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Abstract—Automated classification of white blood cells from
microscope images is still challenging, particularly in terms of
feature representations choice considering its complexity, com-
pactness and efficiency. Particularly, in this scenario, the feature
representations have to be invariant to non-uniform illumination,
shape of the nuclei, stage of maturity, change in topology due
to rotation, scale and shifting. This paper proposes a new white
blood cell feature representation which aims at increasing ro-
bustness to those challenges. The proposed feature representation
is designed based on L-moments (L-skewness, L-mean, L-scale
and L-kurtosis) of the Radon projection of segmented nuclei
shape. Coupled with Linear Discriminant Analysis, the proposed
feature representation has been shown to be highly effective
at encoding the discriminative properties of the white blood
cells, and invariant to intra-class cell variations. Support Vector
Machine (SVM) based (ones-vs-all ) schema and a classification
tree are applied to separate the multiple classes of cells. The
proposed approach is evaluated for a 10-class problem. It achieves
an average classification accuracy of 97.23% and outperforms all
other feature representations, including bispectral invariant, local
binary pattern, and histogram of oriented gradients using the
same classifier on the same dataset. The proposed method is also
compared and benchmarked with the other 12 existing techniques
for classification of white blood cells into 10 classes over the
same datasets and the results show that the proposed method
achieves high accuracy in comparison with other approaches.
The proposed method is also highly competitive in terms of
computation and efficiency in comparison with other approaches.

Index Terms—Classification, White Blood Cells, L-moments,
Linear Discriminant Analysis, Support Vector Machines.

I. INTRODUCTION

White blood cells (WBCs) classification plays a key role
in the diagnosis of several blood disorders, such as leukaemia
and certain types of cancer. The traditional procedure, which
requires manually classifying and segmenting WBCs with the
help of a microscope, has difficulties: (a) it is time consuming;
(b) it requires more than two experts to make a decision;
and (c) as a result it takes a substantial effort to classify

large numbers of cells. Furthermore, manual classification of
WBCs may produce inaccurate results due to human error
in classifying different shapes of WBCs, large numbers of
cells, different staining methods and overlapping cells [1].
In contrast, automated classification of WBCs can process
larger numbers of cells and different shapes, and therefore,
can potentially produce better accuracy if the algorithm used
for classification is trained well. The important steps of
WBC classification are segmentation, feature extraction, and
classification [2], [3]. Segmentation of the WBC nuclei and
the feature extraction procedures play a significant role in the
classification of WBCs, and it is key that they yield useful
information while being invariant to intra-class variations of
the cell nuclei shape, non-uniform illumination, staining, and
changes in the cell topology due to stage of maturity, rotation,
scale and shifting. The most useful information for cell clas-
sification comes from morphological features of WBC nuclei.
WBCs can be classified into three main types and seven sub-
types, as shown in Fig.1. An overview of types and subtypes
of WBC nuclei shape information and the morphological
characteristics can be found in [3], [4].

This paper is organized as follows: Motivation and con-
tribution are presented in Section-II, Section-III presents a
literature survey, Section-IV describes the proposed methodol-
ogy, Section-V provides experimental results and Section-VI
presents the conclusions of the work.

II. MOTIVATION AND CONTRIBUTION

The accuracy of WBC classification is directly influenced
by the quality of the segmentation and feature extraction
steps. The discriminative capacity of the feature representation
is still questionable because of several challenges, includ-
ing time complexity of the method, the large number of
features, and intra-class variations, including the shape of
cells, shifting, scale and rotation, and stage of maturity. Many



Fig. 1: WBC taxonomy from bone marrow, including main
types (Granulocytes, Monocytes and Lymphocytes) and sub-
types (Neutrophils, Basophils, Eosinophils, Macrophages,
Dendritic, B-lymphocytes and T-lymphocytes) [2], [3].

