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Abstract 

We investigate the problem of learning a classification task on data 
represented in terms of their pairwise proximities. This representa
tion does not refer to an explicit feature representation of the data 
items and is thus more general than the standard approach of us
ing Euclidean feature vectors, from which pairwise proximities can 
always be calculated. Our first approach is based on a combined 
linear embedding and classification procedure resulting in an ex
tension of the Optimal Hyperplane algorithm to pseudo-Euclidean 
data. As an alternative we present another approach based on a 
linear threshold model in the proximity values themselves, which is 
optimized using Structural Risk Minimization. We show that prior 
knowledge about the problem can be incorporated by the choice of 
distance measures and examine different metrics W.r.t. their gener
alization. Finally, the algorithms are successfully applied to protein 
structure data and to data from the cat's cerebral cortex. They 
show better performance than K-nearest-neighbor classification. 

1 Introduction 

In most areas of pattern recognition, machine learning, and neural computation it 
has become common practice to represent data as feature vectors in a Euclidean 
vector space. This kind of representation is very convenient because the Euclidean 
vector space offers powerful analytical tools for data analysis not available in other 
representations. However, such a representation incorporates assumptions about 
the data that may not hold and of which the practitioner may not even be aware. 
And - an even more severe restriction - no domain-independent procedures for the 
construction of features are known [3J. 

A more general approach to the characterization of a set of data items is to de-
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fine a proximity or distance measure between data items - not necessarily given as 
feature vectors - and to provide a learning algorithm with a proximity matrix of 
a set of training data. Since pairwise proximity measures can be defined on struc
tured objects like graphs this procedure provides a bridge between the classical and 
the" structural" approaches to pattern recognition [3J. Additionally, pairwise data 
occur frequently in empirical sciences like psychology, psychophysics , economics, 
biochemistry etc., and most of the algorithms developed for this kind of data - pre
dominantly clustering [5 , 4J and multidimensional scaling [8, 6]- fall into the realm 
of unsupervised learning. 

In contrast to nearest-neighbor classification schemes [10] we suggest algorithms 
which operate on the given proximity data via linear models. After a brief discus
sion of different kinds of proximity data in terms of possible embeddings, we suggest 
how the Optimal Hyperplane (OHC) algorithm for classification [2, 9] can be applied 
to distance data from both Euclidean and pseudo-Euclidean spaces. Subsequently, 
a more general model is introduced which is formulated as a linear threshold model 
on the proximities, and is optimized using the principle of Structural Risk Mini
mization [9J . We demonstrate how the choice of proximity measure influences the 
generalization behavior of the algorithm and apply both algorithms to real-world 
data from biochemistry and neuroanatomy. 

2 The Nature of Proximity Data 

When faced with proximity data in the form of a matrix P = {Pij} of pairwise 
proximity values between data items , one idea is to embed the data in a suitable 
space for visualization and analysis. This is referred to as multidimensional scaling, 
and Torgerson [8J suggested a procedure for the linear embedding of proximity data. 
Interpreting the proximities as Euclidean distances in some unknown Euclidean 
space one can calculate an inner product matrix H = XTX w.r.t. to the center of 
mass of the data from the proximities according to [8] 

1 21 21 21 2 ( f f f ) 
(H)ij = -2 !Pij! - £ Ii !Pmj ! - £ ~ !Pin ! + £2 m~l !Pmn! . (1) 

Let us perform a spectral decomposition H = UDUT = XTX and choose D 
and U such that their columns are sorted in decreasing order of magnitude of 
the eigenvalues .Ai of H . The embedding in an n-dimensional space is achieved 

by calculating the first n rows of X = D ~ U T . In order to embed a new data 
item characterized by a vector p consisting of its pairwise proximities Pi w.r.t. to 
the previously known data items, one calculates the corresponding inner product 

vector h using (1) with (H)ij, Pij, and Pmj replaced by hi , Pi , and Pm respectively, 

and then obtains the embedding x = D -~ UTh. 

