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optimal parameter. The kernel function settings

an effect on the classification results. For SVM1, the best parameter in classifying pixels is 
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the fundus images. The OD removed fundus image and fundus image with the exudates areas 

removed. The SVM1 classifier was applied to 30 test fundus images to determine the best 

optimal parameter. The kernel function settings; linear, polynomial, quadratic and RBF have 

an effect on the classification results. For SVM1, the best parameter in classifying pixels is 

linear kernel function. The visualization results using CAC and radar chart are classified using 
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1. INTRODUCTION 

Diabetes mellitus affects ten of million people around the world. The statistics indicate that 

the number will double in the future [1]. The disease is divided into two categories; namely 

Type I (insulin-dependent) and Type II (insulin-independent) [2-3]. Type I means the immune 

system destroyed beta cells that make insulin and cause the body to make little insulin or no 

insulin [4, 5]. It usually happens in children and teenagers. Meanwhile, Type II stands for 

person who is insulin resistance, body may not make enough insulin or both [5]. It usually 

occurs in people who are older or overweight[4, 6]. Type II is results from interaction 

between lifestyle, genetic and medical conditions [6]. In reality, almost 80% of people with 

Type II are overweight. However, nowadays children and teenagers are exposed to Type II 

according to obesity and inactiveness [4, 6].  

Symptoms of diabetes mellitus include delayed wound healing, infection of the urinary 

system, numbness, thirst, frequent urination and fatigue, as well as weight loss [3]. Due to the 

generic nature of the symptoms, the disease has the tendency to be detected at advanced 

stages [3]. Thus, late detection of diabetes is common in Malaysia [7], as well as other parts 

of the world. Long standing diabetes mellitus has high potential to get diabetic retinopathy 

(DR) [8-10]. For Type I disease, 90% have DR after 10 to 15 years [8]. Also, about 25% of 

Type I patients develop proliferative diabetic retinopathy (PDR) after 15 years of diabetes 

mellitus [9]. Meanwhile for Type II disease, the rates of patients who have DR increase to 

more than 80% by 15 to 19 years. As well as PDR usually occurs after 25 years of diabetes 

mellitus [8].  

Generally, retina fundus images of diabetic patients exhibit exudates, which are lesions 

indicative of Diabetic Retinopathy (DR). Therefore, the fundus images can be used to assist 

ophthalmologists and medical doctor for the early screening of the disease with the assistance 

of modern computational methods. 

This research proposes a method for graphical representation of fundus images to simplify 

detection of diabetes. The method consists of capturing several key features of the Color Auto 

Correlogram (CAC) extracted from fundus images, and plotting them in the form of radar chart.  

The method is centered on the detection and removal of exudates from the original fundus 
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image, then comparing the CAC features of the original image with the exudate-removed 

image. If exudates are present, the CAC features exhibit significantly different features, which 

can be easily, distinguished using the radar chart. The CAC and radar chart features were then 

classified using another SVM classifier.  

 

2. LITERATURE REVIEW 

2.1. Diabetes and Diabetic Retinopathy (DR) 

According to International Diabetes Federation Malaysia, there were 3.3 million cases of 

diabetes in Malaysia in 2015 [11]. DR is found to be the frequent cause of blindness. Early 

diagnosis can prevent visual loss and blindness but most of diabetic patients had no awareness 

to perform eye checkup [12]. 

All individual with diabetes (Type I and Type II) and pregnant women with diabetes are at 

risk for this disease [13-14]. Symptoms of DR included blurring of vision, difficulty reading, 

a sudden loss of vision in one eye, seeing rings around lights and dark spots or flashing lights 

[15-16].  

The disease are divided into two categories namely Non-Proliferative Diabetic Retinopathy 

(NPDR) and Proliferative Diabetic Retinopathy (PDR) [14]. NPDR is the early stage of DR 

and if the patient blood sugar is uncontrolled, it will rise to PDR. NPDR is characterized by 

the appearance of deposits of cholesterol (exudates) in the retina can be later be developed 

into bleeding (hemorraghe) [13-15, 17]. However, early diagnosis and treatment from NPDR 

can prevent PDR from damaging the patient’s vision [13].  

