesia (top part) compared
to the rest of the samples. (B) Amnesia Haze Hypro (top part) compared to the rest of the samples.
(C) YGriega (top part) compared to the rest of the samples. (D) Amnesia Haze (top part) compared
to the rest of the samples.
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