feature extraction representations have been proposed although
none of them address all challenges of WBCs classification
simultaneously. The motivation of this paper is to investigate
an effective feature representation for WBCs and to propose
an automated classification based on this representation. The
original contribution of this work is the use, for the first
time, of L-moments invariant features (skewness, scaling,
mean and kurtosis) and Linear Discriminant Analysis (LDA)
to classify WBC into 10-classes with better accuracy than
similar work. The novelty of this paper is that the L-moments
features (skewness, scaling, mean and kurtosis), which are
extracted from Radon projections, are based on the shape
information of the segmented WBC nuclei from microscope
images. This feature extraction scheme generates a small-
sized feature representation for each WBC, produces feature
types that are invariant to shifting, rotation and scale, and
eliminates traditional dimensionality reduction requirements.
Support Vector Machines (SVMs) and the classification tree
subsequently used to perform classification, and the method
has performed well with large or small training data sets. In
this paper, a Radial Basis Function (RBF) with (SVMs) is
used to achieve high accuracy by minimizing overlapping of
features from different classes that cause classification errors.

III. LITERATURE SURVEY

A. Application to WBC Classification

In the last decade, different approaches have been proposed
and adopted to extract the following features from WBC
images: Geometrical features, Textural features and Colour
features. These features have been used with different ma-
chine learning techniques to classify WBCs into five types:
neutrophil, eosinophil, basophil, lymphocyte, and monocyte.
Table-I summarizes existing techniques of WBC classifica-
tion, including: segmentation technique, number of classes,
databases, feature extraction representations and accuracy.
However,issues the affect the classification results for the
techniques in Table-I include: a) they are computationally
intensive; b) cell types are poorly/insufficiently represented in

the data sample; c) some techniques used flow cytometry data
which is not image based; and d) errors occurred during the
segmentation and feature extraction stages due to cells having
different orientation of nuclei, shape and size.
The feature extraction process plays a significant role in WBC
classification. Despite numerous work having been undertaken
in this field, automatic WBC classification in terms of feature
representations is still challenging, particularly in the pres-
ence of different structures within WBC types, non-uniform
illumination, low resolution of images, changes in the cell
topology (including translation, rotation, scaling, and phase of
maturation). L-moments can be useful to extract new features
to address the WBC classification problems. For classification
techniques, DL has attracted great attention in computer vision
and medical imaging tasks due to the breakthroughs it has
achieved in automatic feature learning by mimicking the
structure and operation of the human brain, and it has also
used to diagnose diseases such Alzheimer’s disease in [5]. DL
has als been explored in classification of WBCs In [6], [7];
however, DL requires a huge amount of training data if training
from scratch. In addition, DL is extremely computationally
expensive. For these reasons, DL is not within the scope of this
work. In the WBC scenario, human-expert knowledge from
this domain could achieve highly-accurate performance with
interpretable evidence for the reasoning process, this process
is amenable to implementation in a classification tree, as used
in this work.
B. Moments: Background and Application

Moments have been used for decades. They are scalar
quantities used to describe a function and to capture its
significant features. In image processing and computer vision,
the first order moment measures the center of mass, where
the mass of a pixel means intensity; the second order moment
gives the variation of the mass around the center of mass;
etc. [15]. L-moments have been proposed by [16] as an
alternative method to other types of moments. L-moments
are considered to be a key tool of wide-ranging practical
advantage in signal processing. Computation of L-moments
for a data set can summarize useful information about the
location, dispersion, and distribution of the shape from which
the data sample has been drawn. To date, it is apparent that
few works have used moments in medical imaging and blood
fields. In WBC classification, few works have used moments
to extract features in [17], [18]. To date, state-of-the-art of
classification of WBCs based on L-moment features has not
been used in terms of feature extraction representation.

IV. PROPOSED METHOD OF WBCS CLASSIFICATION

The proposed method of WBCs classification process is
shown in Fig.2:

A. Segmentation of WBCs Nuclei

The segmentation method uses A level set curvature force
via edge-based Geometric Active Contours (GACs) to obtain
the shape of WBC nuclei, as shown in Fig.3. This previous
work was presented and benchmarked in [4], [19].