There are many tissues present in the eye but the most important tissue is the retina. The 

retina is a light-sensitive layer at the back of the eye. The retina changes the light into nerve 

signals and transmits it to the brain via the optic nerve [18-19]. DR is one of the diseases in 

the retina which caused several abnormalities such as microaneurysms, exudates, macular 

edema and hemorraghes.  

2.2. Fundus Image and MESSIDOR Database 

A fundus image is an of the eye’s interior surface, which includes the retina, optic disc, 

macula, fovea and posterior pole [20-21]. The fundus image of the retina is basically acquired 
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with the digital fundus camera [12] as shown in Fig. 1. The fundus image from MESSIDOR 

database are acquired using a color video 3CCD camera on a Topcon TRC NW6 

non-mydriatic retinograph with a 45 degree field of view [22-26].  

The Optic Disc (OD) is the brightest region of fundus image [27]. Since the OD has 

characteristics similar to the exudates, they may be falsely classified as lesions [28]. Therefore, 

removal of the OD would improve the classification of the remaining exudate region [24, 

29-30].  

2.3. Works on Detection of Disease Using Fundus Images 

In [31], authors presented automated detection of exudates in retinal images using a split and 

merge algorithm. About 17 exudates fundus images from MESSIDOR database are used in 

this paper. The split and merge algorithm is applied after OD elimination. The image is 

separated into square sub regions until similarity is verified. Then, it is merged to 

neighbouring sub regions that meet some uniformity criterion. The sensitivity and specificity 

of exudates detection are 89.7% and 99.3%. Meanwhile, in [10], the morphological operation 

and connected component analysis are used to remove OD. Tresholding is used to separate the 

exudates from fundus image. Then, Fuzzy Inference System (FIS) is used to classifying 

exudates and non exudates. The results found sensitivity and specificity and accuracy of 

detecting exudates as 91.11%, 100% and 93.84% respectively.  

According to [25], fundus images were used to diagnose three stages of Diabetic Macular 

Edema (DME). DME can be evaluated by detecting exudates in fundus images. A total of 88 

fundus images from publicly available MESSIDOR database are used for this experiment; 41 

normal fundus images and 47 DME fundus images. Features extracted using the marker 

controlled watershed method was classified automatically using the Early Treatment Diabetic 

Retionpathy Study (ETDRS) grading scale. They reported overall sensitivity, specificity and 

accuracy of 80.9%, 90.2% and 85.2%.  

In [32] reported the method for detecting hard exudates in fundus images by using Support 

Vector Machine (SVM). The regions into exudates and non- exudates classes were represent 

using relevant and significant features to get the best separability for classification; colour, 

size, edge strength and texture. The OD regions were removed to prevent false-positive 
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exudates issue. The results found the accuracy of training and testing data for SVM classifier 

are 92.77% and 89.9%. 

In [33], region of interests (ROIs) was applied for the analysis of texture micro patterns to 

detect hemorrhages and microaneurysms (HMAs). Local Binary Pattern (LBP) extracted 

texture features of ROIs before employed SVM for classification. The proposed method 

yields 87.48% sensitivity and 85.99% specificity. 

2.4. Visualization 

Visualization has been developing since Ivan Sutherland had introduced sketchpad (robot 

draftsman) in 1963 to show that computer graphics could be used for both artistic and 

technical purpose [34].  

When the United States National Science Foundation (NSF) meet formally conference on 

recent and future growth of computing visualization, the term visualization as a professional 

term officially began in February 1987 [35]. 

The objective of visualization is to explore the data and information to gain knowledge [36]. 

Furthermore, information visualization need to be balance between form and function rather 

than beautiful data visualizations that failed to give information [37]. The research stems from 

the unique ability of the human visual system that can detect interesting features and patterns 

in a short amount of time in visualization data [38].  