The matrix H has negative eigenvalues if the distance data P were not Eu
clidean. Then the data can be isometrically embedded only in a pseudo-Euclidean 

or Minkowski space ~(n+,n-), equipped with a bilinear form q> , which is not 

positive definite. In this case the distance measure takes the form P(Xi, Xj) = 

Jq>(Xi - Xj) = J(Xi - xj)TM(Xi - Xj), where M is any n x n symmetric matrix 
assumed to have full rank, but not necessarily positive definite. However, we can 
always find a basis such that the matrix M assumes the form M = diag(In+ , -In-) 
with n = n+ + n-, where the pair (n+, n-) is called the signature of the pseudo
Euclidean space [3J . Also in this case (1) serves to reconstruct the symmetric bilinear 
form , and the embedding proceeds as above with D replaced by D , whose diagonal 
contains the modules of the eigenvalues of H. 
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From the eigenvalue spectrum of H the effective dimensionality of the proximity 
preserving embedding can be obtained. (i) If there is only a small number of large 
positive eigenvalues, the data items can be reasonably embedded in a Euclidean 
space. (ii) If there is a small number of positive and negative eigenvalues of large 
absolute value, then an embedding in a pseudo-Euclidean space is possible. (iii) If 
the spectrum is continuous and relatively flat, then no linear embedding is possible 
in less than .e - 1 dimensions. 

3 Classification in Euclidean and Pseudo-Euclidean Space 

Let the training set S be given by an .e x.e matrix P of pairwise distances of unknown 
data vectors x in a Euclidean space, and a target class Yi E {-I, + I} for each data 
item. Assuming that the data are linearly separable, we follow the OHC algorithm 
[2J and set up a linear model for the classification in data space, 

y(x) = sign(xT w + b) . (2) 

Then we can always find a weight vector wand threshold b such that 

Yi(xTw+b)~l i=l, . .. ,.e. (3) 

Now the optimal hyperplane with maximal margin is found by minimizing IIw l12 
under the constraints (3). This is equivalent to maximizing the Wolfe dual W(o:) 

w.r.t. 0:, 
1 

W(o:) = o:TI- 20:TYXTXYo: , (4) 

with Y = diag(y) , and the .e-vector 1. The constraints are ai ~ 0, Vi, and 1 Ty 0:* = 
O. Since the optimal weight vector w* can be expressed as a linear combination of 
training examples 

w* = XYo:*, (5) 

and the optimal threshold b* is obtained by evaluating b* = Yi - xT w* for any 
training example X i with at i- 0, the decision function (2) can be fully evaluated 
using inner products between data vectors only. This formulation allows us to learn 
on the distance data directly. 

In the Euclidean case we can apply (1) to the distance matrix P of the training 
data, obtain the inner product matrix H = XTX, and introduce it directly -

without explicit embedding of the data - into the Wolfe dual (4). The same is true 
for the test phase, where only the inner products of the test vector with the training 
examples are needed. 

In the case of pseudo-Euclidean distance data the inner product matrix H obtained 
from the distance matrix P via (1) has negative eigenvalues. This means that 
the corresponding data vectors can only be embedded in a pseudo-Euclidean space 

R(n+ ,n-) as explained in the previous section. Also H cannot serve as the Hessian 

in the quadratic programming (QP) problem (4). It turns out, however , that the 
indefiniteness of the bilinear form in pseudo-Euclidean spaces does not forestall 
linear classification [3]. A decision plane is characterized by the equation xTMw = 
0, as illustrated in Fig. 1. However, Fig. 1 also shows that the same plane can just 
as well be described by x T W = 0 - as if the space were Euclidean - where w = Mw 
is simply the mirror image of w w.r.t. the axes of negative signature. For the 
OHC algorithm this means, that if we can reconstruct the Euclidean inner product 
matrix XTX from the distance data, we can proceed with the OHC algorithm as 
usual. fI = XTX is calculated by "flipping" the axes of negative signature , i.e ., 
with D = diag(l>-ll, ... , I>-cl), we can calculate fI according to 

fI = UDUT , (6) 
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Figure 1: Plot of a decision line (thick) 
in a 2D pseudo-Euclidean space with sig
nature (1,1), i.e. , M = diag(l, -1). The 
decision line is described by xTMw = a. 
When interpreted as Euclidean it is at right 
angles with w, which is the mirror image 
of w w.r.t. the axis X- of negative signa
ture. In physics this plot is referred to as a 
Minkowski space-time diagram, where x+ 

corresponds to the space axis and x- to the 
time axis. The dashed diagonal lines indi
cate the points xTMx = a of zero length, 
the light cone. 

which serves now as the Hessian matrix for normal OHC classification. Note, that 
H is positive semi-definite, which ensures a unique solution for the QP problem (4). 