TABLE I: Summary of WBC classification methods (since 2005) up to current state-of-the-art, including number of classes,
segmentation approaches, feature extraction representations, classification methods, databases, and accuracy.

Research Classes Segmentation Features extraction Classification Database Accuracy
Adjouadi et al.(2005) [8] 4 - Flow cytomery blood cell SVMs Beckman-coulter corporation data 87%
Ghosh et al.(2010) [9] 5 Watershed Geometrical features Naı̈ve Bayes Midnapur Hospital 83.2%
Rezatofighi et al.(2011) [10] 5 GramSchmidt Orthogonal-snake LBP SVMs & ANN BMT Research Center 86.10%
Habibzadeh et al. (2013) [11] 5 Manual segmentation K-PAC and DT-CWT SVMs & K-PCA — 84-86.17%
Sue et al. (2014) [6] 5 Discriminating region LDP HCNN, MPLs & SVMs CellaVision Databases 77–97%
Schneider et al. (2015) [12] 3 – flow cytometer Optical neural network Flow cytometer database 89%
Ravikumar et al. (2016) [13] 5 ELM Discriminative features ELM & Fast-RVM Hospital database 82.45–90%
Habibzadeh et al. (2018) [7] 4 Inception and ResNet architecture Hierarchy topological Deep Learning Hospital database —-
Jiang et al. (2018) [14] - - Batch normalization CNN WBCNet model – 83%

B. L-moments Based on Radon Projection

L-moments analyze and estimate the distributions of data
using linear combinations of order statistics, and can be used to
compute quantities analogous to standard deviation, skewness
and kurtosis, which are known as the L-scale, L-skewness
and L-kurtosis, respectively (the L-mean is identical to the
conventional mean). Standardised L-moments are called L-
moment ratios and are analogous to standardise moments
[16]. In this paper, L-moments statistics are used to calculate
sample statistics, including L-scale, L-skewness, L-mean and
L-kurtosis for image data after taking multiple and parallel-
path projections of the image from various angles θ by rotating
the source around the centre of the cell nucleus f(x, y). A
Radon projection is used to convert a two-dimensional image
to a one-dimensional vector. The Radon function R[θ] is
written as in [20]:

R[θ] =

∫ ∫
f(x, y)δ(x sin θ − y cos θ − r) (1)

where r represents a vector containing the radon transform of
the intensity image f(x, y) for each θ between [0, 90] degrees.
The projection result R[θ] is the summation of the intensity
of the pixels from the segmented image in each direction.

The L-moment measure of location, and L-moment ratio
measures of scale, skewness and kurtosis are adapted using
Radon projection R[θ] and written as [21]:

L-Mean = L1

L-Scale = L2/L1

L-Skewness = L3/L2

L-Kurtosis = L4/L2

⇐⇒

L1 = β0

L2 = 2β1 − β0
L3 = 6β2 − 6β1 + β0

L4 = 20β3 − 30β2 + 12β1 − β0.
(2)

where the data R[θ] is in ascending order from 1 to n and n
is the size of individual projections (the length of the vector
which collects the results of each line integral). L-moments
features is adapted using Radon projection of R[θ] for θ from
0 to 90 to measure the variation nuclei shape as follows :

- L-Mean will consider location features of cell nuclei.
- L-Scale measures variation in scaling of the cell nuclei.
- L-Skewness measures the concavity of cell nuclei.
- L-Kurtosis measures the sharpness of cell nuclei.