The main point of visualization is it should use minimal amount of resources to be effective 

and efficient [38-39]. Hence, good visualization techniques can highlight similarities and 

differences, show correlations and trends to provide the perceptivity in this process [39].  

Visualization algorithms have been designed by engineers and researchers to map the data 

into a visual form or structure; bar charts, scatter plots, line graphs and many more [34]. In 

[40] found that most of visualization sources in scientific publications are diagrams, graphs, 

charts, plots, flowcharts, timelines and tables. 

2.5. Color Auto-Correlogram (CAC)  

Recently several approaches have done to combine color with spatial information [41-44]. 

The spatial correlation of pairs of colors changes with distance is called color correlogram 

[45]. Meanwhile spatial correlations between identical color only is called CAC, which is 
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subset of color correlogram [45-46]. There are several issues of using color correlogram such 

as expensive cost of memory space (use in a huge database), computation time and space 

complexity [43]. Therefore, CAC is applied to reduce the time and space complexity by 

finding spatial correlations between identical color only [42-43].  

 

3. METHODOLOGY 

A total of 149 images from the publicly available MESSIDOR database were used for 

classification and visual the proposed method. The images labeled as are acquired using a color 

video 3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45 degree field 

of view [22].  

There are two flowcharts for this experiment; Experiment I: To determine the optimal 

parameter SVM1 classifier and Experiment II: To visualize exudates using CAC and radar 

chart. The results also have been verified using SVM2 classifier. The proposed flowcharts are 

shown in Fig. 1 and Fig. 2. 

Several preprocessing steps were performed to normalize the appearance of the fundus images, 

as well as remove the optic disc that may interfere with the classification process. This step is 

described in section 3.1. 

The experiment in section 3.2 was to design and implement SVM1 classifier for feature 

extraction to extract exudates and non-exudates pixels. This was done by collecting samples of 

exudates and non-exudates pixels to train the SVM1 classifier subject to different kernel 

functions. After training was completed, the classifiers were both applied to 30 test fundus 

images to determine the best kernel function for it. The results also have been verified using 

SVM2 classifier. 
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Fig.1. Experiment I: To determine the optimal parameter SVM1 

 

Fig.2. Experiment II: To visualize exudates using CAC and radar chart 



N. M. Tahir et al.            J Fundam Appl Sci. 2017, 9(4S), 19-44               26 
 

 

3.1. Pre Processing: Image Normalization and Removal of OD  

The first step in our approach is to normalize using the histogram equalization method. This is 

done by first examining the color histogram of the image, then using the histogram to help 

balance the intensities of the colors in the image based on a predefined reference image (Iref) as 

shown in Fig. 6 (i). This is to ensure that all the images in the dataset is consistent prior to Optic 

Disc (OD) removal. The normalized images are referred to as Inorm. An example of this process 

is shown in Fig. 6. 

Since the OD has characteristics similar to exudates, they may be falsely classified as lesions. 

Therefore, removal of the OD from Inorm would improve the classification of the remaining 

exudate regions. The OD is excluded from all images by marking the center of the OD region 

in Inorm, and expanding the circle radius manually until the entire OD has been covered. An 

example of this process is shown in Fig. 6(iii). For convenience, images with removed OD are 

referred to as Iwod. 

3.2. Discrimination of Exudates and Non- Exudates Pixels Using SVM1  

This step is concerned with constructing an optimal classifier to discriminate between exudate 

and non-exudate pixels based on their colour. To achieve this, samples of exudate, non-exudate 

and background pixels were obtained from several randomly selected fundus images. A total of 

4,830 pixels were chosen manually from the selected fundus images as training data for the 

MLP and SVM. From that number, 2,696 pixels represented exudates while 2,134 pixels 

represented non-exudates and background. Sample of six test fundus images (3 exudates and 3 

normal) from the total 30 test fundus images as shown in Fig. 3 were selected from the full 

dataset and these images were used to assist in the search for optimal parameters for the 

classifiers. The SVM1 training process are described in section 3.2.1 respectively. The results 

of this section are presented in section 4. 