4 Learning a Linear Decision Function in Proximity Space 

In order to cope with general proximity data (case (iii) of Section 2) let the training 
set S be given by an f x R proximity matrix P whose elements P' ) = P( .l" " r ) ) "rf' 

the pairwise proximity values between data items Xi, i = 1, ... , £, and a target class 
Yi E {-I , + I} for each data item. Let us assume that the proximity values satisfy 
reflexivity, Pii = a,Vi, and symmetry, Pij = pji,Vi,j. We can make a linear model 
for the classification of a new data item x represented by a vector of proximities 
P = (PI,'" ,pe)T where Pi = p(x, xd are the proximities of x w.r.t. to the items Xi 

in the training set, 

y(x) = sign(pT w + b) . (7) 

Comparing (7) to (2) we note, that this is equivalent to using the vector of proxim
ities p as the feature vector x characterizing data item x. Consequently, the OHC 
algorithm from the previous section can be used to learn a proximity model when 
x is replaced by p in (2), XTX is replaced by p2 in the Wolfe dual (4), and the 

columns P l of P serve as the training data. 

Note that the formal correspondence does not imply that the columns of the prox
imity matrix are Euclidean feature vectors as used in the SV setting. We merely 
consider a linear threshold model on the proximities of a data item to all the training 
data items. Since the Hessian of the QP problem (4) is the square of the proximity 
matrix, it is always at least positive semi-definite, which guarantees a unique solu
tion of the QP problem. Once the optimal coefficients 0:; have been found, a test 
data item can be classified by determining its proximities Pi from the elements Xi of 
the training set and by using conditions (2) together with (5) for its classification. 

5 Metric Proximities 

Let us consider two examples in order to see, what learning on pairwise metric data 
amounts to. The first example is the minimalistic a-I-metric, which for two objects 
Xi and x J is defined as follows : 

( . x.) _ { a if Xi = Xj 
Po Xl, J - 1 otherwise . (8) 
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Figure 2: Decision functions in a simple two-class classification problem for different 
Minkowski metrics. The algorithm described in Sect. 4 was applied with (a) the 
city-block metric (r = 1), (b) the Euclidean metric (r = 2), and (c) the maximum 
metric (r -+ 00). The three metrics result in considerably different generalization 
behavior, and use different Support Vectors (circled). 

The corresponding £ x £ proximity matrix Po has full rank as can be seen from its 
non-vanishing determinant det(Po) = (_I)l-l(£ - 1). From the definition of the 

0-1 metric it is clear that every data item x not contained in the training set is 
represented by the same proximity vector p = 1, and will be assigned to the same 
class. For the 0-1 metric the QP problem (4) can be solved analytically by matrix 

inversion, and using POl = (£ - 1)-111 T - I we obtain for the classification 

This result means, that each new data item is assigned to the majority class of 

the training sample, which is - given the available information - the Bayes optimal 
decision. This example demonstrates, how the prior information - in the case of the 
0-1 metric the minimal information of identity - is encoded in the chosen distance 
measure. 

As an easy-to-visualize example of metric distance measures on vectors x E ~n let 
us consider the Minkowski r-metrics defined for r 2: 1 as 

(10) 

For r = 2 the Minkowski metric is equivalent to the Euclidean distance. The case 
r = 1 corresponds to the so-called city-block metric, in which the distaqce is given 
by the sum of absolute differences for each feature. On the other extreme, the max
imum norm, r -+ 00, takes only the largest absolute difference in feature values as 
the distance between objects. Note that with increasing r more weight is given to 
the larger differences in feature values, and that in the literature on multidimen
sional scaling [1] Minkowski metrics have been used to examine the dominance of 
features in human perception. Using the Minkowski metrics for classification in a 
toy example, we observed that different values of r lead to very different generaliza
tion behavior on the same set of data points, as can be seen in Fig. 2. Since there 
is no apriori reason to prefer one metric over the other , using a particular metric is 
equivalent to incorporating prior knowledge into the solution of the problem. 
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I Size of Class 