β0 =
1

n

n∑
j=1

Rj (3)

β1 =
1

n

n∑
j=2

Rj [(j − 1)/(n− 1)] (4)

β2 =
1

n

n∑
j=3

Rj [(j − 1)(j − 2)/(n− 1)(n− 2)] (5)

β3 =
1

n

n∑
j=4

Rj [(j − 1)(j − 2)(j − 3)/(n− 1)(n− 2)(n− 3)]

(6)

C. Linear Discriminant Analysis (LDA)

LDA is considered a concept of Fisher’s linear discriminant
analysis, and has been used for data classification and di-
mensionality reduction in different disciplines, such as pattern
recognition, machine learning and statistics. It helps to find a
linear combination of features that discriminates or separates
two or more classes of objects or events [22]. In order to find
good features, L-skewness, L-scaling, L-mean and L-kurtosis
are collected from more than one class into one matrix x, and
each column in the matrix represents one sample referred to
as y. A measure of separation between two classes or more
should be calculated as follows:

µi =
1

Ni

∑
x∈ωi

x, and µi =
1

Ni

∑
y∈ωi

y (7)

The LDA measures the distance between the projected means
normalized by the projected samples. Therefore, the data from
the same class are projected very close to each other. The
LDA projection (good features) is then obtained as the solution
of the generalized eigenvector λ. More details about LDA
procedure can be found in [23].

S−1W SB = λw (8)

V. EXPERIMENTS AND RESULTS

A. Databases

Three databases are used for the evaluation of the proposed
methodology, have all WBC types images, and have been used
in previous work on WBC segmentation [4] and classification
[2]: Cellavision Database [24] Acute Lymphoblastic Leukemia
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Fig. 2: Diagram of WBCs classification process includes segmentation of nuclei; steps of feature extraction to calculate L-
moments, features; Calculating LDA, where k is number of images and 8 features; WBCs classification.

Image Database (ALL-IDB) [25] were collected by the De-
partment of Information Technology Universit’a degli Studi
di Milano and Wadsworth Centre [26].

B. Proposed Method Implementation
The proposed method of WBC classification is implemented

using MATLAB 2017a. Fig.2 shows the process of the pro-
posed method. The proposed technique is tested using 460
labelled digital images of different WBCs. In this paper, level
set based curvature forces via edge-based GACs is first used
to detect the shape of the nucleus for each type of WBCs,
as shown in Fig. 3 [4]. Then, the N ×M segmented nucleus
cell image is converted to a 1D vector using the MATLAB
Radon projection function. The Radon projection produces
a Radon vector R for each θ from 0 to 90 degrees in 1
degree increments. L-moments are then used to calculate L-
scale, L-skewness, L-kurtosis and L-mean features for each
Radon vector R to obtain useful information (features) of
the location, scale, concavity, and sharpness of the segmented
nucleus shape. LDA is then implemented to find good features,
and produces one matrix of size (k × 8) where k is number
of images and 8 is number of features which are two feature
vectors for each L-scale, L-skewness and L-kurtosis and L-
mean features. The set is then split randomly into train and
test subsets in the ratio of 1/3 (train) and 2/3 (test) for each
type of cell. SVMs classifier (ones vs all) learning schema
and classification tree are used to classify WBC into multi
classes. The accuracy is calculated based on parameters: True
Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) [27].

C. Experiment Results and Benchmark
1) Building Classification Tree
An SVM classifier is trained for each type and sub-type of

cell to create a classification tree. 151 images randomly chosen
are used for training the SVM with 5-fold cross validation to
calculate the accuracy. The experiment is repeated 15 times to
obtain consistency of the classification accuracy, as shown in
Table-II, Table-III.

(a) (b) (c) (d)

Fig. 3: WBC nuclei segmentation [4]: (a) monocyte cell, (b)
segmented nucleus, (c) neutrophil cell, (d) segmented nucleus.

TABLE II: Average accuracy after 15 repetitions to order WBC
main types in the classification tree.

Order Actual class Accuracy
1 Granulocyte 97.08
2 Lymphocyte 95.33
3 Monocyte 94.36

TABLE III: Average accuracy after 15 repetitions to order
WBC sub-types in the classification tree.