N. M. Tahir et al.            J Fundam Appl Sci. 2017, 9(4S), 19-44               27 
 

 

 

Fig.3. Sample of six fundus images (3 exudates, 3 normal) from the total 30 test fundus 

images 

3.2.1. SVM1 Implementation 

The SVM was trained using samples of exudate and non-exudate pixels. Several kernel 

structures were tested: linear, polynomial, quadratic and RBF. The inputs for the SVM are Red, 

Green and Blue (RGB) values of each pixel. The SVM generated a binary output that indicates 

whether the pixel under examination is exudate or vice versa. The value of C was varied from 

0.01, 0.1,1 and 10 to get the best accuracy test as shown in Table 1.  

The division of training and testing set were 50% and 50%; 2415 pixels for training and 2415 

pixels for testing. The best model of SVM depends on support vector, C and kernel function 

parameters. Table 1 shows the SVM1 structure and parameter settings used. 

Table 1. SVM1 structure and parameter settings 

Parameter Setting 

Kernel functions Linear, polynomial, quadratic and RBF 

Regularization parameter C = 1 

Division of training and testing set (%) 50:50 

Then, the optimal parameters from SVM1 classifiers are applied to test all 149 Iwod fundus 

images; 68 exudates and 81 normal fundus images. 

3.3. Visualization Using CAC and Radar Chart 

The CAC method needs to go through all the neighbours for each pixel in the image. It is an 
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extension of the color histogram that adds a dimension to the feature vector which represents 

the relative local distance k between pixels with the specific colour.  

Visualization was performed by extracting CAC features from Iwod and invert mask Iwl from 

exudates fundus image and normal fundus image. The samples of Iwod and invert mask Iwl for 

exudates and normal fundus images are shown in Fig. 4 and Fig. 5.  

 

Fig.4. Sample of exudates fundus image for (i) Iwod and (ii) Invert mask Iwl 

 

Fig.5. Sample of normal fundus image for (i) Iwod and (ii) Invert mask Iwl 

The inputs for the CAC are image in unsigned 8 bit integers (uint8) form that representing the 

color image and distance vector, which representing the different distances in which the color 

distribution is calculated. The output for the CAC is the correlogram vector, which is a 

straight vector representing the probabilities of occurrence of 64 quantized colors. Its total 

dimension is 64n x 1 where n is the number of different distances. Once the CAC features 

were obtained from Iwod and invert mask Iwl , they were plotted on the same radar chart to 

visualize the features. If exudates are present, they would have been removed from invert 

mask Iwl. This in turn changes the shape of the feature plot in the radar chart, which is 

distinguishable when shown together with the Iwod feature plot. This would indicate a potential 

diabetic condition. However, if exudates are not present in Iwl, the feature plot for Iwl would 

show significant overlaps when compared with the Iwod feature plot as both features would 

essentially be similar or almost similar and the patient is is normal. The results of this section 
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are presented in section 4. 

3.4. Classification Using SVM2 

The input layer was fed with subtraction of values from invert mask Iwl minus Iwod fundus 

images. The SVM2 generated a binary output that indicates whether the CAC features under 

examination is exudate or vice versa. The best model of SVM depends on support vector, C and 

kernel function parameters. Several kernel structures were tested: linear, polynomial, quadratic 

and RBF. The reason of tested several kernel functions is to get the best accuracy for 

classification. The smallest number of support vector indicates good classifier, which is least 

number of the difficult data point [47]. The value of C was varied from 0.01, 0.1,1 and 10 to get 

the best accuracy. The division of training and testing sets were set to 50:50.  