ORC-cut-off 3.08 4.62 6.15 3.08 0.91 4.01 0.45 0.00 

ORC-flip-axis 3.08 1.54 4.62 3.08 0.91 4.01 0.45 0.00 

OR C-proximi ty 3.08 4.62 3.08 1.54 0.45 3.60 0.45 0.00 

1-NN 5.82 6.00 6.09 6.74 1.65 3.66 0.00 2.01 

2-NN 6.09 4.46 7.91 5.09 2.01 5.27 0.00 3.44 

3-NN 5.29 2.29 4.18 4.71 2.14 6.34 0.00 2.68 
4-NN 6.45 5.14 3.68 5.17 2.46 5.13 0.00 4.87 

5-NN 5.55 2.75 2.72 5.29 1.65 5.09 0.00 4.11 

Table 1: Classification results for Cat Cortex and Protein data. Bold numbers 
indicate best results. 

6 Real-World Proximity Data 

In the numerical experiments we focused on two real-world data sets, which are both 
given in terms of a proximity matrix P and class labels y for each data item. The 
data set called "cat cortex" consists of a matrix of connection strengths between 
65 cortical areas of the cat. The data was collected by Scannell [7] from text 
and figures of the available anatomical literature and the connections are assigned 
proximity values p as follows: self-connection (p = 0) , strong and dense connection 
(p = 1) , intermediate connection (p = 2), weak connection (p = 3), and absent or 
unreported connection (p = 4). From functional considerations the areas can be 
assigned to four different regions: auditory (A), visual (V), somatosensory (SS), 
and frontolimbic (FL). The classification task is to discriminate between these four 
regions, each time one against the three others. 

The second data set consists of a proximity matrix from the structural comparison of 
224 protein sequences based upon the concept of evolutionary distance. The major
ity of these proteins can be assigned to one of four classes of globins: hemoglobin-a 
(R-a), hemoglobin-;3 (R-;3), myoglobin (M), and heterogenous globins (GR). The 
classification task is to assign proteins to one of these classes, one against the rest. 

We compared three different procedures for the described two-class classification 
problems, performing leave-one-out cross-validation for the "cat cortex" dataset 
and lO-fold cross-validation for the "protein" data set to estimate the generaliza
tion error. Table 1 shows the results. ORC-cut-off refers to the simple method 
of making the inner product matrix H positive semi-definite by neglecting projec
tions to those eigenvectors with negative eigenvalues. ORC-flip-axis flips the axes 
of negative signature as described in (6) and thus preserves the information con
tained in those directions for classification. ORC-proximit}', finally, refers to the 
model linear in the proximities as introduced in Section 4. It can be seen that 
aRC-proximity shows a better generalization than ORC-flip-axis , which in turn 
performs slightly better than ORC-cut-off. This is especially the case on the cat 
cortex data set, whose inner Rroduct matrix H has negative eigenvalues. For com
parison, the lower part of Table 1 shows the corresponding cross-validation results 
for K-nearest-neighbor, which is a natural choice to use, because it only needs the 
pairwise proximities to determine the training data to participate in the voting. 
The presented algorithms ORC-flip-axis and aRC-proximity perform consistently 
better than K-nearest-neighbor, even when the value of K is optimally chosen. 
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7 Conclusion and Future work 

In this contribution we investigated the nature of proximity data and suggested 
ways for performing classification on them. Due to the generality of the proxim
ity approach we expect that many other problems can be fruitfully cast into this 
framework. Although we focused on classification problems , regression can be con
sidered on proximity data in an analogous way. Noting that Support Vector kernels 
and covariance functions for Gaussian processes are similarity measures for vector 
spaces, we see that this approach has recently gained a lot of popularity. However, 
one problem with pairwise proximities is that their number scales quadratically 
with the number of objects under consideration. Hence, for large scale practical 
applications the problems of missing data and active data selection for proximity 
data will be of increasing importance. 
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