Main class Sub-types class Accuracy

Granulocyte
Neutrophil 96.61

Basophil 93.53
Eosinophil 90.04

Lymphocyte T-cell 92.63
B-cell 91.21

Monocyte Macrophage 97.30
Dendritic 95.87

2) Classification Results
SVMs using RBF function based (ones-vs-all ) schema are

implemented to classify 460 labelled images. Both training and
testing are performed using 151 and 309 images, respectively.
This experiment is repeated 100 times to obtain predictive
labels each time. The predictive labels are created for each
type of WBC as 0’s for one class and 1’s for other classes.
These predicted labels of the test set can be compared to the
actual labels in the classification tree to get TP, FP, FN, TN
parameters, as shown in Table- IV. Table-V shows a confusion



matrix to calculate classification accuracy.

TABLE IV: Average accuracy of classification 100 repetitions
of WBC types and sub-types.

Actual class TP TN FP FN Accuracy
Neutrophil 67 107 0 1 99.43%
Basophil 52 54 2 2 96.12%

Eosinophil 52 0 1 1 95.03%
Macrophage 47 27 2 0 97.36%

Denditric 26 0 0 1 96.29%
T-cell 28 32 1 1 96.96%
B-cell 28 2 0 2 94.22%

TABLE V: Confusion matrix after 100 repetitions to classify
labelled images.

Class Neutro. Baso. Eosino. Macro. Dendi. B-cell T-cell
Neutro. 67 0 0 0 0 0 0
Baso. 1 52 1 0 0 0 0

Eosino. 0 1 52 1 0 0 0
Macro. 0 0 0 47 0 0 0
Dendi. 0 0 0 1 26 0 0
T-cell 0 0 0 0 0 28 1
B-cell 0 1 0 0 0 1 28

3) Comparison With Other Methods and Benchmarking
The average accuracy is computed for the proposed feature

extraction method with the SVM classifier and compared with
other feature extraction methods using the same segementation
method and SVM classifier. These methods of feature extrac-
tion are: Local Binary Pattern (LBP), Histogram of Oriented
Gradients (HOG), bispectral invariant integrated from Higher
Order Spectra (HOS) [2] and Speeded Up Robust Features
(SURF). 460 images of WBCs over the same databases have
been used to evaluate the performance of all methods. Table-
VI shows that 8 L-moments features with the SVMs classifier
results in higher accuracy than the other methods.

TABLE VI: Comparison of performance between LDA based
on L-moments invariant features (the proposed method) with
other feature extraction representations using the same seg-
mentation method and SVMs classifier.

Actual class Proposed method HOS LBP HOG SURF
Granulocyte 100.00% 99.67% 85.07% 80.12% 83.02%
Neutrophil 99.01% 98.18% 83.64% 79.99% 75.12%
Basophil 96.12% 94.33% 86.50% 90.43% 77.14%

Eosinophil 95.03% 94.54 % 67.71% 77.78% 74.19%
Lymphocyte 99.00% 98.82% 81.23% 92.23% 81.71%

T-cell 96.66% 96.29% 75.11% 82.54% 79.12%
B-cell 94.25% 93.10% 90.15% 84.88% 82.66%

Monocyte 98.28% 97.76% 76.05% 83.12% 70.15%
Macrophage 97.36% 96.18% 83.03% 82.55% 81.92%

Denditric 96.77% 92.13% 84.53% 78.24% 88.12%
Average 97.23% 96.13% 82.01% 83.19% 80.08%

Table-VII has shown a comparison of the classification
accuracy of the proposed method with other existing methods.
Average accuracy is computed for the proposed classification
technique and compared with average accuracy values of other