 

4. RESULTS AND DISCUSSION 

Experimental analysis and testing is run on a Toshiba Satellite laptop Intel Core i7 Central 

Processing Unit (CPU), 2.1 (GHz) with 4 GB of Random Access Memory (RAM). Window 7 

was installed as the operating system. All programs were implemented using MATLAB version 

8.1.0.604.  

4.1. Image Normalization and Removal of OD  

The normalization and removal of OD results are presented here. The normalization and 

removal of OD results are presented here Fig. 6. Fig. 6(i) shows the reference image (Iref). Fig. 

6(ii) shows before normalization exudates fundus image. Meanwhile, Fig. 6(iii) shows a result 

of normalization fundus image with OD removal (Iwod). Both normalization and OD removal 

were applied for all 149 fundus images in the dataset. 

Fig. 7 shows the color histogram for reference image (Iref), before normalization image and 

after the Reinhard Stain normalization Inorm and its color histogram have changed as a result 

of the normalization process.  
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Fig.6. (i) The reference fundus image (Iref), (ii) Exudate fundus image before normalization, 

and (iii) Result after normalization and manual OD removal (Iwod) 

 

Fig.7. Color Histogram before and after normalization of fundus images 

4.2. Discrimination of Exudates and Non Exudates Pixels Using SVM1 Classifier 

The SVM1 classifier was applied to 30 test fundus images to determine the best optimal 

parameters for it. A summary of classification results for SVM1 is shown in Table 2 and Table 

3. According to Table 2, it shows classification accuracy results of varied C values. The value 

is varied from 0.01, 0.1,1 and 10 to get the best classification accuracy to be used in SVM1. 

From Table 2, the suitable value for C is equal to 1 since it accuracy was 98.9% which is the 

highest value among the values tested.   

Four types of kernel functions were applied for pixels classification test; linear, polynomial, 
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quadratic and Radial Basis Function (RBF). As can be seen, all the kernel functions show 

excellent classification accuracy which is above 97% but to find the best optimal parameter 

among them, they were applied on six fundus images for exudates segmentation to investigate 

their performance. 

Sample classification results for SVM1 (Fig. 8-Fig. 13) are shown for Iwod in Fig. 3(i) until 

Fig. 3(vi).  

Table 2. Regularization parameter (C) and classification accuracy for SVM1 

Regularization Parameter (C) Classification Accuracy 

0.01 96.7% 

0.1 97.8% 

1 98.9% 

10 95.9% 

Table 3. SVM1 kernel functions and pixels classifications 

Kernel Function Classification Accuracy 

Linear Training = 97.0% 

Testing = 95.9% 

Polynomial Training = 100% 

Testing = 100% 

Quadratic Training = 99.6% 

Testing = 99.6% 

RBF Training = 99.3% 

Testing = 99.1% 
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Fig.8. Black and white masking image of Fig. 3(i) under varying kernel functions 

 

Fig.9. Black and white masking image of Fig. 3(ii) under varying kernel functions 
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Fig.10. Black and white masking image of Fig. 3(iii) under varying kernel functions 

 

Fig.11. Black and white masking image of Fig. 3(iv) under varying kernel functions 

 

Fig.12. Black and white masking image of Fig. 3(v) under varying kernel functions 
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Fig.13. Black and white masking image of Fig. 3(vi) under varying kernel functions 

Fig. 8 shows the results of black and white masking for exudates fundus image 29. Here, fine 

exudates segmentation is shown when using linear kernel function compared to others as can 

be seen in Fig. 8(ii). It clearly followed the Region of Interest (ROI) of exudates areas in 

image 29. Meanwhile, polynomial, quadratic and RBF kernel function fail to segment the 

correct exudates areas as shown in Fig. 3(i).  

Then, Fig. 9 shows the results of exudates fundus image 131. There are nine ROI of exudates 

areas that need to be segmented by kernel functions. As can be seen in Fig. 9 (ii), the ROI of 

exudates areas are very well segmented when applying linear kernel function. However, in 

polynomial, quadratic and RBF kernel functions show nearly fine exudates segmentation but 

still they fail to segment the correct exudates areas because the background of the fundus 

image 131 is segmented as well.  

Meanwhile, Fig. 10 shows the black and white masking results for exudates fundus image 175. 

Here, only one big ROI of exudates area that need to be segmented under varying kernel 

functions; linear, polynomial, quadratic and RBF. As expected, the linear kernel function 

shows good exudates segmentation result. Meanwhile polynomial, quadratic and RBF kernel 

functions still fail to segment the correct exudates areas of fundus image 175 respectively. 

Fig. 11 shows the results of black and white masking for normal Iwod image 11. As can be seen, 

there is no signs of exudates appear in Fig. 11 (ii) when applied linear kernel function. 

Meanwhile, Fig. 11 (iii), Fig. 11 (iv) and Fig. 11 (v) clearly show false exudates segmentation 

where they actually segmented the non exudates area and background of the normal Iwod 
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image 11. 

Then, Fig. 12 shows the results of normal Iwod image 15. There is supposed no ROI of 

exudates area that need to be segmented in Fig. 12 (i). But then, the result in Fig. 12 (ii) 

shows false exudates segmentation where it segmented the areas around OD that appears 

bright yellow colour. Similarly, Fig. 12 (iii) and Fig. 12 (iv). Then, Fig. 13 (ii), (iii) and (iv) 

give the results of false exudates segmentation is appeared around OD areas. They are 

obviously segmented the non exudates area together with additional background of Fig. 3 (vi). 

As can be seen, the kernel function settings have an effect on the classification results. For 

SVM1, it was observed that the best parameter in classifying pixels is linear kernel function 

because it can extract exudates and non exudates candidates efficiently.  

The linear kernel function from SVM1 classifier is applied to test all 149 Iwod fundus images; 

68 exudates and 81 normal fundus images. 

4.3. Visualization Using CAC and Radar Chart 

Fig. 14 shows the CAC plots for exudates fundus image 132. The CAC plot for Fig. 14 (i) is 

shown in Fig. 14 (ii). Meanwhile, Fig. 14 (iv) shows CAC plot for invert mask Iwl fundus 

image in Fig. 14 (iii). The x-axis represents 64 bit colour map of CAC and y-axis is the 

correlation vectors. The solid blue line represents the CAC features of Fig. 14 (i) respectively. 

The dotted red line represents the CAC features of invert mask Iwl fundus image for Fig. 14 

(iii). Once the colour of each pixel (Ci) in Fig. 14 (i) and Fig. 14 (iii) is similar with the 64 bit 

colour map (Cm), Ci finds colour similarity with pixel neighbours (Cj) around it. If the colour 

of Cj same with Ci, the correlation vector is produced. Both situations can be seen in CAC 

plots Fig. 14 (ii) and Fig. 14 (iv). Since it is hard to distinguish the pattern of CAC plots in 

Fig. 14 (ii) and Fig. 14 (iv), they were plotted into the same radar chart to visualize the 

distinguishable features as shown in Fig. 16 (ii). 
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Fig.14. Sample of CAC plots for exudates fundus image 132 

Meanwhile, Fig. 15 shows the CAC plots for normal fundus image 170. Fig. 15 (ii) shows the 

CAC plot for Fig. 15 (i). Then, the CAC plot for Fig. 15 (iii) is shown in Fig. 15 (iv). The 

solid blue line represents the CAC features of Fig. 15 (i) respectively. The dotted red line 

represents the CAC features of invert mask Iwl fundus image for Fig. 15 (iii). The x-axis 

represents 64 bit colour map of CAC and y-axis is the correlation vectors. Once the colour of 

each pixel (Ci) in Fig. 15 (i) and Fig. 15 (iii) same with the 64 bit colour map (Cm), Ci will 

find colour similarity with pixel neighbours (Cj) around it. If the colour of Cj same with Ci, 

the correlation vector is arise. The other way around, the correlation vector is falling almost to 

zero value. The both situations can be seen in CAC plots Fig. 15(ii) and Fig. 15(iv). For 

normal fundus image, it is difficult to see the pattern similarity of both CAC plots in Fig. 15(ii) 

and Fig. 15(iv). So, they were plotted into the same radar chart to visualize the features 

similarity as shown in Fig. 16(i). 
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Fig.15. Sample of CAC plots for normal fundus image 170 