existing methods using the 460 WBC images of 3 databases
presented in Subsection-V-A. The evaluation performance of
the proposed WBC classification technique is benchmarked
versus 12 other existing techniques: Fast-RVM, ELM [13],
FCM, Fast Fuzzy C Mean (FFCM) [28], ANN [10], HHCN ,
MLPs [6], random forest and regression tree [29], PCA [30]
and K-PCA [11]. The results show that the proposed method
based on LDA on L-moments invariant features with SVMs
and classification tree method, for classifying WBC into 10-
classes, has higher accuracy than all other techniques except
bispectral invariant features [2] where LDA on L-moments
invariant features has slightly better accuracy. Other techniques
do not work well with those databases due to variation in
shape, rotation, scaling, shifting and maturity stage. ELM
and Fast-RVM methods were designed to classify 5-classes
of WBCs. An ANN technique could not classify WBCs and
produces results because it requires a huge data training set
for this task. Other techniques have also not performed as
well as the proposed method, due to issues in segmentation of
WBC nuclei technique, feature exaction representations and
processing time.

TABLE VII: Comparison accuracy of different WBC clas-
sification techniques. The average accuracy of the proposed
method are compared with other existing techniques (the fisrt
twelve rows) using the same databases from Subsection-V-A.
The best result for existing methods are highlighted in blue,
and the proposed method (the last row), which highlighted in
green, outperforms it.

Existing Methods No.Class Accuracy
Discriminative features + Fast-RVM [13] 5 84.13%
Discriminative features + ELM [13] 5 79.94%
DT-CWT features + K-PCA [11] 10 84.53%
SURF features + PCA [30] 10 74.05%
Colour Features via histogram + FCM [28] 10 84.15%
Colour Features via histogram + FFCM [28] 10 90.18%
Prominent features + Random forest [29] – 82.13%
Prominent features + Logistic regression [29] – 74.02%
LDP features + MPLs [6] 10 78.51%
LDP features + HCNN [6] 10 67.58%
LBP and Discriminative features + ANN [10] - -
Bispectral invariant features of nuclei + SVMs [2] 10 96.13%
L-moments invariant features of nuclei + SVMs 10 97.23%

4) Time Performance

The proposed method was tested using a processor In-
tel(R) Core(TM) i7-4600U CPU 2.70 GHz and MATLAB
2017a. The computation time for techniques listed in Table-
VII are: random forest and logistic regression techniques are
implemented using Python and require a longer computation
time than the other methods. A computation time in (sec)
for the whole system of other methods (Fast-RVM, ELM,
FCM, FFCM, PCA,K-PCA, bispectral invariant features and
L-moments invariant features) are respectively: 2230, 6967,
6359, 1190, 8750, 6500, 15800, 85.



VI. CONCLUSION AND DISCUSSION

In this paper, new features relying on L-moments fea-
tures (skewness, mean, scaling and kurtosis) adapted using
a Radon projection and coupled with linear discriminant
analysis, support vector machines and classification tree, are
used to classify white blood cells into ten classes (three main
types and seven sub-types). The proposed method addresses
the challenges of automated white blood cell classification,
including variation in cell shape and illumination, time com-
plexity and changes in topology due to rotation, shifting, scale,
staining and maturity stage. The proposed method is evaluated
using three public databases to demonstrate the capability
of the method to account for diverse intra-class variations.
A confusion matrix has been used to calculate classification
accuracy. The results of the proposed method are compared
with other 4 feature extraction representations. The overall
accuracy of using eight L-moments features is 97.23%, which
is higher than other feature extraction representations. The
proposed method is also benchmarked and compared to 12
other methods. The proposed method achieves an accuracy of
97.13%, while the best accuracy results for the other methods
are 96.13% and 90.18%, obtained for bispectral invariant and
FFCM method, respectively. The results are shown that L-
moments features are invariant to shifting, scaling, and rota-
tion. These features are shown to have the ability to distinguish
between different types of white blood cells accurately and
quickly. The L-moments features produce improved results in
comparison to other features because the L-moments method
can take advantage of a well segmented nucleus, more than
other feature representations. This is because the nucleus
captures information about skewness, scale, mean and kurtosis,
while remaining invariant to shift, rotation and scale. L-
moments can also produce features with little overlap. This
means that LDA gives high discrimination of features when
used with L-moments. In terms of computational time, the
proposed method is significantly faster than other methods.
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