Once the CAC features were obtained from Iwod and invert mask Iwl fundus images as shown in 

Fig. 14 and Fig. 15, they were plotted into the same radar chart to visualize the colour features. 

Fig. 16 shows visualization radar chart for Fig. 14 and Fig. 15. For normal fundus image 170 in 

Fig. 15, the visualization of radar chart is shown in Fig. 16 (i). As can be seen, the CAC plots 

are overlap each other meaning no exudates are present. Fig. 16 (ii) shows the visualization of 

radar chart for exudates fundus image 132 in Fig. 14. Comparatively, when exudates are 

present, both lines appear to distinguish each other respectively. This is because when exudates 

are present, the CAC features change as exudates are removed, while for the normal images, the 

resulting CAC features are similar as no exudates areas are being removed.   

 

Fig.16. Visualization of radar chart for; (i) Radar chart for normal fundus image 170 and (ii) 

Radar chart for exudates fundus image 132 
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Therefore, Table 4 shows number of success visualization of a non-overlapping features 

percentage for exudates present is 80.8% (55/68) and percentage overlapping features for 

normal image is 82.7% (67/81).  

Table 4. Number of success visualization using CAC and radar chart by using SVM1 classifier 

 149 Fundus Images 

Exudates (68) Normal (81) 

Overlapping 13/68 67/81 

Non Overlapping 55/68 14/81 

4.4. Classification Using SVM2 

The SVM2 classifier was applied to 149 visualization results to determine the best optimal 

parameters for the highest accuracy of its. A summary of classification results for SVM2 is 

shown in Table 5 and Table 6. 

According to Table 5, it shows classification accuracy results of varied C values. The value is 

varied from 0.01, 0.1,1 and 10 to get the best classification accuracy to be used in SVM2. 

From Table 5, the suitable value for C is equal to 1 since it accurateness is 98.5% which is the 

highest than others.   

There are four types of kernel functions applied for pixels classification test; linear, 

polynomial, quadratic and RBF. As can be seen in Table 6, RBF kernel functions show 

excellent classification [48] accuracy which is above 96% compare to other kernel functions. 

Table 5. Regularization parameter (C) and classification accuracy for SVM2 

Regularization Parameter (C) Classification Accuracy 

0.01 96.1% 

0.1 97.4% 

1 98.5% 

10 95.9% 

 

 

 

Table 6. SVM2 kernel function and CAC features classification 
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Kernel Function Classification Accuracy (%) 

Linear Training = 96% 

       Testing = 72.97%  

Polynomial       Training = 94.67% 

       Testing = 72.97% 

Quadratic      Training = 89.33% 

       Testing = 66.22% 

RBF Training = 96% 

       Testing = 82.43% 

 

5. CONCLUSION  

In conclusion, by using linear kernel function for SVM1, a percentage for exudates fundus 

images is 80.8% (55/68) and percentage for normal fundus image is 82.7% (67/81). From this 

research, the variations of fundus images caused by retinal pigmentation, acquisition angle 

and illumination are the factors for wrong exudates detection in fundus images. The 

brightness also known as illumination in fundus images appears to be of such poor quality as 

to interfere with analysis. Also, the retinal pigmentation and acquisition angles of OD.   

Then, the accuracy for visualization results is 96% by using RBF kernel function for SVM2 

classifier which is nonlinear model that suitable for complex case. Therefore, the visualization 

characteristics of normal and exudates fundus images using the proposed methods have been 

proven to diagnose DR.  
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